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Abstract This paper investigates the mean-square exponential synchroniza-
tion issues of delayed stochastic complex dynamical networks with switching
topology and impulsive control. By using the Lyapunov functional method,
impulsive control theory and linear matrix inequality (LMI) approaches, some
sufficient conditions are derived to guarantee the mean-square exponential syn-
chronization of delay complex dynamical network with switch topology, which
are independent of the network size and switch topology. Numerical simula-
tions are given to illustrate the effectiveness of the obtained results in the
end.

Keywords mean-square exponential synchronization · stochastic complex
dynamical networks · switching topology · impulsive control

1 Introduction

Complex networks are everywhere in nature and our daily life, such as the In-
ternet, Ecosystems, Social Networks, World Wide Web and Neural Networks,
and so on. A complex network can be described by a set of nodes and edges
interconnecting these nodes together. During the last two decades, complex
networks have been focused on by scientists from various fields, such as math-
ematical, engineering, social and economic science. There are many literatures
concerning the collective behaviors of complex networks [1]-[11]. Among them,
synchronization is the most interesting phenomenon [3]-[11], because the syn-
chronization is a kind of typical collective behaviors exhibited in many natural
systems.
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Recently, the synchronization of complex network with switching topology
has been studied in [12]-[17]. Because many complex systems may experi-
ence abrupt changes in their connection caused by some phenomena such as
link failures, component failures or repairs, changing subsystem interconnec-
tions, and abrupt environmental disturbance, etc. In [12], Yao et. al. studied
the synchronization of a general complex dynamical network with switching
topology and the time-varying coupling is unknown but bounded. Wang [13]
investigated the synchronization issues of complex dynamical networks with
switching topology. Yu [14] et. al. explored the synchronization of switched
linearly coupled neural networks with delay. Some sufficient conditions were
given to guarantee the global synchronization. In [15], Liu et. al. studied the
local and global exponential synchronization of complex dynamical network
with switching topology and time-varying coupling delays. In [16], some suffi-
cient conditions were given to guarantee the synchronization of leader following
issues with switching connective network and coupling delay. In [17], authors
investigates the consensus problem in mean square for uncertain multiagen-
t systems with stochastic measurement noises and symmetric or asymmetric
time-varying delays.

Uncertainties commonly exist in the real world, such as stochastic forces on
the physical systems and noisy measurements caused by environmental uncer-
tainties. Thus, a stochastic behavior should be produced instead of a determin-
istic one [18]. In fact, signals transmitted between nodes of complex networks
are unavoidably subject to stochastic perturbations from environment, which
may cause information contained in these signals to be lost [19]. Therefore,
stochastic perturbations should be considered [18][19] [20][21][22][23]. In [19]-
[21], stochastic perturbations are all one-dimensional, which means that the
signal transmitted by nodes is influenced by the same noise. In [18] and [22],
the authors considered stochastic synchronization of coupled neural networks,
in which noise perturbations are vector forms. Vector-form perturbation means
that different nodes is influenced by different noise, which is more practical in
the real world. In [23], authors investigates the mean-square exponential syn-
chronization of stochastic complex networks with Markovian switching and
time-varying delays by using the pinning control method.

In many systems, the impulsive effects are common phenomena due to in-
stantaneous perturbations at certain moments [24]-[28]. In the past several
years, impulsive control strategies have been widely used to stabilize and syn-
chronize coupled complex dynamical system, such as signal processing system,
computer networks, automatic control systems and telecommunications, etc.
In [24], Cai et. al. investigated the robust impulsive synchronization of com-
plex delayed dynamical networks. Yang and Cao [25] studied the exponential
synchronization of complex dynamical network with a coupling delay and im-
pulsive. Zhu et. al. gave some global impulsive exponential synchronization
criteria of time-delayed coupled chaotic systems [27]. In [28], some sufficien-
t conditions were given to guarantee the consensus of nonlinear multi-agent
systems with switching topology.
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Based on the above discussion, studying the synchronization problem of
the complex dynamical network with switch topology and impulsive effective
is very useful and meaningful. It should be pointed out that exponential syn-
chronization of the coupling delay complex dynamical networks with switch
topology and impulsive effects has received very little research attention.

In this paper, we investigate the problem of exponential synchronization
of coupling delay complex dynamical network with switching topology and
impulsive effects, basing on the Lyapunov theory and impulsive control theo-
ry and by assuming that there exist finite connective topology of the complex
dynamical network, and the connective topology may be switched (or jumped)
from one to another at different moments. For controlling, the synchronization
state can be any weighting average of the network states. It means that each
node of the dynamical network can contribute to synchronization of the net-
work in its weight. Finally, some sufficient conditions are given to guarantee
the synchronization of the complex dynamical network, which are independent
of the network size and switch topology.

2 Model and Preliminaries

The switching complex dynamical networks investigated on this paper consist
of N nodes, whose state is described as:



dxi(t) =
{
f(t, xi(t), xi(t− τ(t))) +

N∑
j=1

aij(r(t))Σxj(t) +

N∑
j=1

bij(r(t))Σxj(t− τc(t))
}
dt

+ σi(t, x(t), x(t− τ(t)), x(t− τc(t)), r(t))dwi(t), t ̸= tk,

∆xi(tk) = xi(t
+
k )− xi(t

−
k ) = ϵikxi(t

−
k ), t = tk,

k ∈ Z+, i = 1, 2, · · · , N
(1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of the ith n-

ode of the network, f(t, xi(t), xi(t−τ(t))) = [f1(t, xi(t), xi(t−τ(t))), f2(t, xi(t), xi(t−
τ(t))), . . . , fn(t, xi(t), xi(t − τ(t)))]T is a continuous vector-valued function,
Σ = diag(ϱ1, ϱ2, . . . , ϱn) is an inner coupling of the networks that satisfies ϱj >
0, j = 1, 2, . . . , n, and r(t) : [0,∞) → ℵ = {1, 2, · · · ,M} is a switching signal,
which is a piecewise constant function. Here, A(r(t)) = [aij(r(t))] ∈ Rn×n and
B(r(t)) = [bij(r(t))] ∈ Rn×n are the outer coupling matrices of the network at
time t at nodes r(t), t− τc(t) and r(t) respectively such that aij(r(t)) ≥ 0 for

i ̸= j, aii(r(t)) = −
∑N

j=i,j ̸=i aij(r(t)), bij(r(t)) ≥ 0 for i ̸= j and bii(r(t)) =

−
∑N

j=i,j ̸=i bij(r(t)). τ(t) is the inner time-varying delay satisfying τ ≥ τ(t) ≥
0 and τc(t) is the coupling time-varying delay satisfying τc ≥ τc(t) ≥ 0. Fi-
nally, σi(t, x(t), x(t − τ(t)), x(t − τc(t)), r(t)) = σi(t, x1(t), . . . , xn(t), x1(t −
τ(t)), . . . , xn(t−τ(t)), x1(t−τc(t)), . . . , xn(t−τc(t)), r(t)) ∈ Rn×n and wi(t) =
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(wi1(t), wi2(t), . . . , win(t))
T ∈ Rn is a bounded vector-form Weiner process,

satisfying

Ewij(t) = 0, Ew2
ij(t) = 1, Ewij(t)wij(s) = 0(s ̸= t).

ϵik is the ith node impulsive gain at t = tk. The discrete set {tk} satisfies
tk = tk−1 + T , and t0 ≥ 0, tk → +∞ as k → +∞, note x(t−k ) = limt→t−k

x(t),

and x(t+k ) = limt→t+k
x(t) = x(tk). In this paper, A(r(t)) is assumed to be

irreducible in the sense that there are no isolated nodes.
The initial conditions associated with (1) are

xi(s) = ξi(s), −τ̌ ≤ s ≤ 0, i = 1, 2, . . . , N,

where τ̌ = max{τ(t), τc(t)}, ξi ∈ Cb
F0

([−τ̌ , 0],Rn) with the norm ||ξi||2 =

sup−τ̌≤s≤0 ξi(s)
T ξi(s) and our objective is to control system (1) so that it

stays in the trajectory s(t) ∈ Rn of the system

ds(t) = f(t, s(t), s(t− τ(t)))dt (2)

Remark 1 In general, the synchronization state s(t) may be an equilibrium
point, a periodic orbit, or a chaotic attractor.

The following assumptions will be used throughout this paper for estab-
lishing the synchronization conditions.

H1 τ(t) and τc(t) are bounded and continuously differentiable functions such
that 0 < τ(t) ≤ τ , τ̇(t) < τ̄ < 1, 0 < τc(t) ≤ τc and τ̇c(t) < τ̄c < 1. Let
τ̌ = max{τ, τc} and ˇ̄τ = max{τ̄ , τ̄c}.

H2 Let σ(t, e(t), e(t−τ(t)), e(t−τc(t)), r) = σ(t, e1(t), . . . , eN (t), e1(t−τ(t)), . . . , eN (t−
τ(t)), e1(t − τc(t)), . . . , eN (t − τc(t)), r). Then there exist positive definite
constant matrices Υ r

i1, Υ
r
i2 and Υ r

i3 for i = 1, 2, . . . , N and r = 1, 2, . . . ,M
such that

Tr
[
σi(t, e(t), e(t− τ(t)), e(t− τc(t)), r)

Tσi(t, e(t), e(t− τ(t)), e(t− τc(t)), r)
]

≤
N∑
j=1

ej(t)
TΥ r

i1ej(t) +

N∑
j=1

ej(t− τ(t))TΥ r
i2ej(t− τ(t)) +

N∑
j=1

ej(t− τc(t))
TΥ r

i3ej(t− τc(t)).

(3)

H3 σi(t, s(t), . . . , s(t), s(t−τ(t)), . . . , s(t−τ(t)), s(t−τc(t)), . . . , s(t−τc(t)), r(t)) =
0

Define error state ei(t) = xi(t)− s(t),

dei(t) =
{
f(t, xi(t), xi(t− τ(t)))− f(t, s(t), s(t− τ(t)))

+
N∑
j=1

aij(r(t))Σej(t) +
N∑
j=1

bij(r(t))Σej(t− τc(t)) + ui(t)
}
dt

+ σi(t, e(t), e(t− τ(t)), e(t− τc(t)), r(t))dwi(t), t ̸= tk

∆ei(tk) = ei(t
+
k )− ei(t

−
k ) = ϵikei(t

−
k ), t = tk,

k ∈ Z+, i = 1, 2, · · · , N.
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(4)

Definition 1 The complex network (1) is said to be exponentially synchro-
nized in mean square if the trivial solution of system (4) is such that

N∑
i=1

E||ei(t, t0, ξi)||2 ≤ Ke−κt,

for some K > 0 and some κ > 0 for any initial data ξi ∈ Cb
F0

([−τ, 0];Rn).

Definition 2 A continuous function f(t, x, y) : [0,+∞] × Rn × Rn → Rn is
said to belong to the function class QUAD, denoted by f ∈ QUAD(P,∆, η, θ)
for some given matrix Σ = diag{ϱ1, ϱ2, . . . , ϱn} if there exists a positive definite
diagonal matrix P = diag{p1, p2, . . . , pn}, a diagonal matrix ∆ = diag{δ1, δ2, . . . , δn}
and constants η > 0,θ > 0 such that f(·) satisfies the condition

(x−y)TP
(
(f(t, x, z)−f(t, y, w))−∆Σ(x−y)

)
≤ −η(x−y)T (x−y)+θ(z−w)T (z−w)

(5)

for all x, y, z, w ∈ Rn.

Remark 2 The function class QUAD includes almost all the well-known chaot-
ic systems with or without delays such as the Lorenz system, the Rössler sys-
tem, the Chen system, the delayed Chua’s circuit, the logistic delayed differ-
ential system, the delayed Hopfield neural network and the delayed CNNs. We
shall simply write

p̌ = max{p1, p2, . . . , pn}, p̂ = min{p1, p2, . . . , pn}, δ̌ = max{δ1, δ2, . . . , δn}.

In order to derive the main results, it is necessary to propose the following
Lemmas.

Lemma 1 [16] The following linear matrix inequality:[
Q S
ST R

]
> 0

where Q = QT ,R = RT , is equivalent to one of the following conditions:

(i) Q > 0, R− STQ−1S > 0.
(ii) R > 0, Q− STR−1S > 0.
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3 Main Result

In this section, we investigate the exponential stability condition of the error
system (4) Some new criteria are presented for the exponential synchronization
of network (1) based on Lyapunov functional method, linear matrix inequality
approach and impulsive control theory.

Theorem 1 Let assumptions H1 and H2 be true and let f ∈ QUAD(P,∆, η, θ).
If there exist positive constants αr and βr such that[

A(r)s + δ̌IN − αrIN B(r)/2
B(r)T /2 −βrIN

]
≤ 0, for r = 1, 2, . . . ,M, (6)

and

(γ + ǎ+
b

1− τ̄
eγτ +

č

1− τ̄c
eγτc)(1 + T τ̌)/T + 2 ln |1 + ϵ|/T − γ ≤ −η (7)

where

ar =
λmin(−2ηIn + p̌

∑N
i=1 Υ

r
i1 + 2αrPΣ)

p̌
, ǎ = max

r∈S
ar,

br =
λmax(

∑N
i=1 PΥ r

i2 + 2θIN )

p̂
, b̌ = max

r∈S
br,

cr =
λmax(

∑N
i=1 PΥ r

i3 + 2βrPΣ)

p̂
, č = max

r∈S
cr,

|1 + ϵ| = max
i=1,2,··· ,N,k∈Z+

|1 + ϵik|.

Then the solutions x1(t), x1(t), . . . and xN (t) of system (4) are globally and
exponentially stable.

Proof Define the Lyapunov-Krasovskii function

V (t, e(t)) =
1

2

N∑
i=1

ei(t)
TPei(t)

and let ẽk(t) = (e1k(t), e2k(t), ..., eNk(t))
T , k = 1, 2, ..., n. For r(t) = r, we

have

LV (t, e(t), r) =
N∑
i=1

ei(t)
TP

{
f(t, xi(t), xi(t− τ(t)))− f(t, s(t), s(t− τ(t)))

+
N∑
j=1

aij(r)Σej(t) +
N∑
j=1

bij(r)Σej(t− τc(t))
}

+
1

2

N∑
i=1

Tr
{
σi(t, x(t), x(t− τ(t)), x(t− τc(t)), r)

TPσi(t, x(t), x(t− τ(t)), x(t− τc(t)), r)
}
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=
N∑
i=1

ei(t)
TP

{
f(t, xi(t), xi(t− τ(t)))− f(t, s(t), s(t− τ(t)))−∆Σei(t)

}
+

N∑
i=1

ei(t)
TP∆Σei(t) +

N∑
i=1

N∑
j=1

aij(r)ei(t)
TPΣej(t) +

N∑
i=1

N∑
j=1

bij(r)ei(t)
TPΣej(t− τc(t))

+
1

2

N∑
i=1

Tr
{
σi(t, x(t), x(t− τ(t)), x(t− τc(t)), r)

TPσi(t, x(t), x(t− τ(t)), x(t− τc(t)), r)
}

≤
{
−η

N∑
i=1

ei(t)
T ei(t) + θ

N∑
i=1

ei(t− τ(t))T ei(t− τ(t)) +
n∑

k=1

pkϱkδkẽ
k(t)T ẽk(t)

+
n∑

k=1

pkϱkẽ
k(t)TA(r)ẽk(t) +

n∑
k=1

pkϱkẽ
k(t)TB(r)ẽk(t− τc(t))

+
1

2
p̌

N∑
j=1

[ N∑
i=1

ei(t)
TΥ r

j1ei(t) +
N∑
i=1

ei(t− τ(t))TΥ r
j2ei(t− τ(t)) +

N∑
i=1

ei(t− τc(t))
TΥ r

j3ei(t− τc(t))
]}

=
{
−η

N∑
i=1

ei(t)
T ei(t) + θ

N∑
i=1

ei(t− τ(t))T ei(t− τ(t)) +
1

2
p̌

N∑
i=1

N∑
j=1

ei(t− τc(t))
TΥ r

j3ei(t− τc(t))
}

+
{ n∑

k=1

pkϱkẽ
k(t)TA(r)ẽk(t) +

n∑
k=1

pkϱkẽ
k(t)TB(r)ẽk(t− τc(t))

+
1

2
p̌
[ N∑
i=1

N∑
j=1

ei(t)
TΥ r

j1ei(t) +
N∑
i=1

N∑
j=1

ei(t− τ(t))TΥ r
j2ei(t− τ(t))

]
+

n∑
k=1

pkϱkδkẽ
k(t)T ẽk(t)

}

=
{ N∑

i=1

ei(t)
T (−ηIN +

1

2
p̌

N∑
j=1

Υ r
j1 + αrPΣ)ei(t) +

N∑
i=1

ei(t− τ(t))T (θ +
1

2
p̌

N∑
j=1

Υ r
j2)ei(t− τ(t))

+
N∑
i=1

ei(t− τc(t))
T (

1

2
p̌

N∑
j=1

Υ r
j3 + βrPΣ)ei(t− τc(t))

}
+
{ n∑

k=1

pkϱkẽ
k(t)T [A(r) + (δ̌ − αr)IN ]ẽk(t)

+
n∑

k=1

pkϱkẽ
k(t)TB(r)ẽk(t− τc(t))

−
n∑

k=1

pkϱkẽ
k(t− τc(t))

Tβr ẽ
k(t− τc(t))

}
≤
{ N∑

i=1

ei(t)
T (−ηIN +

1

2
p̌

N∑
j=1

Υ r
j1 + αrPΣ)ei(t)
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+
N∑
i=1

ei(t− τ(t))T (θIN +
1

2
p̌

N∑
j=1

Υ r
j2)ei(t− τ(t))

+
N∑
i=1

ei(t− τc(t))
T (

1

2
p̌

N∑
j=1

Υ r
j3 + βrPΣ)ei(t− τc(t))

}
.

Then we have

LV (t, e(t)) ≤ arV (t) + brV (t− τ(t)) + crV (t− τc(t))

So we have

LV (t) ≤ǎV (t) + b̌V (t− τ(t)) + čV (t− τc(t)).

(8)

Define

W (t) = eγtV (t)

and use equation (8) to compute the operator

LW (t) =eγt[γV (t) + LV (t)]

≤eγt[γV (t) + ǎV (t) + b̌V (t− τ(t)) + čV (t− τc(t))],

which after applying the generalized Itô’s formula, gives

eγtEV (t) = eγt0EV (t0) + E
∫ t

t0

LW (s)ds (9)

for any tk > t > t0 > tk−1 ≥ 0. Hence we have

eγtEV (t) ≤eγt0EV (t0) +

∫ t

t0

eγs[γV (s) + ǎV (s) + b̌V (s− τ(s)) + čV (s− τc(s))]ds

≤eγt0EV (t0) + (γ + ǎ)

∫ t

t0

eγsEV (s)ds+ b̌eγτ
∫ t

t0

eγ(s−τ(s))EV (s− τ(s))ds

+ čeγτc
∫ t

t0

eγ(s−τc(s))EV (s− τc(s))ds. (10)

By changing variable s− τ(s) = u, we have∫ t

t0

eγ(s−τ(s))EV (s− τ(s))ds =

∫ t−τ(t)

t0−τ(t0)

eγuEV (u)
du

1− τ̇(t)

≤
∫ t

t0−τ

eγuEV (u)
du

1− τ̄

≤ 1

1− τ̄

∫ t

t0−τ

eγuEV (u)du (11)
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Similarly, we have∫ t

t0

eγ(s−τc(s))EV (s− τ(s))ds ≤ 1

1− τ̄c

∫ t

t0−τc

eγuEV (u)du (12)

Substituting equation (11) and (12) into equation (10), we get

eγtEV (t) ≤ eγt0EV (t0) + (γ + ǎ+
b̌eγτ

1− τ̄
+

čeγτc

1− τ̄c
)

∫ t

t0−τ̌

eγuEV (u)du.

By using Gronwall inequality, we get

eγtEV (t) ≤eγt0EV (t0)e
(γ+ǎ+ b̌

1−τ̄ eγτ+ č
1−τ̄c

eγτc )(t−t0+τ̌).

On the other hand, from the construction of V (t), we have

V (tk) ≤ (1 + ϵk)
2V (t−k ) (13)

where |1 + ϵk| = maxi=1,2,··· ,N |1 + ϵik|.
According to Eqs.(5)-(6), for any t ∈ [tk−1, tk), we get

eγtEV (t) ≤eγtk−1EV (tk−1)e
(γ+ǎ+ b

1−τ̄ eγτ+ č
1−τ̄c

eγτc )(t−tk−1+τ̌)

≤eγtk−1EV (t−k−1)e
(γ+ǎ+ b̌

1−τ̄ eγτ+ č
1−τ̄c

eγτc )(t−tk−1+τ̌)+2 ln |1+ϵk−1|

≤ · · · ≤ eγt0EV (t0)e
(γ+ǎ+ b̌

1−τ̄ eγτ+ č
1−τ̄c

eγτc )(t−t0+kτ̌)+
∑k−1

v=1 2 ln |1+ϵv|

Let |1 + ϵ| = maxv∈Z+ |1 + ϵv|. Because of k = ⌊ t−t0
T ⌋, we have

EV (t) ≤EV (t0)e
(γ+ǎ+ b̌

1−τ̄ eγτ+ č
1−τ̄c

eγτc )(t−t0+kτ̌)+2(k−1) ln |1+ϵv|−(t−t0)γ

≤EV (t0)e
(γ+ǎ+ b̌

1−τ̄ eγτ+ č
1−τ̄c

eγτc )(1+T )τ̌/T (t−t0)+(2(t−t0)/T−4) ln |1+ϵv|−(t−t0)γ

Using Condition 15 of Theorem 1, we get EV (t) ≤ EV (t0)e
−η(t−t0). Hence,

E||ei(t)|| ≤ (V (t0)
p̌ )

1
2 e−

η
2 (t−t0). The proof of Theorem 1 is completed.

Remark 3 Theorem 1 provides a sufficient condition for exponential synchro-
nization of coupling delay switched stochastic dynamical networks with impul-
sive effects. If the time T is sufficiently small and the impulsive gains ϵik, then
exponential synchronization of the network (1) could be achieved.

If the switching signal σ(t) ≡ 1, then the network (1) has only one cou-
pling matrix G. Suppose G is irreducible and ξT = (ξ1, ξ2, · · · , ξN ) is the left
eigenvector of coupling matrix G corresponding to eigenvalue 0. Let impulsive
gains ϵik = bk. By the proof of Theorem 1, we can derive the exponential
synchronization criteria of the network (1) with only one topology, which is
given as follows.
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Corollary 1 Let assumptions H1 and H2 be true and let f ∈ QUAD(P,∆, η, θ).
If there exist positive constants α and β such that[

As + δ̌IN − αIN B/2
BT /2 −βIN

]
≤ 0, (14)

and

(γ + a+
b

1− τ̄
eγτ +

c

1− τ̄c
eγτc)(1 + T τ̌)/T + 2 ln |1 + ϵ|/T − γ ≤ −η

(15)

where

a =
λmin(−2ηIn + p̌

∑N
i=1 Υi1 + 2αPΣ)

p̌
,

b =
λmax(

∑N
i=1 PΥi2 + 2θIN )

p̂
,

c =
λmax(

∑N
i=1 PΥi3 + 2βPΣ)

p̂
,

|1 + ϵ| = max
i=1,2,··· ,N,k∈Z+

|1 + ϵik|.

Then the solutions x1(t), x1(t), . . . and xN (t) of system (4) are globally and
exponentially stable.

Let impulsive gains ϵik = b, and choose the synchronization state s(t) =
1
N

∑N
i=1 xi(t). By the proof of Theorem 2, we can derive the exponential syn-

chronization criteria of the network (1) with the fixed impulsive gain, which
is given as follows.

4 Numerical Simulation

In this section, we give two numerical simulations to illustrate the feasibility
and effectiveness of the theoretical results presented in the previous sections.

Consider a three-order Chua’s circuit described as follows:

ẋ(t) = f(x(t))

where x(t) = (x1(t), x2(t), x3(t))
T and function f(x(t)) was chosen below:

f(x(t)) =

m[x2 − h(x1)
x1 − x2 + x3

−nx2


where h(x1) =

2
7x1 − 3

14 [|x1 + 1| − |x1 − 1|], m = 9 and n = 14 2
7 .
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Consider a network model consists of 5nodes and 2 connective topology.
Each node in the network is a three-order Chua’s circuit described by

ẋi(t) = f(xi(t)) +
5∑

j=1

g
σ(t)
ij Γxj(t− τ) + σi(t, x(t), x(t− τ(t)), x(t− τc(t)), r(t))dwi(t), t ̸= tk

∆xi(tk) = xi(tk)− xi(t
−
k ) = ϵikxi(t

−
k ), t = tk, i = 1, 2, · · · , 5,

(16)

where τ = 1 and Γ = I3 and σi(t, x(t), x(t − τ(t)), x(t − τc(t))) = 0.1 ×
diag{xi1(t)− xi+1,1(t), xi2(t)− xi+1,2(t)}.

The coupling matrices are as follows:

G1 =


−3 2 1 0 0
0 −2 2 0 0
1 0 −3 2 0
0 0 0 −2 2
2 0 0 0 −3

, G2 =


−2 1 1 0 0
0 −2 1 1 0
0 0 −2 1 1
1 0 0 −2 1
1 1 0 0 −2

.

0 1 2 3 4 5
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

e i1
,i=

1,
2,

...
,5

Fig. 1 Time evolution of synchronization errors ei1(t), (i = 1, 2, . . . , 5) of the asymmetric
coupled network (10) with random initial values.

If we choose P = I3 and ∆ = 10I3, then function f(x) satisfies the
condition of function class QUAD(∆,P ), where α = 0.6218. Let β = 23.7,
Q = 4.1I3, ϵik = −0.8, T = 0.1, η = −3.488, a = 4.1. a1 = 80.1500,
a2 = 62.3271, b = 6.5300, c1 = 0.0307, c2 = 80.0300, α1 = 40.0000, β1 =
0.0002, α2 = 15.6568, β2 = 20.0000 and the synchronization state is s(t) =
0.2x1+0.3x2+0.1x3+0.3x4+0.1x5, then all the conditions in Theorem 1 are
satisfied (By using the Matlab LMI toolbox). The switch time is t = 0.2s. The
simulation results are given in Fig.1-Fig.3. It can be seen clearly from Fig.2,
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Fig.3 and Fig.4 that all states of the asymmetric coupled network (10) tend
to the synchronization state s(t).

0 1 2 3 4 5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

e i2
,i=

1,
2,

...
,5

Fig. 2 Time evolution of synchronization errors ei2(t), (i = 1, 2, . . . , 5) of the asymmetric
coupled network (10) with random initial values.
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0

0.1

0.2

0.3

0.4
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t

e i3
,i=

1,
2,

...
,5

Fig. 3 Time evolution of synchronization errors ei3(t), (i = 1, 2, . . . , 5) of the asymmetric
coupled network (10) with random initial values.
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5 Conclusion

In this paper, the exponential synchronization of the coupling delay stochastic
complex networks with switch topology and impulsive effects has been investi-
gated. Based on Lyapunov stability theory, LMI and impulsive control theory,
some simple yet generic criteria for exponential synchronization have been de-
rived. It has shown that criteria can provide an effective control scheme to
synchronize for a given coupled delay, the network size and switch topology.
Furthermore,the effectiveness of the presented method have been verified by
numerical simulations.
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