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Abstract

Recently, contagion-based (disease, information, etc.) spreading on social networks has been extensively studied. In this
paper, other than traditional full interaction, we propose a partial interaction based spreading model, considering that the
informed individuals would transmit information to only a certain fraction of their neighbors due to the transmission ability
in real-world social networks. Simulation results on three representative networks (BA, ER, WS) indicate that the spreading
efficiency is highly correlated with the network heterogeneity. In addition, a special phenomenon, namely Information Blind
Areas where the network is separated by several information-unreachable clusters, will emerge from the spreading process.
Furthermore, we also find that the size distribution of such information blind areas obeys power-law-like distribution, which
has very similar exponent with that of site percolation. Detailed analyses show that the critical value is decreasing along
with the network heterogeneity for the spreading process, which is complete the contrary to that of random selection.
Moreover, the critical value in the latter process is also larger than that of the former for the same network. Those findings
might shed some lights in in-depth understanding the effect of network properties on information spreading.
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Introduction

With the advent of various online Social Networking Services

(SNS), the dissemination of information through Internet, also

known as word-of-mouth or peer-to-peer spreading, has attracted much

attention for researchers in recent years [1,2]. Following the rapid

development of database technology and computational power,

various spreading phenomena on large-scale social networks, such

as the news [3], rumors [4,5], innovation [6], behavior [7,8],

culture [9], viral marketing [10], cooperative behaviors [11] etc,

can now be deeply studied in terms of theoretical models as well as

empirical analyses.

Generally, the information spreading dynamics is usually

studied under the framework of epidemic spreading [12].

Therefore, in many studies, the process of information diffusion

is regarded equally as the disease propagation, which informs

agents to transmit information to their neighbors via social

connections [13]. Among them, the Susceptible-Infected-Recov-

ered (SIR) model is the most commonly used method to describe

the information spreading process, where individuals would lose

interest of further contribution due to a variety of less predictable

factors, which is very similar to the R state of the SIR model in

epidemic spreading. The interplay between the spreading dynam-

ics and network structure is a key insight in the study on network

spreading dynamics [14,15]. The network structure affects both

the spreading speed and prevalence through features such as the

shortest path length, degree distribution, degree correlations, and

so on. In addition, the upper bound of informed proportion is

proved to be approximate to 80% for the SIR model on random

networks when the population size is infinite [16]. Previous works

have also revealed that there indeed exists a propagation threshold

of information spreading on the small-world network [17,18], and

the spreading is much faster and broader than that on regular

network for the existence of the long-range edges [19]. Moreno et

al. [5,20] studied the rumor spreading on scale-free networks, and

found that the existence of hub nodes can enhance the spreading

speed rather than the influenced scope. Recently, there is a vast

class of studies focusing on the spreading dynamics on intercon-

nected networks [21], and there is a mixed phase below the critical

infection strength in weakly coupled networks [22]. The study of

cooperative behaviour spreading across the interdependent

networks [23] indicated that interdependent links are more likely

to connect two cooperators than the regular links. Furthermore,

some interesting phenomena are discovered based on the

information diffusion on real social systems, such as the telephone

interactions [24,25], tweets [26,27] and emails [24]. Empirical

results indicate that the human active patterns [28,29] and the role

of weak ties [30] would strongly affect the information spreading.

However, there are also plenty of researches arguing that the

underlying mechanism of information diffusion should be funda-

mentally different from that of epidemic spreading. Lü et al. [31]

summarized the significant differences between them, and

concluded that the information, by considering the social

enhancement, would spread more effectively in regular networks

than that in random networks. This would to some extent support

the real human experiment reported by Centola [7]. Most
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theoretical models assumed that the informed agents would

transmit the information to all their neighbors [32,33] or just

one randomly chosen neighbor [34] in one single time step.

However, since passing messages along would take a perceived

transmission cost [35] in real societies, the diffusion targets would

be selected among individuals with potential interests [36]. Thus,

the information flow would travel through social connections

thereby depending on the properties of observed networks [37].

In this paper, we propose a theoretical model with considering

the effect of partial interaction, where the number of interacted

neighbors is in proportion to the spreader’s degree. Simulation

results show that the spreading process percolates on all three

classical networks (ER, BA and WS networks), which is quite

similar with the site percolation in statistical physics [38]. In

addition, it is observed that the percolation peaks later on WS

network than other two networks, which could be regarded as a

good explanation of why information can spread more widely on

WS network. Furthermore, it is also astonishing to find that the

size distribution of unreachable clusters, namely the Information

Blind Area, exhibits the power-law property, which is the universal

phenomenon in the community distribution [39,40].

Models

In this paper, we consider a synthetic network G(N,E), where

N is the number of nodes and E is the number of links,

representing the individuals and their interactions, respectively.

Analogous with the SIR model, every individual would be and

only be at one of the three following states during the process of

information spreading,

N Uninformed (S). The individual has not yet received the

information, and is analogous to the susceptible state of the

SIR model;

N Informed (I). The individual is aware of the information but has

not transmitted it, and is analogous to the infected state in the

SIR model;

N Exhausted (R). After transmitting the information, the individual

will probably lose interest and no longer transmit it [41], thus

is analogous to the recovered state of the SIR model.

Subsequently, we are mainly interested in the effect of partial

interaction. That is to say, each infected node, so-called spreader

[42], will only influence a certain fraction of its neighbors. Thus,

the model can be described as follows.

N Initially, one arbitrary node is randomly picked as the

Information Seed (I-state) and the rest remain uninformed (S-

state).

N Then, the seed will transmit information to a fraction of its

neighbors and then becomes exhausted (R-state), where

a[½0,1�;
N For simplicity, we assume that all individuals fully trust their

social connections. Consequently, each individual will approve

the information once s/he receives it;

N After approval, s/he becomes an informed individual or a

spreader (I-state), and will transmit the information to all a
fraction of her/his neighbors and becomes exhausted (R-state);

N The above process will repeat until there is no individual

transmits the information any more.

In this model, the popular individuals (nodes with large degree)

tend to interact with more neighbors when they approve the

information. However, since there is transmission cost in the

spreading process [35], that is to say, individuals would not be able

to interact with all their own neighbours. Therefore, we propose a

tunable parameter a[½0,1�, representing the interaction strength.

Thus, the number of neighbors will be informed, ak, is

proportional to the spreader’s degree k, neglecting the neighbors’

states. And the probability of each neighbor of being selected is 1
k

at

each round, and the repeating selection is prohibited. Figure 1

shows the proposed spreading rule. By setting a = 0.6, the

informed node I1 can only transmit information to three

neighbors, two uninformed nodes S1, S3 and one exhausted node

R1. Therefore, the present rule implies a different feature of

information spreading, Partial Interaction, which is usually neglected

in the standard SIR model and its variants for information

spreading. In addition, the immediate influence in the present

model corresponds to the two parameters in traditional SIR

model, the infected probability b and the recovered probability m,

are both equal to one in the proposed model.

To better investigate the effect of the present model, we perform

analyses on three kinds of network: (i) ER network [43]: a random

graph where N nodes connected by E edges which are chosen

randomly from all the N(N{1)=2 possible edges; (ii) BA network

[44]: a growing network where each newly added node connects to

m old nodes by preferential attachment mechanism; (iii) WS

network [45]: Randomly reshuffle links of a regular network with

probability c and result in the small-world network. As a

consequence, we generate corresponding BA, ER and WS

networks with the same network size N = 10000, m = 3, c = 0.5

and the average degree SkT = 6. In addition, to alleviate the effect

of randomly selecting the spreading seed, all simulation results are

obtained by averaging over 1000 independent realizations.

Results and Analysis

Exhausted Rate
Denote P(R) as the fraction of exhausted nodes to the network

size, obviously, larger P(R) at the stable state indicates broader

information spreading, and vice verse. To determine how the

introduced parameter a affects the spreading results, we start our

analysis from observing the relationship between P(R) and a.

Figure 2 shows that, for all the three networks, P(R) is

monotonically increasing with a, suggesting a positive correlation

Figure 1. (Color online) Illustration of the spreading rule in the
proposed model with three uninformed nodes, S1, S2 and S3,
two informed nodes I1 and I2, and one exhausted node R1. Each
of them has the same probability 1

5
to receive information from the

informed node I1 at each round. When a = 0.6, only ak = 3 nodes, e.g.
S1 , S3 and R1 , will receive information.
doi:10.1371/journal.pone.0095785.g001
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P(R) and a. As a consequence, in the following, we will use P(R)
instead of a to give comprehensive discussions.

Figure 3 reports the model results. In Figure 3a, it shows the

dynamics of P(R) on three different networks with the fixed

parameter a~0:35. It can be seen that WS network yields the

most efficient spreading as the largest P(R) at the stable state,

while BA network exhibits the narrowest spreading, and ER

network stays moderately. This result agrees with previous studies

[31]. In addition, the inset shows the dynamic difference of P(R)
between two continuous time steps, denoted as

DP(R)~P(Rtz1){P(Rt), which can be considered as the

spreading speed. It indicates that information spreads faster at

its initial stage while slows down at later time steps due to the

influence of hub nodes. From the degree distribution of Figure 3c,

it can be seen that BA network is occupied by more large-degree

nodes than other two. Therefore, information spreading on BA

network is the fastest while slowest on WS network. According to

the partial interaction in the present model, informed agents

transmit information to only a certain fraction of their neighbors.

Consequently, there would be also some uninformed individuals

remaining without receiving any news because they are surround-

ed by exhausted neighbors (see Figure 4). Considering that the

spreading process may influence differently to different type of

nodes, we observe the relationship between exhausted rate P(Rk)
and node degree k of three networks at the stable state (see

Figure 3b), where P(Rk) is the ratio of the total number of

exhausted nodes with degree k to the overall number of nodes with

degree k. It clearly shows that P(Rk) and k are apparently

positively correlated, and nodes with smaller degree have less

probability to receive information. Furthermore, Figure 3c

displays the degree distributions of three networks. In general,

BA network shows the power-law degree distribution where most

nodes are of low degree but still a few hub nodes exist due to the

rich-get-richer mechanism. Poisson degree distribution emerges in

ER network because of purely random attachment. Compara-

tively, most nodes in WS have moderate degree and only a few

small and large degree nodes, resulting from the rewiring process.

In a word, the generally different fraction of hub nodes (Figure 3c)

and different spreading effects on different type of nodes (Figure 3b)

support the result of Figure 3a from the perspectives of structure

and function, respectively.

Information Blind Areas
As can be seen from Figure 3a, the exhausted rate is always less

than 1, suggesting that some nodes will never be informed during

the whole spreading process. Specifically, in this paper, we name

the region consists of such unreachable nodes as the Information

Blind Area. Actually, such blind areas emerge regularly due to the

spreading process. Figure 4 shows two typical kinds of information

blind areas. One is composed by a single uninformed node

surrounded by exhausted neighbors and thus it could not receive

news. As shown in Figure 4a, the uninformed node S1 is enveloped

by three exhausted nodes R1, R2 and R3, who would neither

directly transmit information to S1 nor allow the informed agents

to contact S1. The other one is composed of multiple uninformed

nodes connected with each other and surrounded together by

exhausted nodes. Thus, the information will never be transmitted

to such a cluster as no path is available. As shown in Figure 4b,

three uninformed nodes, S1, S2 and S3, compose a connected

cluster which is surrounded by five exhausted nodes, R1, R2, R3,

R4 and R5. Since no single uniformed node in this cluster can

access the outside information world, they have to passively keep

blind for the spreading information.

In order to describe those two kinds of information blind areas

more clearly, we conduct experiments with N = 100 and SkT = 6.

Figure 5 shows the visualization results on the three representative

networks. It can be seen that most uninformed individuals at stable

state (Figure 5a, 5d, 5g) are generally small-degree ones, which is

consistent with the foregoing analysis. In addition, we also show

the two information blind areas. The single-node case is displayed

in Figure 5b, Figure 5e, Figure 5h. In Figure 5b, the uninformed

individual #66 is surrounded by exhausted neighbors #7, #10,

#36, #71, #75 and #83. As a consequence, node #66 is

prevented from hearing news by its neighbors. Figure 5e and

Figure 5h are similar to that of Figure 5b. On the other hand,

Figure 5c, 5f, and 5i report the information blind areas of multi-

nodes cases on BA, ER and WS networks, respectively. As shown

in Figure 5c, three uninformed individuals #49, #86 and #97

compose a connected cluster, which is surrounded by exhausted

individuals #1, #4, #7, #17, #18, #35, and #61. Therefore, all

the nodes in this relatively large area will not be informed and

keep blind to spread information. Similar phenomena can also be

discovered in Figure 5f and Figure 5i on ER and WS networks,

respectively.

Scale-free Effect
In this section, we shall explain how such blind areas emerge

from the perspective of site percolation. Generally, in a typical site

percolation system, each node in the given network would be at

one of two given states: empty with probability p or occupied with

probability 1{p, and all the edges connecting with empty nodes

are cut off. Previous studies have proved that the site percolation

system would display a phase transition phenomenon from

connected phase to disconnected phase when p grows to a critical

point pc [46]. At this point, the behavior of the ratio of giant

cluster size (the largest connected cluster) rg (rg~Ng=N, where Ng

is the size of the giant cluster) indicates the network’s sudden

disintegration, and the scaling distribution of connected clusters

would emerge [47–51]. Figure 6a–6c respectively show how rg

changes according to different p, as well as the critical point (see

insets) in three different networks (BA, ER and SW networks) with

the same network size N = 10000.

Note that, the role of the empty nodes in site percolation is quite

similar with that of the R-state individuals in the present model,

where the information blind areas are divided by those individuals.

For the R-state individuals are all connected in the proposed

Figure 2. (Color online) The ratio of exhausted nodes P(R) as a
function of a for three observed networks.
doi:10.1371/journal.pone.0095785.g002
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model, we set nodes in the largest connected subgraph in site

percolation system as the empty state. Analogous with observing

the giant cluster in site percolation, we consequently calculate the

ratio of the largest blind area size rs (rs~Ns=N, where Ns is the

size of the largest information blind area) for various exhausted

rate R[½0,1�. The results are shown in Figure 6d–6f, where the

curve exhibits a very similar trend with that of rg. In addition, we

numerically calculate the thresholds of both pc and Rc, according

to the peak of the relative variance of the size distribution. We

denote it by x~
SN2

c T{SNcT2

SNcT
, where Nc is the size of each

connected cluster except the giant one [52], for it would result in

large fluctuation when p or R approaches the critical point, and

the insets of Figure 6a–6f show the corresponding results.

Furthermore, in different networks (BA, ER and WS), we find

good agreements between the size distributions of connected

clusters and information blind areas of the two respective models.

Figure 6g–6i show that the distributions of the connected clusters’

size of the two models are coincident with almost the same

exponent 22.9 at their respective critical points, indicating that

they have very similar critical phenomena.

Despite those similar properties, we should not regard the

present model as an equivalent process as the site percolation. One

significant difference between them is that, the node states are

changed according to the diffusion process based on the given

network structure in the spreading model, while the site

percolation process only randomly label the node states regardless

of the network structure. Therefore, the critical points exhibit very

differently for the two models. In the insets of Figure 6a–6c, the

critical values follow pBA
c wpER

c wpWS
c for the site percolation,

while a completely opposite sequence for the proposed model as

shown in the insets of Figure 5d–5f (that is RBA
c vRER

c vRWS
c ). For

the random labeling process, the more heterogeneous the network

is, the larger the critical point will be, as there are more small-

degree nodes when each one is treated equally. On the contrary, if

there exist some large-degree nodes dominating the network

center, messages can be easily spread out via those core nodes,

hence the critical point will be smaller for such large heteroge-

neous network in the diffusion process. Similar statements can also

be applied in illustrating that, for the same network, the critical

value of the interaction model is always smaller than that of site

percolation, e.g. pBA
c wRBA

c , pER
c wRER

c and pWS
c wRWS

c . In a

word, although the site percolation principle can not be fully

projected to spreading dynamics, it still provides a promising and

versatile tool to explain the critical phenomenon of the emergence

of blind areas in information spreading.

Conclusions & Discussion

In this paper, we have applied the partial interaction effect in

the classical SIR model where three types of node states are

considered: (1) Uninformed (S); (2) Informed (I); (3) Exhausted (R).

Subsequently, we adopt it in an information spreading scenario,

where the interaction strength is proportional to each spreader’s

degree. Numerical experiments show that there is a clearly positive

relationship between the interaction strength and final coverage of

Figure 3. (Color online) The dynamics of spreading on three networks. (a) Exhausted rate P(R) as a function of simulation time. Inset is DP(R)
as the function of simulation time; (b) Exhausted rate as a function of the node degree; (c) Degree distributions of three networks in log-log scale. The
parameter a is set to 0.35 for (a) and (b).
doi:10.1371/journal.pone.0095785.g003

Figure 4. (Color online) Illustration of two typical kinds of
information blind areas: (a) one single-node case; and (b)
example of multiple nodes.
doi:10.1371/journal.pone.0095785.g004
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spreading. In addition, we find that the spreading effect is highly

influenced by the network structure. One interesting property will

result from the spreading process, where the network is divided

into several information-unreachable areas, namely Information

Blind Areas. Analysis reveals that a phase transition of such blind

areas’ size distribution will emerge when the fraction of R-state

individuals grows to a certain critical point. In spite of quite similar

results from site percolation analysis, detailed experiments show

that the diffusion process is significantly different from random

selection. Further numerical analyses on three representative

networks (BA, ER and WS) demonstrate that, for the spreading

process, the more heterogeneous the network is, the smaller the

critical point will be. By contrast, the random labeling process of

site percolation is completely opposite. Moreover, the critical value

of network-based diffusion is smaller than that of purely random

selection. Those findings can be regarded as additional explana-

Figure 5. (Color online) Visualization of information blind areas resulted from designed experiments. Yellow and blue circles represent
the uninformed and exhausted nodes, respectively. The size of each node is proportional to its degree. In addition, (a–c) are the results on BA
network; (d–f) are the results on ER network; (g–i) are the results on WS network.
doi:10.1371/journal.pone.0095785.g005
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tion why small-world network yields the most efficient informa-

tion/epdemic spreading in previous studies [19,31].

Recently, the research of both contagion-based spreading

models and applications has attracted more and more attention

[24,37]. Numerical results in this paper demonstrate that, due to

the various network structure, there are always unreachable

individuals. Human communication pattern analysis [25,53]

would be a promising method to help in understanding how to

lighten the Dark Corners. In addition, activation of Long-tail

individuals and products would also enhance the efficiency of

Information Filtering [54] in the era of big data to solve the cold-start

dilemma [55,56].
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