解密暗物质分享 http://blog.sciencenet.cn/u/zyntiger 暗物质是连接宏观世界与微观世界的纽带,也是低速物理通向高速物理的桥梁,更是跨越经典物理与现代物理巨大鸿沟的有效工具!

博文

暗物质与宇宙模型:4. 暗物质与场

已有 803 次阅读 2022-9-20 08:05 |个人分类:暗物质|系统分类:论文交流

4. 暗物质与场

4.1引言

宇宙之所以有序运转,一切皆因万有引力。如果失去万有引力,宇宙将陷于极度混沌状态,更不会有生命的存在。因此,要了解宇宙的过去、现在与未来,首先要了解万有引力规律。

一百多年来,多种场论被提出,并试图找到场物质粒子,遗憾的是迄今尚未实现。在过去的十年里,通过精确的宇宙观察得到了令人惊讶的宇宙模型:暗物质质量远大于可见物质质量,暗物质是宇宙质量的主导形式。迄今,通过数值模拟和引力透镜观测能精确地确定暗物质分布,并且粒子物理学家已经提出了十几种可能的暗物质候选者。几十年来,捕获暗物质和实现场论统一都一直是物理学家和天文学家的最大愿望,然而他们依旧两手空空。

2000年至2002年,高级薄电离量能器(Advanced Thin Ionization Calorimeter,简称ATIC)的研究人员观测到210个电子和正电子,这比预期多70个,这些被认为是由暗物质所产生的。与物质反物质探索和轻核天体物理研究有效载荷(Payload for Antimatter Matter Exploration and Light-Nuclei Astrophysics,简称PAMELA)的研究小组所发现的结果一样,暗物质的湮灭应产生等量的电子和正电子。Cho认为PAMELA观测到的是电子对产生的起始阶段,而ATIC是观测到了整个碰撞的过程;一些理论物理学家认为ATICPAMELA观测的数据是完全兼容的对于ATICPAMELA观测到的电子和正电子流,Chang等人也认为暗物质的湮灭可以解释这种现象。冷暗物质探测II (Cryogenic Dark Matter Search II,简称CDMS II)合作组的研究表明暗物质的候选者具有电离的特性。总之,已经有大量的实验研究表明在真空中可以生成电子对,并且电子对可以“湮灭消失”,这表明暗物质粒子可能是一种包含正负电子的稳定粒子。而在一定条件下电子对够湮灭释放出能量,形成能量较低且稳定的暗物质粒子;在一定的条件下,暗物质粒子吸收足够的能量而电离成电子对。幸运的是,电子对产生与湮灭的大量相关实验已经被完成,从本质上来看,已经捕捉到了暗物质粒子。

暗物质好似在宇宙中纵横交错编织了一张巨大而看不见的网,被认为是促成星系、恒星和行星产生的原因,主导了宇宙结构的形成。因此在天文学家和物理学家眼中,对暗物质的认识每前进一小步,都意味着对宇宙未知领域探索迈出一大步。暗物质以粒子形式存在,暗物质粒子是连接星系-行星的谱带,也是可被极化的磁极子粒子,并具有传递能量的粒子效应。

总之,暗物质可以与不同可见物质相互作用,是物质间万有引力的传递桥梁,并能够合理解释万有引力超距作用,也是场物质的实体化、粒子化体现。

4.2 电子偶极子模型

暗物质已知特性包括:具有质量;连接星系的谱带具有万有引力特征;具有传递能量的粒子效应;可被极化;分布规律与引力场分布规律相同;⑦湮灭产生等量的正反粒子。

麦克斯韦用被誉为有史以来最美公式完美地统一了电和磁,预言光是一种电磁波,并精准地预测了电偶极子,赫兹用实验完美地验证了电偶极子,这表明空间里含有电偶极子。电偶极子的两极只能是质量相等、电荷相等,否则会反射电磁波而可见,正反粒子偶极子是电偶极子的唯一选择。

目前普遍认为电子对结合的电子偶素(positronium)是不稳定的,正负电子均全部转化为伽马射线等能量。另外,伽马射线也可以在真空中生成电子对。正电子是反物质,电子对和光子可以相互转化,但这里的物质、能量和电荷的守恒问题需要严格论证。A.正反粒子对结合前具有质量、能量和电荷,本身具有的电势能足够转化为伽马射线等能量,质量和电荷哪里去了?B.正反粒子对与“光子”相互转化的机理需要严格论证,为什么是成对转化,不能单个粒子转化?是由于单个粒子没有电势能,只有粒子对有电势能转化为电磁能。C.质量与能量相互转化缺乏精准的实验验证,能量脱离物质能否单独存在也需要严格论证。物质是能量的本体,没有物质能量无所依;物质是能量的受体,没有物质能量无所传;且能量的传递过程必须伴随着物质间的相互作用。D.加速器中正反质子对和正负电子对都被加速到接近光速,质子对质量是电子对质量的1836倍,质子对初始动能是电子对初始动能的1836倍,质子对和电子对结合后都是释放出一对“光子”,但减掉初始动能,质子对和电子对结合释放的能量是相同数量级的。这表明电子对和质子对将电势能转化为电磁能,结合为能量更低、更稳定的正反粒子偶极子。E超强电场、交变电场、超强磁场等众多方法能在“真空”中产生电子对,电子对是如何凭空产生的。F.电子的轨道跃迁吸收或释放“光子”,仅仅是电子的电势能与“光子”相互转化。没有证据表明光子转化为不同带电粒子,或不同带电粒子转化为光子 G.在任何情况下,任何两束交叉光都不会发生碰撞,表明运动中的光子的体积为零,且无静止质量,意味着光子仅仅是能量子,否则物理本质无法解释。H. 体积与静止质量为0光子不含任何电荷,单个光子传递电磁波的机理需进一步论证。I. 威尔逊云室实验表明单个粒子的运动轨迹不是波动的,完全符合宏观物质的运动规律,单个光子的波动机理需进一步论证。J. 单个光子振动形式及其产生横波而非纵波的机理需进一步论证。K. 不同介质中的光子仅仅在交界面发生速度变化的传播机理需进一步论证,并且只有介质才能影响“光子”速度的机理需要严密论证。L. 光子间不能相互吸收、传递或相互作用,与电磁波理论有明显矛盾。M. 电子对碰撞可以产生质子对或介子对,质量比相差3个数量级,但能量却相当。N.正反粒子对碰撞的电势能                                               ,电子直径小于10-18米,碰撞的电势能不小于释放的电磁能,在这个过程中,巨大的电势能被忽略了。

实际上,正反粒子对产生与湮灭,本质上就是对称性破缺与对称性恢复的不断循环过程。电子偶素仅仅是正负电子对与电子偶极子转化的过程,且仅仅是一个过程。在量子场论中的正反粒子偶极子是场的基态,而采用不同方法电离分解出的正反粒子对是场的激发态。而观测到的只是正反粒子对结合,并将电势能转变为电磁能释放的过程,并没有发现正反粒子偶极子的最终产生,由于正反粒子偶极子是对称的,只能传递电磁波,不能反射电磁波,因此无法被电磁波所直接探测到,是暂时不可见的暗物质。因此,电子偶素记录的仅仅是一个及其短暂的过程,最终产物是暂时还不可见的正反粒子偶极子。

另外,可以通过能量与物质的辩证关系论证。首先,物质的最重要特征是物质性,即物质不能创生,也不能消失,质量和能量的相互转化缺乏确凿的实测证据。其次,物质是能量的本体,没有物质能量无所依。能量是物质的属性,任何能量都不能脱离物质而单独存在,不存在无物质的能量。目前没有任何证据表明能量能脱离物质而单独存在。还有,物质是能量的受体,没有物质能量无所传。物质和能量不能相互转化,同时,二者是不可分割的共同体。但能量可以转化与传递。最后,没有物质的相互作用,能量无法传递。

电子对能够结合生成电子偶极子;电子偶极子也能够电离分解成电子对。电子偶素只是电子对生成电子偶极子的中间过程。由于现今条件下,只能观测到这个结合过程,还无法“看到”最终的结合产物,因此很多人误认为这个过程是最终不稳定的产物,而忽略了隐藏在背后的最终产物。

总之,一个暗物质粒子中包含一对正反粒子,即暗物质粒子是正反粒子偶极子,而暗物质的主要成分是电子偶极子,其他正反粒子偶极子的性质与电子偶极子基本相同,因此建立暗物质电子偶极子模型。

4.2.1模型建立

4.1 电子偶极子模型示意图

4.1为暗物质电子偶极子(Electron-Positron Dipoles,简称EPDs)模型示意图,一个电子偶极子中含有一个电子e-和一个正电子e+,电子和正电子相互作用,不停地围绕共同的中心O做圆周运动,在一般的情况下,电子偶极子既不显电性也不显磁性。

电子偶极子之间不断相互作用,运动和分布状态不断发生变化。电子偶极子之间的空间关系不断改变,相互作用都是瞬时作用。由于电子偶极子之间的相互作用,运动状态不断变化,正负电子可以运动到球体内任何的位置。与氢原子类似,电子偶极子为球状电子云,电子偶极子宏观上表现为球形。

4.2.2 电子偶极子之间的相互作用

在一般情况下,电子偶极子的电子对称分布,是电中性、无磁性粒子。当无可见物质时,电子偶极子将均匀分布。电子偶极子由于相互间不停地相互作用,因此整体来看,电子偶极子为一个球形结构。然而在任意瞬间,电子偶极子为平面结构。因此,从本质上来看,通过投影,在任意瞬间的力主要有3种形式,正负电子在同一个平面内运动;正负电子在垂直平面内运动;正负电子在两个相互平行平面内运动。

4.2 同平面内运动

正负电子在同平面内运动(见图4.2),此时二者之间存在瞬时库仑力、瞬时洛伦兹力。瞬时库仑力和瞬时洛伦兹力既同时存在吸引力,也存在推斥力。每个电子偶极子不断受到周围电子偶极子的瞬时库仑力、瞬时洛伦兹力。各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。

4.3 两个垂直平面内运动

正负电子在垂直平面内运动(见图4.3),此时二者之间主要表现为瞬时库仑力。瞬时库仑力既同时存在吸引力,也存在推斥力。每个电子偶极子不断受到周围电子偶极子的瞬时库仑力。各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。

4.4 两个平行平面内运动

正负电子在两个平行平面内运动(见图4.4),此时二者之间存在瞬时库仑力、瞬时洛伦兹力。瞬时库仑力和瞬时洛伦兹力既同时存在吸引力,也存在推斥力。每个电子偶极子不断受到周围电子偶极子的瞬时库仑力、瞬时洛伦兹力。各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。

由于电子偶极子的电性分布不均匀,一端带正电,一端带负电,形成偶极。因此,当两个电子偶极子相互接近时,由于它们偶极的同极相斥,异极相吸。将影响电子偶极子的转动,这种作用使电子偶极子有异极相对、同极相背的趋势,就形成了瞬时取向力。瞬时取向力明显表现为吸引力,但各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。

4.5 电子偶极子瞬时振荡

4.6 电子偶极子相互诱导

如图4.5所示,电子偶极子的正负电子围绕共同的中心旋转。然而,电子偶极子不断受到作用而使其产生变形,使电子偶极子的正负电子之间出现瞬时相对位移,正负电子的运动中心开始远离,电偶极距增大。正负电子的相互作用,会使正负电子恢复到原来的状态,就形成了瞬时振荡电子偶极子。电子偶极子会与周围的电子偶极子相互作用,释放能量,恢复到原始运动状态,而会诱导周围电子偶极子成为瞬时振荡电子偶极子(见图4.6)电子偶极子通过相互诱导进行能量交换。这种诱导力同时表现为吸引力和推斥力。电子偶极子之间的相互诱导是短暂的,但却不断地频繁发生,不断重复。瞬时诱导力既同时存在吸引力,也存在推斥力,但各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。

电子偶极子之间的作用力包括瞬时库仑力、瞬时洛伦兹力、瞬时取向力和瞬时诱导力。这四种力均同时表现为吸引力和推斥力,即电子偶极子之间同时存在吸引力和推斥力,吸引力和推斥力均随着电子偶极子的间距增大而减小,随着电子偶极子的间距减小而增大。当电子偶极子密度变化时,推斥力变化较快,电子偶极子在一定密度时,吸引力和推斥力达到平衡状态。

总之,电子偶极子间同时存在吸引力和推斥力。当电子偶极子处于任何一个稳定的平衡状态时,吸引力与推斥力平衡,此时的间距为平衡间距;当电子偶极子间距小于平衡间距时,吸引力与推斥力均提高,而推斥力提高较快,需要外界施压等手段才能形成一个新的平衡;当电子偶极子间距大于平衡间距时,吸引力与推斥力均减小,而推斥力降低较快,需要外界提供空间等手段才能形成一个新的平衡。因此,电子偶极子间距大于平衡位置时显现为吸引力,间距小于平衡位置显现为推斥力。而这里的平衡态,都是暂时的,一旦边界条件或内部条件变化,都会形成一个新的平衡态。

4.2.3 电子偶极子与可见物质的相互作用

电子偶极子电中性且十分小,因此电子偶极子可以渗透到原子内部。相对于电子偶极子,可见物质的核外电子以及原子核都是单独存在的。同样,电子偶极子与可见物质之间的作用有瞬时库仑力和瞬时洛伦兹力,瞬时库仑力和瞬时洛伦兹力同时存在吸引力和推斥力。各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。

由于电子偶极子的电性分布不均匀,一端带正电,一端带负电,形成偶极。当与核外电子或原子核接近时,e+的一侧总有靠近核外电子和远离质子的趋势,e-的一侧总有远离核外电子和靠近质子的趋势。这种异极相对和同极相背的趋势就形成了瞬时取向力。各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。然而,与电子偶极子相比,可见物质的原子大得多,在某一瞬间,电子偶极子主要与单一种类电荷作用,因此这种瞬时取向力总是表现为可见物质对电子偶极子的吸引,使电子偶极子在可见物质的原子(包括原子内部)附近很难逃脱。

电子偶极子与可见物质的原子不断相互作用,相互诱导并交换能量。电子偶极子能够不断诱导核外电子跃迁到其它轨道,核外电子不断诱导电子偶极子成为瞬时振荡电子偶极子。电子偶极子成为瞬时振荡电子偶极子,并可通过与周围的核外电子或电子偶极子相互作用并向外辐射能量而恢复到原始状态。可见物质会与周围的电子偶极子相互作用,不断相互诱导产生瞬时诱导力。这种瞬时诱导力同时表现为吸引力和推斥力。电子偶极子之间的相互诱导是短暂的,但却不断地频繁发生,不断重复。瞬时诱导力既同时存在吸引力,也存在推斥力,明显表现为吸引力,但各种分布状态的概率都是相同的,而总体上看,吸引力和推斥力是相互平衡的。

可见物质与电子偶极子之间的作用力包括瞬时库仑力、瞬时洛伦兹力、瞬时取向力和瞬时诱导力。综上所述,可见物质与电子偶极子之间的作用力主要表现为两种,一种是吸引力,另一种是推斥力。随着间距增大而减小,随着间距减小而增大。在一定距离内,瞬时取向力和瞬时诱导力主要表现为相互吸引力,总会吸引一定数量的电子偶极子在可见物质周围,因此二者有变密的趋势。当密度逐渐增大,使电子偶极子有压缩变形的趋势,使推斥力增加较多,电子偶极子在一定密度时,吸引力和推斥力达到平衡状态。

4.2.4 电子偶极子的空间分布

电子偶极子与可见物质同时具有吸引力和推斥力。如没有可见物质时,电子偶极子均匀分布是一种稳定的平衡状态。当可见物质存在后,平衡状态被打破,需要建立一个新的平衡状态。可见物质的大量堆积,由于瞬时取向力和瞬时诱导力,使极小区域内的空间与电子偶极子的相互作用急剧升高,这使得可见物质周围的电子偶极子密度升高,致使原来的平衡被打乱,只有形成一个密度梯度才能使电子偶极子保持一个稳定的平衡状态。

4.7 星体周围的电子偶极子等密度线

具有很大质量的星体与电子偶极子的作用强度高,使电子偶极子密度大幅升高,进而对周围的电子偶极子的吸引力也随之提高。因此在星体周围,电子偶极子的密度具有一定的梯度,随着与星体的距离增加而密度降低(见图4.7)。质量越大的星体,电子偶极子的密度越大。另外,由于星体一般围绕另一个星体或星系运动,在一定半径范围内牵引电子偶极子随之运动,由于这种运动的半径加大,因此加速度较小,所以牵引电子偶极子随之运动的半径较大。还有一些星体还会自转运动,星体的质量越大,牵引的范围就越大,而质量较小的星体,牵引的范围就越小。在地球的表面上的一定范围内,地球牵引这电子偶极子随着地球一起转动。超过一定的范围后,电子偶极子随着星体自转的速度就存在了一定的速度梯度,范围再扩大,电子偶极子不再受到地球的牵引作用。但地球牵引电子偶极子自转的范围要远小于其绕太阳公转的范围。

在一定范围内,电子偶极子不断地与可见物质之间发生作用。电子偶极子的质量和体积都很小并且为电中性,因此电子偶极子的渗透能力很强,电子偶极子不仅能在气体中存在,也能在液体和固体内部存在,即电子偶极子不仅能在“真空”中存在,也能渗透到任何可见物质内部。由于电子偶极子与可见物质相互作用,而作用强度大于电子偶极子之间的相互作用,因此在可见物质内部,电子偶极子密度较大。

具有很大质量的星体可以在一定半径范围内与电子偶极子相互作用,因此,星体可以在一定的半径范围内牵引电子偶极子。由于星体对电子偶极子的吸引力作用很大,会克服电子偶极子之间的部分推斥力,使电子偶极子有变密的趋势,而这种作用随着半径的增大而减小,因此当靠近星体时电子偶极子相对较密,远离星体时相对较稀。即电子偶极子的密度随着与星体的距离变化存在着密度梯度。总之,电子偶极子的分布于可见物质有关,因此在一些星系团中,电子偶极子呈扁平盘状分布。在无可见物质的大尺度空间内,电子偶极子呈均匀分布。

电子偶极子与正负电子可以相互转化。电子偶极子可以在一定的条件下(足够的能量)可以电离成为一个正电子和一个电子。而一个正电子和一个电子在一定条件下也会结合成为电子偶极子,同时释放出一定的能量。通常情况下,电子偶极子的内能很低且十分稳定,质量小,不显电性,因此很难被发现。

电子偶极子与可见物质相互作用,星体的自转会在一定的范围内牵引电子偶极子随着星体转动。但电子偶极子被星体自转牵引的角速度不同,一般情况下,星体内部的电子偶极子与星体上的物质具有相同的线速度和角速度。离星体近的电子偶极子具有较大的线速度和角速度;离星体较远的电子偶极子具有较小的线速度和角速度。即电子偶极子的运动速度随着与星体的距离变化存在着运动速度梯度。同样,星系团的旋转也会在一定范围内牵引电子偶极子运动,并也存在着一定的运动速度梯度。但星体牵引电子偶极子自转的范围要远小于其绕系统公转的范围。

质量体积大的星体能够牵引其内部和周围的电子偶极子。质量体积较小的物体无法牵引其周围的电子偶极子,并且只能部分牵引其内部的电子偶极子。牵引的电子偶极子的比例与物体的质量、大小和速度有关。

4.3 正反粒子偶极子经典场论

引力在宇宙中是一片独一无二的区域,引力和其它3种力似乎有着本质的不同。电磁力有时候互相吸引,有时候互相排斥,但引力却总是吸引的。这使它可以在大尺度上累加起来。当考察原子时,引力可以忽略不计,但一旦扩展到恒星、星云、星系的尺度上,引力便取代其它力成为主导因素。目前,未能把引力包含进统一体系。电场、磁场和引力场的传播速度均为光速,迄今,所有场物质粒子均未被发现,这里隐含着一个相同的逻辑——光速传播且不可见。另外,暗物质的分布规律与引力场的分布规律相同。实际上,这些场均与暗物质有关。

电子偶极子是一种正反粒子偶极子,各种正反粒子偶极子由于具有良好的对称性,因此具有类似的物理性质。因此,根据暗物质的各种特性,采用正反粒子偶极子模型统一场论。

4.3.1 电场

物理原理解释:当存在带电粒子时,无极性的正反粒子偶极子被极化。离带电粒子近的正反粒子偶极子极化程度大,随着逐渐远离带电粒子,正反粒子偶极子极化程度逐渐变小。这样,无极的正反粒子偶极子被极化,电偶极矩取向有规律的正反粒子偶极子对周围正反粒子偶极子也产生影响,带电粒子周围的正反粒子偶极子的极化由近及远变得规律,就形成电场(见图4.8)

4.8 正反粒子偶极子形成电场示意图

电场强度分析:

4.9带电粒子Q的场强电场强度示意图

4.9为带电粒子Q的场强电场强度示意图。正反粒子偶极子遍布整个宇宙空间,在“真空”中(或无可见物质,或正反粒子偶极子密度梯度变化较小),正反粒子偶极子均匀分布。任何一个电荷的极化能力是一定的,带电量越大,极化能力越大。而这种极化由近及远,连续不断传递。因此,在任何以带电粒子Q为球心的同心球面上的极化能力(极化强度)均相等。以带电粒子Q为球心的同心球面面积为(为同心球体半径),任意同心球面上被极化的正反粒子偶极子为(当同样强度时,假定极化程度相同,则极化数量相同;如极化程度提高,则极化数量会降低;如极化程度降低,则极化数量提高;为计算方便,假定正反粒子偶极子极化强度均相同,采用极化数量表示极化强度,本质是相同的),各同心球面上单位面积被极化的正反粒子偶极子数量均为

电场本质上是正反粒子偶极子极化形成的,电场强度为正反粒子偶极子的极化强度:

                          (4.1)

式中,为电场强度;k为系数,为常数;为圆周率;N为单位电荷在同心球面上极化的正反粒子偶极子数量,为常数;Q为带电量;为同心球体半径。

正反粒子偶极子的极化强度可简化为:

                         (4.2)

式中,K为常数。

电场是由正反粒子偶极子规律极化产生的,可采用正反粒子偶极子的极化来表示电场,采用正反粒子偶极子的极化强度可表示电场强度。采用正反粒子偶极子的极化表示电场反映电场本质上是暗(实体)物质的规律变化,使暗(实体)物质与()场物质得到合理统一。正反粒子偶极子的极化强度计算能够准确反映电场强度。

4.3.2 磁场

当空间存在直电流,将对正反粒子偶极子产生影响。为了研究方便,将正反粒子偶极子内正反粒子的运动方向分别投影到平行和垂直电流的方向。当正反粒子的运动方向垂直电流方向,将不受影响。当正反粒子的运动方向平行电流方向,电流对正反粒子的轨道有所影响。靠近电流一侧的带正电粒子的运动方向与电流一致时,远离电流一侧的带负电粒子的运动方向与电流相反,正反粒子偶极子内的正反粒子的轨道向靠近电流方向移动。由于靠近电流一侧的带正电粒子的受力比远离电流一侧的带负电粒子的受力大,因此将产生一定的偏转和变形;当带负电粒子运动到靠近电流一侧时,带正电粒子在远离电流的一侧运动,此时正反粒子偶极子内的正反粒子的轨道向远离电流方向移动,也将产生一定的偏转和变形。同样,靠近电流一侧的带正电粒子的运动方向与电流相反时,远离电流一侧的带负电粒子的运动方向与电流一致,正反粒子偶极子内的正反粒子的轨道向远离电流方向移动。由于靠近电流一侧的带正电粒子的受力比远离电流一侧的带负电粒子的受力大,因此产生一定的偏转和变形;当带负电粒子运动到靠近电流一侧时,带正电粒子在远离电流的一侧运动,此时正反粒子偶极子内的正反粒子的轨道向靠近电流方向移动,也将产生一定的偏转和变形。

由于电流存在,使正反粒子偶极子内的正反粒子的轨道发生偏转,此时,正反粒子偶极子内的正反粒子的轨道不在一个平面内运动,而是分别在两个交叉的平面内运动,场强越大,两个平面的夹角越大。如果电流是稳定的,会致使正反粒子偶极子内的正反粒子的运行平面发生偏转,形成稳定的磁场。

如图4.10所示,取一个通过电流的平面。为了研究方便,把运动分别投影到垂直平面的运动和平面内的运动。其中包括平面内的正反粒子的运动和垂直平面的正反粒子的运动。在电流的上半部分,平面内主要表现为带负电粒子的顺时针运动和带正电粒子的逆时针运动。在电流的下半部分,主要表现为带负电粒子的逆时针运动和带正电粒子的顺时针运动。而垂直于平面的正反粒子的运动并没有明显规律。由于在这个平面的正反粒子的运动由不规律变成了有规律运动,这样就形成了磁场。

4.10 直电流的磁场形成示意图

无限长载流直导线外:

正反粒子偶极子遍布整个宇宙空间,在“真空”中(或无可见物质,或正反粒子偶极子密度梯度变化较小),正反粒子偶极子均匀分布。一定的电流强度使正反粒子偶极子内的正反粒子偏转的能力是一定的,由近及远,连续不断向外传递。在以无限长载流直导线为圆心的同心圆上能够使正反粒子偶极子转动的数量均相等(当同样强度时,假定偏转程度相同,则偏转数量相同;如偏转程度提高,则偏转数量会降低;如偏转程度降低,则偏转数量提高;为计算方便,假定正反粒子偶极子的偏转强度均相同,采用偏转数量表示偏转强度,本质是相同的)。同心圆的周长为(为同心圆半径),各同心圆上转动的正反粒子偶极子数量均为,同心圆上单位长度转动的正反粒子偶极子数量为

磁场本质上是正反粒子偶极子规律转动形成的,无限长载流直导线外磁场强度为正反粒子偶极子偏转强度:

                    (4.3)

式中,为磁场强度;k为系数,为常数;N为单位电流在同心圆上转动正反粒子偶极子的数量,为常数;为圆周率;为电流强度;为同心圆半径。

无限长载流直导线外正反粒子偶极子的偏转强度可简化为:

                    (4.4)

4.11 环形电流的磁场形成示意图

同理,在环形电流的内部,平面内主要表现为带负电粒子的逆时针运动和带正电粒子的顺时针运动。在环形电流的外部,主要表现为带负电粒子的顺时针运动和带正电粒子的逆时针运动(见图4.11)。而垂直于平面的正反粒子的运动并没有明显规律。由于在这个平面的正反粒子的运动由不规律变成了有规律运动,这样就形成了磁场。

正反粒子偶极子遍布整个宇宙空间,在“真空”中(或无可见物质,或正反粒子偶极子密度梯度变化较小),正反粒子偶极子均匀分布。一定的电流强度使正反粒子偶极子定向转动的能力是一定的,由近及远,连续不断向外传递。在环形电流周围(当同样强度时,假定偏转程度相同,则偏转数量相同;如偏转程度提高,则偏转数量会降低;如偏转程度降低,则偏转数量提高;为计算方便,假定正反粒子偶极子的偏转强度均相同,采用偏转数量表示偏转强度,本质是相同的),磁场强度为环形电流的磁场强度叠加。以各微小段为中心的同心圆的周长为(为同心圆半径),各同心圆上转动的正反粒子偶极子数量均为。在圆环的圆心处,与各小段均垂直,因此环形电流平面中心处转动的正反粒子偶极子数量为

磁场本质上是正反粒子偶极子规律转动形成的,环形电流平面中心处磁场强度为正反粒子偶极子偏转强度:

                    (4.5)

式中,为磁场强度;k为系数,为常数;N为单位电流在同心圆上转动正反粒子偶极子的数量,为常数;为电流强度;为同心圆半径。

环形电流圆心点的正反粒子偶极子的偏转强度可简化为:

                     (4.6)

磁场是正反粒子偶极子内的正反粒子的运动平面发生规律偏转产生的可采用正反粒子偶极子的偏转来表示磁场,采用正反粒子偶极子的偏转率表示磁场强度。采用正反粒子偶极子的偏转表示磁场反映磁场本质上是暗(实体)物质的规律变化,使暗(实体)物质与()场物质得到合理统一。正反粒子偶极子偏转强度计算能够准确反映磁场强度。

4.3.3 电磁场

4.12 电磁波的形成示意图

当正反粒子偶极子受到电磁波源的影响,由于获得大量的能量,正反粒子的运动产生震荡,正反粒子偶极子就形成了一对振荡正反粒子偶极子(见图4.12)。振荡正反粒子偶极子对周围的正反粒子偶极子产生作用,使其成为振荡正反粒子偶极子。因此相邻的正反粒子偶极子的电偶极矩取向与该正反粒子偶极子的电偶极矩变化相协调,这样形成电磁波不断传递能量。

现有理论为:LC电路能产生振荡电流,正负电荷不断在天线两端间振荡,因此它实际上就是一个振荡电偶极子。振荡电偶极子不断发射出电磁波。

麦克斯韦方程组,是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律和描述时变磁场如何产生电场的法拉第感应定律。

麦克斯韦方程组的四个方程共同组成:

高斯定律:该定律描述电场与空间中电荷分布的关系。电场线开始于正电荷,终止于负电荷。计算穿过某给定闭曲面的电场线数量,即其电通量,可以得知包含在这闭曲面内的总电荷。

高斯磁定律:磁单极子实际上并不存在。所以,没有孤立磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。

法拉第感应定律:该定律描述时变磁场怎样感应出电场。一块旋转的条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭合电路因而感应出电流。

麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠传导电流,另一种是靠时变电场,或称位移电流。

在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。

麦克斯韦方程组有两种表达方式。

1. 积分形式的麦克斯韦方程组是描述电磁场中电场、磁场的性质以及变化的电场、磁场间联系的数学模型。表达式为:

                                   (4.7)

                                       (4.8)

                                (4.9)

                            (4.10)

式中,H为磁场强度;为电流面密度;E为电场强度;B为磁感应强度;D为电位移矢量;S为闭合曲面;为电荷体密度。

(4.7)是高斯定律的表达式,说明在时变的条件下,从任意一个闭合曲面出来的D的净通量,应等于该闭曲面所包围的体积内全部自由电荷之总和。

(4.8)表示磁通连续性原理,说明对于任意一个闭合曲面,有多少磁通进入曲面就有同样数量的磁通离开。即B线是既无始端又无终端的;同时也说明并不存在与电荷相对应的磁荷。

(4.9)是法拉第电磁感应定律的表达式,它说明电场强度E沿任意闭合曲线的线积分等于穿过由该曲线所限定面积的磁通对时间的变化率的负值。这里提到的闭合曲线,并不一定要由导体构成,它可以是介质回路,甚至只是任意一个闭合轮廓。

(4.10)是由安培环路定律推广而得的全电流定律,其含义是:磁场强度H沿任意闭合曲线的线积分,等于穿过此曲线限定面积的全电流。等号右边第一项是传导电流.第二项是位移电流。

2. 微分形式的麦克斯韦方程组。

                                      (4.11)

                                       (4.12)

                                    (4.13)

                                   (4.14)

式中,为梯度算子。

(4.11)是静电场高斯定律的推广,即在时变条件下,电位移D的散度仍等于该点的自由电荷体密度。

(4.12)是磁通连续性原理的微分形式,说明磁通密度B的散度恒等于零,即B线是无始无终的。也就是说不存在与电荷对应的磁荷。

(4.13)是法拉第电磁感应定律的微分形式,说明电场强度E的旋度等于该点磁通密度B的时间变化率的负值,即电场的涡旋源是磁通密度的时间变化率。

(4.14)是全电流定律的微分形式,它说明磁场强度H的旋度等于该点的全电流密度,即磁场的涡旋源是全电流密度,位移电流与传导电流一样都能产生磁场。

麦克斯韦电磁场理论的要点可以归结为:

电与磁相互作用都是通过它们之间的中间区域传递的,不论中间区域是真空还是实体物质。

电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。

导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。

磁通量既无始点又无终点,穿过任意形状的闭合曲面的磁通量皆为零,即不存在磁单极(单独的N极或S极)

光波是一种电磁波。

1868年麦克斯韦从理论预言了电磁波的存在,1888年赫兹通过振荡电偶极子的一系列实验,实现了电磁波的发射和接受,证实了电磁波的存在。

赫兹实验:将两段铜杆沿同一直线架设,在其相临的两端端点上均焊有一个光滑的铜球。两球间留有小的空隙(0.1mm),两铜杆分别用导线联接到高压感应圈的两极上。感应圈周期地在两铜球之间产生很高的电势差,当铜球间隙的空气被击穿时,电流往复振荡通过间隙产生电火花,这种赫兹振子就相当于一个振荡电偶极子。由于电路的的电容和自感均很小,因而振荡频率可高达108Hz,从而强烈地发射出电磁波。由于铜杆有电阻且在空气中产生电火花,因而其上的振荡电流是衰减的,发出的电磁波也是减幅的。但感应圈不断地使空隙充电,振荡电偶极子就间隙地发射出减幅振荡电磁波。


4.13 电磁波传播机制

4.13为震荡电偶极子的电磁波传播机制,而电偶极子本质上是正反粒子偶极子,计算方法也完全一致。电磁波是由正反粒子偶极子振荡产生的,可采用正反粒子偶极子的振荡频率表示电磁波,采用正反粒子偶极子的振荡率表示电磁波强度,采用正反粒子偶极子的振荡频率区分电磁波的种类。采用正反粒子偶极子的振荡表示电磁波反映电磁场本质上是暗(实体)物质的规律变化,使暗(实体)物质与(电磁)场物质得到合理统一。

4.3.4 引力场

由于星体与正反粒子偶极子的相互作用,而使正反粒子偶极子的密度提高,星体的质量越大,正反粒子偶极子的密度提高越多,星体的质量越小,正反粒子偶极子的密度提高越少;离星体近的空间正反粒子偶极子密度大,离星体远的空间正反粒子偶极子密度小。同样,物体或星体的质量越大,正反粒子偶极子的密度提高越多,物体或星体的质量越小,正反粒子偶极子的密度提高越少。由于物质对正反粒子偶极子的吸引作用,使正反粒子偶极子的密度变化,这样就形成了引力场。

正反粒子偶极子遍布整个宇宙空间,在“真空”中(或无可见物质,或正反粒子偶极子密度梯度变化较小),正反粒子偶极子均匀分布。一定质量M的物质吸引正反粒子偶极子的能力是一定的,正反粒子偶极子间距缩小,间距小于平衡位置,正反粒子偶极子间的吸引力和推斥力均提高,而推斥力提高较快,质量M的物质的吸引力平衡掉推斥力与吸引力增量差值,形成一个新的平衡。这种吸引力是一种弹性力,由近及远,连续不断传递。在任何质量M的质心为球心的同心球面上的吸引力综合均相等,同心球面面积为(为同心球体半径),各同心球面上吸引的正反粒子偶极子的数量均为(当引力强度相同是,如间距缩小的程度相同,则吸引的正反粒子偶极子数量相同;如间距缩小程度提高,则吸引的正反粒子偶极子数量会降低,如间距缩小程度降低,则吸引的正反粒子偶极子数量提高;这里只采用吸引的正反粒子偶极子数量表示吸引强度,本质是相同的),各同心球面上单位面积上吸引的正反粒子偶极子为

引力场本质上是正反粒子偶极子密度变化形成的,万有引力为正反粒子偶极子吸引强度:

                          (4.15)

式中,为引力场强度;k为系数,为常数;N为单位质量在同心球面上吸引的正反粒子偶极子数量,为常数;为圆周率;M为物质质量;为同心球体半径。

正反粒子偶极子吸引强度可简化为:

                            (4.16)

引力场是由正反粒子偶极子密度梯度变化产生的,吸引力始终指向正反粒子偶极子密度增加最大的方向。只要有可见物质,正反粒子偶极子的密度均会提高,因此宏观物质只表现为引力,而不表现为斥力。可采用正反粒子偶极子的密度变化率表示引力场强度,这反映引力场本质上是暗(实体)物质的规律变化,使暗(实体)物质与(引力)场物质合理统一。正反粒子偶极子吸引强度计算能准确反映引力场强度。

总之,采用正反粒子偶极子模型可以很好地解释电场、磁场、电磁波和引力场,实现了场论的统一。暗物质正反粒子偶极子理论建立在暗物质极化、定向偏转、震荡感应和密度变化的基础上放弃了物质引起时空变形的弯曲时空理论。通过进一步的正反粒子偶极子模型研究,可以逐渐取代场论的概念,使场具有实体物质的物理含义。

实际上,在量子场论中的正反粒子偶极子是场的基态,而采用不同方法分解出的正反粒子对是场的激发态。

4.4 经典场论与量子场论辩证统一

4.4.1 粒子分类

粒子的存在状态包括显现态和隐身态。只有对称的正反粒子偶极子才能处于隐身态,这是由于垂直于正反粒子偶极子偶极方向辐射最强,而平行正反粒子偶极子偶极方向辐射为零。如果把振动电子视为偶极,则在反射光方向辐射为零。也就是说,具有高度对称性的正反粒子偶极子只能向前传递电磁波,无法反射电磁波。因此,对称性完好的正反粒子偶极子可被称为隐态粒子场态粒子

实际上,暗物质是由隐态粒子构成的,而这些隐态粒子能够形成各种场。而这些粒子之所以能够成为隐态粒子主要由于对称性,而这些粒子实际上就是正反粒子对,而我们通常谈论的电偶极子实际上就是正反粒子偶极子,即:

暗物质=隐态粒子=场态粒子=对称粒子=正反粒子偶极子=电偶极子

除正反粒子偶极子以外的其他任何非对称粒子一定处于显现态,这是由于粒子的对称性破缺可以使电磁波反射,因此,对称性破缺的粒子可被称为显态粒子

光子是一种电磁相互作用的媒介粒子,实际上是粒子间相互诱导力,粒子通过相互诱导传递能量,主要表现形式是电磁波。锁定场态粒子、半锁定场态粒子和自由场态粒子均可以传递电磁波。

胶子是强相互作用的媒介粒子,实际上是粒子中锁定场态粒子传递的电磁相互作用。由于电磁力同时存在吸引力和排斥力,在平衡位置吸引力和排斥力平衡,形成所谓的渐近自由;当大于平衡间距时,吸引力显著大于排斥力,进而形成禁闭现象。

WZ玻色子是弱相互作用的媒介粒子,实际上是粒子间的半锁定场态粒子间传递的电磁相互作用,而半锁定场态粒子是弱相互作用粒子的组成部分,因此半锁定场态粒子不仅可以传递电磁相互作用,也可以相互传递粒子。

粒子共分为场态粒子、显态粒子和虚拟粒子3类。

场态粒子又称隐态粒子,场态粒子包括所有正反粒子偶极子,是一种对称粒子。场态粒子包括锁定场态粒子、半锁定场态粒子和自由场态粒子。

显态粒子是除正反粒子偶极子以外的其他任何非对称粒子。属于对称性破缺粒子。对称性破缺包括电荷对称性破缺、质量对称性破缺、运动状态对称性破缺等。

虚拟粒子是相互作用的媒介粒子,不是真实存在的粒子,仅仅是粒子间某种状态的相互作用,也可以理解为粒子间的能量交换。

虚拟粒子本质上是粒子间的相互作用,长期以来被称为粒子,这是为了衔接现有理论而提出的。虚拟粒子对于粒子的动力学研究至关重要,但物质与相互作用有着本质区别,虚拟粒子的概念将会被逐渐弱化,相互作用的概念会逐渐被强化并取代虚拟粒子而成为规范性描述词语。

4.4.2 量子场论的物质基础

在过去,大部分人认为正反粒子相遇便化为乌有,或凭空产生正反粒子对,这是由于他们不了解暗物质的本质。实际上,粒子是相互转化的,仅仅是一种物质转化为另外一种物质而已,物质并没有产生或消灭。

“场”这个名词是物理学家认识物质的历史产物,过去一直认为电荷间相互作用是由电磁场产生。光子是一种虚拟粒子,是粒子间相互作用的媒介粒子,是粒子间某种状态的相互作用,同时通过相互作用交换能量。量子电动力学就是采用这一思想建立起来的。量子点动力学采用光子交换来解释电荷间的相互作用,这就将显态粒子、场态粒子、虚拟粒子和场的概念统一起来。

然而,关于重力场的产生原因,至今没有得到本质解释。也有人提出重力场是由于物质间交换重力子所致,而重力子是否存在,尚无法肯定。

粒子间交换的光子实际上是通过粒子间的相互作用而交换的能量,而重力子本质上也是粒子间相互作用而交换的能量,只是由于场态粒子空间分布密度的梯度,致使场态粒子的空间对称性破缺,由于密度对称性破缺致使相互作用即交换能量产生差异,进而产生了差值。在这种意义上,重力子也是一种虚拟粒子,且是一种作用状态或能量交换的差值。

总之,场是粒子的表现形式,即场是粒子产生的,场的本身是粒子间伴随能量(光子)交换的作用传递。严格地说,尝试不同类型粒子的对称性破缺而产生的伴随能量(光子)交换的作用传递。由此可见,场论就是研究粒子的理论,场论的具体研究内容包括:

①研究粒子(包括场态粒子和显态粒子)的性质;

②研究粒子运动规律;

③研究粒子(包括场态粒子和显态粒子)间伴随能量(虚拟粒子或称光子)交换的相互作用;

④研究粒子(包括场态粒子和显态粒子)间相互转化的概率。

实际上,量子电动力学就是研究场态粒子、显态粒子通过交换虚拟粒子相互作用和相互转化的学问,是场论的重要内容。量子点动力学获得辉煌成就,它能够定量说明场态粒子、显态粒子和虚拟粒子的许多现象,特别是用量子点动力学的理论计算出来的电子附加磁矩和氢光谱能级,得到了实验的精确验证。但早期的量子电动力学还存在严重的缺点,就是用量子电动力学的理论计算出的电子自能,电子本身的质量、电荷等是无限大的,只能采用重整化消除这种无限大。而重整化的假设并没有包含在量子点动力学的原始理论和原始方程式中,因此破坏了逻辑的完整性。

量子场论为描述多粒子系统,尤其是包含粒子产生和湮灭过程的系统,提供了有效的描述框架。粒子产生和湮灭过程本质上就是场态粒子和显态粒子的相互转化过程。

实际上,量子场论是经典场论的自然推广,它能够解释所谓的粒子诞生与湮灭,而这些过程在量子力学中并不存在,而且量子场论能够“神奇地”解决量子力学中的因果问题。量子场论中最为简单实用的是量子电磁学。本质上场态粒子不断被激发而不断是正反粒子创生与湮灭。

在量子场论中,人类认为是粒子的物质其实是量子场自身的激发。实际上,是暗物质粒子,是正反粒子偶极子,是场态粒子,本质上就是场物质。

最被熟悉的电场和磁场,就是场态粒子之间伴随不断能量交换的作用传递。而这种能量传递以电磁波的形式交换传递,而这种以电磁波传递的能量是被熟知的光子,是一种虚拟粒子。

量子场是个复杂的体系。原因一部分在于其涵盖了物理学所有领域:量子场能够描述大量粒子以各种不同方式进行相互作用。另一个原因是量子场论的深奥。

海森伯测不准关系意味着量子场并不是静止的。相反,它会产生泡沫并沸腾,就像是由粒子和反粒子形成的一锅沸腾的汤,不断产生与毁灭。量子场论深奥之处就源于这一过程的复杂性,即便是理解量子场论中的虚无都十分困难。随着向真空中添加粒子,它会以各种有趣方式扭曲。大部分有关量子场论研究的目标在弄明白这种扭曲、弄明白扭曲是如何引起粒子间相互作用的,以及最终,粒子的相互作用又是如何形成各种美丽自然现象。这些理解过程并非易事。尽管距离量子场论的发现已经过去了几十年,想要理解量子场论中所有的精妙之处,前方仍有漫漫长路。

物质既不消灭,也不创生,其量总是守恒的,这就是所谓的物质守恒原理。物理变化中不论物体的形状、状态、位置如何变化,所蕴含的质量不变;物体分裂成几个部分时,各部分质量之和等于原物体质量。在孤立系统中,不论发生何种变化或过程,其总质量保持不变。质量守恒定律是自然界普遍存在的基本定律之一。它表明质量既不会被创生,也不会被消灭,而只会从一种物质转移到为另一种物质,总量保持不变。

物理变化质量守恒:物理变化中不论物体的形状、状态、位置如何变化,所蕴含的质量不变;物体分裂成几个部分时,各部分质量之和等于原物体质量。即使当物体加减速运动时,动质量也不会变化,动质量恒定等于静止质量。

化学反应质量守恒:化学反应因没有原子变化,质量总是守恒的。化学反应中的质量守恒包括原子守恒、电荷守恒、元素守恒等几个方面。

核反应的质量守恒:由于锁定场态粒子、半锁定场态粒子与自由场态粒子相互转化,锁定场态粒子和半锁定场态粒子位于显态粒子之中,这里存在着场态粒子和显态粒子的相互转化,表面上看,显态粒子的质量发生了变化,但本质上,仅仅是场态粒子和显态粒子的相互转化,质量仍守恒。

量子场论认为粒子可以凭空产生和消失,从此认为物质守恒定律被打破。而实际上,并不是粒子真的凭空产生或消失,而是场态粒子的对称性破缺与恢复的往复变化过程,也就是量子场论中场的基态和激发态的往复变化过程。场态粒子的对称性破缺而形成显态粒子,而对称性恢复又形成了场态粒子。量子场论认为的粒子凭空产生和消失本质上是场态粒子和显态粒子的相互转化,仅仅是粒子存在状态的变化,物质没有创生,也没有消灭。实际上,场态粒子是量子场论的物质基础。

4.4.3 场的本质

没有显态粒子(可见物质)或场态粒子(暗物质),就不会有场。只有场态粒子时,场态粒子通过相互作用而不断交换能量,这种相互作用而交换的能量为虚拟粒子。若不存在显态粒子,场态粒子处于均匀分布状态,场态粒子会保持良好的对称性,场态粒子的各种相互作用也是相对对称的,因此不会表现为场的特性。但场态粒子与周围的场态粒子不断相互作用交换能量,这种相互交换的能量只能通过微波背景辐射的形式表现出来。

虚拟粒子是场的表现形式,不是真实存在的粒子,仅仅是粒子间某种状态的相互作用,这种作用即包括显态粒子间的相互作用,也包括场态粒子间的相互作用,更包括显态粒子和场态粒子间的相互作用。总之,虚拟粒子是各种粒子间的相互作用,但这种相互作用在量子层级上主要通过交换能量来表现,而宏观上主要表现为场,即表现为显态粒子与显态粒子的“超距”相互作用。所有的场都是通过场态粒子以不同的作用形式传递的,因此,显态粒子的相互作用是不能超距的,只能通过场态粒子以不同场的形式传递。

当显态粒子出现在场态粒子中,由于显态粒子的不均匀分布、电荷的不均匀分布以及运动状态的不均匀,场态粒子存在的对称性破缺,进而产生不同势能,并形成各种场,即各种场是场态粒子的不同势能。

当场态粒子中出现显态粒子时,显态粒子一旦出现电荷对称性破缺,就会引起场态粒子规律性地电荷对称性破缺,场态粒子出现规律极化,进而产生电势能,并形成电场。场态粒子由于显态粒子的电荷运动状态出现对称性破缺,场态粒子内部电荷轨道偏转,进而产生磁势能,并形成磁场。场态粒子或显态粒子的势能变化一定伴随着粒子的相互作用,即虚拟粒子参与粒子间的相互作用,进一步地,如果没有虚拟粒子(相互作用或能量交换),粒子的运动状态或能量状态不会改变,场的状态也不会发生改变。由于电荷对称性破缺而进行的能量交换以电磁波的形式传递,光子就成为了相互作用而传递能量的虚拟粒子。

显态粒子质量对称性破缺,就会引起场态粒子规律性质量对称性破缺,进而产生场态粒子整体密度对称性破缺,场态粒子密度变化产生引力势能,并形成引力场。引力场也是通过场态粒子通过相互作用交换能量的电磁波传递,但由于场态粒子的密度分部不均匀,密度梯度引起受力不均匀,即引力场是密度分部不均匀形成的差值,而这个差值与密度梯度相关,因此引力远远小于电场力和磁场力。一般情况下,场态粒子密度梯度较小,场态粒子通过密度规律性变化传递引力波。由于场态粒子密度变化很少突变,且密度变化传递的电磁波差值是体波,能量衰减更快,因此,引力波很难探测到。

显态粒子一旦出现运动状态对称性破缺,就会引起场态粒子规律性运动状态对称性破缺,形成惯性势能。场态粒子粒子惯性势能的规律性变化传递惯性波。

场态粒子和显态粒子的作用都是通过虚拟粒子传递的,虚拟粒子本质上是各种粒子间相互作用交换能量,总体上是以电磁波的形式传递力和能量,即粒子间的相互作用可以采用波的形式进行描述。

4.4.4 粒子与场辩证统一

确认能够以自由状态存在的各种最小物质统称为粒子。电子、中子、质子等是最早认识的一批粒子,陆续发现了大量的粒子的数目达数百种,粒子是物质存在的一种基本形式。

场是物质存在的另一种形式,这主要在于各种正反粒子偶极子是弥散于全空间并形成各种不同的场,它们互相渗透和相互作用着。正反粒子偶极子的不同势能对应不同形式的场,场的激发表现为正反粒子偶极子电离或粒子对显现,不同激发态表现为粒子的数目和状态不同。场的退激发表现为粒子对结合或正反粒子偶极子隐身。场的相互作用可以引起激发态的改变,表现为粒子的各种反应过程,也就是说场是物质存在的另一种基本形式。

而物质处于显现态时主要表现为粒子性,处于隐身态时主要表现为场的特征。因此,物质的粒子和场是辩证统一的。

场态粒子内部的对称粒子时刻运动,偶极矩不断变化,产生各种不同的瞬时偶极。另外,场态粒子之间的瞬时偶极也会相互诱导,粒子间也会产生诱导偶极。场态粒子的各种运动状态的概率相同,因此整体上具有良好的对称性。

当只有场态粒子时,场态粒子电荷、质量、密度、状态等都是均匀的,具有良好的对称性。在没有显态粒子时,场态粒子对称性不会自发破缺。

当场态粒子中出现显态粒子时,显态粒子一旦出现电荷对称性破缺,就会引起场态粒子规律性地电荷对称性破缺,形成电磁场。即电磁场是由于显态粒子电荷对称性破缺引起场态粒子规律性电荷对称性破缺产生的。

显态粒子质量对称性破缺,就会引起场态粒子规律性质量对称性破缺,进而产生场态粒子整体密度对称性破缺,形成引力场。即引力场是由于显态粒子质量对称性破缺引起场态粒子规律性质量对称性破缺产生的。

当显态粒子一旦出现运动状态对称性破缺,就会引起场态粒子规律性运动状态对称性破缺,形成惯性场。即惯性场是由于显态粒子运动状态对称性破缺引起场态粒子运动状态对称性破缺产生的。

只有显态粒子或只有场态粒子都不会形成场,只有显态粒子和场态粒子不断地相互作用才能产生场。场是场态粒子和显态粒子相互作用形成的,粒子和场是辩证统一的。有的时候我们专注于粒子的粒子性,有的时候我们专注于粒子的场的特性,但二者是无法分割的,因此场具有粒子的一切特征,包括质量、动量和能量。

4.5 小结

(1) 宇宙之所以有序运转,一切皆因万有引力。如果失去万有引力,宇宙将陷于极度混沌状态,更不会有生命的存在。因此,要了解宇宙的过去、现在与未来,首先要了解万有引力规律。

(2) 暗物质粒子是连接星系与行星的谱带,暗物质具有传递能量的粒子效应。暗物质可以与不同可见物质相互作用,是物质间万有引力的传递桥梁,并能够合理解释万有引力超距作用。

(3) 已经有大量的实验研究表明在真空中可以生成电子对,且电子对可以湮灭消失,暗物质粒子是稳定的正反粒子偶极子粒子,但主要成分为电子偶极子。

(4) 建立暗物质正反粒子偶极子模型,一个正反粒子偶极子中含有一对正反粒子,正反粒子相互作用,不停地围绕共同的中心做圆周运动,在一般的情况下,正反粒子偶极子既不显电性也不显磁性。

(5) 正反粒子偶极子是一种能量较低的稳定粒子,在一定条件下吸收足够的能量电离成电子对;而电子对在一定的条件下释放出能量,形成较稳定的正反粒子偶极子。

(6) 正反粒子偶极子之间的作用力包括瞬时库仑力、瞬时洛伦兹力、瞬时取向力和瞬时诱导力,均同时存在吸引力和推斥力。当正反粒子偶极子处于任何一个稳定的平衡状态时,吸引力与推斥力平衡,此时间距为平衡间距;当正反粒子偶极子间距小于平衡间距时,吸引力与推斥力均提高,而推斥力提高较快;当正反粒子偶极子间距大于平衡间距时,吸引力与推斥力均减小,而推斥力降低较快。而这里的平衡态,都是暂时的,一旦边界条件或内部条件变化,都会形成一个新的平衡态。

(7) 可见物质与正反粒子偶极子之间的作用力包括瞬时库仑力、瞬时洛伦兹力、瞬时取向力和瞬时诱导力,均同时表现为吸引力和推斥力。因此,可见物质与正反粒子偶极子之间的作用力主要表现为吸引力和推斥力。随着间距增大而减小,随着间距减小而增大。在一定距离内,瞬时取向力和瞬时诱导力主要表现为相互吸引力,总会吸引一定数量的正反粒子偶极子在可见物质周围,因此二者有变密的趋势。当密度逐渐增大,使正反粒子偶极子有压缩变形的趋势,使推斥力增加较多,正反粒子偶极子在一定密度时,吸引力和推斥力达到平衡状态。

(8) 正反粒子偶极子遍布整个宇宙。如果没有可见物质,正反粒子偶极子将均匀分布。当空间存在可见物质,正反粒子偶极子的密度提高,可见物质质量越大,正反粒子偶极子的密度提高越多。正反粒子偶极子的密度具有一定的梯度,随着距离增加而密度降低。

(9) 电场是由正反粒子偶极子规律极化产生的,可采用正反粒子偶极子的极化来表示电场,采用正反粒子偶极子的极化强度可表示电场强度。采用正反粒子偶极子的极化表示电场反映电场本质上是暗(实体)物质的规律变化,使暗(实体)物质与()场物质得到合理统一。用正反粒子偶极子的极化强度计算能够准确反映电场强度。

(10) 由于电流存在,是正反粒子偶极子内的正反粒子轨道发生偏转,此时,正反粒子偶极子内的正反粒子的轨道不在一个平面内运动,而是分别在两个交叉的平面内运动,如果稳定的电流,会致使正反粒子偶极子内的正反粒子的运行平面发生偏转,形成稳定的磁场。磁场是正反粒子偶极子内的正反粒子的运动平面发生规律偏转产生的,可采用正反粒子偶极子的偏转来表示磁场,采用正反粒子偶极子的偏转率表示磁场强度。采用正反粒子偶极子的偏转表示磁场反映磁场本质上是暗(实体)物质的规律变化,使暗(实体)物质与()场物质得到合理统一。正反粒子偶极子偏转强度计算能够准确反映磁场强度。

(11) 电磁波是正反粒子偶极子震荡传递的,震荡正反粒子偶极子本质上是微观震荡电偶极子,也是电磁波传递机理背后的物理原因。采用正反粒子偶极子的振荡频率区分电磁波种类,这反映电磁波本质上是暗(实体)物质的相互作用规律,使暗(实体)物质与(电磁)场物质合理统一。

(12) 引力场是由正反粒子偶极子密度规律变化产生的,可采用正反粒子偶极子的密度变化表示引力场,采用正反粒子偶极子的密度变化率表示引力场强度。引力始终指向正反粒子偶极子密度梯度增加最大方向是可见物之间只存在引力而不存在斥力的物理原因,并且是引力场超距作用的根本原因。因此正反粒子偶极子引力不仅具有合理的理论基础,更具有坚实的物质基础。正反粒子偶极子无处不在地存在使引力这种梯度力能够伸向无穷远。采用正反粒子偶极子的密度变化表示引力场反映引力场本质上是暗(实体)物质的规律变化,使暗(实体)物质与(引力)场物质得到合理统一。正反粒子偶极子密度变化计算和正反粒子偶极子吸引强度计算均能够准确反映引力场强度。

(13) 采用正反粒子偶极子模型可以很好地解释电场、磁场、电磁波和引力场,实现了场论的统一。暗物质正反粒子偶极子理论建立在暗物质极化、定向偏转、震荡感应和密度变化的基础上,放弃了物质引起时空变形的弯曲时空理论。通过进一步的正反粒子偶极子模型研究,可以逐渐取代场论的概念,使场具有实体物质的物理含义。

(14) 暗物质和可见物质在本质上没有区别,且二者可以相互转化;唯一的区别是暗物质粒子是对称粒子组成,而可见物质粒子是不对称的。

(15) 粒子的存在状态包括显现态和隐身态。只有对称的正反粒子偶极子才能处于隐身态,这是由于垂直于正反粒子偶极子偶极方向辐射最强,而平行正反粒子偶极子偶极方向辐射为零。如果把振动电子视为偶极,则在反射光方向辐射为零。场态粒子包括所有正反粒子偶极子,是一种对称粒子,暗物质=隐态粒子=场态粒子=对称粒子=正反粒子偶极子=电偶极子。

(16) 显态粒子是除正反粒子偶极子以外的其他任何非对称粒子,属于对称性破缺粒子。虚拟粒子是相互作用的媒介粒子,不是真实存在的粒子,仅仅是粒子间某种状态的相互作用,也可以理解为粒子间的能量交换。虚拟粒子本质上是粒子间的相互作用,长期以来被称为粒子,这是为了衔接现有理论而提出的。虚拟粒子对于粒子的动力学研究至关重要,但物质与相互作用有着本质区别,虚拟粒子的概念将会被逐渐弱化,相互作用的概念会逐渐被强化并取代虚拟粒子而成为规范性描述词语。

(17) 只有显态粒子或只有场态粒子都不会形成场,只有显态粒子和场态粒子不断地相互作用才能产生场。场是场态粒子和显态粒子相互作用形成的,粒子和场是辩证统一的。没有可见物质影响时,暗物质本身不能形成场。当受到外界物质影响时,产生不同的势能,并形成各种场,即各种场是场态粒子的不同势能。

(18) 量子场论认为的粒子凭空产生和消失本质上是场态粒子和显态粒子的相互转化,仅仅是粒子存在状态的变化,物质没有创生,也没有消灭。实际上,场态粒子是量子场论的物质基础。





全书下载:

链接:https://pan.baidu.com/s/1saeswH_469N-qGaGH0CaVg?pwd=3qr0

提取码:3qr0 







https://m.sciencenet.cn/blog-225458-1356066.html

上一篇:暗物质与宇宙模型:5. 正反粒子偶极子模型自冾性验证
下一篇:暗物质与宇宙模型:3. 暗物质

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-20 08:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部