
统计物理与复杂系统研究前沿进展专题

表 1 与杰斐逊问题有关检测报告

注: 这里单倍群用 0, 1 数字编码, 完全相同; 只测有 11-STR 数据, 仅数字 16 不同。

了她家大儿子 Tom 的 5 个后代血样和最小儿子 Eston 的 1 个后代血样。另外又找到两个杰斐逊外甥祖父 John Carr 的 3 名后代取了血样,总共 14 个样本。

经过一批科学家的通力合作,测定终于取得成功。 杰斐逊叔叔的 5 名后代和 Eston 后代的血样,其 Y 染 色体遗传标记几乎完全相同,见表 1 测试报告。

结论:海明斯最小儿子 Eston 应是杰斐逊家族的后裔。不过,只有 Eston 后代一个样本,还可能存在其他变数。

理查三世的遗骸鉴定——母系血缘分析

2012 年 8 月,在英格兰中部莱斯特市中心的一个破败停车库地下,英国考古人员发现了一具人类遗骸。考古测定的数据与历史记载金雀花(Plantagenet)王朝(1154~1485)中的理查三世(Richard III)极为相似。为了科学地鉴定这具遗骸是谁?英国莱斯特大学研究人员从遗骸中提取了 DNA,并挑选了 7 名在世血亲族人进行血缘比对分析。2014 年 12 月 2 日,这项研究的结果发表在权威刊物《自然通讯》(Nature Communications)上。

对在世父系后裔,由于理查三世没有子嗣,只得寻找与其拥有相同 Y 染色体的父系祖先亨利•萨默赛特(Henry Somerset)第五代博福特公爵(5th Duke of Beaufort)的后人。研究人员从亨利•萨默赛特在世后裔中选取了 5 个样本,分别命名为 SOM 1 至 SOM 5。

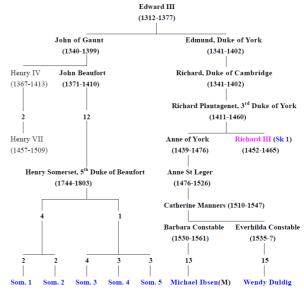


图 7 英国王室部分家谱(其中数字是省略的世代数目)

对在世母系后裔,理查三世有一个同胞姐姐,名叫安妮约克(Anne of York),幸运的是安妮母系后裔家谱记录完整。为了比较遗骸与其母系后裔的线粒体DNA,他们找到安妮的在世第17代后裔男子迈克尔•易卜生(Michael Ibsen)和第19代后裔女子温蒂•杜狄(Wendy Duldig),见图7。

Y染色体测试共出现了三种单倍群: S-1至 S-4是 R1b-U152, S-5是 I-M170, Sk1(遗骸)是 G2-P287,说明遗骸与博福特公爵后人不共祖。这里检测的是 23-STR,比通常的 17-STR 多检测了 6个位点。博福特公爵 4个后人 S-1至 S-4的 17-STR 完全相同,考虑 23-STR 也只有一个数字不同。因此这 4人共祖没有问题,祖先单倍群为 R1b-U152,见表 2。博福特公爵后人 S-5发生了血缘扰动,这与鉴定遗骸无关可以不考虑。另一个单倍群不同有两种可能:遗骸不是理查三世;是理查三世但发生了血缘扰动。因此需要首先确定遗骸是不是理查三世,这可以通过比较其母系后裔的线粒体 DNA 来确定。检测结果显示,只有一个碱基在温蒂身上发生了改变。根据统计分析,有

表 2 父系后裔 S-1 至 S-5 与遗骸 (Sk1) Y 染色体 23-STR 的测定结果

S-1	14	11	14	13	29	23	11	13	13	14	12	12	20	15	18	23	12	22	12	13	19	19	10
S-2	14	11	14	13	29	23	11	13	13	14	12	12	20	15	18	23	12	22	12	13	19	18	10
S-3	14	11	14	13	29	23	11	13	13	14	12	12	20	15	18	23	12	22	12	13	18	19	10
S-4	14	11	14	13	29	23	11	13	13	14	12	12	20	15	18	23	12	22	12	13	18	19	10
S-5	15	12	15	14	30	23	10	11	13	14	10	11	18	14	20	21	10	26	13	12	17	17	17
Sk1	15	13	14	13	30	22	10	11	14	16	10	12	22	15	18	21	11	21	10	12	16	15	12?

统计物理与复杂系统研究前沿进展专题

99.99%的把握可以确定遗骸身份为理查三世国王。

现在的问题是,另一个血缘扰动发生在理查三世 与博福特公爵中的哪一代上不清楚。这一研究引发了 人们对英国君主血统是否纯正的怀疑声,我们将拭目 以待。

四、血缘距离网络研究

上述美英两国的研究,家谱世系都不超过10代(约300年),因此17-STR理论上不会突变,有突变也仅一个,直接比对即可。然而,中国家族历史源远流长,往往千年以上。复旦大学研究的魏武帝曹操距今近两千年,我们2012年开始研究的南宋四明史氏距今千年。

忠定王史浩的先祖辩——借助血缘距离

四明史家由郡里当差史简的遗腹子史诏开始发扬 光大,在南宋王朝出过七十二进士(据考证灌水不少), 有着"一门三宰相,父子两封王"之美誉(见家谱中

图 8 四明史氏部分家谱

红色名字)。先贤们的墓葬群留下了"北有兵马俑, 南有石刻群"的宝贵文化遗产,具有很高的艺术价值。

这个望族的始祖不能如此普通,于是四明史氏后代在续修族谱时就以五代后唐集贤院待制直学士史惟则为四明史氏始祖,并且认定惟则是溧阳侯30世。这引来后嗣不断的世系辩论而被称之为"千古谜团"。《古藤史氏宗谱》记载:"惟则于后晋天福四年(公元939年)辞官归隐,与怀则同时从终南山迁

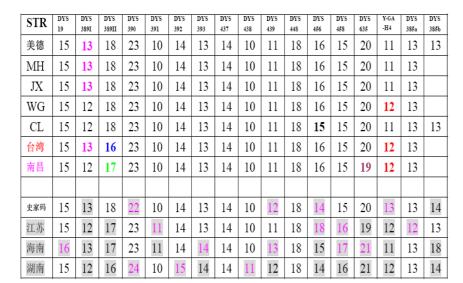
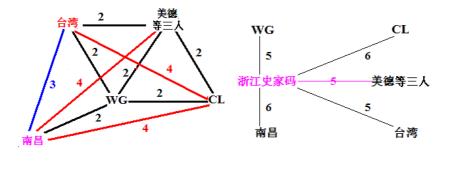
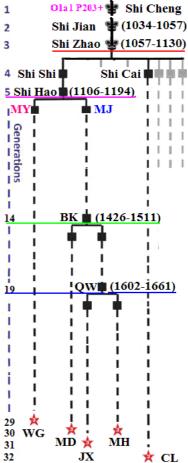




表 3

注: 这里 DYS389II 的数值减去了 DYS389I 的数值。11 个样本之间的血缘距离,即他们 STR 不同的数目,见两个网络图。谱系图中右边数字为代数,红色五角星为 5 名四明史氏的后代,他们分别是遗腹子史诏的第一支史师仲和第二支史才的后人。

浙江,后惟则又迁至鄞县。惟则生史成,史成生史简 (1034~1057);惟则的另一个孙子史翰成为史家 码(墓)的始祖"。史成 980 年曾续修宗谱,他多大年纪才生史简?而续修族谱时则添枝加叶(见家谱中蓝色名字)让几乎江南史氏都出四明。

南宋史家作为千年望族,STR 既会有突变,又有完整家谱,因此这里采用Y染色体检测比对,计算血缘距离网络,再结合家族世系进行分析。但由于随机性,STR可能会发生增减,所以STR如果超过4个不同,1000年内就不太可能共祖。

四明史氏 5 名后代(为了保护隐私,除美德外, 其余用拼音缩写)和 6 名疑似样本(采用出生地名)的单倍群都是Olal-P203,家谱和血缘比对分析如表 3。

结论:确定四明史氏Y染色体单倍群为O1a1-P203,史家码与四明史氏不可能在南宋期间共祖,排除了江西、湖南、海南等地史氏来自四明的传说。从血缘上看,四明史氏也不可能是溧阳史氏(O3)的后代。史简的父亲史成和惟则的儿子史成,可能此成非彼成。

为了验证分析结果的可信性,又对 4 名四明史氏后代和 4 名疑似样本进行了全测序,即测试 Y 染色体中不重复 1 千万碱基对的 SNP 突变。全测序结果显示: 4 名四明史氏后代共祖时间不超过 800 年,而 4 名单倍群相同的疑似样本共祖时间均都超过 1500 年以上。

南宋宰相史嵩之夫妇的墓地2012年先后被发现。 3月宁波文保所对史嵩之墓进行了考古发掘,发现遗骨在金丝楠木的棺木中,头骨保存完好。但由于对科学的认识所限,没有进行古 DNA 检测。史嵩之是遗腹子史诏的第三支史木的后人,若遗骸测试数据能够一致,则通过比对分析在世后裔血缘距离辅以 Y 染色体全测序方法意义重大。错失良机实在遗憾!

五、大数据推断单倍群

曹操不仅是"挟天子以令诸侯"的一代风云人物,曹氏父子还是中国文坛举足轻重的名人。曹操的身世一直众说纷纭:陈寿在《三国志》记载,曹操是西汉第二任相国曹参的后代,曹操自称其祖上可远溯至古曹国。因曹操的祖父曹腾在东汉为宦官之首,曹操的父亲曹嵩是曹腾的养子,故曹操的政敌袁绍在攻击曹

操的檄文中说"父嵩乞丐携养"。还有人说,曹操的 父亲曹嵩是从夏侯氏家抱养来的。晋灭魏时曹氏遭追 杀,有操姓认为是从曹姓避祸改姓而来,这些历史疑 案如何科学回答?

魏武帝曹操的单倍群——父系血缘推断

2009 年,河南安阳对外宣布发现曹操墓,此消息一出即引发轰动,亦引起争议。随后,复旦大学现代人类学教育部重点实验室宣布,拟用 DNA 技术开展对曹操家族的血缘研究。

曹操是生活在近两千年前的历史人物,寻找他的 遗传标记似乎遥不可及。课题组随即开始另辟蹊径: 能否用现在人的遗传标记反推曹操的,从而破解曹操 的身世之谜呢?

要把曹操后人与两千年前的曹操进行"亲子鉴 定",关键是要有可靠的样本。首先,课题组专家对 全国各地 258 个曹姓族谱做了全面的梳理研究,并与 史书和地方志对照,找到曹氏迁徙的可能线索。再从 中筛选出8支持有族谱、经过史料分析有一定可信度 的曹氏族群。然后,课题组在全国范围内征募志愿者, 采集了79个曹姓家族的280名男性和446个包括夏侯、 操等姓氏男性的静脉血样本,后来得到样本总量超过 1000 例。通过对这些样本进行 SNP 检测, 最终发现 其中6个家族具有同样的O2*-M268型单倍群,他们 分别为安徽舒城县(仪壹堂)、安徽舒城县(七步堂)、 江苏盐城(绣虎堂)、辽宁、安徽、湖南曹氏族群。 其交汇点在 1800 ~ 2000 年前——这正是曹操生活的 年代。这个单倍群在全国人口中只占到5%左右。这 也就意味着他们假冒的可能性只有千万分之三,因此 从法医学上可认定他们是曹操的后代。该项研究结果 2012年发表在《人类遗传学报》上,下面是针对宣称 曹操后裔和非曹姓后裔比对的统计分析报告。

表 4 其中 15 人宣称是曹操后裔和 446 名其他姓氏后裔的单倍群分析

	宣称曹操后裔	其他姓氏后裔	合计
O2*-M268	$n_{11}=6$	$n_{12}=22$	$n_1 = 28$
其他单倍群	$n_{21}=9$	$n_{22}=424$	n ₂ .=433
合计	$n_{-1}=15$	$n_{-2}=446$	n=461

从这张表格利用统计检验方法能够获得如下有用信息: 单倍群 O2*-M268 显著地高频出现,它是曹操的单倍群的可能性概率高。

统计物理与复杂系统研究前沿进展专题

光从后代 SNP 组成的单倍群分析,还不能把曹操的遗传标记类型完全确定下来,于是再做曹操祖先的研究,让两头都能对接上。原来,在二十世纪六七十年代对曹氏家族墓葬曾有挖掘。安徽亳州是曹操的老家,它的宗族墓都埋在那里,其中有一个"元宝坑一号墓",里面发现了两颗牙齿。结合墓室内中央位置的墓砖铭文"河间明府"等,可以肯定两个牙齿确实来源于曹操叔祖父河间相曹鼎。当时这两颗牙齿被认为大有用处,所以被放在库房里等待日后研究,现在是时候了。课题组带回一颗保存较好的牙齿到实验室开展古 DNA 测试。通过严密的科学程序提取该牙齿中的古 DNA,经过 6 次同样严格的反复测试,每一次间隔一个月,发现该牙齿的古 DNA 中 Y 染色体类型以大概率就是之前发现的 O2*-M268。

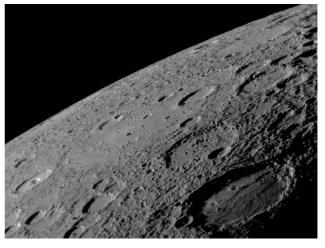
在全国 700 余万曹姓中,除了曹操后代,还有另外四大分支:一是汉代宰相曹参的后代,二是先秦古国邾国的后代,三是江东越国曹姓后代,四是满族入关后有部分满族人改姓为曹。

在确认曹操后代的同时,他们还用同样方法验证了汉代丞相曹参的家族遗传基因与曹操家族遗传基因

没有关系,从而证明曹操是曹参后人说法有误;同时对民间传说操姓是曹操后代避祸改姓而来、曹操是夏侯氏抱养而来等说法,研究证明曹操家族与这两个姓的血缘没有明确关系、家族遗传标记不一致,因此说法也不准确。河南安阳发现的曹操墓,因为不愿意做古 DNA 检测,至今没有定论。

复旦大学这项研究在遗传学和历史学相关的理论 和研究方法方面,都有很多新的突破。他们的研究似 乎可看成是大数据与社会物理学的一个探索方向。

六、结语


世纪之交,为了解答人际关系的"六度分隔实验", 1998年《自然》刊登了小世界网络模型的论文,开创了网络科学新纪元。同年,为了破解"美国总统杰斐逊私生子疑案",《自然》发表了Y染色体检测报告,为解开历史疑案另辟蹊径。宗族遗传网络可以看作两者的结合,由于涉及跨学科的原因,这个新方向的研究似乎刚刚起步。虽然没有数据验证,但直觉告诉我们:科学重大发现并不完全随机,而往往是阵发出现的。希望这个介绍能够引起我国研究复杂性科学的年轻学者们关注,不妥之处还望赐教。

科苑快讯

为什么水星如此黑暗

水星荒凉沉寂的表面与月球类似,而科学家一直困惑的是,为什么水星的反射光远远暗于月球。以前的研究表明,彗星、小行星和其他小天体在相当近期撞击水星表面后,物质的反射光亮度是月球的 2/3。研究者说,对于这种低反射率,最初的解释是因为这些矿物中富含铁元素,强烈吸收某些特定波长的光,但水星却并非如此。这是因为水星在一个特定波长的亮度表明其表面岩石中只有不到3%的铁。一个研究组最近提出,这其实归因于另一种元素——碳。

据估计,彗星质量的约 18% 是碳,它是这些碳元素的主要来源。但更大的来源则可能是微小的富碳陨石,它们来自彗星尘埃,水星受到的类似碰撞常常大约是月球的 50 倍。研究者的论文已发表于《自然地球科学》(Nature Geoscience)。撞击的高温使这些物质融化成玻璃样,碳从这些微小陨石中蒸发出来,

形成无定形碳(类似于烟灰)、石墨和纳米钻石,尽管阳光所及之处炽热如炼狱一般,这些物质还是在这个没有空气的星球表面沉积下来。所以不难想象,一个被烟灰覆盖的星球远比想象的更为黑暗。

(高 凌 云 编 译 自 2015 年 3 月 30 日 www. sciencemag.org)