路漫漫其修远兮分享 http://blog.sciencenet.cn/u/zhpd55 追求科学,勇于探索,苦海无涯,愿作小舟。

博文

科学家们设计了一种新材料,可以吸收和释放大量的能量

已有 3400 次阅读 2022-2-5 08:49 |个人分类:新观察|系统分类:海外观察

科学家们设计了一种新材料,可以吸收和释放大量的能量

诸平

Snap1.jpg

The elastic material with embedded magnets whose poles are color-coded red and blue. Orienting the magnets in different directions changes the metamaterial’s response. Credit: University of Massachusetts Amherst

据美国马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst简称UMass Amherst202222日报道,受大自然启发的研究人员创造了一种新的、可编程的超级超材料,可以吸收和释放大量的能量( Scientists engineer new material that can absorb and release enormous amounts of energy)。相关研究结果于202214日已经在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)杂志网站发表——Xudong Liang, Hongbo Fu, Alfred J. Crosby. Phase-transforming metamaterial with magnetic interactions. Proceedings of the National Academy of Sciences, January 4, 2022, 119(1): e2118161119. DOI: 10.1073/pnas.2118161119. https://www.pnas.org/content/119/1/e2118161119

马萨诸塞大学阿默斯特分校(UMass Amherst)的一组研究人员在此论文中宣布,他们已经研制出一种新的类似橡胶的固体物质,具有惊人的品质。它可以吸收和释放大量的能量,而且是可编程的。综上所述,这种新材料具有非常广泛的应用前景,从使机器人在不使用额外能源的情况下拥有更大的电力,到新型头盔和保护材料,可以更快地消耗能量。

UMass Amherst聚合物科学与工程教授、该论文的通讯作者艾尔弗雷德·克罗斯比(Alfred Crosby说:想象一根橡皮筋,你把它拉回来,当你放开它时,它就会飞过房间。现在想象一个超级橡皮筋。当您将其拉伸超过某个点时,您会激活存储在材料中的额外能量。当你松开这条橡皮筋时,它会飞一英里(约为1.609 km)。

这个假想的橡皮筋是由一种新的超材料制成的——一种被设计成具有天然材料中没有的特性的物质——它结合了一种弹性的橡胶状物质和嵌入其中的微小磁铁。这种新的弹磁材料("elasto-magnetic" material)利用称为相移的物理特性来极大地放大材料可以释放或吸收的能量。

当材料从一种状态转移到另一种状态时,就会发生相移:想想水变成蒸汽或液体混凝土硬化成人行道。每当一种材料改变其相位时,能量要么被释放要么被吸收。相移不仅限于液态、固态和气态之间的变化——从一种固相到另一种固相的转变也可能发生。可以利用释放能量的相移作为电源,但获得足够的能量一直是困难的部分。

为了放大能量释放或吸收,你必须在分子甚至原子水平上设计一个新结构,艾尔弗雷德·克罗斯比说。然而,这具有挑战性,甚至更难以以可预测的方式进行。但是通过使用超材料(metamaterials),艾尔弗雷德·克罗斯比说:我们已经克服了这些挑战,不仅制造了新材料,而且还开发了设计算法,使这些材料能够以特定的响应进行编程,使其可预测。

该团队受到自然界中一些闪电般的快速反应的启发:捕蝇草(Venus flytraps)和捕蝇颚蚁(trap-jaw ants)的快速关闭。该论文的第一作者、中国深圳哈尔滨工业大学 (Harbin Institute of Technology, Shenzhen in China) 的教授梁旭东(Xudong Liang音译)说:我们已经将其提升到了一个新的水平,通过将微型磁铁嵌入弹性材料中,我们可以控制这种超材料的相变。而且由于相移是可预测和可重复的,我们可以设计超材料来完成我们想要它做的事情:要么从大冲击中吸收能量,要么释放大量能量以进行爆炸性运动。,梁旭东在UMass Amherst做博士后期间完成了这项研究。此研究得到了美国陆军研究实验室(U.S. Army Research Laboratory)和美国陆军研究办公室(U.S. Army Research Office)以及深圳哈尔滨工业大学的支持,适用于需要高强度冲击或闪电般快速响应的任何场景。上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道 

Understanding phase change materials for thermal energy storage

Significance

Material phase transitions offer promise for driving motion and managing high-rate energy transfer events; however, engineering conventional phase transitions at a molecular or atomic level is challenging. We overcome this challenge by coupling multiple interacting fields within a metamaterial framework. Specifically, we embed magnetic domains, with nonlinear, orientationally dependent force interactions, within elastic structures to control reversible phase transitions and program high–strain-rate deformation. The resulting high-rate energy transformations are used to enhance elastic recoil, which could be used to drive high-power motion and to quickly dampen impact loading events. The developed Landau free energy–based model for this material system broadens the impact of this advance, setting the stage for metamaterials with wide-ranging compositions, interacting fields, and engineered properties.

Abstract

Solid–solid phase transformations can affect energy transduction and change material properties (e.g., superelasticity in shape memory alloys and soft elasticity in liquid crystal elastomers). Traditionally, phase-transforming materials are based on atomic- or molecular-level thermodynamic and kinetic mechanisms. Here, we develop elasto-magnetic metamaterials that display phase transformation behaviors due to nonlinear interactions between internal elastic structures and embedded, macroscale magnetic domains. These phase transitions, similar to those in shape memory alloys and liquid crystal elastomers, have beneficial changes in strain state and mechanical properties that can drive actuations and manage overall energy transduction. The constitutive response of the elasto-magnetic metamaterial changes as the phase transitions occur, resulting in a nonmonotonic stress–strain relation that can be harnessed to enhance or mitigate energy storage and release under high–strain-rate events, such as impulsive recoil and impact. Using a Landau free energy–based predictive model, we develop a quantitative phase map that relates the geometry and magnetic interactions to the phase transformation. Our work demonstrates how controllable phase transitions in metamaterials offer performance capabilities in energy management and programmable material properties for high-rate applications.



https://m.sciencenet.cn/blog-212210-1324017.html

上一篇:二维聚合物有助于创造一种比钢更坚固的轻质新材料
下一篇:“量子摩擦”减缓了水通过碳纳米管的速度, 解决了长期存在的流体动力学之谜

1 尤明庆

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-3-29 10:33

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部