LintaoLiu的个人博客分享 http://blog.sciencenet.cn/u/LintaoLiu 分享科学,体味人生

博文

希尔伯特变换的实现——数据分析漫谈3

已有 12280 次阅读 2012-9-1 18:34 |个人分类:科研随笔|系统分类:科研笔记|关键词:学者| 希尔伯特变换

希尔伯特变换 (Hilbert transform(HT)) 1主要用于求实数信号的包络,也可以用于数据分析,如Hilbert-Huang transform (HHT)2

 

HT在实际应用中会遇到两个具体的问题:i)其滤波器在零点是奇异的,不易于实际计算;ii)其不能压制高频噪声,因而不利于求包络。本博客提供一个低通HT,即 Low-passing HT (LPHT)LPHT能够可以很好地解决上述问题,因此可以作为HT的实际应用版本。

 

先看HT的定义。对于一个实数时间信号是s(t), HT如下定义:

$H{ s} = s(t) * h(t) = frac{i}{pi }int {frac{{s(tau )}}{{t - tau }}} dtau $                                                 (1) 

其中滤波器

$h(t) = frac{i}{{pi t}}$                                                                (2)

注意这里的滤波器h(t)与教科书中的相比多乘了个i,这样做并不改变HT的本质,但可以使得滤波器h(t)的傅立叶变换正好为一个sign函数,即

$hat h(omega ) = sign(omega ) = left{ {begin{array}{*{20}{c}} {1,} & {omega > 0} \ {0,} & {omega = 0} \ { - 1,} & {omega < 0} \ end{array}} right.$                                        (3)

其中,^表示傅立叶变换算子。很明显,HT的滤波器h(t)在零点是奇异的,即

$|h(0)| = infty $                                                                          (4)

 

下面定义所谓的LPHT。对于一个实数时间信号是s(t), LPHT如下定义:

${H_varpi }{ s} = s(t) * {h_varpi }(t) = frac{i}{pi }int {s(tau)frac{{1 - cos (varpi (t - tau ))}}{{t - tau }}} dtau $                                                                        (5) 

其中,v 是某一正常数,代表低通截止频率;而滤波器

${h_varpi }(t) = frac{i}{{pi t}}(1 - cos varpi t)$                                    (6)

该滤波器的傅立叶变换为

${{hat h}_varpi }(omega ) = left{ {begin{array}{*{20}{c}} {sign(omega ),} & {|omega | le varpi } \ {0,} & {|omega | > varpi } \ end{array}} right.$                                    (7)

很明显,LPHT的滤波器hv (t)在零点不奇异,即

${h_varpi }(0) = 0$                                                                    (8)

 

对比(4)(8),我们可以知道,HT有奇异点,而LPHT没有。因此,在实际计算上,LPHT要比HT更容易实现。

 

对比(3)(7)可以知道,滤波器hv (t)是滤波器h(t)的低通滤波结果(其中v是截止频率)。因此,LPHT是一个低通的HT,相当于HT+低通滤波。这样,LPHT就可以压制高频噪声的干扰了。 LPHT的实际应用中,截止频率v可以更根据实际需要可大可小地设定。

 

总之,LPHT (5) 既可以消除原始HT (1) 中的奇异点,又可以压制信号中的高频噪声,可谓一举两得。所以,LPHT 可以作为HT的实用版本予以应用。

 

附记:

l         LPHT也可以应用到HHT的计算;

l         如果大家觉得LPHT很实用,别忘了引用本博客哦。

 

 

参考网站:

1       http://zh.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9%E5%8F%98%E6%8D%A2

     http://www.ancad.com.tw/presentation%20files/VisualSignal/%E4%B8%80%E8%88%AC%E6%80%A7%E4%BB%8B%E7%B4%B9/HHT.pdf

 



https://m.sciencenet.cn/blog-634454-608204.html

上一篇:加窗傅立叶变换与连续小波变换——数据分析漫谈2
下一篇:一种快速衰减的低通滤波器——数据分析漫谈4

5 曾新林 李伟钢 戴朝华 王金良 周杰文

该博文允许注册用户评论 请点击登录 评论 (4 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2022-12-6 19:29

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部