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Alloys and Selected Properties. A listing of the four bulk metallic
glass (BMG) alloys studies is given in Table S1 and the differential
scanning calorimeter (DSC) traces for the as-cast and annealed
Fe-based BMG is shown in Fig. S4.

Hertzian Mechanics. The displaced volume is a function of the
penetration depth h and the radius of the indenter R. Hertzian
contact mechanics predicts that the indentation depth is related
to the amount of load P by (1)
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where Er is the reduced modulus
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where E is Young’s modulus, ν is the Poisson ratio, and the
subscript i refers to the indenter and s to the BMG sample.
For the diamond indenter, Ei = 1,141 GPa and νi = 0.07. In
previous work it has been shown that there is good agreement
between the prediction of Eq. 1 and the experimental data be-
fore the first pop-in event as shown in Fig. 1. Thus, the transition
from perfectly elastic behavior to plastic deformation is associ-
ated with the first pop-in event in a nanoindentation measure-
ment. The deformation volume under an indenter increases with
the penetration depth of the indenter. The total shearing volume
Vd of the first pop-in is the displaced volume under the indenter
as given by (1, 2)
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The mean contact pressure Pm is
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Finite-Element Analysis and Deformed Volume Evaluation. Even with
careful preparation a real sample surface will exhibit some
roughness. To assess the influence of surface roughness, ANSYS,
a commercial finite-element analysis software, was used to model
the 3D nanoindentation in a 2D half-space of finite width by
taking advantage of the symmetry of the problem (3). The
specimen, assumed to be a cylinder with a diameter of 20 μm and
height of 10 μm, was modeled as an elastic solid for a smooth
surface and as an elastoplastic solid with isotropic plastic hard-
ening for a rough surface with 100-nm periodic undulations
roughness, which is on the scale of the diamond particles used
for sample polishing. For a virtual specimen material, the elastic
modulus and Poisson’s ratio are assumed to be 100 GPa and
0.33, respectively, whereas the yield strength and strain hard-
ening coefficient are set to be 3.0 GPa and 100 MPa, re-
spectively. The rate-dependent plasticity is assumed to follow
a Peirce model (3) in which a rate hardening parameter (m) and
the material viscosity parameter (γ) are set to 0.01 and 10−5·s−1,
respectively. The contact between the indenter and the specimen
surface was modeled using contact elements. The model was
meshed by using 6,732 eight-node triangle symmetric elements
(PLANE183 and PLANE182) and 201 three-node contact

elements (CONTA172 and TARGE169), with a total of 24,383
nodes. Symmetric displacement boundary conditions were ap-
plied. Indentation of the sample was simulated by applying a
uniform pressure pz to the line representing the top surface of
the indenter, linearly increasing from 0 to pz,max within a certain
period to realize the force-control mode of the experiment.
When plastic deformation is involved, the stress–deformation

concentration in the undulations (100 nm in periodicity) will
change the distribution of stress and elastic–plastic deformation
in the sample. A localized plastic strain in the vicinity of the
surface due to undulations will alleviate the possibility of plasticity
in the relatively bulk volume underneath the indenter. As a result,
the first pop-in that requires a sudden burst of shear deformation
in the volume is expected to take place at a smaller indentation
load (e.g., 3 mN) than in the case of undulated surface (e.g.,
∼20 mN), which agrees well with the experimental results.
It is also evident that the surface stress concentrations are not

the origin of shear bands because they are too localized to support
shear band propagation that is necessary to trigger a pop-in event.
Moreover, if surface roughness were operating to promote shear
bands the smooth translation of both peaks in the Fe-based BMG
after annealing would not have been observed because the sample
was repolished after the annealing. Thus, the bimodal distribution
signifies that as the indenter penetrates into the sample, it is
sampling at least two nucleation sites within the stressed volume.
An initial estimate of Ve can be made by using the displaced

volume Vd during indentation using Hertzian contact mechanics.
However, because the stress distribution within all regions of the
displaced volume does not satisfy the minimum criteria that the
stress must be sufficient for both nucleation and propagation, Ve
is a fraction of Vd. Based upon the analysis of Packard and Schuh
(4) and the finite element method (FEM) results, the volume of
the appropriate path that satisfies the minimum criteria is esti-
mated as Ve∼ 0.01Vd.

Analysis of Pop-In Distributions. For the analysis of the distribution
of first pop-in events as a function of load it is important to
consider the full range of measurements. It is evident from Fig. 2D
that a distribution with a single peak cannot account for the full
range of measurement. To determine whether the measured
distribution can be represented by the summation of two or three
separate distributions we have conducted a statistical analysis
based upon the use of Gaussian distributions (5) (Fig. S6).

Summary of Results from Different BMG Alloys. The results from the
BMG alloys not shown in the main text are presented here, along
with the analysis of the nucleation rates and nucleation barriers in
Figs. S1–S3. The main results are summarized in Table S2. Note
that the fits to the experimental cumulative density function are
based upon a bimodal distribution analysis. The bimodal fits to
the cumulative density function (CDF) are very good in all cases
over the entire range of measurement. Because the probability
density function (PDF) plots are derived from the experimental
CDF, they are sensitive to small variations in the data that can
yield variations in the shape of the PDF. The separate con-
tributions from each portion of the bimodal distribution are
shown as dashed and dashed–dotted curves.

Nucleation Site Density Evaluation. The complete evaluation of the
nucleation rate requires an estimate of β which is the product of
an attempt frequency taken as 1013 s−1 and the number density
of sites. Based upon the character of the bimodal distribution of
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pop-in events we can derive an independent evaluation of the
nucleation site density. For example, for the pop-in distribution
for the Cu-based BMG shown in Fig. S2 we note that for the high
load pop-ins there are essentially no sites to initiate a low load
pop-in. If we consider a Poisson distribution of nucleation sites
among the nanoindentation deformed volumes, the fraction of
sites without a low load site X is given by X = 1 − exp(−mVd),
where m = the number of sites per volume and Vd = the de-
formed volume. For a high load of 24 mN, Vd (high) = 8.73 ×
10−21 m3. For X, we have used 0.1%, which indicates that the
fraction of high load sites [i.e., (1−X)] is 99.9%. With these
values we obtain the following results: m(low) = 9.5 × 1019 m−3

and m(high) = 8.5 × 1019 m−3.
We can also check the results for consistency by evaluating the

site distribution for low load conditions. For this case with a 12-mN
load, Vd(low) = 5.36 × 10−21 m3. We also assume for simplicity
that the site density is not a function of load level. With Vd(low)
and the m values determined previously, we find that the low load
sites represent 98.6% and the high load fraction is only 1.4%. This
indicates that we would rarely see a high load event in the low load
range and demonstrates internal consistency.

Simulation Strategy.The activation energies that are found by using
the hazard rate and a simple model for nucleation are used to
ensure that the values will replicate the datasets that are found by
the nanoindentation experiments. These numerical simulations

start with an expression for the activation energy and solve for the
hazard rate that would result from that energy barrier. For this
paper, 10,000 trials were used for each sample. With these starting
condition, the following steps break down the way in which pop-ins
are recorded:

1) Calculate hazard values for a discrete set of loads (both
mechanisms).

2) Use an initial value for the overall sampling fraction for the
mechanisms (i.e., how many of the observed pop-ins “belong”
to mechanism 1 or mechanism 2).

3) Start the trials (increased number of trials gives lower sam-
pling error).

a) Compare a test variable (0 ≤ R1 ≤ 1) to the sampling
fraction to decide mechanism.

i) Create a random test variable (0 ≤ R2,i ≤ 1) for each
load.

ii) Compare the hazard experienced at each load to the
corresponding R2,i.

iii) Stop the test at the first instance where the hazard is
greater than R2,i.

iv) Record the load at which pop-in occurs and the mech-
anism used when the hazard is greater than R2,i.

v) Start again at 3a).

4) Refine step 2 estimate and proceed to step 3a).
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Fig. S1. The activation energy barrier and nucleation rates of the first pop-ins in the Au-BMG samples. (A) The experimental cumulative density function is
displayed together with the separate calculated contributions from each of the two nucleation sites. There is a close agreement between the fitted cumulative
distribution and the measurements over the entire range including the endpoints. (B) The experimental probability density function is displayed together with
the separate calculated contributions from each of the two nucleation sites. There is a close agreement between the fitted probability distribution and the
measurements over the entire range including the endpoints. (C) The trend of activation barrier and (D) the resultant nucleation rates as a function of load are
separated and indicate the existence of two nucleation sites with an overlapping load range of operation. In the low load range where the nucleation barrier
ranges from 36kT to 34kT, the nucleation rate (D) reaches 1.5 × 1017 m−3s−1 when a transition occurs to operation of the high load site.
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Fig. S2. The activation energy barrier and nucleation rates of the first pop-ins in the Cu-BMG samples. (A) The experimental cumulative density function is
displayed together with the separate calculated contributions from each of the two nucleation sites. There is a close agreement between the fitted cumulative
distribution and the measurements over the entire range including the endpoints. (B) The experimental probability density function is displayed together with
the separate calculated contributions from each of the two nucleation sites. There is a close agreement between the fitted probability distribution and the
measurements over the entire range including the endpoints. (C) The trend of activation barrier and (D) the resultant nucleation rates as a function of load are
separated and indicate the existence of two nucleation sites with an overlapping load range of operation. In the low load range where the nucleation barrier
ranges from 39kT to 37.4kT, the nucleation rate (D) reaches 0.5 × 1017 m−3s−1 when a transition occurs to operation of the high load site.

Fig. S3. The activation energy barrier and nucleation rates of the first pop-ins in the Zr-BMG samples. (A) The experimental cumulative density function is
displayed together with the separate calculated contributions from each of the two nucleation sites. There is a close agreement between the fitted cumulative
distribution and the measurements over the entire range including the endpoints. (B) The experimental probability density function is displayed together with
the separate calculated contributions from each of the two nucleation sites. There is a close agreement between the fitted probability distribution and the
measurements over the entire range including the endpoints. (C) The trend of activation barrier and (D) the resultant nucleation rates as a function of load are
separated and indicate the existence of two nucleation sites with an overlapping load range of operation. In the low load range where the nucleation barrier
ranges from 38kT to 37kT, the nucleation rate (D) reaches 0.5 × 1017 m−3s−1 when a transition occurs to operation of the high load site.
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Fig. S4. DSC heating (40 °C/min) results for as-cast and annealed (heated to 540 °C and reheated) Fe57.6Co14.4B19.2Si4.8Nb4 amorphous sample.

Fig. S5. (A) FEM results on the von Mises strain (P = 2 mN) for the elastic indentation deformation of a smooth surface. (B) FEM results on the von Mises strain
(P = 20 mN) for the elastoplastic indentation deformation of a surface with 100-nm undulations.
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Fig. S6. Group of plots compares the fitting by one-, two-, and three-peak functions. The black curves are the kernel density of the experimental data for the
as-cast Fe-based BMG. The red curves are fits composed of (A) one, (B) two, or (C) three peak functions. The green curves are decomposed single peaks from the
multimodal functions. The fitting results can be evaluated by statistical parameters such as the coefficient of determination, R2. A large adjusted R2 (closer to 1)
indicates a good model fit (5). The plots confirm that the two-peak function gives much better fitting than a single-peak function according to the values of
adjusted R2 (increase from 0.95467 to 0.99884 for as-cast sample). However, adding one more peak to the fitting function does not change the fit very much
according to the values of adjusted R2 (increase from 0.99884 to 0.99936). Moreover, the resulting fits to the experimental data-based CDF plots also show that
(D) a single-peak function does not provide a satisfactory fit over the entire measurement range, but (E) a two-peak function provides a very good fit. The
addition of a third peak does not improve the fit. Similar results are obtained for the other BMG samples. Therefore, we use a bimodal fitting function
containing two peaks to analyze the experimental results.
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Table S1. List of alloys and some selected properties

Alloy (at. %) σ, GPa e, % E, GPa ν G, GPa Tg, K T/Tg

Fe57.6Co14.4B19.2Si4.8Nb4 4.05 2.0 203 0.32 76.9 807 0.37
Cu60Hf25Ti15 2.01 1.7 124 0.36 45.6 740 0.40
Au49.5Ag5.5Pd2.3Cu26.9Si16.3 1.20 — 74.4 0.406 26.5 405 0.74
Zr55Cu25Ni10Al10 1.90 2.2 86 0.36 31.6 685 0.43

Table S2. Summary of shear band nucleation analysis results

BMG
W(τ)L*/kT

(load range, mN)
JL (10

17m-3·s−1)
(load range, mN)

Site density
(low load, m−3)

W(τ)H*/kT
(load range, mN)

JhH (1017m-3·s−1)
(load range, mN)

Site density
(high load, m−3)

Fe57.6Co14.4B19.2Si4.8Nb4

(as-cast)
39.5–38 (11–16) 0.08–0.2 (11–16) 1 × 1020 37.5–36.5 (28–31) 0.5–1.0 (28–31) 9.1 × 1019

Fe57.6Co14.4B19.2Si4.8Nb4

(annealed)
39–38 (10–17) 0.01–0.3 (10–17) 1 × 1020 38–37 (29–39) 0.5–1.0 (29-39) 9.2 × 1019

Cu60Hf25Ti15 39–37.5 (6–15) 0.05–0.5 (6–15) 9.5 × 1019 37–36.5 (21–25) 0.5–1.0 (21–25) 8.5 × 1019

Au49.5Ag5.5Pd2.3Cu26.9Si16.3 36–34 (3–6) 0.02–1.5 (3–6) 1.3 × 1019 34–33 (8–11) 2.5–5.0 (8–11) 1.3 × 1019

Zr55Cu25Ni10Al10 38–37 (9–15) 0.1–0.5 (9–15) 7.3 × 1019 37.25–36.25 (21–26) 0.5–1 (22–27) 6.6 × 1019
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