Anomalies of H₂O

Challenge Most abundant, least known 125 big Qs of Science 2006 Ice floating? Surface tension? **Slippery of ice surface?** Ice like H₂O molecules? Mono or mixed structures? **Bond length & structure order? Bio-interaction & climate change?**

Outline

- I. Principles
- **II. Recent progress**
 - 1. H₂O under compression
 - **2.** H_2O at cool
 - 3. H_2O with < 4 neighbours
 - 4. H₂O size, separation, order, density
- **III. Prospects**
- **IV. Summary**

Principles:

Segmented H bond

Master-slave-segmented, flexible, fluctuating, and polarizable H-bond

	d _x (nm)	E _x (eV)		Θ _D (K)	T _m (K)	Interaction
H-O	0.10	4.0	>3000	>3000	>5000	Exchange
H:O	0.17	0.10	<300	198	273	Van der Waals
00	-	-	-	-		Repulsion
C-C	0.154	1.84	1331	2230	3800	Exchange

Forces driving relaxation $\Delta d_{\rm L} > // \Delta d_{\rm H}$

2013/7/18

Length, stiffness, core level shift, T_c

$$\frac{1}{2}\mu(\Delta\omega)^{2}(r-d_{x})^{2} = \frac{1}{2}k_{x}(r-d_{x})^{2} \cong \frac{1}{2}\frac{\partial u(r)}{\partial r^{2}}\Big|_{r=d_{x}}x^{2}$$

$$\propto \frac{1}{2} \frac{E_x}{\mu d_x^2} (r - d_x)^2$$

$$\Delta \omega_x \propto \frac{\sqrt{E_x / \mu_x}}{d_x} \cong \sqrt{Y_x d_x / \mu_x}$$
$$E_x \propto d_x^{-m}$$
$$T_C \propto \Delta E_v \propto E_H$$

Chemical Science

Cite this: Chem. Sci., 2012, 3, 1455

www.rsc.org/chemicalscience

EDGE ARTICLE

Dynamic Article Links

The hidden force opposing ice compression[†]

Chang Q Sun,^{*} *^{abc} Xi Zhang^a and Weitao Zheng^b

1. H₂O under compression

- Low-compressibility
- Proton symmetrization
- Asymmetric phonon relaxation
- T_c depression

Fact: corporative Raman shifts

Yoshimura, et al., J. Chem. Phys. 124, 024502 (2006).

Lagrangian-Laplace mechanics

$(d_{_{H}} / 0.9754)$		(1	+9.510	+2.893	$\left(P^{0}\left(GPa\right)\right)$
<i>d</i> _{<i>L</i>} / 1.7683	=	1	-3.477	-10.280	$10^{-4} P^{1}$
(V/1.0600)		(1	-238.0	+47.00)	$\left(10^{-5}P^2 \right)$

Chem Sci, 2012. 3: 1455.

2013/7/18

2. H₂O at cool

Cross, JACS, 1937. **59**: 1134. Gilberg, et al., JCP 1982, 76, 5039. Mallamace, et al, PNAS, 2007, 104, 18387. Erko, PCCP, 2012. **14**: 3852.

Principle: thermodynamic disparity

Raman shift: stiffness relaxation

MD-NPT power spectra of H_2O showing three zones with the freezing stiffening of the high-frequency phonons and freezing softening of the low-frequency phonons.

H₂O upon cooling.

<u>V-shaped H₂O motifs are intact albeit fluctuations at high T.</u>

Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors

Chang Q Sun,^{∗,†,‡} Xi Zhang,^{‡,§} Ji Zhou,[∥] Yongli Huang,[†] Yichun Zhou,[†] and Weitao Zheng^{∗,⊥}

3. H₂**O with < 4 neighbors**

- Ice-like and hydrophobic
- Volume expansion & polarization
- Charge densification & entrapment
- O 1s binding energy shift
- Stiffer phonon stiffening

Principle: BOLS + NEP

DFT optimization

20

N=12

O:H-O segmental length relaxation

Algorithm independent: size trends and corporative relaxation

O:H-O segmental stiffness relaxation

Experimental data: Hirabayashi, *J. Mol. Struct.* **795**, 78 (2006). Ceponkus, *JPCA* **116**, 4842 (2012).

$$T_{mN}/T_{mBulk} = \Delta E_{1sN}/\Delta E_{1sBulk} = \left(d_{HN}/d_{Hbulk}\right)^{-m} = C_H^{-4}$$

Wilson, JCP **117**, 7738(2002). Ceponkus, JPCA **116**, 4842 (2012). Hirabayashi J. Mol. Struct. **795**, 78(2006). Abu-Samha, J. Phys. B **42**, 055201 (2009). Bjorneholm, JCP **111**, 546 (1999). Winter, JCP **126**, 124504 (2007). 28

Water droplet dances:

Antonini et al, PRL 2013. **111**: 014501. Wang et al, Proc Roy Soc A 2012. 468: 2485.

Delayed freezing of water droplet on hydrophobic:

Singh et al, APL 2013. 102: 243112.

Viscositization by confining SiO₂ plates sputtering:

4. Size, separation, structural order, and mass density

$$\rho = \frac{M(10m_p + 8m_n)}{V(\text{Order} + D\text{istance})} = \frac{M}{a^3} = 1(gcm^{-3})$$

$$\begin{cases} d_{oo} = d_L + d_H = 2.6948\rho^{-1/3} & (1) \\ d_L = 2.5621 \times \left[1 - 0.0055 \times \exp(d_H/0.2428)\right] & (2) \end{cases}$$

III Prospects

- **1. Skin supersolidity**
- 2. Salt dissolution
- **3. Machano-freezing of 25 °C water**
- 4. Cancer cells
- 5. Isotopic effect
- 6. Organic (N, F) OH molecules
- 7. General rule of NTE
- 8. Coulomb repulsion modulation
- 9. Food and drug

1. Skin supersolidity of ice and water

2. Mechano-freezing of 25 °C water Pressure loss from 1.35-0.85 GPa at freezing

3. Salt-induced phonon relaxation (opposite to P effect)

4. Cancer cells: Abramczyk, J Bio Chem 02, 158 (2011)

5. Isotope effect: Marechal, J. Mol. Struct. 1004, 146 (2011) 6. Organic molecules (NOH): Zou, J Phys Chem B 116, 9796 (2012)

7. Negative thermal expansion (NTE)

Graphite and Cu: X.L. Liu, Q.H. Tang and T.C. Wang, Sci China, 2011,500.

G. Ernst, C. Broholm, G. R. Kowach and A. P. Ramirez, Phonon density of states and negative thermal expansion in ZrW2O8, *Nature*, 1998, **396**(6707), 147–9.

IV Summary

- Mono-phase of fluctuated-tetrahedron
- Ultra-short-range interactions
- Coulomb repulsion
- Asymmetric relaxation
- Skin supersolidity slippery and tension
- Thermodynamic disparity NTE
- Size, separation, order, and mass

Thank you!

XTU: Huang Yongli, Ma Zengsheng, Zhou Yichun Tsinghua: Fu Xiaojian, Zhou Ji JLU: Yan Tinting, Zou Bo, Zheng Weitao Sinica: Kuo Jer-lai NTU: Zhang Xi, Shen Zexiang

$$\begin{cases} f_{dH} > \left(f_{dL} + f_{rL} + f_{rH}\right) \\ f_{dL} > \left(f_{dH} + f_{rL} + f_{rH}\right) \\ f_{dH} = f_{dL} \end{cases} \Rightarrow \Delta d_{O-O} \begin{cases} > 0 \\ < 0 \\ = 0 \end{cases}$$

Segmented, flexible, polarizable, fluctuating O:H-O bond:

Segmental disparity

- 3 short-range interactions
 - 3 forces; ∆d_{H:0} >// ∆d_{H-0}

Summary:

ZPS: CN-resolved bond-length & bond-energy USA patent, 2010

* Diamond is an interlock of two fcc cells.