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Abstract The onset of hematopoiesis in mammals is defined by generation of primitive erythrocytes and macrophage
progenitors in embryonic yolk sac. Laboratories have met the challenge of transient and swiftly changing specification
events from ventral mesoderm through multipotent progenitors and maturing lineage-restricted hematopoietic
subtypes, by developing powerful in vitro experimental models to interrogate hematopoietic ontogeny. Most
importantly, studies of differentiating embryonic stem cell derivatives in embryoid body and stromal coculture
systems have identified crucial roles for transcription factor networks (e.g. Gata1, Runx1, Scl) and signaling pathways
(e.g. BMP, VEGF, WNT) in controlling stem and progenitor cell output. These and other relevant pathways have
pleiotropic biological effects, and are often associated with early embryonic lethality in knockout mice. Further
refinement in subsequent studies has allowed conditional expression of key regulatory genes, and isolation of
progenitors via cell surface markers (e.g. FLK1) and reporter-tagged constructs, with the purpose of measuring their
primitive and definitive hematopoietic potential. These observations continue to inform attempts to direct the
differentiation, and augment the expansion, of progenitors in human cell culture systems that may prove useful in cell
replacement therapies for hematopoietic deficiencies. The purpose of this review is to survey the extant literature on the
use of differentiating murine embryonic stem cells in culture to model the developmental process of yolk sac
hematopoiesis.

Keywords hematopoietic, progenitors, embryonic, stem cells, differentiation

An introduction to embryonic
hematopoiesis in the mouse

Hematopoiesis begins early in mouse embryonic develop-
ment, when blood islands are specified in the extra-embryonic
mesodermal tissue of the yolk sac (YS). Blood islands contain
both hematopoietic and endothelial precursors, and mark the
site of the first wave of hematopoiesis around day E7.5 (Palis
et al., 1999), which generates nucleated, comparatively large
erythrocytes that express embryonic globins (Fig. 1A). The
YS program additionally generates limited progenitors of the
myeloid and megakaryocyte lineage. The YS events are
typically referred to as the primitive wave of hematopoiesis,
and are distinguished from subsequent embryonic and post-
natal events, which comprise definitive hematopoiesis. The

para-aortic splanchnopleura (P-Sp) and aorta-gonado-meso-
nephros (AGM) regions serve as intermediate sites of
hematopoiesis to generate the first definitive progenitors
including long-term hematopoietic stem cells. With the onset
of circulation, progenitors seed the fetal liver (Lux et al.,
2008), the next and final site of hematopoiesis before birth
(Fig. 1A). During this transition, the transient wave of
primitive erythrocytes (EryP-CFC) dissipates by about day
E9.0 (Palis et al., 1999), although vestigial EryP-CFC
populations enucleate and persist into neonatal circulation
as primitive erythrocytes (Kingsley et al., 2004). In parallel,
smaller, definitive erythrocytes (EryD), which lack nuclei and
express exclusively adult globins, emerge from the fetal liver;
these eventually mature to become functional circulating red
blood cells. The stem and progenitor cells responsible for
generating mature hematopoietic sub-types of all lineages
finally reside in the bone marrow, which serves as the site of
hematopoietic renewal throughout life (Fig. 1A).

Embryonic hematopoiesis is therefore a highly complex
process composed of distinct developmental programs and is
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subject to many potential deleterious perturbations. Although,
for instance, primitive erythroid progenitors are transient in
nature, they mark the essential first step in establishing the
embryonic hematopoietic system. Impairment of these early
hematopoietic events is incompatible with further develop-
ment in mouse models. Studies have thus focused on
embryonic hematopoietic development from several different
perspectives, including but not limited to the following types
of investigations: 1) Understanding the processes of specifi-
cation of mesodermal precursor populations fated to differ-
entiate into hematopoietic progenitors; 2) Elucidating the
signaling pathways and gene expression patterns responsible
for differentiation and expansion of these progenitors; and 3)
Identifying conditions in which hematopoietic progenitor
output can be induced to expand or contract, accelerate or
delay, with the ultimate goal of directing production of
progenitor cells that are potentially clinically relevant in
replacement therapies for disorders marked by hematopoietic

failure. From these three strategies, two important broad
observations have emerged. First, manipulation of embryonic
stem (ES) cell cultures is a particularly useful experimental
platform to study hematopoietic ontogeny. Secondly, several
key genetic programs and signaling pathways exert regula-
tory control in a context-dependent manner throughout
development. For the purpose of brevity, this review will
focus on studies of murine yolk sac hematopoiesis, but will
additionally reference how they have influenced ongoing
attempts to isolate therapeutic cell types through directed
differentiation.

Different paradigms of embryonic stem cell
differentiation: powerful tools to model yolk
sac hematopoiesis in vitro

Efforts to characterize early murine hematopoietic develop-

Figure 1 Differentiating embryonic stem cells as a model system for embryonic hematopoiesis. (A) A schematic of hematopoietic
transitions in the developing mouse embryo, showing the approximate embryonic developmental time frame associated with each site.
Also shown are key cell types that arise at each site/time point, with the first events generating primitive erythroid progenitors and
endothelium in the extra-embryonic yolk sac (YS) from ventral mesoderm-derived hemangioblast. Hemogenic endothelium generated in
P-Sp and AGM begins the definitive wave that marks the transition to the fetal liver and finally the bone marrow as the site of
hematopoietic renewal via adult HSCs. Abbreviations: Para-aortic splanchnopleura (P-Sp); aorta-gonad-mesonephros (AGM); endothelial
cell (EC); primitive and definitive erythrocyte (EryP and EryD); hematopoietic stem cell (HSC). (B) Schematic of analogous
hematopoietic progenitor development in murine ES/EB cultures, with timeline highlighted in yellow and mirrored to embryonic
development. Specification of progenitors proceeds from mesoderm generated in early EBs stimulated to adopt hemato-vascular fate by
Activin, VEGF, and BMP, resulting in a BL-CFC population that is FLK1+/BRY+ and equivalent to the hemangioblast, capable of
generating hematopoietic colonies equivalent to progenitors from yolk sac. A second FLK1+ cell population co-expresses SOX17, and
functions similarly to hemogenic endothelium, with potential for definitive hematopoietic lineages including lymphoid cells.
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ment identified YS blood islands as the sites of initiation.
However, the relative inaccessibility of developmentally
relevant progenitors with rapidly shifting potentials prompted
a shift in strategy to model the process in vitro using the
mouse ES cell system. Embryonic stem cells can be isolated
from the inner cell mass of the mouse blastocyst. They are
both pluripotent and self-renewing, and can differentiate into
precursors from all three primary germ layers and many
subsequent derivatives. The classic system for measuring
differentiation potentials within ES cell-derived populations
is the embryoid body (EB). EBs typically develop as
heterogeneous clusters of cells in suspension after removal
of leukemia inhibitory factor (LIF), a cytokine that maintains
pluripotency. Early studies found that EBs faithfully
recapitulated the development of YS blood island-like cell
types, suggesting that EB cultures intrinsically contain
hematopoietic potential (Doetschman et al., 1985). Protocols
to generate erythroid colonies in vitro from murine hemato-
poietic tissue sources (Stephenson et al., 1971; McLeod et al.,
1974) influenced later efforts to quantify and manipulate
hematopoietic output in other cell culture systems. Hemato-
poietic output in EBs can be augmented in a lineage-restricted
manner via addition of specific cytokines, such as erythro-
poietin (EPO) for EryP (Wiles and Keller, 1991), and
interleukin-3 (IL-3) and macrophage colony-stimulating
factor (M-CSF) for macrophage progenitors (Wu et al.,
1995; Lichanska et al., 1999). Further analysis noted that
hematopoietic development in EBs closely mirrors the step-
wise progression of YS hematopoiesis, proceeding from
precursors enriched for mesodermal marker transcripts to
primitive erythroid, macrophage, definitive erythroid, and
multilineage progenitors (Keller et al., 1993).

A seminal event in the evolution of ES/EB model systems
as surrogates for developmental hematopoiesis was the
identification by Keller and colleagues of the bi-potential
hemato-vascular progenitor equivalent to the putative
hemangioblast. They found that stimulation of EB cultures
on day 3–3.5 of differentiation with vascular endothelial
growth factor (VEGF) and kit-ligand (SCF) promoted
expansion of blast colony-forming cells (BL-CFC), a
progenitor cell type with primitive and definitive hemato-
poietic, as well as endothelial, potential (Kennedy et al.,
1997; Perlingeiro et al., 2003) (Fig. 1B). The BL-CFC is
sensitive to ectopic expression of the homeobox gene Hox11
(Keller et al., 1998), manipulation of LIF/STAT (signal
transducer and activator of transcription) signaling (Chan et
al., 2003; Zou et al., 2006) and genetic deletion of runt-related
transcription factor 1 (Runx1) (Lacaud et al., 2002). Further
analysis in human ES/EB culture systems identified analo-
gous progenitors with selective potentials for erythroid versus
myeloid output (Kennedy et al., 2007). These studies and
others in mouse and human systems (Perlingeiro et al., 2001;
Wang et al., 2004; Zambidis et al., 2005; Tober et al., 2007;
Gandillet et al., 2009) revealed the potential for stem/

progenitor populations that were profoundly useful experi-
mentally. Specifically, these cell types represented a discrete
demarcation between multipotency and fate restriction, and
prompted a cogent argument for the importance of instructive
signaling within a hematopoietic niche.

Alternative cell culture platforms using adherent mono-
layers have also been developed for the study of hemato-
poietic potential in differentiating ES cells, most frequently
using stromal cell lines. Coculture of ES cells on OP9 stromal
monolayers demonstrated retention of YS-like kinetics in
specification of primitive and definitive progenitors (Nakano
et al., 1996; Fujimoto et al., 2003). The reported advantage of
stromal cocultures is the potential to quantify output of not
only progenitors, but also terminally differentiated cells of
different lineages (Zheng et al., 2006). Mostly, stromal
coculture systems have been powerful in confirming results
initially observed in EB cultures, while achieving a greater
degree of homogeneity. Therefore, there is intrinsically
increased confidence in cell autonomous vs. non-autonomous
effects, uncovering and strengthening observations regarding
the importance of micro-environmental cues in hematopoietic
potential (Lu et al., 1996; Hidaka et al., 1999; Otani et al.,
2004; Zhang et al., 2005; Weisel et al., 2006; Klimchenko et
al., 2009).

Controlling stem/progenitor cell output
through manipulation of transcription
factor networks and key developmental
signaling pathways

Early hematopoiesis is tightly regulated, particularly via
genetic mechanisms that modulate transcription factor net-
works, which themselves are subject to influence by major
receptor-mediated signaling pathways. Many key factors and
pathways have pleiotropic functions in multiple develop-
mental programs, and are essential for appropriate
commitment of mesodermal and multipotent precursors.
Consequently, early embryonic lethality in transgenic
mouse models has made in vivo assessments of their roles
elusive. However, several groups have exploited the ability to
obtain relevant transgenic ES cell lines and examine gene-
specific defects in vitro. This strategy was first employed to
examine the role of GATA factors, a six-member family of
transcription factors that binds to eponymous DNA
sequences. Gata1 and stem cell leukemia (Scl/Tal1) genes
are expressed concomitantly with the first hematopoietic
events in YS (Palis et al., 1999). Gata1 null ES/EBs and OP9
cocultures showed Gata1 to be required for primitive
erythropoiesis (Simon et al., 1992; Suwabe et al., 1998),
and for survival of definitive erythroid progenitors past the
proerythroblast stage (Weiss et al., 1994). Additionally,
conditional re-introduction of Gata1 rescues associated
hematopoietic defects (Zheng et al., 2006). Genetic deletion
of Gata1 is associated with increased expression of Gata2,
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which is also required for normal YS hematopoiesis (Tsai et
al., 1994), suggesting an epistatic relationship between the
mesodermally-expressed GATA genes. Deletion of the
visceral endoderm marker Gata4 showed an additional partial
dependence on non cell-autonomous instructive signals
(Bielinska et al., 1996). Further studies examining the role
of Scl revealed it to be another essential factor in
hematopoietic specification. Genetic deletion of Scl impairs
YS hematopoiesis (Robb et al., 1995; Shivdasani et al., 1995),
and Scl null cells only contribute to non-hematopoietic tissues
in chimeras (Robb et al., 1996). Experiments examining
transcription factor control of primitive hematopoeisis
additionally identified rhombotin-like 2 (Rbtn2/Lmo2) (War-
ren et al., 1994), erythroid kruppel-like factor (Eklf) (South-
wood et al., 1996), and others (Nogueira et al., 2000; Li et al.,
2006; Zou et al., 2007) as being required for primitive
hematopoiesis in ES/EB cultures. Alternatively, several
factors including Runx1 (Okuda et al., 1996; Miller et al.,
2001; Lacaud et al., 2002), the myeloblastosis proto-
oncogene family member c-myb (Krause et al., 1998; Clarke
et al., 2000), and others (Kitajima et al., 1999; Saleque et al.,
2002) were shown to be required for normal definitive but not
primitive hematopoiesis.

The power of this approach was galvanized upon the
advent of inducible ES cell lines. These new lines allowed
manipulation of gene expression in a conditional, time-
dependent manner to mimic or perturb discrete events
during the course of EB differentiation. The most notable
platform for this type of study is the AinV cell line
developed by Kyba and Daley (Kyba et al., 2002) to induce
expression of the homeobox family gene HoxB4. Along with
several other homeobox factors, HoxB4 is a potent stimulator
of stem/progenitor cell output (Sauvageau et al., 1995;
Helgason et al., 1996; Pineault et al., 2002; Lengerke et al.,
2007). This cell line employs engineered loci on the X
chromosome and chromosome 6 to allow single-site targeted
insertion of a transgenic construct, with tetracycline-
mediated (“tet-on”) transactivation via expression of the
reverse tet-transactivator protein from the constitutive
ROSA26 promoter. A subsequent study using tamoxifen/
estrogen receptor-driven inducible transcription of HoxB4
confirmed these results and identified a non cell-autonomous
role for the Wingless/Integrase-1 (WNT) signaling pathway
(Jackson et al., 2012). Derivative cell lines using AinV as the
parental platform have enabled several groups to make
important discoveries regarding control of hematopoietic
potential during different developmental windows. Trans-
gene expression around day 2 of EB differentiation can be
used to gauge effects on specification of mesodermal
precursors. Induction on day 4 after hemangioblast specifica-
tion can be used to assess genetic control of subsequent
hematopoietic expansion. This type of strategy has revealed
additional roles for Stat5 (Kyba et al., 2003) and the
microRNA miR-126 (Sturgeon et al., 2012) in stimulating

hematopoietic output; and MAX dimerization protein 4
(Mxd4) (Boros et al., 2011) and LIM homeobox 2 (Lhx2)
(Dahl et al., 2008) in inhibiting it.

The AinV inducible system has been advantageous in
elucidating the contributions of transforming growth factor-β
(TGF-β) family members, particularly through pathway-
restricted effects of bone morphogenetic protein (BMP)
signaling via mothers against decapentaplegic homolog
(SMAD) effector molecules. Our group has shown in AinV
lines allowing either conditional expression or shRNA-
mediated knockdown, that Smad1 first promotes expansion
of the hemangioblast population from mesodermal precursors
(Zafonte et al., 2007), then later restricts pan-hematopoietic
potential after hemangioblast specification (Cook et al.,
2011). The highly similar Smad5 functions antagonistically
during this stage and specifically promotes primitive
erythropoiesis (Liu et al., 2003; McReynolds et al., 2007;
Cook and Evans, 2014). Upstream modulation of BMP
receptor activation in this system reveals SMAD-independent
control through mitogen-activated protein kinase (MAPK)
signaling of myeloid progenitor output (Cook and Evans,
2014). Additional studies by Perlingeiro and colleagues have
shown a contributing role for the TGF-beta accessory
receptor endoglin (Eng). Conditional expression of activin
receptor-like kinase (Alk1) rescues the primitive hematopoie-
tic defect and restores SMAD1 activation impaired in Eng
null cultures (Zhang et al., 2011). Conditional expression of
Eng on EB day 2 additionally promotes expression of key
hematopoietic marker genes (Scl, Gata1, Runx1) concomitant
with SMAD1 activation, in a manner dependent on Scl and
intact BMP signaling (Baik et al., 2012).

Several studies have explored the hematopoietic roles of
additional developmentally important signaling pathways,
notably NOTCH and WNT pathways. Notch receptor
expression is enriched in hematopoietic tissues (Walker et
al., 2001), and is specifically required in embryonic
hematopoiesis after the shift to fetal liver as the relevant
site (Hadland et al., 2004). Additional experiments utilizing
derivatives of the AinV system that allow sorting of reporter-
labeled developmental markers have identified antagonistic
roles for NOTCH and WNT signaling in limiting and
promoting primitive erythropoiesis, respectively (Cheng et
al., 2008). However, deletion of the NOTCH pathway ligand
Delta-like ligand 4 (Dll4) resulted in impairment of BL-CFC
specification and subsequent primitive hematopoietic poten-
tial (Laranjeiro et al., 2012). Activation of the WNT pathway
is specifically required for expansion of hematopoietic
progenitors initiated by the hemangioblast (Nostro et al.,
2008). The study of these signaling networks has been useful
not only to elucidate requirements for biological decisions in
a stepwise manner from mesoderm to multipotential progeni-
tors to hematopoietic outgrowth, but also to initiate an
evolving toolkit to manipulate those decisions, as will be
outlined in the next section.
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The next step: how observations in yolk sac
hematopoiesis can inform attempts to
generate clinically relevant progenitor
populations

A crucial factor that contributes to defining transitions
between multipotent and successively more fate-restricted
progenitors is the VEGF receptor-2, commonly called fetal
liver kinase 1 or kinase insert domain receptor (FLK1/KDR).
Genetic deletion of Flk1 results in endothelial but not
primitive hematopoietic impairment in chimeric mice (Sha-
laby et al., 1997). However, subsequent studies in stromal
cocultures determined that Flk1 delivers important instructive
cues to generate normal hematopoietic progenitors (Hidaka et
al., 1999), and controls fate decisions through differential cell
surface expression of CD41 (Otani et al., 2005). VEGF
confers dose-dependent survival to primitive progenitors
(Martin et al., 2004), and FLK1 marks primitive streak
mesoderm predictive of hematopoietic potential (Era et al.,
2008). Additional studies have identified markers to differ-
entiate between hemangioblast and hemogenic endothelium,
such as cell-surface intercellular adhesion molecule 2
(ICAM2) (Pearson et al., 2010) and the Ets-related protein
encoding transcription factor ETV2 (Wareing et al., 2012).
Other molecules such as podocalyxin (Zhang et al., 2014)
have been shown to distinguish primitive from definitive
hematopoietic potentials.

There are inherent limitations to the imposition of artificial
culture conditions dependent on serum or on poorly under-
stood cues from other cell types. Efforts to refine approaches
to studying and isolating desired progenitor cell types under
defined conditions have progressed over several years. The
result is an evolving understanding of the relative contribu-
tions of Activin/Nodal, BMP, and VEGF to mesoderm-
derivative fate decisions (Nostro et al., 2008; Irion et al.,
2010; Sturgeon et al., 2014), in combination with reporter-
based techniques to sort and manipulate intermediate cell
types. Multiple studies have identified the ability of BMP
ligands to stimulate formation of hematopoietic ventral
mesoderm in serum-free cultures (Johansson and Wiles,
1995; Wiles and Johansson, 1997; Pick et al., 2007).
Following this step, there are additional requirements for
VEGF and WNT to generate progenitor subsets sequentially
demarcated by single or combined expression of Brachyury,
FLK1, and forkhead box protein A2 (FOXA2), with WNT
signaling specifically active in determining primitive hema-
topoietic output (Nostro et al., 2008). Moreover, fine-tuning
of Activin/VEGF/BMP stimulation can bifurcate populations
into early and late FLK1-expressing sub-types. These
populations respectively display hemangioblast-like potential
for primitive lineages analogous to YS, and hemogenic
endothelium-like potential for AA4.1+/CD41+ myeloid/
lymphoid progenitors (Keller et al., 1993; Ferkowicz et al.,
2003; Irion et al., 2010). Directed generation of myeloid/
lymphoid progenitors and other definitive sub-types may

have important implications for therapeutically-oriented
strategies in human cell culture systems (Fig. 1B).

There is great potential to combine these observations with
emerging techniques to derive human progenitor cell types
from embryonic stem (hES) and induced pluripotent stem
(iPS) cell cultures. Culture systems analogous to those
described above have been devised to generate hematopoietic
progenitors from hES cells (Wang et al., 2005; Grigoriadis et
al., 2010), and to distinguish developmentally relevant
progenitors (Sturgeon et al., 2014) in both hES and iPS
cultures. Recent studies by the Keller laboratory have
identified CD235a as a cell-surface marker that distinguishes
hemangioblast-like cells with primitive potential from
hemogenic endothelium with definitive lymphoid potential.
These studies demonstrate that important progenitors can be
separated during EB development within a window of
responsiveness to Activin/Nodal signaling (Sturgeon et al.,
2014). There is additionally a reported balance between
retinoic acid and WNT signaling pathways in controlling
hematopoietic stem cell output from hemogenic endothelium
marked by expression of FLK1 and SRY box-17 (SOX17)
(Chanda et al., 2013; Clarke et al., 2013). Such observations
encourage continuing efforts to optimize directed differentia-
tion protocols. Finally, additional recent investigations into
transcription factor-mediated direct conversion of murine
fibroblasts to hemogenic endothelium-like precursors (Pereira
et al., 2013) and of human endothelial cells to multipotent
progenitors (Sandler et al., 2014) hold promise as alternative
platforms that may in some instances bypass the requirement
for pluripotent cell lines altogether. In conclusion, modeling
hematopoietic ontogeny with murine embryonic stem cells
and their derivatives has established a foundation from which
greater understanding of regulatory controls of stem and
progenitor cell output is constantly emerging. These efforts
continue to drive evolving strategies to manipulate the
production of developmentally and clinically relevant cells
of the primitive and definitive lineages.
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