路漫漫其修远兮分享 http://blog.sciencenet.cn/u/zhpd55 追求科学,勇于探索,苦海无涯,愿作小舟。

博文

栗叶提取物可降伏致命性葡萄球菌 精选

已有 5839 次阅读 2015-8-26 08:49 |个人分类:药物动态|系统分类:人物纪事|关键词:学者| 耐药性, 葡萄球菌, Quave), 栗树叶提取物

栗叶提取物可降伏致命性葡萄球菌

诸平

The European chestnut (Castanea sativa), also known as the sweet chestnut, is a species of flowering plant in the family Fagaceae, native to Europe and Asia Minor, and widely cultivated throughout the temperate world. The tree attains a height of 100 feet (30 m). It has rugged, grooved bark and glossy, serrate, oblong-lanceolate leaves up to 11 inches (28 cm) in length. Image credit:Willow, Germany / CC BY-SA 3.0.

The European chestnut (Castanea sativa), also known as the sweet chestnut, is a species of flowering plant in the family Fagaceae, native to Europe and Asia Minor, and widely cultivated throughout the temperate world. The tree attains a height of 100 feet (30 m). It has rugged, grooved bark and glossy, serrate, oblong-lanceolate leaves up to 11 inches (28 cm) in length. Image credit: Willow, Germany / CC BY-SA 3.0.

   眼下正是栗子的收获季节,对于栗子的营养价值不用多说,但是您是否知道栗树叶子中含有能够降伏那些是某些抗生素也难以降伏的葡萄球菌staph bacteria, staphylococcus的活性物质。


Schematic of the Staphylococcus aureus accessory gene regulator system. Dr Cassandra Quave of Emory University and co-authors report the quorum sensing inhibitory activity of the chestnut leaf extract against all Staphylococcus aureus accessory gene regulator (agr) alleles. Image credit:Quave CL et al.

Schematic of the Staphylococcus aureus accessory gene regulator system. Dr Cassandra Quave of Emory University and co-authors report the quorum sensing inhibitory activity of the chestnut leaf extract against all Staphylococcus aureus accessory gene regulator (agr) alleles. Image credit: Quave CL et al.


Fig 2. Isolation scheme. (A) The bioassay-guided fractionation scheme is illustrated, demonstrating the path from raw plant material to isolated, active natural products. (B) The corresponding HPLC chromatogram for the most active fractions illustrates how fractionation functions to increase the relative levels of active agents.


Fig 3. European Chestnut leaf extracts inhibit all four S. aureus agr alleles a non-biocide manner.

S. aureus agr reporter strains were treated with extracts 224, 224C, and 224C-F2 at a dose range of 0.05–100 μg mL-1. Bioactivity guided sequential fractionation resulted in increased quenching of all 4 agr alleles in a manner independent of growth inhibition. Optical density of the culture is represented by solid black symbols; fluorescence in the agrreporters is indicated by the open symbols. The IC50 and IC90 for quorum quenching impact of each extract are reported in Table 3. (A) agr I, AH1677; (B) agr II, AH430; (C)agr III, AH1747; (D) agr IV, AH1872.


Fig 4. 224C-F2 blocks MRSA exotoxin production.

(A) 224C-F2 demonstrates a dose-dependent effect in inhibition of de-formylated and formylated delta toxin, as illustrated in this HPLC chromatogram. (B) Quantification of delta-toxin confirmed the dose-dependent inhibitory activity of extracts, and the increased activity of the refined fraction 224C-F2 over 224 and 224C. (C) Extracts quench the hemolytic activity of both the S. aureus wild type and Δhla mutant, demonstrating that in addition to preventing production of α-hemolysin (responsible for the major share of hemolytic activity), that extracts also inhibit PSM production, responsible for the observable hemolytic activity in hla mutant strains. All treated groups are significant in comparison to the vehicle control (p<0.001). (D) USA300 (Δspa) was exposed to increasing doses of 224, 224C, 224C-F2, and vehicle control for 8 hrs. Western blot for α-hemolysin on supernatants demonstrated a dose-dependent decline in protein levels. Significant differences between treatment and vehicle are represented as: *: p<0.05; ‡: p<0.01; †: p<0.001.


Fig 6. 224C-F2 attenuates virulence without any detectable resistance after 15 days of drug passaging.

Cultures of USA500 isolate NRS385 (agr group I) were passaged for 15 consecutive days in the presence of 16 μg mL-1 of 224C-F2. (A) The sum total peak area of de-formylated and formylated delta toxin was quantified for the mock vehicle control (DMSO) and treated group. A significant difference (p<0.05) was evident for all treatment days. (B) 224C-F2 inhibited delta-toxin production over the length of the passaging experiment in the absence of growth inhibition. Significant differences between treatment and vehicle are represented as: *: p<0.05; ‡: p<0.01; †: p<0.001.



Fig 10. Putative structures of ursene and oleanene derivatives found in the most active region of 224C-F2 (retention time of 21–49 min) were determined following MS analysis and database searches.

Compounds are listed by Peak number, corresponding to Table 5. Peak 31 was determined to be C39H59O8 or C38H55O9 with a relative abundance of 0.34%. Putative structural matches include: (31a) escigenin tetraacetate (6CI); (31b) tetraacetate (7CI, 8CI) 16α, 21α- epoxy-olean- 9(11)—ene- 3β, 22β, 24, 28- tetrol; (31c) tetraacetate aescigenin; (31d) triacetate (8CI) cyclic 16, 22- acetal-olean- 12- ene- 3β, 16α, 21β, 22α, 28- pentol; (31e) triacetate (8CI) cyclic 22, 28- acetal-olean- 12- ene- 3β, 16α, 21β, 22α, 28- pentol. Peak 32 was determined to be C35H59O6 with a relative abundance of 0.30%. Putative structural matches include: (32a) stigmastane (Fig 11) and (32b) (3β, 4β, 16α, 21β, 22α) -16, 21, 22, 23, 28- pentamethoxy (9CI) olean- 12- en- 3- ol. Peak 42 was determined to be C31H49O6 with a relative abundance of 1.43%. Putative structural matches included (42) amirinic acid. Peak 52 was determined to be C32H51O7 with a relative abundance of 0.48%. Putative structural matches include: (52a) 21-acetate protoescigenin, (52b) 16-acetate protoescigenin, (52c) 22-acetate protoescigenin and (52d) 28-acetate protoescigenin. Peak 55 was determined to be C30H48O5, with a relative abundance of 4.11%. Putative structural matches include: (55a) 16,21-epoxy-(3β,4β,16α,21α,22β)-olean-12-ene-3,22,24,28-tetrol(9CI); (55b) asiatic acid; (55c) arjunolic acid; (55d) isoescigenin. Peak 60 was determined to be C30H48O6, with a relative abundance of 6.80%. Putative structural matches include: (60a) camelliagenin E; (60b) brahmic acid; (60c) sericic acid; (60d) belleric acid; and (60e) 2,3,23,24-tetrahydroxy-(2α,3β)-urs-12-en-28-oicacid. Peak 64 was determined to be C30H45O5, with a relative abundance of 2.91%. The putative structural match is (64) ouillaic acid.


葡萄球菌(staph bacteria, staphylococcus)是一群革兰氏阳性球菌,因常堆聚成葡萄串状而得名。多数为非致病菌,少数可导致疾病。葡萄球菌是最常见的化脓性球菌,是医院交叉感染的重要来源,菌体直径约0.8 μm,小球形,但在液体培养基的幼期培养中,常常分散,细菌细胞单独存在。葡萄球菌病主要是由金黄色葡萄球菌引起的家禽的一种急性或慢性传染病,在临床上常表现多种类型,如关节炎、腱鞘炎、脚垫肿、脐炎和葡萄球菌性败血症等,给养禽业造成较大的损失。病原典型的葡萄球菌为圆形或卵圆形,常葡萄状排列,革兰氏染色阳性,无鞭毛,无荚膜,不产生芽胞,在普通培养基上生长良好。葡萄球菌在自然界中分布很广,健康禽类的皮肤、羽毛、眼睑、粘膜、肠道等都有葡萄球菌存在,同时该菌还是家禽孵化、饲养、加工环境中的常在微生物。葡萄球菌可通过多种途径侵入机体,导致皮肤或器官的多种感染,甚至败血症

   据物理学家组织网(phys.org2015821转载来自美国埃默里大学(Emory University)的消息,该大学的研究人员从欧洲栗树叶子中提取出可以解除致命葡萄球菌的活性成分。图1就是埃默里大学(Emory University)的民族植物学家卡桑德拉·库维夫(Cassandra Quave),受到传统民间医学的启发,在意大利收集栗叶。美国埃默里大学和爱荷华大学(University of Iowa)研究人员合作研究发现,欧洲栗树的叶子含有可以解除危险的葡萄球菌的活性成分,但是又不会增加其耐药性。此研究成果2015821在《公共科学图书馆·综合》(PLoS ONE)网站发表——Cassandra L. Quave, James T. Lyles, Jeffery S. Kavanaugh, Kate Nelson, Corey P. Parlet, Heidi A. Crosby, Kristopher P. Heilmann, Alexander R. Horswill. Castanea sativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus aureus Virulence and Pathogenesis without Detectable Resistance. PLoS ONEpublished 21 Aug 2015, DOI:10.1371/journal.pone.0136486.

 

Fig. 1 The research of Emory Universityethnobotanist Cassandra Quave, shown collecting chestnut leaves in Italy, isinspired by traditional folk remedies. Credit: Marco Caputo

《公共科学图书馆·综合》(PLoS ONE)网站2015821,发表了的文章报道了研究者对栗叶提取物的研究发现,其中富含ursene和齐墩果烯(oleanene)衍生物,它们可封锁金黄色葡萄球菌毒性(Staphlococcus aureus virulence)和发病机理,而且无可检测的抗药性。

埃默里大学的民族植物学家,也是此项目的领导者卡桑德拉·库维夫,对于栗叶的研究兴趣来源于栗叶在民间传统医学中的应用。她说:我们已经从这种植物中发现了一种系列化合物族,,而且这些化合物具有一种有趣的药用机理:并不是杀死金黄色葡萄球菌,而是这种植物提取物能够使葡萄球菌解除武装,改邪归正,本质上是关闭了MRSA产生毒素,导致组织损伤的能力。换言之,这种植物提取物已经使金黄色葡萄球菌无力造成危害。

这一发现,无论是对治疗还是预防耐甲氧西林金黄色葡萄球菌(MRSA)感染,以及应对耐药病原体日益严重的问题,都是一种有潜力的新方法。根据美国疾病控制和预防中心提供的数据,仅仅在美国,耐抗生素细菌每年会造成至少200万人患病,2.3万人死亡。耐甲氧西林金黄色葡萄球菌感染会导致由轻微的皮肤过敏skin irritations)发展到死亡。由于超级细菌(super bug进化的菌株,对于医院患者之间构成威胁,而且累及免疫系统,甚至连年轻、健康的运动员以及身体亲密接触的其他人也难免遭殃。

卡桑德拉·库维夫说:我们已经在实验室证明了我们的栗叶提取物,降伏甚至是超剧毒耐甲氧西林金黄色葡萄球菌(hyper-virulent MRSA)菌株,尽管它们能够导致健康运动员严重感染的菌株。与此同时,此提取物对于人体皮肤上的正常、健康菌不会造成打扰,使一切恢复平衡。卡桑德拉·库维夫她研究人和植物的相互作用,这是属于人类植物学的范畴。卡桑德拉·库维夫目前是埃默里大学人类健康研究中心和医学院皮肤病学系的一名教员(FIG. 2)。她对人类植物学感兴趣是从她在埃默里大学读本科时就开始的。

Fig. 2 Emory University's Cassandra Quave researches the interactions of people and plants -- a specialtyknown as ethnobotany. Credit: Marco Caputo

多年来, 卡桑德拉·库维夫和她的同事们一直在研究意大利南部和地中海的其他地区农村居民的传统疗法。她说:我强烈地感到人们之所以摒弃用植物治病的传统医学,是因为植物无法灭杀病原体,但是这并非是一个正确的选择。如果这些植物在对付疾病方面与其它药物一样有效,结果还会是这样吗?”数以百计的实地访谈指引她去欧洲寻找栗树(齿栗Castanea sativa)叶。当地居民和治疗师一再告诉我们,他们是如何用栗子树的叶子来制作茶饮和洗皮肤治疗皮肤感染和炎症的,”卡桑德拉·库维夫说。

就目前的此项研究而言, 卡桑德拉·库维夫与爱荷华大学(University of Iowa)的微生物学家亚历山大霍斯威尔(Alexander Horswill)合作,而亚历山大霍斯威尔的实验室专注于创建发现药物的工具,如在黑暗中可以使金黄色葡萄球菌菌株发光。

研究人员将栗叶浸泡在溶剂中,提取其化学成分。卡桑德拉·库维夫解释道:要将栗树叶提取物中复杂的化学物质混合物分离成小批量含有化学成分较少的成分,对其进行测试,选择出最具活性的成分进行测试,这是一个系统的过程,需要在工作台上花费大量的时间。幸亏在埃默里大学读本科期间,就已经做了大量的实验工作,积累了化学分离技术的宝贵经验。

此项研究提取分离产生了94种化学物质(Table 5. Mass spectrometry (m/z) analysis of 224C-F2. The corresponding chromatogram is reported in Fig 9; putative structures in Figs 10 and 11.,其中ursene和齐墩果烯(oleanene)剂化合物的活性最强。测试结果表明,该提取物具有抑制葡萄球菌staph bacteria)的群体感应(quorum sensing。所谓群体感应(uorum sensing)是指细菌能自发产生、释放一些特定的信号分子,并能感知其浓度变化,调节微生物的群体行为。细菌群体感应参与包括人类、动植物病原菌致病力在内的多种生物学功能的调节。

有研究已证明细菌之间存在信息交流,许多细菌都能合成并释放一种被称为自诱导物质(autoinducer, AI)信号分子,胞外的AI浓度能随细菌密度的增加而增加,达到一个临界浓度时,AI能启动菌体中相关基因的表达,调控细菌的生物行为。如产生毒素、形成生物膜、产生抗生素、生成孢子、产生荧光等,以适应环境的变化,将这一现象被称为群体感应调节(quorumsensingQS)。这一感应现象只有在细菌密度达到一定阈值后才会发生,所以也有人将这一现象称为细胞密度依赖的基因表达控制(celldensity dependent control of gene expression)。耐甲氧西林金黄色葡萄球菌(MRSA)使用这种群体感应信号系统制造毒素,增加其毒性。

卡桑德拉·库维夫说:我们能够在实验室跟踪其行径,展示我们的植物提取物封锁群体感应和完全关闭毒素生产。许多制药公司正致力于开发将单一毒素作为目标的单克隆抗体。这是更令人兴奋的,因为我们已经表明,用这种栗树叶提取物,我们可以关闭整个负责产生各种不同的毒素所有过程。

栗树叶提取物一次剂量是50 μg,在实验室用于清理老鼠皮肤损伤处的耐甲氧西林金黄色葡萄球菌(MRSA,制止组织损伤和血红细胞损伤。此提取物的确不会丧失活性,即产生耐药性,甚至连续使用两周后也未见产生耐药性。在实验室培养皿中对人类皮肤细胞的测试结果表明,此植物提取物不会损害皮肤细胞,或正常的皮肤微生态。

埃默里大学的技术转让办公室已经对这种植物提取物独特性的发现,提出了专利申请。研究人员正在对来自提取物的单个组分进行进一步测试研究,以便确定究竟是单个组分的效果最佳,还是组合成分的效果最佳。

卡桑德拉·库维夫说:现在,我们是用一种混合物进行研究的。但是,这并非我们的最终目标。我们的最终目标是进一步将其提纯分离出简单化合物,使其有资格获得美国食品药品管理局(FDA)认定,可以作为一种治疗试剂。

潜在的用途包括对足球垫或其他运动器材的预防性喷雾;医疗器械和产品的预防涂饰,医疗产品如卫生棉球等。因为卫生棉球往往会为耐甲氧西林金黄色葡萄球菌的生长提供良好的环境;除此之外,用于治疗耐甲氧西林金黄色葡萄球菌感染,也许可以与抗生素联合使用。

 卡桑德拉·库维夫说:乡间老妇的传统疗法很容易被人们忽视,只是因为它们不攻击和灭杀病原体。但有很多方法有助于治疗感染,在耐药细菌日趋严重的时代,我们需要关注民间古老的传统医学。更多信息请注意浏览原文。



https://m.sciencenet.cn/blog-212210-916050.html

上一篇:pH敏化聚合物凝胶:长效药物输送的新材料
下一篇:鲁米诺:有望成为抗击疟疾的最新工具

5 梁建华 黄永义 张骥 aliala nextvisionary

该博文允许注册用户评论 请点击登录 评论 (4 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-7 08:35

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部