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Abstract—This paper addresses the consensus problem of multi-
agent systems with a time-invariant communication topology con-
sisting of general linear node dynamics. A distributed observer-
type consensus protocol based on relative output measurements
is proposed. A new framework is introduced to address in a uni-
fied way the consensus of multiagent systems and the synchroniza-
tion of complex networks. Under this framework, the consensus of
multiagent systems with a communication topology having a span-
ning tree can be cast into the stability of a set of matrices of the
same low dimension. The notion of consensus region is then intro-
duced and analyzed. It is shown that there exists an observer-type
protocol solving the consensus problem and meanwhile yielding
an unbounded consensus region if and only if each agent is both
stabilizable and detectable. A multistep consensus protocol design
procedure is further presented. The consensus with respect to a
time-varying state and the robustness of the consensus protocol to
external disturbances are finally discussed. The effectiveness of the
theoretical results is demonstrated through numerical simulations,
with an application to low-Earth-orbit satellite formation flying.

Index Terms—Consensus, graph theory, linear matrix inequality
(LMI), multiagent system, synchronization, control.

I. INTRODUCTION

I N RECENT years, the coordination problem of multiagent
systems has received compelling attention from various sci-

entific communities due to its broad applications in such areas
as satellite formation flying [4], cooperative unmanned air vehi-
cles[2], scheduling of automated highway systems[3], and air
traffic control[38]. One critical issue arising from multiagent
systems is to develop distributed control policies based on local
information that enables all agents to reach an agreement on
certain quantities of interest, which is known as the consensus
problem.

Consensus problem has a long-standing tradition in computer
science. In the context of multiagent systems, recent years have
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witnessed dramatic advances of various distributed strategies
that achieve agreements. Reference[43] proposed a simple
model for phase transition of a group of self-driven particles
and numerically depicted the complexity of the model. Refer-
ence[15] provided a theoretical explanation for the behavior
observed in [43] by using graph theory. In [23], a general
framework of the consensus problem for networks of dynamic
agents with fixed or switching topologies and communication
time delays was established. The conditions derived in[23] were
further relaxed in[29]. Reference[1] proposed a passivity-based
design framework to deal with the group coordination problem,
where both fixed and time-varying communication structures
were considered. References[12] and [13] considered tracking
control for multiagent consensus with an active leader and
designed a local controller together with a neighbor-based
state-estimation rule. Predictive mechanisms were introduced
in [44] to achieve ultrafast consensus. Reference[19] investi-
gated the consensus problem for directed networks of agents
with external disturbances and model uncertainties on fixed
and switching topologies. Reference[7] characterized a dis-
tributed algorithm that asymptotically achieved consensus, and
provided two discontinuous distributed algorithms that achieve
max and min consensus, respectively, in finite time. For a rela-
tively complete coverage of the literature on consensus, readers
are referred to the recent surveys [24], [30]. One well-known
problem in most existing works is that the agent dynamics are
often restricted to be single or double integrators or structural
high-order linear systems. Another common problem is that
most proposed distributed consensus protocols are based on
the relative states between neighboring agents, which, in many
cases, is not available.

Another topic that is closely related to the consensus of mul-
tiagent systems is the synchronization of coupled nonlinear os-
cillators. In the pioneering work [26], the synchronization phe-
nomenon of two master–slave chaotic systems was observed
and applied to secure communications. References [22] and [27]
addressed the synchronization stability of a network of oscilla-
tors by using the master stability function method. Recently, the
synchronization of complex dynamical networks, such as small-
world and scale-free networks, has been widely studied (see[5],
[9],[17],[21], [28], [40], [42] and the references therein). Due
to nonlinear node dynamics, usually, only sufficient conditions
can be given for verifying the synchronization.

This paper is concerned with the consensus problem of mul-
tiagent systems under a fixed (time-invariant) communication
topology, where each agent has general linear dynamics, which
may also be considered as the linearized model of a nonlinear
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network. A distributed observer-type consensus protocol based
on relative output measurements is proposed, which can be
regarded as an extension of the traditional observer-based
controller for a single system. A new unified framework is in-
troduced, which converts the consensus problem of multiagent
systems with a communication topology having a spanning tree
into the stability of a set of matrices with the same low dimen-
sion (as a single agent). The proposed framework is, in essence,
consistent with the master stability function method used in
the synchronization of complex networks and yet presents a
unified viewpoint to both the consensus of multiagent systems
and the synchronization of complex networks. The notion of
consensus region is then introduced and analyzed with the help
of the stability of matrix pencils. It is shown that there exists
an observer-type protocol solving the consensus problem and
meanwhile yielding an unbounded consensus region if and
only if each agent is stabilizable and detectable. A constructive
three-step consensus protocol design procedure is further pro-
posed. The first two steps deal with only the agent dynamics
and feedback gain matrices of the consensus protocol, while
in the third step, the effect imposed by the communication
topology of the agents on the consensus stability is managed by
adjusting the coupling strength. One favorable feature of this
approach is that the protocol designed to achieve consensus
for one given communication topology can be directly used to
solve the consensus problem for any other topology containing
a spanning tree, where the only task is to select a suitable
coupling strength.

Roughly speaking, there are two fundamental questions about
the consensus problem of multiagent systems: “how to reach
consensus” and “consensus on what.” They are both addressed
in this paper. The beginning part of this paper is mainly de-
voted to the first question. To that end, the second question, the
consensus with respect to a time-varying state, is brought for-
ward and discussed under the proposed framework in the last
part of this paper. The robustness of consensus protocols to ex-
ternal disturbances will also be studied, where the communica-
tion topology is restricted to be undirected. As mentioned ear-
lier, this paper intends to relate the consensus of multiagent sys-
tems and the synchronization of complex networks. Pertinent
works along this line include [39] and [37], where synchroniza-
tion problems of identical discrete- and continuous-time linear
systems are studied. Differing from the protocols proposed in
this paper, the coupling law used in [39] is essentially relative
state feedback, and the dynamic coupling law in[37] requires
the absolute output measurement of each agent, which is im-
practical in many cases. A typical instance is deep-space for-
mation flying, where the measurement of the absolute position
of the spacecraft is accurate only on the order of kilometers,
which is thus useless for control purposes [35]. Other kinds of
dynamic protocols have been proposed in different scenarios,
e.g., in[10], [36]. To briefly highlight the main differences, this
paper generalizes the existing results on consensus of multia-
gent systems in at least two aspects. First, the agent dynamics
are extended to be in a general linear form, without limiting to
integrators. The agent dynamics are excluded from having poles
in the open right-half plane in order to reach a nontrivial con-
sensus value. Second, observer-type consensus protocols based
on relative output measurements between neighboring agents

are proposed, which is more general than most existing models
such as the protocol based on relative states and the static pro-
tocol used in [39]. For completeness, relative-state consensus
protocols are also considered here as a special case of the present
unified framework.

The rest of this paper is organized as follows. Section II in-
troduces some basic notation and reviews some useful results of
algebraic graph theory.Section III presents a new framework to
tackle the consensus problem of multiagent systems and inves-
tigates possible applications of consensus algorithms to satellite
formation flying in the low Earth orbit. The consensus problem
with respect to a reference state is considered in Section IV. The
robustness of the consensus protocol to external disturbances is
formulated and analyzed in Section V.Section VI concludes this
paper.

A. Notation and Preliminaries

Let and be the sets of real and complex
matrices, respectively. The superscript means transpose for
real matrices, and means conjugate transpose for complex ma-
trices. represents the identity matrix of dimension , and

denotes the identity matrix of an appropriate dimension. Let
denote the vector with all entries equal to one. Matrices,

if not explicitly stated, are assumed to have compatible dimen-
sions. For , denote by its real part and by its
imaginary part. represents a block-diagonal
matrix with matrices , on its diagonal. The ma-
trix inequality means that and are square Hermitian
matrices and that is positive definite. For ,

denotes its maximal singular value. A matrix
is Hurwitz (or stable) if all of its eigenvalues have strictly nega-
tive real parts. A matrix is irreducible if there does not exist a
permutation matrix such that is block triangular. The
Kronecker product of matrices and is
defined as

...
. . .

...

which satisfies the following properties:

A directed graph consists of a node set and an edge set
, in which an edge is represented by a pair of distinct

nodes of : , where is the parent node, is the child
node, and is neighboring to . A graph with the property that

implies that is said to be undirected. A path
on from nodes to is a sequence of ordered edges in the
form of , . A directed graph is said
to be strongly connected if, for any pair of distinct nodes, there
exists a path between them. A directed graph has or contains a
directed spanning tree if there exists a node called root such that
there exists a directed path from this node to every other node.

Suppose that there are nodes in a graph. The adjacency
matrix is defined by ,
if and 0 otherwise. Thus, represent both
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nodes and indices, which should not cause confusion from the
context. The Laplacian matrix is defined as

, for . Clearly, matrix is symmetric
if the graph is undirected.

Lemma 1: All the eigenvalues of have nonnegative real
parts. Zero is an eigenvalue of , with as the corresponding
right eigenvector [34].

Lemma 2: Zero is a simple eigenvalue of if and only if
graph has a directed spanning tree [18], [29].

Lemma 3: If graph contains a directed spanning tree, then,
with proper permutation, can be reduced to the Frobenius
normal form [41]

...
...

. . .
...

where , , are irreducible, each has at
least one row with positive row sum, and is irreducible or
is a zero matrix of dimension one.

II. UNIFIED APPROACH TO THE CONSENSUS PROBLEM

Consider a group of identical agents with general linear
dynamics, which may be regarded as the linearized model of
some nonlinear systems. The dynamics of the th agent are de-
scribed by

(1)

where is the state, is the
control input, and is the measured output. It is assumed
that is stabilizable and detectable.

The communication topology among agents is represented by
a directed graph , where is the set
of nodes (i.e., agents) and is the set of edges. An
edge in graph means that agent can obtain information
from agent but not conversely.

The relative measurements of other agents with respect to
agent are synthesized into a single signal in the following way:

(2)

where denotes the coupling strength, , and
if agent can obtain information from agent but 0 otherwise.
An observer-type consensus protocol is proposed as

(3)

where is the protocol state, , and
and are the feedback gain matrices to be

determined. The term in (3) denotes the
information exchanges between the protocol of agent and those
of its neighbors. Note that protocol (3) is distributed, since it is
based only on the relative information of neighboring agents.

With (3), system (1) can be written as

(4)

where

is the Laplacian matrix of , is the aug-
mented node dynamics, and denotes the inner linking matrix.
System (4) may be viewed as the linearized model of a complex
nonlinear network.

One says that (3) solves the consensus problem if the states
of system (4) satisfy

(5)

Let be the left eigenvector of
associated with zero eigenvalue, satisfying . Introduce
the following variable:

(6)

where , and satisfies
. Similar to[23], is referred to as the disagreement

vector. It can be verified that evolves according to the fol-
lowing so-called disagreement dynamics:

(7)

The following presents a necessary and sufficient condition
for the consensus problem under dynamic protocol (3).

Theorem 1: For a directed network of agents with communi-
cation topology that has a directed spanning tree, protocol (3)
solves the consensus problem if and only if all matrices ,

, , are Hurwitz, where , ,
are the nonzero eigenvalues of the Laplacian matrix of .

Proof: First, it is to show that the consensus problem of
network (4) is equivalent to the asymptotical stability problem
of the disagreement dynamics (7). Rewrite (6) as

(8)

where

...
...

. . .
...

By the definition of , it is easy to see that zero is a simple
eigenvalue of , with as the corresponding right eigenvector,
and one is another eigenvalue with multiplicity . Then, it
follows from (8) that if and only if . That
is, the consensus problem is solved if and only if , as

.
Next, the stability of system (7) is discussed, which

will solve the consensus problem indirectly. Let
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, , , and upper
triangular be such that

(9)
where the diagonal entries of are the nonzero eigenvalues of

. Introduce the state transformation , with
. Then, (7) can be represented in terms of

as follows:

(10)

On the other hand, it can be seen from (6) that

(11)

Note that the elements of the state matrix of (10) are either block
diagonal or block upper triangular. Hence, , ,
converge asymptotically to zero if and only if the sub-
systems along the diagonal, i.e.,

(12)

are asymptotically stable. It is easy to check that matrices
are similar to

Therefore, the stability of matrices , ,
, is equivalent to the case in which the state of (7)

converges asymptotically to zero, i.e., the consensus problem is
solved.

Remark 1: The importance of this theorem lies in the fact
that it converts the consensus problem of a large-scale multia-
gent network under the observer-type protocol (3) into the sta-
bility of a set of matrices with the same dimension as a single
agent, thereby significantly reducing the computational com-
plexity. The observer-type consensus protocol (3) can be seen
as an extension of the traditional observer-based controller for a
single system to the one for multiagent systems. The separation
principle of traditional observer-based controllers still holds in
the multiagent setting. Communication topology is directed
and only assumed to have a directed spanning tree. Such an as-
sumption is quite general and weak, as it is intuitively clear that
consensus is impossible to reach if has disconnected compo-
nents. The effects of the communication topology on the con-
sensus problem are characterized by the eigenvalues of the cor-
responding Laplacian matrix , which may be complex, ren-
dering the matrices complex-valued in Theorem 1.

Remark 2: Theorem 1 generalizes the existing results on
the consensus problem in at least two aspects. First, the agent
dynamics are extended to be general linear but not limited to
single-integrator, double-integrator, or structural high-order
linear systems, as usually assumed in most existing papers
[23], [29], [31]. Here, once again, the linear dynamics can be
considered as the linearized dynamics of some originally non-
linear systems. Second, an observer-type consensus protocol is
proposed, which is based on relative output measurements be-
tween neighboring agents, in contrast to [39] where a full-state
coupling law is used and to [37] where the dynamic protocol

requires the absolute output of each agent to be available. Com-
pared to that of existing consensus protocols, a unique feature
of the consensus protocol (3) is that a positive scalar called the
coupling strength is introduced, similar to the complex network
models studied in [8], [27], and[40]. With this parameter, the
notion of consensus region can be brought forward, as detailed
in the following section. It is also worth noticing that the method
leading to Theorem 1 is, in essence, consistent with the master
stability function method proposed in [22] and[27]. Therefore,
one can deal with the consensus problem of multiagent systems
and the synchronization problem of complex dynamic networks
in a unified way.

Theorem 2: Consider the multiagent network (4) whose com-
munication topology has a directed spanning tree. If protocol
(3) satisfies Theorem 1, then

...

(13)

where is such that and .
Proof: From (4), the network dynamics can be rewritten in

compact form as

(14)

where . The solution of (14) can be obtained
as

(15)

where matrices , , and are defined in (9). By Theorem
1, is Hurwitz. Thus

as

It then follows from (15) that

as

implying that

... as (16)

for . Because is Hurwitz,(16) directly
leads to the assertion.

Remark 3: Some algebraic characteristics of the agent dy-
namics implied by Theorems 1 and 2 are now briefly discussed.
First, the agent dynamics (1) are excluded from having poles
in the open right-half plane; otherwise, the consensus value
reached by the agents will tend to infinity exponentially. There-
fore, it is assumed hereinafter that matrix has no eigenvalues
with positive real parts. Furthermore, if system (1) is asymp-
totically stable, i.e., if is Hurwitz, then it follows from (13)
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that the consensus value reached by the agents is zero. Thus,
the matrix in (1) having eigenvalues along the imaginary
axis is critical for the agents to reach consensus at a nonzero
value under protocol (3). Typical examples of this case include
the single and double integrators considered in the existing
literature [23],[29], [31], [32]. It should be pointed out that
similar results have been obtained for some special cases of this
theorem, e.g., in[32] where the agent dynamics are assumed to
be double integrators and in [39] where the consensus protocol
is static.

A. Consensus Region Analysis

Given a protocol in the form of (3), the consensus problem
can be cast into analyzing the following system:

(17)

where and .
The stability of systems(17) depends on parameter . The re-

gion of complex parameter , such that (17) is asymptoti-
cally stable, is called the consensus region of network (4) in this
paper. It follows from Theorem 1 that consensus is reached if
and only if

where , , and . For an
undirected communication graph, its consensus region is an
interval or a union of several intervals on the real axis. However,
for a directed graph, where the eigenvalues of are generally
complex numbers, its consensus region is a region or a union
of several regions on the complex plane.

It is worth noting that consensus region can be seen as the
stability region of the matrix pencil with respect to
complex parameter . Thus, tools from the stability of matrix
pencils will be utilized to analyze the consensus region problem.
Before moving on, the following lemma is needed.

Lemma 4: Given a complex-coefficient polynomial [25]

(18)

where is stable if and only if and
.

In the aforementioned lemma, only second-order polyno-
mials are considered. Similar results for high-order complex-co-
efficient polynomials can also be given (see [25]). However, in
the latter case, the analysis will be more complicated.

The following example has a bounded consensus region.
Example 1: The agent dynamics and consensus protocol are

given by (1) and (3), respectively, with

Obviously, is Hurwitz. The characteristic polynomial
of is

Fig. 1. (a) Bounded consensus region. (b) Communication topology.

By Lemma 4, is stable if and only if
and . The consensus
region in this case is shown in Fig. 1(a), which is bounded.
Assume that the communication graph is given by Fig. 1(b), so
the corresponding Laplacian matrix is

with nonzero eigenvalues . It can
be verified that consensus is achieved if and only if

. Figs. 2 and 3 show the states of network (4) with dif-
ferent coupling strengths ’s for this example.

Remark 4: The consensus region issue discussed in this sec-
tion is similar to the synchronization region issue studied in[8],
[17], [20], and [27]. The consensus region serves in a certain
sense as a measure for the robustness of protocol (3) to para-
metric uncertainty. An example can be easily constructed such
that the bound of the consensus region on the real axis for a cer-
tain protocol is rather narrow, e.g., [1, 1.005], and all the eigen-
values of are one. Assume that the coupling strength in (2)
is subjected to multiplicative uncertainties, e.g.,(2) is changed
to , where denotes the uncer-
tainty. Clearly, if , then this protocol fails to solve
the consensus problem. Therefore, given a consensus protocol,
the consensus region should be large enough for the protocol to
maintain a desirable robustness margin. As a matter of fact, the
consensus region analysis given in this section provides a cru-
cial basis for the consensus protocol design, which is the topic
of the next section.

The following example has a disconnected consensus region.
1) Example 2: The agent dynamics and consensus protocol

are given by(1) and (3), respectively, with

Obviously, is Hurwitz. The characteristic polynomial
of is
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Fig. 2. States of six-agent network (4) when � � ����.

By Lemma 4, is stable if and only if
. The consensus region in this case is

shown in Fig. 4, which is composed of two disjoint subregions,
both with unbounded real part and bounded imaginary part. If
the communication graph is still given by Fig. 1(b), then con-
sensus is achieved if and only if . If coupling
strength can be negative, then consensus will be achieved also
when .

B. Consensus Protocol Design

In many cases, the protocols have to be designed so as to
solve the consensus problem for various given communication
topologies.

From the previous section, it can be seen that the cases with
bounded consensus regions are more complicated than the cases
with unbounded consensus regions. Hence, it is convenient to
design a protocol such that the consensus region is unbounded.

Proposition 1: Given the agent dynamics (1), there exists a
matrix such that is Hurwitz for all
and if and only if is detectable.

Proof: (Necessity) It is trivial by letting and .

Fig. 3. States of six-agent network (4) when � � ����.

Fig. 4. Disconnected consensus region.

(Sufficiency) Because is detectable, there exists a ma-
trix such that is Hurwitz, i.e., there exists a matrix

such that

Let . Then, the aforesaid inequality becomes
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By Finsler’s lemma [14], there exists a matrix satisfying the
aforementioned inequality if and only if there exists a scalar

such that

(19)

Because matrix is to be determined, let without loss of
generality. Then

(20)

Obviously, when (20) holds, for any , (19) holds. Take
, i.e., . By the previous inequalities,
is Hurwitz for all . Thus, one has

for all and .
Theorem 1 and the aforementioned proposition together lead

to the following result.
Theorem 3: For the multiagent network (4) with containing

a directed spanning tree, there exists a distributed protocol in the
form of (3) that solves the consensus problem and meanwhile
yields an unbounded consensus region
if and only if is stabilizable and detectable.

A multistep consensus protocol design procedure based on
the consensus region notion is now presented.

Algorithm 1: Given that is stabilizable and de-
tectable and containing a directed spanning tree, a protocol
in the form of (3) solving the consensus problem can be con-
structed according to the following steps.

1) Choose matrix such that is Hurwitz.
2) Solve the linear matrix inequality (LMI)(20) to get one

solution . Then, choose the feedback gain matrix
.

3) Select a coupling strength that is larger than the threshold
value , which is given by

(21)

where , , denotes the nonzero eigenvalues
of .

Remark 5: One distinct feature of Algorithm 1 is that it de-
couples the effects of the agent and protocol dynamics on the
consensus stability from that of the communication topology.
More specifically, steps 1) and 2) deal only with the agent dy-
namics and feedback gain matrices of the consensus protocol,
leaving the communication topology of the multiagent network
to be handled in step 3) by manipulating the coupling strength.
One favorable consequence of this decoupling property is that
the protocol so designed to achieve consensus for one given
communication graph can be used directly to solve the con-
sensus problem for any other graphs containing a spanning tree,
with the only different task of appropriately selecting the cou-
pling strength as in step 3). This feature will be more desirable
for the case when agent number is large, for which the eigen-
values of the corresponding Laplacian matrix are hard to deter-

Fig. 5. Unbounded consensus region.

mine or even troublesome to estimate. Here, in this case, one
only needs to choose the coupling strength to be large enough.

Now, Example 1 in the previous section is revisited.
Example 3: The agent dynamics and feedback gain matrix

of protocol (3) remain the same as in Example 1, while matrix
will be redesigned via Algorithm 1. By solving LMI (20), a

feasible solution is obtained as . Differing

from Example 1, an unbounded consensus region in the form of
can be obtained here. This can be verified

in another way by noticing that the characteristic polynomial of
becomes

Thus, is Hurwitz if and only if

The consensus region in this case is the right-half plane by the
vertical line , except the white area shown in
Fig. 5, which obviously contains the region .
Protocol (3) with feedback gains and (the same as that in
the previous) and any will solve the consensus problem
for any communication graph containing a spanning tree.

C. Relative-State Consensus Protocol

In this section, a special case when the relative states between
neighboring agents are available is considered. For this case, a
distributed static protocol is proposed as

(22)

where and are the same as that defined in (2), and
is the feedback gain matrix. With (22), system (1)

becomes

(23)

where is defined in (4).
Corollary 1: For a directed network of agents with com-

munication topology that has a directed spanning tree, pro-
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tocol (22) solves the consensus problem if and only if all ma-
trices , , are Hurwitz.

Corollary 2: Consider the agent network (23) whose com-
munication topology has a directed spanning tree. If protocol
(22) satisfies Corollary 1, then the states , as ,
for , where is defined in (13).

It is observed by comparing Theorem 2 and Corollary 2 that
even if the consensus protocol takes the dynamic form (3) or
the static form (22), the final consensus value reached by the
agents will be the same, which relies only on the communication
topology, the initial states, and the agent dynamics.

Similar to that in previous section, the consensus region of
protocol(22) corresponds to the stability region of system

with respect to , where .
The dual of Proposition 1 is presented as follows.
Proposition 2: Given the agent dynamics(1), there exists a

matrix such that is Hurwitz for all
and if and only if is stabilizable.

Algorithm 2: Given that is stabilizable, a protocol
in the form of(22) solving the consensus problem can be con-
structed according to the following steps.

1) Solve the following LMI:

(24)

to get one solution . Then, choose the feedback gain
matrix .

2) Select the coupling strength , with being given
in (21).

D. Application to Spacecraft Formation Flying

In this section, a possible application of the consensus al-
gorithm developed in the previous sections to spacecraft for-
mation flying in the low Earth orbit is considered. A pertinent
work is[33], which addresses the formation keeping problem of
deep-space spacecraft whose translational dynamics are mod-
eled as double integrators. In order to simplify the analysis, as-
sume that a virtual reference spacecraft is moving in a circular
orbit of radius . The relative dynamics of the other spacecraft
with respect to the virtual spacecraft will be linearized in the fol-
lowing coordinate system, where the origin is on the mass center
of the virtual spacecraft, the -axis is along the velocity vector,
the -axis is aligned with the position vector, and the -axis com-
pletes the right-hand coordinate system.

The linearized equations of the relative dynamics of the th
satellite with respect to the virtual satellite are given by Hill’s
equations, which are

(25)

where , , and are the position components of the th satel-
lite in the rotating coordinate; , , are the control in-
puts; and denotes the angular rate of the virtual satellite. The
main assumption inherent in Hill’s equations is that the distance
between the th and virtual satellites is very small in comparison
to orbital radius .

Denote the position vector by and the con-
trol vector by . Then, (25) can be rewritten
as

(26)

where

Satellites are said to achieve formation flying if their velocity
vectors converge to the same value and their positions maintain
a prescribed separation, i.e., , , as

, where denotes the desired constant
separation between satellites and .

Represent the communication topology among the satel-
lites by a directed graph . Assume that measurements of both
relative positions and relative velocities between neighboring
satellites are available. The control input to satellite is pro-
posed here as

(27)
where ; and are the constant feedback gain
matrices to be determined; and and if satellite
can obtain information from satellite but 0 otherwise. If satel-
lite receives no information from any other satellite, then the
term is set to zero. With (27), (26) can be reformulated as

(28)

The following result is a direct consequence of Corollary 1.
Corollary 3: Assume that graph has a directed spanning

tree. Then, protocol (27) solves the formation flying problem

if and only if the matrices are

Hurwitz for , where , , denote the
nonzero eigenvalues of the Laplacian matrix of .

The feedback gain matrices and satisfying Corollary 3
can be designed by following Algorithm 2. Because system (26)
is stabilizable, they always exist.

Example 4: Consider the formation flying of four satellites
with respect to a virtual satellite that moves in a circular orbit
at rate . Assume that the communication topology
is given by Fig. 6(a), from which it is observed that satellite 1
plays the leader’s role. The nonzero eigenvalues of the Lapla-
cian matrix in this case are 1, 1, and 2. Select in (27) to be
1 for simplicity. One can solve the formation flying problem in
the following steps: 1) Select properly the initial state of leading
satellite 1 such that it moves in a spatial circular relative orbit
with respect to the virtual satellite; 2) design the consensus pro-
tocol in the form of(27) such that the four satellites together
maintain a desired formation flying situation.
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Fig. 6. (a) Communication topology. (b) Relative velocity. (c) Relative posi-
tions�� � ��� ����� ��.

Select the initial state of satellite 1 as , ,
, , , . In such a case, satellite 1 maintains

a circular relative orbit with respect to the virtual satellite, of
radius , and with the tangent angle to the orbital
place . Suppose that the four satellites will maintain a
square shape with a separation of 500 m in a plane tangent to
the orbit of the virtual satellite by an angle . Let

, , , and
. By Algorithm 2, the feedback gain

matrices solving the formation flying problem can be obtained
by using the LMI Toolbox [11] as

The simulation result is shown in Fig. 6.

III. CONSENSUS WITH RESPECT TO A REFERENCE STATE

In the previous section, the consensus problem of multia-
gent systems with consensus protocols (3) and (22) has been
studied. It is worth noting that the final consensus value, which
depends on the initial values and agent dynamics, might be un-
known a priori. However, in many practical cases, it is desirable
that the agents’ states asymptotically approach a reference state,
which can also be time varying. This is called a model-refer-
ence consensus problem in [31] and[32], where only integrator
dynamics are discussed. If the reference model is taken as a
virtual leader, the model-reference consensus problem is actu-
ally the leader–follower consensus problem, as studied in [12],
[13], and [15]. The model-reference consensus problem is, in
some sense, related to the target acquisition problem concerned

in [10]. In this section, the problem is extended to the general
framework proposed in the last section.

The agent’s dynamics are still described by (1). The reference
trajectory , which the agents’ states will follow,
satisfies

and (29)

where , , and matrices , , and are the
same as those defined in (1). It is assumed that only a subset of
agents have access to the output variable of the reference model
(29), whereas all the agents in the network have access to the
reference input. In this case, the information available to agent

is given by

(30)

where , is the same as that defined in (3), and
if agent has access to the reference model (29) but zero other-
wise. A distributed protocol based on(30) is proposed as

(31)

where , , and are the feedback
gain matrices to be determined and is the state of
system .

With protocol (31), the model-reference consensus problem
is said to be solved if

Let , ,
, , . Then, the closed-

loop network dynamics can be written in the following form, as
is the case in the last section:

(32)

where and are defined in (4), , and is the
Laplacian matrix of communication topology among the
agents.

It is easy to see that the model-reference consensus problem
is solved if and only if all the states of (32) converge to zero.

Lemma 5: Suppose that the directed communication graph
has a spanning tree and that the root agent of such a tree has

access to the reference model. Then, all the eigenvalues of the
matrix defined in (32) have positive real parts.

Proof: Without loss of generality, one can rearrange if nec-
essary the order of the nodes in the network such that Laplacian
matrix takes the Frobenius normal form. Because the root
agent has access to the reference model, in light of Lemma 3,
all the submatrices along the diagonal of are irreducible, and
thus, it has at least one row with positive row sum. Then, by fol-
lowing the steps in proving Lemma 1 in [6], one can easily show
that all the eigenvalues of have positive real parts.
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Corollary 4: Assume that communication topology has a
directed spanning tree and that the root agent of such a tree has
access to the reference model. Then, protocol (31) solves the
model-reference consensus problem if and only if all matrices

, , , are Hurwitz, where ,
, are the eigenvalues of .

Proof: It follows from the proof of Theorem 1 that the sta-
bility of matrices is equivalent to the stability of (32),
which implies that , , as . There-
fore, , , , as , i.e., the
model-reference consensus problem is solved.

Remark 6: Similar to Theorem 1, this corollary casts the con-
sensus problem with respect to a reference state equivalently
into the stability of matrices that all have the same dimen-
sion (equal to that of a single agent). A distinct feature of this
corollary is that matrix here is allowed to be unstable for the
model-reference consensus problem, as opposed to Theorem 1
where matrix is required to have no eigenvalues with posi-
tive real parts. According to Lemma 5, the reference consensus
can possibly be reached by using protocol (31), even when only
the root agent has access to the output variable of the reference
model.

Similar toSection III, both the consensus region analysis and
consensus protocol design can be discussed correspondingly
with very little modification, so they are omitted here for brevity.

IV. CONSENSUS WITH PERFORMANCE SPECIFICATION

Practically, an agent itself may be subjected to external distur-
bances. It is interesting to study the robustness of consensus pro-
tocols to external disturbances, which is formulated as an issue
of additional performance specification. A related work
is [16], where the gain of multivehicle formations with a
double-graph strategy was investigated. For simplicity, the con-
nections among agents are assumed to be undirected, keeping
symmetric Laplacian matrices with real eigenvalues.

The agent dynamics perturbed by external disturbances are
described by

(33)

where is the state of agent , is the control
input, is the external disturbance, and
is the measured output.

First, consider the robustness of protocol(31) to external dis-
turbances. Because the agent states are desired to converge to
the reference state satisfying (29), it is natural to define the
performance variables as

(34)

Let and . Then,
the closed-loop network dynamics resulting from (31), (33),
and(34) are written as

(35)

where , , , and are the same as that in(32) and

Denote by the transfer function matrix from to of
system (35).

The model-reference consensus with the desired perfor-
mance specification is stated as follows. For a given ,
find an appropriate protocol in the form of(31) such that the
following are achieved: 1) The model-reference consensus is
solved with , i.e., the state of (35) with converges
to zero, and 2) , where is the norm
of , defined by [45].

Theorem 4: For an undirected network of agents described
by (33), with at least one agent having access to the reference
model, the model-reference consensus is solved along with

if and only if there exists a protocol (31) such
that the following systems are asymptotically stable and,
moreover, the norms of their transfer function matrices are
all less than :

(36)

where denotes the eigenvalues of .
Proof: Because graph is assumed to be undirected and

at least one agent has access to the reference model, it follows
from Lemma 5 that matrix is positive definite. Let be such
a unitary matrix in that .
Introduce the following sate transformations: ,
with . Then, network (35) can be rewritten
as

(37)

Furthermore, reformulate disturbance variable and perfor-
mance variable via

(38)

where and . Then, sub-
stituting (38) into (37) gives

(39)

It is worth noting that (39) is composed of independent sys-
tems as in (36). Denote by and the transfer function
matrices of systems (39) and (36), respectively. Then, it follows
from (36)–(39) that

(40)

By observing that both and are unitary ma-
trices, from (40), one obtains the relationships between the
norms of , , and as follows:

(41)
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Therefore, the model-reference consensus problem with
is reduced to designing a common controller

in the form of (31) such that all the systems in (36) are
simultaneously asymptotically stable, with .

Remark 7: Similar to Theorem 1, the previous theorem con-
verts the model-reference consensus problem with prescribed

performance specification into the control problem of
a set of independent systems, each of which has a dimension
that is equal to that of a single agent. Here, the communication
graph is assumed to be undirected and connected, which is more
stringent than the assumptions in Theorem 1. It is worth noting
that the key to this theorem relies heavily on the input and output
transformations in addition to the state transformation.

Next, consider the robustness of protocol(3) to external dis-
turbances. In this case, define the performance variable as

, . The closed-loop network dynamics can be
written as

(42)

where , , , and are
defined in (4). Denote by the transfer function matrix from

to of system (42).
Corollary 5: For an undirected network of agents de-

scribed by (33), protocol (3) solves the consensus problem
with if and only if the following systems are
asymptotically stable and, moreover, the norms of their
transfer function matrices are all less than :

(43)

where are the eigenvalues of .
Remark 8: Because of the singularity of Laplacian matrix ,

the state matrix of system (1) is required to be Hurwitz so
as to guarantee the existence of the norm from the distur-
bance to performance variables of the resulting network. This
gives rise to the following conflict: Matrix is desired to have
eigenvalues on the -axis in order to reach nonzero consensus
values, whereas is not allowed to have eigenvalues on the

-axis in order to validate the performance specification.
It should be noted that the transfer function of the system in
(43) corresponding to is the same as that of an isolated
agent from to . Therefore, an interesting consequence is
that the performance of the agent network(42) (if it exists)
will never be better than that of an isolated agent, implying that
protocol(3) cannot render the agent network any better distur-
bance rejection level as compared to that of an isolated agent.
On the contrary, it is possible for the model-reference consensus
protocol(31) to be so (see Theorem 4).

V. CONCLUSION

This paper has studied the consensus problem of multiagent
systems under a time-invariant communication topology, with
each agent having a general form of linear dynamics. An ob-
server-type consensus protocol based on relative output mea-
surements between neighboring agents has been proposed and
analyzed. A novel framework has been introduced, which can

describe in a unified way both the consensus of multiagent sys-
tems and the synchronization of complex dynamic networks.
The notion of consensus region has been introduced and an-
alyzed by using tools from the stability of matrix pencils, on
which a multistep consensus protocol design procedure has also
been presented. Finally, two important issues of consensus with
respect to a time-varying state and the robustness of consensus
protocols to external disturbances have been addressed. Gener-
alizing the results of this paper to the case where the commu-
nication topology is dynamically evolving or has time delays is
an important yet challenging topic for future research.
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