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Preface

Two of the most fundamental concepts in the theory of stochastic processes
are the Markov property and the martingale property.* This book is written
for readers who are acquainted with both of these ideas in the discrete-time
setting, and who now wish to explore stochastic processes in their continuous-
time context. It has been our goal to write a systematic and thorough exposi-
tion of this subject, leading in many instances to the frontiers of knowledge.
At the same time, we have endeavored to keep the mathematical prerequisites
as low as possible, namely, knowledge of measure-theoretic probability and
some familiarity with discrete-time processes. The vehicle we have chosen for
this task is Brownian motion, which we present as the canonical example of
both a Markov process and a martingale. We support this point of view by
showing how, by means of stochastic integration and random time change,
all continuous-path martingales and a multitude of continuous-path Markov
processes can be represented in terms of Brownian motion. This approach
forces us to leave aside those processes which do not have continuous paths.
Thus, the Poisson process is not a primary object of study, although it is
developed in Chapter 1 to be used as a tool when we later study passage times
and local time of Brownian motion.

The text is organized as follows: Chapter 1 presents the basic properties of
martingales, as they are used throughout the book. In particular, we generalize
from the discrete to the continuous-time context the martingale convergence
theorem, the optional sampling theorem, and the Doob—Meyer decomposi-
tion. The latter gives conditions under which a submartingale can be written

* According to M. Loéve, “martingales, Markov dependence and stationarity are the only three
dependence concepts so far isolated which are sufficiently general and sufficiently amenable to
investigation, yet with a great number of deep properties” (Ann. Probab. 1(1973), p. 6).
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as the sum of a martingale and an increasing process, and associates to every
martingale with continuous paths a “quadratic variation process.” This pro-
cess is instrumental in the construction of stochastic integrals with respect to
continuous martingales.

Chapter 2 contains three different constructions of Brownian motion,
as well as discussions of the Markov and strong Markov properties for
continuous-time processes. These properties are motivated by d-dimensional
Brownian motion, but are developed in complete generality. This chapter also
contains a careful discussion of the various filtrations commonly associated
with Brownian motion. In Section 2.8 the strong Markov property is applied
to a study of one-dimensional Brownian motion on a half-line, and on a
bounded interval with absorption and reflection at the endpoints. Many
densities involving first passage times, last exit times, absorbed Brownian
motion, and reflected Brownian motion are explicitly computed. Section 2.9
is devoted to a study of sample path properties of Brownian motion. Results
found in most texts on this subject are included, and in addition to these, a
complete proof of the Lévy modulus of continuity is provided.

The theory of stochastic integration with respect to continuous martingales
is developed in Chapter 3. We follow a middle path between the original
constructions of stochastic integrals with respect to Brownian motion and the
more recent theory of stochastic integration with respect to right-continuous
martingales. By avoiding discontinuous martingales, we obviate the need to
introduce the concept of predictability and the associated, highly technical,
measure-theoretic machinery. On the other hand, it requires little extra effort
to consider integrals with respect to continuous martingales rather than
merely Brownian motion. The remainder of Chapter 3 is a testimony to the
power of this more general approach; in particular, it leads to strong theorems
concerning representations of continuous martingales in terms of Brownian
motion (Section 3.4). In Section 3.3 we develop the chain rule for stochastic
calculus, commonly known as Itd’s formula. The Girsanov Theorem of Sec-
tion 3.5 provides a method of changing probability measures so as to alter
the drift of a stochastic process. It has become an indispensable method for
constructing solutions of stochastic differential equations (Section 5.3) and is
also very important in stochastic control (e.g., Section 5.8) and filtering. Local
time is introduced in Sections 3.6 and 3.7, and it is shown how this concept
leads to a generalization of the Itd formula to convex but not necessarily
differentiable functions.

Chapter 4 is a digression on the connections between Brownian motion,
Laplace’s equation, and the heat equation. Sharp existence and uniqueness
theorems for both these equations are provided by probabilistic methods;
applications to the computation of boundary crossing probabilities are dis-
cussed, and the formulas of Feynman and Kac are established.

Chapter 5 returns to our main theme of stochastic integration and differ-
ential equations. In this chapter, stochastic differential equations are driven
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by Brownian motion and the notions of strong and weak solutions are pre-
sented. The basic Itd theory for strong solutions and some of its ramifications,
including comparison and approximation results, are offered in Section 5.2,
whereas Section 5.3 studies weak solutions in the spirit of Yamada &
Watanabe. Essentially equivalent to the search for a weak solution is the
search for a solution to the “Martingale Problem” of Stroock & Varadhan.
In the context of this martingale problem, a full discussion of existence,
uniqueness, and the strong Markov property for solutions of stochastic differ-
ential equations is given in Section 5.4. For one-dimensional equations it is
possible to provide a complete characterization of solutions which exist only
up to an “explosion time,” and this is set forth in Section 5.5. This section also
presents the recent and quite striking results of Engelbert & Schmidt con-
cerning existence and uniqueness of solutions to one-dimensional equations.
This theory makes substantial use of the local time material of Sections 3.6,
3.7 and the martingale representation results of Subsections 3.4.A,B. By
analogy with Chapter 4, we discuss in Section 5.7 the connections between
solutions to stochastic differential equations and elliptic and parabolic partial
differential equations. Applications of many of the ideas in Chapters 3 and 5
are contained in Section 5.8, where we discuss questions of option pricing
and optimal portfolio/consumption management. In particular, the Girsanov
theorem is used to remove the difference between average rates of return
of different stocks, a martingale representation result provides the optimal
portfolio process, and stochastic representations of solutions to partial differ-
ential equations allow us to recast the optimal portfolio and consumption
management problem in terms of two linear parabolic partial differential
equations, for which explicit solutions are provided.

Chapter 6 is for the most part derived from Paul Lévy’s profound study of
Brownian excursions. Lévy’s intuitive work has now been formalized by such
notions as filtrations, stopping times, and Poisson random measures, but the
remarkable fact remains that he was able, 40 years ago and working without
these tools, to penetrate into the fine structure of the Brownian path and to
inspire all the subsequent research on these matters until today. In the spirit
of Lévy’s work, we show in Section 6.2 that when one travels along the
Brownian path with a clock run by the local time, the number of excursions
away from the origin that one encounters, whose duration exceeds a specified
number, has a Poisson distribution. Lévy’s heuristic construction of Brownian
motion from its excursions has been made rigorous by other authors. We do
not attempt such a construction here, nor do we give a complete specification
of the distribution of Brownian excursions; in the interest of intelligibility, we
content ourselves with the specification of the distribution for the durations
of the excursions. Sections 6.3 and 6.4 derive distributions for functionals
of Brownian motion involving its local time; we present, in particular, a
Feynman-Kac result for the so-called “clastic” Brownian motion, the for-
mulas of D. Williams and H. Taylor, and the Ray—Knight description of
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Brownian local time. An application of this theory is given in Section 6.5,
where a one-dimensional stochastic control problem of the “bang-bang” type
is solved.

The writing of this book has become for us a monumental undertaking
involving severalpeople, whose assistance we gratefully acknowledge. Fore-
most among these are the members of our families, Eleni, Dot, Andrea, and
Matthew, whose support, encouragement, and patience made the whole en-
deavor possible. Parts of the book grew out of notes on lectures given at
Columbia University over several years, and we owe much to the audiences
in those courses. The inclusion of several exercises, the approaches taken to
a number of theorems, and several citations of relevant literature resulted
from discussions and correspondence with F. Baldursson, A. Dvoretzky,
W. Fleming, O. Kallenberg, T. Kurtz, S. Lalley, J. Lehoczky, D. Stroock, and
M. Yor. We have also taken exercises from Mandl, Lanska & Vrkoc (1978),
and Ethier & Kurtz (1986). As the project proceeded, G.-L. Xu, Z.-L. Ying,
and Th. Zariphopoulou read large portions of the manuscript and suggested
numerous corrections and improvements. Careful reading by Daniel Ocone
and Manfred Schil revealed minor errors in the first printing, and these have
been corrected. However, our greatest single debt of gratitude goes to Marc
Yor, who read much of the near-final draft and offered substantial mathemat-
ical and editorial comments on it. The typing was done tirelessly, cheerfully,
and efficiently by Stella DeVito and Doodmatie Kalicharan; they have our
most sincere appreciation.

We are grateful to Sanjoy Mitter and Dimitri Bertsekas for extending
to us the invitation to spend the critical initial year of this project at the
Massachusetts Institute of Technology. During that time the first four chap-
ters were essentially completed, and we were partially supported by the Army
Research Office under grant DAAG-299-84-K-0005. Additional financial sup-
port was provided by the National Science Foundation under grants DMS-
84-16736 and DMS-84-03166 and by the Air Force Office of Scientific Research
under grants AFOSR 82-0259, AFOSR 85-0360, and AFOSR 86-0203.

Toannis Karatzas
Steven E. Shreve
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Suggestions for the Reader

We use a hierarchical numbering system for equations and statements. The
k-th equation in Section j of Chapter i is labeled (j.k) at the place where it
occurs and is cited as (j.k) within Chapter i, but as (ij.k) outside Chapter i. A
definition, theorem, lemma, corollary, remark, problem, exercise, or solution
is a “statement,” and the k-th statement in Section j of Chapter i is labeled j.k
Statement at the place where it occurs, and is cited as Statement j.k within
Chapter i but as Statement ij.k outside Chapter i.

This book is intended as a text and can be used in either a one-semester or
a two-semester course, or as a text for a special topic seminar. The accompany-
ing figure shows dependences among sections, and in some cases among
subsections. In a one-semester course, we recommend inclusion of Chapter 1
and Sections 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, §29.A, B, E, Sections 3.2,33,51,5.2,
and §5.6.A, C. This material provides the basic theory of stochastic integration,
including the Itd calculus and the basic existence and uniqueness results for
strong solutions of stochastic differential equations. It also contains matters
of interest in engineering applications, namely, Fisk—Stratonovich integrals
and approximation of stochastic differential equations in §3.3.A and 5.2.D,
and Gauss—Markov processes in §5.6.A. Progress through this material can
be accelerated by omitting the proof of the Doob-Meyer Decomposition
Theorem 1.4.10 and the proofs in §2.4.D. The statements of Theorem 1.4.10,
Theorem 2.4.20, Definition 2.4.21, and Remark 2.4.22 should, however, be
retained. If possible in a one-semester course, and certainly in a two-semester
course, one should include the topic of weak solutions of stochastic differential
equations. This is accomplished by covering §3.4.A, B, and Sections 3.5, 5.3,
and 5.4. Section 5.8 serves as an introduction to stochastic control, and so we
recommend adding §3.4.C, D, E, and Sections 5.7, and 5.8 if time permits. In
either a one- or two-semester course, Section 2.8 and part or all of Chapter 4
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may be included according to time and interest. The material on local time
and its applications in Sections 3.6, 3.7, 5.5, and in Chapter 6 would normally
be the subject of a special topic course with advanced students.

The text contains about 175 “problems” and over 100 “exercises.” The
former are assignments to the reader to fill in details or generalize a result,
and these are often quoted later in the text. We judge approximately two-
thirds of these problems to be nontrivial or of fundamental importance, and
solutions for such problems are provided at the end of each chapter. The
exercises are also often significant extensions of results developed in the
text, but these will not be needed later, except perhaps in the solution of
other exercises. Solutions for the exercises are not provided. There are some
exercises for which the solution we know violates the dependencies among
sections shown in the figure, but such violations are pointed out in the
offending exercises, usually in the form of a hint citing an earlier result.
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Frequently Used Notation

1. General Notation

Let a and b be real numbers.
(1) £ means “is defined to be.”
(2) a A b 2 min{a,b}.

(3) a v b £ max{a,b}.

(4) a* 2 max{a,0}.

(5) a~ 2 max{—a,0}.

II. Sets and Spaces

(1) Ny 2{0,1,2,...}.

(2) Q is the set of rational numbers.

(3) Q7 is the set of nonnegative rational numbers.

(4) R is the d-dimensional Euclidean space; R' = R.

(5) B, & {xeR% ||x|| <r} (p. 240).

(6) (R9)0-= s the set of functions from [0, c0) to R? (pp. 49, 76).

(7) C[0, o) is the subspace of (R*)l®’ consisting of continuous functions;
C[0, o0)! = C[0, o0) (pp. 60, 64).

(8) D[O, c0) is the subspace of R!%* consisting of functions which are right
continuous and have left-limits (p. 409).

(9) CHE), CK(E), CX(E): See Remark 4.1, p. 312.

(10) C*2([0, T) x E),C*3((0, T) x E): See Remark 4.1, p. 312.

(11) 2, L(M), Z*, L*M): See pp. 130-131.

(12) 2, P(M), P*, P*(M): See pp. 146-147.

(13) 4, (5): The space of (continuous) square-integrable martingales (p. 30).

(14) #"°°(#'*°). The space of (continuous) local martingales (p. 36).
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III. Functions

1, x>0,

(1) sgn(x)={_l; o
AL xeA,
@) 1A(x)={0; i

3) p(t;x, ) £ e T 5 0, x, yeR (p. 52).

</ 2nt

(4 pi(t;x, ») 2 p(t; x,y) £ pt; x, =yt >0, x, ye R (p. 97).
5) [t] is the largest integer less than or equal to the real number ¢.

IV. o-Fields

(1) #(U): The smallest o-field containing all open sets of the topological
space U (p. 1).

(2) 4,(C[0, 0)), B,(C[0, 0)?). See pp. 60, 307.

(3) ¢(%): The smallest o-field containing the collection of sets 4.

(4) o(X,). The smallest o-field with respect to which the random variable X
is measurable.

(5) o(X,;0 <5 < t): The smallest o-field with respect to which the random
variable X, is measurable, V se[0,t].

6) F* £ o(X; 0<s<t) 2 6(| Ji»0 %) See p. 3.

(7 #. = ﬂ£>0 Frre P = G(Us<t‘/ ): See p. 4.

(8) #;: The o-field of events determined prior to the stopping time T; see
p- 8

(9) #7.: The o-field of events determined immediately after the optional
time T'; see p. 10.

(10) F ® %9 2 (A x B; Ae #, Be%}: The product o-field formed from the

o-fields # and 9.

V. Operations on Functions

d
AZ
&

5: The Laplacian (p. 240).

2 o

cond order differential operators; see pp. 281, 311.

VI. Operations on Processes

(1) 6,, O5: Shift operator at the deterministic time s and the random time S;
see pp. 77, 83.
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() IM(X) £ [, X,dM,: The stochastic integral of X with respect to M. See
p. 141 for Me 45, X € £*(M); see p. 147 for M e 4%, X e P*(M).

(3) MX 2 max, ., |M,|: See p. 163 for M e.#*"".

(4) (X>: The quadratic variation process of X €.#, (p. 31) or X e.#*"*
(p- 36).

(5) <X, Y>: The cross-variation process of X, Y in .#, (p. 31) or in .#*"*
(p- 36).

6) 1 X1, IX|:Seep.37for X e.#,.

VI1. Miscellaneous

(l)mT(Xé—sup{|X X[;0<s<t<Tt—s<d}; Seep. 33.
(2) m*(w,0) £ max{jw(s) —w();0<s<t < T,t —s < d}: See p. 62.
(3) D: The closure of the set D c R
(4) D°: The complement of the set D.
(5) oD: The boundary of the set D = R%.
(6) tp = inf{t > 0; W, e D*}: The first time the Brownian motion W exits from
the set D < R4 (p. 240).
(7) T, £ inf{t > 0; W, = b}: The first time the one-dimensional Brownian
motion W reaches the level be R (p. 79).
(8) T.(t) = [§ 1,0..0)(W.) ds: The occupation time by Brownian motion of the
positive half-line (p. 273).
(9) P, P: Weak convergence of the sequence of probability measures
{P, } ~, to the probability measure P (p. 60).
(10) X, 2 X:Convergence in distribution of the sequence of random variables
{X ~, to the random variable X (p. 61).
(11) P~ Probablllty measure corresponding to Brownian motion (p. 72) or a
Markov process (p. 74) with initial position x € R%.
(12) P*: Probability measure corresponding to Brownian motion (p. 72) or a
Markov process (p. 74) with initial distribution p.
NHE, N ¥ Collections of P#-negligible sets (p. 89).
I(g), Z(g): See pp. 331, 332.
I,: The (d x d) identity matrix.
meas: Lebesgue measure on the real line (p. 105).

(13
(14
(15
(16






CHAPTER 1

Martingales, Stopping Times,
and Filtrations

1.1. Stochastic Processes and o-Fields

A stochastic process is a mathematical model for the occurrence, at each
moment after the initial time, of a random phenomenon. The randomness is
captured by the introduction of a measurable space (Q, ), called the sample
space, on which probability measures can be placed. Thus, a stochastic process
is a collection of random variables X = {X,;0 <t < oo} on (Q, %), which
take values in a second measurable space (S, %), called the state space. For
our purposes, the state space (S, &) will be the d-dimensional Euclidean space
equipped with the o-field of Borel sets, ie., § = R, & = B(R?), where Z(U)
will always be used to denote the smallest o-field containing all open sets of
a topological space U. The index t € [0, c0) of the random variables X, admits
a convenient interpretation as time.

For a fixed sample point w e Q, the function t— X,(w); t > 0 is the sample
path (realization, trajectory) of the process X associated with . It provides
the mathematical model for a random experiment whose outcome can be
observed continuously in time (e.g., the number of customers in a queue
observed and recorded over a period of time, the trajectory of a molecule
subjected to the random disturbances of its neighbors, the output of a com-
munications channel operating in noise).

Let us consider two stochastic processes X and Y defined on the same
probability space (Q, #, P). When they are regarded as functions of t and o,
we would say X and Y were the same if and only if X,(w) = Y(w)forallt > 0
and all w € Q. However, in the presence of the probability measure P, we could
weaken this requirement in at least three different ways to obtain three related
concepts of “sameness” between two processes. We list them here.
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1.1 Definition. Y is a modification of X if, for every ¢t >0, we have
PIX,=Y]=1

1.2 Definition. X and Y have the same finite-dimensional distributions if, for
any integer n > 1, real numbers 0 < t, <t, < <t, < o, and Ae B(R™),
we have:

PL(X,,,...,X,)e Al = P[(%,,..., ¥, )€ A].

1.3 Definition. X and Y are called indistinguishable if almost all their sample
paths agree:

P[X,=Y;V0<t<w]=1

The third property is the strongest; it implies trivially the first one, which
in turn yields the second. On the other hand, two processes can be modifica-
tions of one another and yet have completely different sample paths. Here is
a standard example:

1.4 Example. Consider a positive random variable T with a continuous dis-

0, t#T| . P .
tribution, put X, = 0,andlet Y, = { Lot f T}' Y is a modification of X, since
for every t > 0 we have P[Y, = X,] = P[T # t] = 1, but on the other hand:
P[Y,=X,;Vt=0]=0.

A positive result in this direction is the following.

1.5 Problem. Let Y be a modification of X, and suppose that both processes
have a.s. right-continuous sample paths. Then X and Y are indistinguishable.

It does not make sense to ask whether Y is a modification of X, or whether
Y and X are indistinguishable, unless X and Y are defined on the same
probability space and have the same state space. However, if X and Y have
the same state space but are defined on different probability spaces, we can
ask whether they have the same finite-dimensional distributions.

1.2’ Definition. Let X and Y be stochastic processes defined on probability
spaces (Q, #, P) and (O, #, P), respectively, and having the same state space
(R%, #(R?). X and Y have the same finite-dimensional distributions if, for any
integer n > 1, real numbers 0 <t, <t, <~ <t, < o0, and Ae B(R™), we
have

P[(X,,..., X, )€ Al = P[(Y,,,..., ¥, )€ A].

Many processes, including d-dimensional Brownian motion, are defined in
terms of their finite-dimensional distributions irrespective of their probability
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space. Indeed, in Chapter 2 we will construct a standard d-dimensional
Brownian motion B on a canonical probability space and then state that
any process, on any probability space, which has state space (R4, #(R%)) and
the same finite-dimensional distributions as B, is a standard d-dimensional
Brownian motion.

For technical reasons in the theory of Lebesgue integration, probability
measures are defined on o-fields and random variables are assumed to be
measurable with respect to these o-fields. Thus, implicit in the statement that
a random process X = {X,;0 <t < oo} is a collection of (R4, B(R?))-valued
random variables on (Q, %), is the assumption that each X, is & | B(RY)-
measurable. However, X is really a function of the pair of variables (t, w), and
so, for technical reasons, it is often convenient to have some joint measurability
properties.

1.6 Definition. The stochastic process X is called measurable if, for every
A e B(R%), the set {(t, w); X,(w) € A} belongs to the product o-field #([0, 0)) ®
F; in other words, if the mapping

{t, w)— X (o): ([0, ©) x Q, &[0, ©)) ® F) > (R4, B(RY))

is measurable.

It is an immediate consequence of Fubini’s theorem that the trajectories of
such a process are Borel-measurable functions of t € {0, ), and provided that
the components of X have defined expectations, then the same is true for the
function m(t) = EX,; here, E denotes expectation with respect to a probability
measure P on (Q, #). Moreover, if X takes values in R and I is a subinterval
of [0, o) such that ; E|X,|dt < oo, then

J|X,|dt<ooa.s. P, and JEX,dt:EJ X, dt.
I I I

There is a very important, nontechnical reason to include o-fields in the
study of stochastic processes, and that is to keep track of information. The
temporal feature of a stochastic process suggests a flow of time, in which, at
every moment t > 0, we can talk about a past, present, and future and can ask
how much an observer of the process knows about it at present, as com-
pared to how much he knew at some point in the past or will know at some
point in the future. We equip our sample space (Q, #) with a filtration,
ie., a nondecreasing family {%; t > 0} of sub-o-fields of #: #, < # < F for
0<s<t<oo. WesetZ, =0o(|JioH)-

Given a stochastic process, the simplest choice of a filtration is that gen-
erated by the process itself, i.e.,

FXLG(X;0<s <),

the smallest o-field with respect to which X, is measurable for every se [0, ¢].
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We interpret A e £X to mean that by time ¢, an observer of X knows whether
or not A has occurred. The next two exercises illustrate this point.

1.7 Exercise. Let X be a process, every sample path of which is RCLL (ie,
right-continuous on [0, co) with finite left-hand limits on (0, c0)). Let A be the
event that X is continuous on [0,t,). Show that 4 € #X.

1.8 Exercise. Let X be a process whose sample paths are RCLL almost surely,
and let A be the event that X is continuous on [0, t,). Show that 4 can fail to
be in £, but if {#; t > 0} is a filtration satisfying FXc F,t>0,and F_ is
complete under P, then A€ Z, .

Let {#; t > 0} be a filtration. We define #_ £ o(| J,<, %) to be the o-field
of events strictly prior tot > 0 and &, & ﬂpo #,.,. to be the o-field of events
immediately after t > 0. We decree F,_ 2 %, and say that the filtration {#}
is right- (left-)continuous if = %, (resp., % = %) holds for every t > 0.

The concept of measurability for a stochastic process, introduced in Defini-
tion 1.6, is a rather weak one. The introduction of a filtration {#} opens up
the possibility of more interesting and useful concepts.

1.9 Definition. The stochastic process X is adapted to the filtration { £} if, for
each t > 0, X, is an %-measurable random variable.

Obviously, every process X is adapted to {#X}. Moreover, if X is adapted
to {#) and Y is a modification of X, then Y is also adapted to {#} provided
that %, contains all the P-negligible sets in #. Note that this requirement is
not the same as saying that %, is complete, since some of the P-negligible sets
in # may not be in the completion of %,.

1.10 Exercise. Let X be a process with every sample path LCRL (ie., left-
continuous on (0, co) with finite right-hand limits on [0, o)), and let 4 be the
event that X is continuous on [0,¢,]. Let X be adapted to a right-continuous
filtration {#}. Show that Ae &, .

1.11 Definition. The stochastic process X is called progressively measurable
with respect to the filtration {#} if, for each t > 0 and AeA(R’), the set
{5,050 <s <t weQ, X (w)e A} belongs to the product o-field Z([0,t]) ®
&, in other words, if the mapping (s, w) — X (w): ([0,¢] x Q, #([0,1]) ® Z)—
(R, Z(R?)) is measurable, for each t > 0.

The terminology here comes from Chung & Doob (1965), which is a basic
reference for this section and the next. Evidently, any progressively measurable
process is measurable and adapted; the following theorem of Chung & Doob
(1965) provides the extent to which the converse is true.
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1.12 Proposition. If the stochastic process X is measurable and adapted to the
filtration {Z}, then it has a progressively measurable modification.

The reader is referred to the book of Meyer (1966), p. 68, for the (lengthy,
and rather demanding) proof of this result. It will be used in this text only in
a tangential fashion. Nearly all processes of interest are either right- or left-
continuous, and for them the proof of a stronger result is easier and will now
be given.

1.13 Proposition. If the stochastic process X is adapted to the filtration {#,}
and every sample path is right-continuous or else every sample path is left-
continuous, then X is also progressively measurable with respect to {#}.

PROOF. We treat the case of right-continuity. With t >0, n > 1, k=01,
...,2"—1,and 0 < s < t, we define:
kt k+1
Xg"’(w) = X(Hl),/z..(w) for ? <s< ——zn—t,

as well as X{(w) = Xo(w). The so-constructed map (s, w)— XM (w) from
[0,¢] x Q into R? is demonstrably %#([0,t])® Z-measurable. Besides, by
right-continuity we have: lim, X™M(w) = X ), V(s,w)e[0,t] x Q. There-
fore, the (limit) map (s, w)— X (w) is also Z([0,¢]) ® Z-measurable. O

1.14 Remark. If the stochastic process X is right- or left-continuous, but
not necessarily adapted to {#}, then the same argument shows that X is
measurable.

A random time T is an F-measurable random variable, with values in
{0, o].

1.15 Definition. If X is a stochastic process and T is a random time, we define
the function X on the event {T < oo} by

Xr(w) & X r(o)@)-
If X (w) is defined for all we Q, then X7 can also be defined on Q, by setting
X(w) £ X (w)on {T = o}

1.16 Problem. If the process X is measurable and the random time T is finite,
then the function X is a random variable.

1.17 Problem. Let X be a measurable process and T a random time. Show
that the collection of all sets of the form { X ;€ 4}; 4 € Z(R), together with the
set {T = oo}, formsa sub-o-field of #. We call this the o-field generated by X 1.
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We shall devote our next section to a very special and extremely useful class
of random times, called stopping times. These are of fundamental importance
in the study of stochastic processes, since they constitute our most effective
tool in the effort to “tame the continuum of time,” as Chung (1982) puts it.

1.2. Stopping Times

Let us keep in mind the interpretation of the parameter ¢ as time, and of the
o-field Z, as the accumulated information up to t. Let us also imagine that we
are interested in the occurrence of a certain phenomenon: an earthquake with
intensity above a certain level, a number of customers exceeding the safety
requirements of our facility, and so on. We are thus forced to pay particular
attention to the instant T(w) at which the phenomenon manifests itself for the
first time. It is quite intuitive then that the event {w; T(w) < t}, which occurs
if and only if the phenomenon has appeared prior to (or at) time ¢, should be
part of the information accumulated by that time.
We can now formulate these heuristic considerations as follows:

2.1 Definition. Let us consider a measurable space (©, ) equipped with a
filtration {%}. A random time T is a stopping time of the filtration, if the event
{T <t} belongs to the o-field &, for every t > 0. A random time T is an
optional time of the filtration, if {T < t} € #, for every t = 0.

2.2 Problem. Let X be a stochastic process and T a stopping time of {#*}.
Suppose that for any o, @' € Q, we have X, () = X,(o') for all te [0, T(w)] N
[0, co0). Show that T(w) = T(w').

2.3 Proposition. Every random time equal to a nonnegative constant is a stopping
time. Every stopping time is optional, and the two concepts coincide if the
filtration is right-continuous.

PrOOF. The first statement is trivial; the second is based on the observation
(T<t) =), {T<t—(1/n)}e, because if T is a stopping time, then
(T <t—(1/n)}eFm < & for n > 1. For the third claim, suppose that T
is an optional time of the right-continuous filtration {%}. Since {T < t} =
Neso{T <t + ¢}, we have {T < t}eF., for every t 2 0 and every ¢ > 0;
whence {T < t}e %, = #,. a

2.4 Corollary. T is an optional time of the filtration {#} if and only if it is a
stopping time of the (right-continuous!) filtration {Z,.,}.

2.5 Example. Consider a stochastic process X with right-continuous paths,
which is adapted to a filtration {£,}. Consider a subset I'e B(RY) of the state
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space of the process, and define the hitting time
H (w) = inf{t > 0; X,(w)eT}.
We employ the standard convention that the infimum of the empty set is

infinity.

2.6 Problem. If the set I' in Example 2.5 is open, show that H_ is an optional
time.

2.7 Problem. If the set ' in Example 2.5 is closed and the sample paths of the
process X are continuous, then Hy is a stopping time.

Let us establish some simple properties of stopping times.

2.8 Lemma. If Tis optional and 8 is a positive constant, then T + Ois astopping
time.

PrROOF. If 0 <t < 0, then {T + 0 <t} = FeF.If t > 0, then
(T+0<t}={T<t—0}eFo+ SF O

2.9 Lemma. If T, S are stopping times, then so are TAS,TvST+S.

ProOF. The first two assertions are trivial. For the third, start with the decom-
position, valid for ¢ > 0:

(T+S>t}={T=0,S>t;ju{0< T<t,T+S>t}
u{T>t5=0}u{T=tS>0}

The first, third, and fourth events in this decomposition are in &%, either
trivially or by virtue of Proposition 2.3. As for the second event, we rewrite
it as:

U {t>T>rS>t—r}

reQ*
0<r<it

where Q* is the set of rational numbers in [0, c0). Membership in %, is now
obvious. O

2.10 Problem. Let T, S be optional times; then T + S is optional. It is a
stopping time, if one of the following conditions holds:

) T>0S>0;
(i) T > 0, T is a stopping time.

2.11 Lemma. Let {T,}2., be a sequence of optional times; then the random times

supT,, inf T,, limT, lmT,

n>1 n>1 n—-w n—o

are all optional. Furthermore, if the T,’s are stopping times, then S0 is sup, > T,.
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PrOOF. Obvious, from Corollary 2.4 and from the identities
{supﬁ,gt}:ﬂ{?},st} and {infﬁ,<t}=U{T},<t}. O
n>1 n=1 n>1 n=1

How can we measure the information accumulated up to a stopping time
T? In order to broach this question, let us suppose that an event A is part of
this information, ie., that the occurrence or nonoccurrence of A has been
decided by time T. Now if by time ¢t one observes the value of T, which can
happen only if T < t, then one must also be able to tell whether A has occurred.
In other words, A N {T <t} and A°n {T < t} must both be %-measurable,
and this must be the case for any t > 0. Since

An{T <t} ={T <t} n(An{T < t})’,
it is enough to check only that An{T <t}e %, t > 0.

2.12 Definition. Let T be a stopping time of the filtration { %, }. The o-field #;
of events determined prior to the stopping time T consists of those events Ae F
for which AN {T <t} e # foreveryt > 0.

2.13 Problem. Verify that %, is actually a o-field and T is % -measurable.
Show that if T'(w) = t for some constant t > 0 and every we Q, then % = £,.

2.14 Exercise. Let T be a stopping time and S a random time such that S > T
on Q. If S is #-measurable, then it is also a stopping time.

2.15 Lemma. For any two stopping times T and S, and for any A € F, we have
An{S < T} e %r. In particular, if S < T on Q, we have F5 < Fr.

Proor. It is not hard to verify that, for every stopping time T and positive
constant t, T A t is an &-measurable random variable. With this in mind, the
claim follows from the decomposition:

An{SESTIn{T<t} =[An{S<t1n{T<t}n{SAt<Tnt}
which shows readily that the left-hand side is an event in #,. O

2.16 Lemma. Let T and S be stopping times. Then %y , ¢ = Fy O Fs, and each
of the events

{T<S}L{S<TL{T<S,L{S<T}L{T=S}
belongs to Fr N Fs.

Proor. For the first claim we notice from Lemma 2.15 that %7, ¢ © %y N Fs.
In order to establish the opposite inclusion, let us take 4e %3 &, and

i R A AR
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observe that
An{SAT<t}=An[{S<tju{T <t}]
=[An{S<t}]uAn{T <t}]e 4,

and therefore Ae %, 1.

From Lemma 2.15 we have {S < T} € %7, and thus {S > T} € %7. On the
other hand, consider the stopping time R = S A T, which, again by virtue
of Lemma 2.15, is measurable with respect to #r. Therefore, {S < T} =
{R < T} e %;. Interchanging the roles of S, T we see that {T > S}, {T < S}
belong to %, and thus we have shown that both these events belong to
Fr N Fs. But then the same is true for their complements, and consequently
also for {S = T}. O

2.17 Problem. Let T, S be stopping times and Z an integrable random variable.
We have

(@) E[Z|%;] = E[Z|%s 1], P-as. on {T< S}
(i) E[E(Z\#7)|Fs] = ELZ|Fs A1), P-as.

Now we can start to appreciate the usefulness of the concept of stopping
time in the study of stochastic processes.

2.18 Proposition. Let X = {X,, #,;0 <t < oo} be a progressively measurable
process, and let T be a stopping time of the filtration {%}. Then the
random variable X, of Definition 1.15, defined on the set {T < w}e %y, is
Fr-measurable, and the “stopped process” {Xy n,, #1;0 <t < o0} is progres-
sively measurable.

PrOOF. For the first claim, one has to show that for any Be #(R?) and any
t > 0, the event {X;e€ B} n {T < t} is in &; but this event can also be written
inthe form {X;,.,€ B} n {T < t}, and so itis sufficient to prove the progressive
measurability of the stopped process.

To this end, one observes that the mapping (s, w) — (T(w) A s, w) of [0,t] x Q
into itself is #([0, t]) ® F-measurable. Besides, by the assumption of pro-
gressive measurability, the mapping

(s, @) — X(): ([0,£] x Q,%([0,t]) ® F) — (R’, BR?))
is measurable, and therefore the same is true for the composite mapping
(5, ) X oy as(@): ([0,£] x Q,2([0,1]) ® F) - (R?, B(R?)). O
2.19 Problem. Under the same assumptions as in Proposition 2.18, and with
f(t,x): [0, 0) x R* - R a bounded, ([0, 0)) ® B(R%-measurable function,

show that the process Y, = {; f(s, X;) ds; t > Ois progressively measurable with
respect to {%}, and Yy is an #r-measurable random variable.
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2.20 Definition. Let T be an optional time of the filtration {#}. The o-field
Fr . of events determined immediately after the optional time T consists of those
events Ae # for which A n {T <t} e #, foreveryt > 0.

2.21 Problem. Verify that the class % is indeed a o-field with respect to which
T is measurable, that it coincides with {4e F; AN {T < t}e £, Vt > 0}, and
that if T is a stopping time (so that both %, %, are defined), then % = Fp..

2.22 Problem. Verify that analogues of Lemmas 2.15 and 2.16 hold if T and
S are assumed to be optional and %, % and &y . ¢ are replaced by %1, %,
and # 1 . 5+, respectively. Prove that if S is an optional time and T is a positive
stopping time with S < T, and S < T on {S < oo}, then F5, < F;.

2.23 Problem. Show that if {T,};, is a sequence of optional times and
T = inf,, T,, then F1, = (2, Fr, .. Besides, ifeach T, is a positive stopping
time and T < T, on {T < oo}, then we have F, = (7o 7.

2.24 Problem. Given an optional time T of the filtration {#}, consider the
sequence {T,}2, of random times given by

T(w);, on{w; T(w)= +o}

T(@)= 1 k o k—l<T()<k
—_— n D w —
2n’ w; 2n - 2n
forn > 1,k > 1. Obviously T, > T,,, > T, for every n > 1. Show that each T,
is a stopping time, that lim,_,, T, = T, and that for every Ae #r, we have
An{T, = k2" e Fpmn k=1

We close this section with a statement about the set of jumps for a stochastic
process whose sample paths do not admit discontinuities of the second kind.

2.25 Definition. A filtration {#,} is said to satisfy the usual conditions if it is
right-continuous and %, contains all the P-negligible events in #.

2.26 Proposition. If the process X has RCLL paths and is adapted to the
filtration {#,} which satisfies the usual conditions, then there exists a sequence
{T}%-y of stopping times of {#} which exhausts the jumps of X, i.e.,

2.1
{(t, w) (0, 0) x @ X (w) # X,- (@)} = |J {(t, w)e[0, 0) x Q T,(w) = t}.
n=1

The proof of this result is based on the powerful “section theorems” of the
general theory of processes. It can be found in Dellacherie (1972), p. 84, or
Elliott (1982), p. 61. Note that our definition of the terminology “{T,},
exhausts the jumps of X as set forth in (2.1) is a bit different from that found
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on p. 60 of Elliott (1982). However, the proofs in the cited references justify
our version of Proposition 2.26.

1.3. Continuous-Time Martingales

We assume in this section that the reader is familiar with the concept and
basic properties of martingales in discrete time. An excellent presentation of
this material can be found in Chung (1974, §§9.3 and 9.4, pp. 319-341) and we
shall cite from this source frequently. Alternative references are Ash (1972) and
Billingsley (1979). The purpose of this section is to extend the discrete-time
results to continuous-time martingales.

The standard example of a continuous-time martingale is one-dimensional
Brownian motion. This process can be regarded as the continuous-time ver-
sion of the one-dimensional symmetric random walk, as we shall see in
Chapter 2. Since we have not yet introduced Brownian motion, we shall take
instead the compensated Poisson process as a continuing example developed
in the problems throughout this section. The compensated Poisson process is
a martingale which will serve us later in the construction of Poisson random
measures, a tool necessary for the treatment of passage and local times of
Brownian motion.

In this section we shall consider exclusively real-valued processes X =
{X,; 0 <t < o0} on a probability space (Q, #, P), adapted to a given filtration
{#,} and such that E|X,| < oo holds for every ¢ > 0.

3.1 Definition. The process {X,, #,; 0 < t < oo} is said to be a submartingale
(respectively, a supermartingale) if, for every 0 < s <t < o0, we have, as. P:
E(X,|#.) = X, (respectively, E(X,| %) < X)).

We shall say that {X,, %;0 <t < oo} is a martingale if it is both a sub-
martingale and a supermartingale.

3.2 Problem. Let T}, T,, ... be a sequence of independent, exponentially dis-
tributed random variables with parameter 4 > O:

P[T,edt] = Ae™™dt, t>0.

Let S; =Oand S, = Y%, T;; n > 1. (We may think of S, as the time at which
the n-th customer arrives in a queue, and of the random variables T;,i = 1, 2,
... as the interarrival times.) Define a continuous-time, integer-valued RCLL
process

(3.1) N,=max{n>0;S,<t}; 0<t<oo
(We may regard N, as the number of customers who arrive up to time t.)

(i) Show that for 0 < s <t we have
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P[Sy 41 > t|FN]=e 79, as P

(Hint: Choose Ae#" and a nonnegative integer n. Show that there
exists an event Aea(T;,..., T,) such that An{N, =n} = An {N,=n},
and use the independence between T, ,, and the pair (S,, L,) to establish

J P[S,.; > tIFN1dP = e 9P[An{N, = n}])
jﬁ{Ns=n}

(i) Show that for 0 <s <t, N,— N, is a Poisson random variable with
parameter A(t — s), independent of FY. (Hint: With Ae £Y and n > 0 as
before, use the result in (i) to establish

J P[N, — N, < k|FN1dP
jﬂ{Ns=n}

i : At — s)Y
= P[A N {Ns = n}] . Z e‘l(!—s)(_('—s))l
J=0 j!
for every integer k > 0.)

3.3 Definition A Poisson process with intensity A > 0 is an adapted, integer-
valued RCLL process N = {N,, #;0 < t < oo} such that N, = 0 a.s., and for
0 < s <t, N, — N,is independent of & and is Poisson distributed with mean
At — s).

We have demonstrated in Problem 3.2 that the process N = {N,, £";
0 <t < oo} of (3.1) is Poisson. Given a Poisson process N with intensity 4, we
define the compensated Poisson process

M, 2N, —it,#; 0<t< .
Note that the filtrations {#M} and {#"} agree.

3.4 Problem. Prove that a compensated Poisson process {M,, #;t >0} is a
martingale.

3.5 Remark. The reader should notice the decomposition N, = M, + A, of
the (submartingale) Poisson process as the sum of the martingale M and the
increasing function A, = At, t > 0. A general result along these lines, due to
P. A. Meyer, will be the object of the next section (Theorem 4.10).

A. Fundamental Inequalities

Consider a submartingale {X,; 0 <t < o}, and an integrable, &, -measurable
random variable X, ; we recall here that &, = o(| J,»0 %). If we also have,
forevery 0 <t < o0,

E(X,|#)> X, as.P,
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then we say that “{X,, #;0 <t < o0} is a submartingale with last element
X,.”. We have a similar convention in the (super)martingale case.

A straightforward application of the conditional Jensen inequality (Chung
(1974), Thm. 9.1.4) yields the following result.

3.6 Proposition. Let {X,, #;0 <t < oo} be a martingale (respectively, sub-
martingale), and @: R > R a convex (respectively, convex nondecreasing) func-
tion, such that E|@(X,)| < oo holds for every t > 0. Then {p(X,), #;0<t <0}
is a submartingale.

The method used to prove Jensen’s inequality and Proposition 3.6 extends
to the vector situation of the next problem.

3.7 Problem. Let {X, = (X{",...,X®), #;0 <t < oo} be a vector of mar-
tingales, and ¢: R? — R a convex function with E|p(X,)| < oo valid for every
t > 0. Then {@(X,), #; 0< t < co} is a submartingale; in particular {| X,|, %;
0 <t < oo} is a submartingale.

LetX = {X,;0<t< w}bea real-valued stochastic process. Consider two
numbers o < § and a finite subset F of [0, c0). We define the number of up-
crossings Ug(a, B; X (w)) of the interval [«, ] by the restricted sample path
{X,; te F} as follows. Set

17,(w) = min{te F; X,(w) < a},
and define recursively forj =1, 2,...
a{w) = min{t € F; t > 1), Xi(w) > B},
T;41 (@) = min{t € F; t > o), X (@) < al.

The convention here is that the minimum of empty set is +c0, and we denote
by Ug(a, B; X () the largest integer j for which oj(w) < . IfI < [0, 00)is not
necessarily finite, we define

Uy(a, B; X (@) = sup{U(e, f; X(w)); F = I, F is finite}.

The number of downcrossings Dy(a, B; X(w)) is defined similarly.
The following theorem extends to the continuous-time case certain well-
known results of discrete martingales.

3.8 Theorem. Let {X,, %; 0 <t < oo} be a submartingale whose every path is
right-continuous, let [0, t] be a subinterval of [0, o0), and let & < f, A > 0 be
real numbers. We have the following results:

(i) First submartingale inequality:

/I'P[ sup X, > /1] < E(X]).

a<si<t
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(i) Second submartingale inequality:
}.'P[ inf X, < —l] < E(X]) — E(X,).
<

(iii) Upcrossings and downcrossings inequalities:

%, ED, ,(«, B; X(w)) < ﬁ—;)

(iv) Doob’s maximal inequality:

14 p 14
E< sup X,) s<—> E(X?), p>1,
a<st<t P - l

provided X, > 0 a.s. P for every t = 0, and E(X?) < c0.

(v) Regularity of the paths: Almost every sample path {X (w);0 <t < oo} is
bounded on compact intervals; is free of discontinuities of the second kind,
i.e., admits left-hand limits everywhere on (0, c0); and its jumps are ex-
hausted by a sequence of stopping times (Proposition 2.26).

EU, (2, B; X (0) <

ProOF. Let the finite set F consist of 4, 1, and a finite subset of [6, 7] N Q.
We obtain from Theorem 9.4.1 of Chung (1974). uP[max, . X, > 1] < E(X,")
as well as: pP[min, r X, < —u] < E(X;") — E(X,). By considering an increas-
ing sequence {F,}, of finite sets whose union is the whole of ([¢,7] N Q)L
{s,7}, we may replace F by this union in the preceding inequalities. The
right-continuity of sample paths implies then uP[sup, < <. X, > u] < E(X)
and pP[inf, ., .. X, < —p] < E(X;") — E(X,). Finally, we let 41 4 to obtain
(i) and (ii).

Being the limit of random variables of the form Ug(a, ; X (w)) with finite
F, Uy q(, B; X (w)) is measurable. We obtain (iii), (iv) from Theorems 94.2,
9.5.4 in Chung (1974) (see also Meyer (1966), pp. 93-94). For (v), we note first
that the boundedness of (almost all) sample paths on the compact interval
{0, n], n > 1, follows directly from (i), (ii); second, we consider the events

AP 2 {weQ; Uy 4, B; X () = 0}, n=1La<§p.
By virtue of (iii), these have zero probability, and the same is true for the union

A= ) AL,
a<p

a,BeQ
which includes the set

{w eQ; lim X (w) < lim X (w), for some t€ [0, n]}.
st st

Consequently, for every we Q\A™, the left limit X, _(w) = lim4, X (w) exists

for all 0 < t < n. This is true for every n > 1, so the preceding left limit exists

forevery 0 < t < o0, we(| Jiz, A™Y. 0O
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3.9 Problem. Let N be a Poisson process with intensity 4.

(a) For any ¢ >0,

— 1
lim P} sup (N, — As) > c /At | <
t—w [OSSP;I( ) \/7:| C,/27I

(b) Foranyc >0,

- 1
lim PI: inf (N, — 4s) < —c\/ﬂ]g

t— o0 0<s<t

(c) For0 <o < 1, we have

N, 2 474
E|:sup <—'—i> :|5L2
a<t<t t ag

(Hint: Use Stirling’s approximation to show that lim,_, (l/\/ﬂ)E (N,—AD* =

1//2n)

3.10 Remark. From Problem 3.9 (a) and (b), we see that for each ¢ > 0, there

exists 7, > 0 such that
N, A
P[—‘—i ZC\/:]S 3 , Vt>T.
t t ¢ /2n
From this we can conclude the weak law of large number for Poisson pro-

cesses: (N,/t) - A, in probability as t — co. In fact, by choosing ¢ = 2" and
7 = 2"*! in Problem 3.9 (c) and using Ceby3ev’s inequality, one can show

[ N,
P sup

Z"SIS 2n+1

for every n > 1, & > 0. Then by a Borel-Cantelli argument (see Chung (1974),

Theorems 4.2.1, 4.2.2), we obtain the strong law of large numbers for Poisson
processes: lim,_, . (N,/t) = 4, a.s. P.

The following result from the discrete-parameter theory will be used re-
peatedly in the sequel; it is contained in the proof of Theorem 9.4.7 in Chung
(1974), but it deserves to be singled out and reviewed.

3.11 Problem. Let {Z,}2, be a decreasing sequence of sub-¢-fields of & (ie.
F S F S F,Vn=1),and let {X,, F;n2> 1} be a backward submartin-
gale;ie., E|X,| < o, X, is #,-measurable, and E(X,|%s1) = X, 4, as. P, for
every n > 1. Then ! 2 lim,_, E(X,) > —co implies that the sequence (X}
is uniformly integrable.

3.12 Remark. If {X,, #;0 < t < oo} is a submartingale and {t,};_, is a non-
increasing sequence of nonnegative numbers, then {X,,#.;n=1}is a back-
ward submartingale.
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It was supposed in Theorem 3.8 that the submartingale X has right-
continuous sample paths. It is of interest to investigate conditions under
which we may assume this to be the case.

3.13 Theorem. Let X = {X,, %#;0 <t < oo} be a submartingale, and assume
the filtration { #,} satisfies the usual conditions. Then the process X has a right-
continuous modification if and only if the function t+— EX, from [0, ) to R is
right-continuous. If this right-continuous modification exists, it can be chosen so
as to be RCLL and adapted to {#,}, hence a submartingale with respect to {F,}.

The proof of Theorem 3.13 requires the following proposition, which we
establish first.

3.14 Proposition. Let X = {X,, #,;0 <t < oo} be a submartingale. We have
the following:
(1) There is an event Q* € & with P(Q*) = 1, such that for every we Q*:
the limits X, (@) £ lim X,(w), X,_ £ lim X (w)

st stt
seQ seQ

exist for all t > O (respectively, t > 0).

(i) The limits in (i) satisfy

EX, | #)=X, as. P, Vt=0.
E(X|#_ Y= X,. as.P,YVt>0.

(iii) {X,, #.+;0<t < oo} is a submartingale with P-almost every path
RCLL.

ProOF.

(i) We wish to imitate the proof of (v), Theorem 3.8, but because we have
not assumed right-continuity of sample paths, we may not use (iii) of
Theorem 3.8 to argue that the events Ay appearing in that proof have
probability zero. Thus, we alter the definition slightly by considering the
submartingale X evaluated only at rational times, and setting

Ax(z':)ﬂ = {CUEQ, U[O,n]ﬁQ(a$ ﬁ’ X(Cl))) = (X)}, nz= 19 a< ﬁ’

AP = ) A,
a<fp
a,peQ
Then each A% has probability zero, as does each A™. The conclusions
follow readily.

(i) Let {t,};=, be a sequence of rational numbers in (t, c0), monotonically
decreasing to t > 0 as n — co. Then {X, , % ; n > 1} is a backward sub-
martingale, and the sequence {E(X, )}y, is decreasing and bounded
below by E(X,). Problem 3.11 tells us that { X, }=_, is a uniformly integrable

n=1
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sequence. From the submartingale property we have | , X,dP < {, X, dP,
for every n > 1 and A € &; uniform integrability renders almost sure into
L'-convergence (Chung (1974), Theorem 4.5.4), and by letting n — oo we
obtain {, X,dP < {,X,, dP, for every Ae &, The first inequality in (i)
follows.

Now take a sequence {t,}, in (0, ) n Q, monotonically increasing to
t > 0. According to the submartingale property E[X,|#, ] = X, as. We
may let n — oo and use Lévy’s theorem (Chung (1974), Theorem 9.4.8) to
obtain the second inequality in (ii).

(iii) Take a monotone decreasing sequence {s,}%., of rational numbers, with
0 < s < 5, < t holding for every n > 1, and lim,_ s, = s. According to
the first part of (i), E(X,+1%;,) = X;, a.s. Lettingn — o0 and using Lévy’s
theorem again, we obtain the submartingale property E(X,,| %) = X+
a.s. It is not difficult to show, using (i), that P-almost every path t— X,
is RCLL. O

PROOF OF THEOREM 3.13. Assume that the function t — EX, is right-continuous;
we show that {X,.,%; 0 < t < oo} as defined in Proposition 3.14 is a modifi-
cation of X. The former process is adapted because of the right-continuity of
{#)}. Given t > 0, let {g,};>, be a sequence of rational numbers with g, le
Then lim,_,, X, = X, as., and uniform integrability implies that EX,, =
lim,.,, EX, . By assumption, lim,., EX, = EX,, and Proposition 3.14 (i)
gives X, > X,, a.s. It follows that X,, = X,, as.

Conversely, suppose that {¥,;0 <t < oo} is a right-continuous modifica-
tion of X. Fix t > 0 and let {t,}3%, be a sequence of numbers with ¢, lt. We
have P[X, = X,, X, = X, ;n>1]=1 and lim, X, = X,, as. Therefore,
lim,_, X, = X, as., " and the uniform integrability of {X, }»x, implies that
EX, = lim EX, . The right-continuity of the function t— EX, follows.

n—o0

O

B. Convergence Results

For the remainder of this section, we deal only with right-continuous pro-
cesses, usually imposing no condition on the filtrations {#}. Thus, the de-
scription right-continuous in phrases such as “right-continuous martingale”
refers to the sample paths and not the filtration. It will be obvious that the
assumption of right-continuity can be replaced in these results by the assump-
tion of right-continuity for P-almost every sample path.

3.15 Theorem (Submartingale Convergence). Let {X,, #;0<t < o0} be a
right-continuous submartingale and assume C 2 sup,»o E(X;") < c0. Then
X, (w) 2 lim,_,, X,(w) exists for a.e. 0 €Q, and E|X,| < .

PROOF. From Theorem 3.8 (iii) we have for any n > 1 and real numbers o < f:
EUg nfo, B; X(®)) < (E(X7) + |2])/(B — «), and by letting n — co we obtain,
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thanks to the monotone convergence theorem:

C + |af
EU[O,ao)(aa ﬁa X((D)) < ﬁ —
The events A, 4 2 {w; Upo, my(®, B; X(w)) = 0}, —o0 < & < f < 00, are thus
P-negligible, and the same is true for the event A = Ua<g Aq, g, which con-
tains the set {w; lim,_, X,(®) > lim, ., X,(®)}. xhe0
Therefore, for every w e Q\ A4, X (w) = lim,_, X,(w) exists. Moreover,

E|X,| = 2E(X;") — E(X,) < 2C — EX,

shows that the assumption sup, o E(X;") < o0 is equivalent to the apparently
stronger one sup, o E|X,| < oo, which in turn forces the integrability of X,
by Fatou’s lemma. O

3.16 Problem. Let {X,, #;0 <t < oo} be a right-continuous, nonnegative
supermartingale; then X, (w) = lim,,, X,(w) exists for P-ae. weQ, and
{X;, #;0 <t < oo} is a supermartingale.

3.17 Definition. A right-continuous, nonnegative supermartingale {Z,, %;
0 <t < oo} with lim,,, E(Z,) = 0 is called a potential.

Problem 3.16 guarantees that a potential {Z,, #;0 <t < oo} has a last
element Z_,and Z, =0 as. P.

3.18 Exercise. Suppose that the filtration {#} satisfies the usual conditions.
Then every right-continuous, uniformly integrable supermartingale {X,, %;
0 <t < oo} admits the Riesz decomposition X, = M, + Z,, as. P, as the sum
of a right-continuous, uniformly integrable martingale {M,, %;0 <t < oo}
and a potential {Z,, #;0 <t < o©}.

3.19 Problem. The following three conditions are equivalent for a nonnegative,
right-continuous submartingale {X,, #;0 <t < oo}

(a) it is a uniformly integrable family of random variables;

(b) it converges in L', as t — co;

(c) it converges P a.s. (as t — o0) to an integrable random variable X, such
that {X,, #;0 <t < o} is a submartingale.

Observe that the implications (a) = (b) = (¢) hold without the assumption of
nonnegativity.

3.20 Problem. The following four conditions are equivalent for a right-
continuous martingale {X,, #;0 <t < oo}:

(a), (b) as in Problem 3.19;

(¢) it converges P as. (as t — o0) to an integrable random variable X, such
that {X,, #; 0 <t < oo} is a martingale;
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(d) there exists an integrable random variable Y, such that X, = E(Y|#) as.
P, for everyt > 0.

Besides, if (d) holds and X, is the random variable in (c), then
E(Y|#,) =X, as. P.

3.21 Problem. Let {N,, %;0 <t < oo} be a Poisson process with parameter
4>0.ForueC and i =,/ —1, define the process

X, = exp[iuN, — Ate™ —1)]; 0<t< 0.

(i) Show that {Re(X,), #;0 <t < oo}, {Im(X,), %;0 <t < oo} are martin-
gales.

(ii) Consider X with u = —i. Does this martingale satisfy the equivalent con-
ditions of Problem 3.20?

C. The Optional Sampling Theorem

What can happen if one samples a martingale at random, instead of fixed,
times? For instance, if X, represents the fortune, at time ¢, of an indefatigable
gambler (who plays continuously!) engaged in a “fair” game, can he hope to
improve his expected fortune by judicious choice of the time to quit? If no
clairvoyance into the future is allowed (in other words, if our gambler is re-
stricted to quit at stopping times), and if there is any justice in the world, the
answer should be “no.” Doob’s optional sampling theorem tells us under what
conditions we can expect this to be true.

3.22 Theorem (Optional Sampling). Let {X,, %;0<t < w0} be a right-
continuous submartingale with a last element X, and let S < T be two optional
times of the filtration {F,}. We have

E(X;| %)= Xs as. P.
If S is a stopping time, then Fg can replace s, above. In particular, EXy >
EX,, and for a martingale with a last element we have EX; = EX,,.
Proor. Consider the sequence of random times
S(w) if S(w)= 4+

Siw) = < k . k—1 k
T if o < S(w) < T

and the similarly defined sequences {T, }. These were shown in Problem 2.24
to be stopping times. For every fixed integer n > 1, both S, and T, take
on a countable number of values and we also have S, < T,. Therefore, by
the “discrete” optional sampling Theorem 9.3.5 in Chung (1974) we have
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§4Xs,dP <[, Xy dP for every Ae %, and a fortiori for every Ae %5, =

%, %s,, by virtue of Problem 2.23. If S is a stopping time, then § < S, implies
Fs < Fs, as in Lemma 2.15, and the preceding inequality also holds for every
Ae F.

It is checked similarly that {X; , % ; n > 1} is a backward submartingale,
with {E(X; )}a; decreasing and bounded below by E(X,). Therefore, the
sequence of random variables { X _}s-, is uniformly integrable (Problem 3.11),
and the same is of course true for { X7, };2,. The process is right-continuous,
s0 Xr(w) = lim,., X7 (w) and Xg(w) = lim,_,, X; (o) hold for ae. wel.
It follows from uniform integrability that X;, Xy are integrable, and that
f4XsdP < [, XrdP holds for every Ae Fs,. O

3.23 Problem. Establish the optional sampling theorem for a right-continuous
submartingale {X,, %; 0 <t < o0} and optional times S < T under either of
the following two conditions:

(i) Tisabounded optional time (there exists a number a > 0, such that T < a);
(i) there exists an integrable random variable Y, such that X, < E(Y|#) ass.
P, for every t > 0.

3.24 Problem. Suppose that {X,, #;0 <t < oo} is a right-continuous sub-
martingale and S < T are stopping times of {%}. Then

(i) {Xrnr Z; 0 <t < oo} is asubmartingale;
(i) E[Xyr %] = Xs., as. P,foreveryt 2 0.

3.25 Problem. A submartingale of constant expectation, ie., with E(X,) =
E(X,) for every t > 0, is a martingale.

3.26 Problem. A right-continuous process X = {X,, %#;0 <t < oo} with
E|X,| < o0;0 <t < oo is a submartingale if and only if for every pair S < T
of bounded stopping times of the filtration {%} we have

(32) E(X7) > E(Xs).

3.27 Problem. Let T be a bounded stopping time of the filtration { %}, which
satisfies the usual conditions, and define Z = Z;,,; t > 0. Then {%,} also
satisfies the usual conditions.

(i) f X ={X,, #;0 <t < oo} is a right-continuous submartingale, then so
isX={X,2 Xy, — X5, %;0<t <0}

(i) If X={X,,%;0<t< )} is a right-continuous submartingale with
X,=0, as. P, then X ={X,2 X, 1.0, #;0<t< o0} is also a
submartingale.

3.28 Problem. Let Z = {Z,, #;0 <t < w0} be a continuous, nonnegative
martingale with Z_ £ lim,_ Z, = 0, a.s. P. Then for every s > 0,b > 0:
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t>s

1
() P[sup Z,= blff{l = BZS’ as. on {Z; < b}.

1
(ii) P[sup Z,> b] = P[Z, 2 b] + ,E[Z]1(z,)]

t>s

3.29 Problem. Let {X,, %;0 <t < o0} be a continuous, nonnegative super-
martingale and T = inf{t > 0; X, = 0}. Show that

Xr4,=0, 0<t<oo holdsas.on{T < w}.

3.30 Exercise. Suppose that the filtration {#,} satisfies the usual conditions
andlet X = {X{", #,0 <t < 0}, n > 1 be an increasing sequence of right-
continuous supermartingales, such that the random variable & £ lim,_ X®
is nonnegative and integrable for every 0 < t < oo. Then there exists an RCLL
supermartingale X = {X,, %#;0 <t < oo} which is a modification of the
process £ = {£, #; 0 <t < w0}.

1.4. The Doob-Meyer Decomposition

This section is devoted to the decomposition of certain submartingales as the
summation of a martingale and an increasing process (Theorem 4.10, already
presaged by Remark 3.5). We develop first the necessary discrete-time results.

4.1 Definition. Consider a probability space (Q, #, P) and a random sequence
{A,}, adapted to the discrete filtration {£,}>.,. The sequence is called in-
creasing, if for P-a.e. weQ we have 0 = Ay(w) < A;(w) < ---,and E(4,) < «©
holds for every n > 1.

An increasing sequence is called integrable if E(A,) < co, where A, =
lim, ., A,. An arbitrary random sequence {&,}, is called predictable for the
filtration { %, }3,, if for every n > 1 the random variable £, is %,_,-measurable.
Note that if A = {A4,, #;n=0,1,...} is predictable with E}4,| < co for
every n, and if {M,, #,;n =0, 1,...} is a bounded martingale, then the mar-
tingale transform of A by M defined by

4.1) Y,=0 and Y,=Y A4M—M_); n>1,
k=1

is itself a martingale. This martingale transform is the discrete-time version
of the stochastic integral with respect to a martingale, defined in Chapter 3.
A fundamental property of such integrals is that they are martingales when
parametrized by their upper limit of integration.

Let us recall from Chung (1974), Theorem 9.3.2 and Exercise 9.3.9, that any
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submartingale {X,, #;n =0, 1,...} admits the Doob decomposition X, =
M, + A, as the summation of a martingale {M,, %,} and an increasing
sequence {A,, %,}. It suffices for this to take 4o =0 and 4,,; = 4, — X, +
E(X,41|%) = Y i-0 [E(Xy+11 %) — X, ], for n = 0. This increasing sequence
is actually predictable, and with this proviso the Doob decomposition of a
submartingale is unique.

We shall try in this section to extend the Doob decomposition to suitable
continuous-time submartingales. In order to motivate the developments, let
us discuss the concept of predictability for stochastic sequences in some further
detail.

4.2 Definition. An increasing sequence {4,, #,; n =0, 1,...} is called natural
if for every bounded martingale {M,, #,;n =0, 1, ...} we have

(4.2) EM,A)=E Y M_ (4 — Ay), Yn=1.
k=1

A simple rewriting of (4.1) shows that an increasing sequence A is natural
if and only if the martingale transform Y = {Y,}%, of A by every bounded
martingale M satisfies EY, = 0, n > 0. It is clear then from our discussion of
martingale transforms that every predictable increasing sequence is natural.
We now prove the equivalence of these two concepts.

4.3 Proposition. An increasing random sequence A is predictable if and only if
it is natural.

ProOF. Suppose that A4 is natural and M is a bounded martingale. With
{Y,}%, defined by (4.1), we have

E[A,M,—M,_)]=EY,— EY,., =0, n>1
It follows that
(43) E[M,{A, - E(4,|%,_)}]1=E[(M, — M, )4,]
+ E[M,_,{4, — E(4,|%,-1)}]
— E[(M, — M,_,)E(4,|#,-1)]1 =0

for every n > 1. Let us take an arbitrary but fixed integer n > 1, and show
that the random variable A4, is Z,_;-measurable. Consider (4.3) for this fixed
integer, with the martingale M given by
sgn[A, — E(A4,|#,-1)], k=n,
M, =< M, k>n,
E(M,| %), k=0,1,...,n

We obtain E|A, — E(A,|#,_,)| = 0, whence the desired conclusion. O
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From now on we shall revert to our filtration {#} parametrized by te
[0, c0) on the probability space (Q, #, P). Let us consider a process A = {4,;
0 <t < o} adapted to {%,}. By analogy with Definitions 4.1 and 4.2, we have
the following:

4.4 Definition. An adapted process A is called increasing if for P-a.e. 0 € Q we
have

(a) Ap(w)=0
(b) t— A,(w)is a nondecreasing, right-continuous function,

and E(4,) < o holds for every te[0, 00). An increasing process is called
integrable if E(A,,) < o, where A, = lim,_, A,.

4.5 Definition. An increasing process A is called natural if for every bounded,
right-continuous martingale {M,, ;0 <t < oo} we have

4.4 E j M,dA,=E j M,_dA, forevery0 <t < .
©,1 0.1

4.6 Remarks.

(i) If A is an increasing and X a measurable process, then with w € Q fixed,
the sample path {X,(w); 0 < ¢t < oo} is a measurable function from [0, o)
into R. It foliows that the Lebesgue-Stieltjes integrals

IF(w) & j X () dA ()
0.1

are well defined. If X is progressively measurable (e.g., right-continuous
and adapted), and if I, = I,” — I, is well defined and finite for all t > 0,
then I is right-continuous and progressively measurable.

(iiy Every continuous, increasing process is natural. Indeed then, for P-ae.
weQ we have

j (M,(@) — M,_(w))dA,(w) =0 forevery0 <t < 0,
©.1

because every path {M (w); 0 < s < oo} has only countably many dis-
continuities (Theorem 3.8(v)).

(iii) It can be shown that every natural increasing process is adapted to the
filtration {%,_} (see Liptser & Shiryaev (1977), Theorem 3.10), provided
that {#} satisfies the usual conditions.

47 Lemma In Definition 4.5, condition (4.4) is equivalent to

4.4y M,_dA,.

0,1]
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PrOOF. Consider a partition IT = {to,ty,...,t,} of [0,¢], with 0 =, <, <
.-+ < t, = t, and define

MSH = kzl Mtkl(tkflvtk](s)'

The martingale property of M yields
n n n—1
E J MRdA,=E )Y M, (A, — A, )= E[Z M, A, — Y M‘k+1Atk]
0,1] k=1 k=1 k=0
n—1
= E(MtAt) —E kzl Atk(Mtkﬂ - Mtk) = E(MIAI)'

Now let [TI[] £ max, cg<n(ty — ti—1) = 0, 50 M' —» M,, and use the bounded
convergence theorem for Lebesgue-Stieltjes integration to obtain

(4.5) E(M,A)=E J M, dA,. O

(0,1]

The following concept is a strengthening of the notion of uniform inte-
grability for submartingales.

48 Definition. Let us consider the class #(&,) of all stopping times T of the
filtration {%,} which satisfy P(T < o) =1 (respectively, P(T < a) = 1for a
given finite number a > 0). The right-continuous process {X,, #;0 <t < oo}
is said to be of class D, if the family {X 1}« is uniformly integrable; of class
DL, if the family { X1} is uniformly integrable, for every 0<a< .

4.9 Problem. Suppose X = {X,, #;0 <t < oo} is a right-continuous sub-
martingale. Show that under any one of the following conditions, X is of class
DL.

(a) X,>0as. foreveryt >0.
(b) X has the special form

(4.6) X,=M,+4, 0<t<ow

suggested by the Doob decomposition, where {M,, #; 0 <t < oo} is a mar-
tingale and {4,, %; 0 <t < co} is an increasing process.
Show also that if X is a uniformly integrable martingale, then it is of class D.

The celebrated theorem which follows asserts that membership in DL is
also a sufficient condition for the decomposition of the semimartingale X in
the form (4.6).

4.10 Theorem (Doob-Meyer Decomposition). Let {#} satisfy the usual con-
ditions (Definition 2.25). If the right-continuous submartingale X = (X, Fs
0 <t < o0} isof class DL, then it admits the decomposition (4.6) as the summa-
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tion of a right-continuous martingale M = {M,, #;0 <t < o0} and an increas-
ing process A={A,F;0<t< oo}. The latter can be taken to be natural;
under this additional condition, the decomposition (4.6) is unique (up to indistin-
guishability). Further, if X is of class D, then M is a uniformly integrable
martingale and A is integrable.

PrOOF. For uniqueness, let us assume that X admits both decompositions
X, =M + A= M! + A}, where M’ and M" are martingales and A’, A” are
natural increasing processes. Then {B, £ A; — 47 = M/ — M, %;0<t <00}
is a martingale (of bounded variation), and for every bounded and right-
continuous martingale {&,, %} we have

my,

E[f,(A; — A;’)] =FE J fs_ st = lim E Z f,@l [B,(n) - ,@1],
0,11 oo j=17 ! !

where I, = {t&,...,t®}, n> 1 is a sequence of partitions of [0,t] with

|| = max; <j<m, (" — t™,) converging to zero as n— oo, and such that

each I, is a refinement of I1,. But now

E[E, (B — Byp)] =0, and thus  E[&(4; — 47)] = 0.

For an arbitrary bounded random variable &, we can select {&, %} to be a
right-continuous modification of {E[¢|#], %} (Theorem 3.13); we obtain
E[£(A, — A})] = 0 and therefore P(A, = A}) =1, forevery t > 0. The right-
continuity of A’ and A” now gives us their indistinguishability.

For the existence of the decomposition (4.6) on [0, 00), with X of class DL,
it suffices to establish it on every finite interval [0,a]; by uniqueness, we can
then extend the construction to the entire of [0, co). Thus, forfixed 0 < a < o0,
let us select a right-continuous modification of the nonpositive submartingale

Y, 2 X, - E[X,|#], 0<t<a

Consider the partitions TI, = {t§,¢{",..., 5} of the interval [0,a] of the
form " = (j/2")a, j =0, 1, ..., 2" For every n> 1, we have the Doob
decomposition

Yo = M@+ A, j=0.1,...,2"

i

where the predictable increasing sequence A™ is given by

™ _ 4 _
Am = Adm, + E[ Yy Y | Fm, 1

j-1
= Z E[Yt(k"-i)-l — Y,(;-)'.g’;(kr-)], j=1,..., 2"
k=0
Notice also that because M = — A", we have
(47) Ytj."‘ = Atfn)) - E[As,""g’;;m], ] = 0, 1, RPN 2",

We now show that the sequence { A}, is uniformly integrable. With A > 0,
we define the random times
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T{" = a A min{t{* ; A% > Aforsomej, 1 <j < 2"}
t

We have {T{" < t{,} = {Aﬁf'n)) > AyeFm forj=1,...,2%and {T,” <a} =
{AP >4}, Therefore, T{"e %.Oneach set {Tim= t""} we have E[AD|Fm]=
E[AP|Fre], s0 (4.7) 1mp11es

(4.8) Yrom = A — E[AP|Fre] < A — E[AP| Fren]

on {T{” < a}. Thus

(4.9) J AP dP < AP[T™ < a] — J Yy dP.
(4> 2}

{r"<a}

Replacing 4 by 4/2 in (4.8) and integrating the equality over the 9'}(‘7;-
measurable set {T{3 < a}, we obtain

—J Yron dP = J (AY — ATl) dP
(T <a) A (T <a)

/2 A2
A
> J (A® _ A)dP > ZP[T™ < a],
(T <a) 2 2

and thus (4.9) leads to

(4.10) J AMdP < — 2 J Yron dP — J Yo dP.
{4> ) {To<a} {T{"<a}

A/2
The family {X;};.4 is uniformly integrable by assumption, and thus so is
{ YT} Te%- But
E(AP)  E(Y)

P[T" <a] = P[A" > 1] < A" = =

SO

sup P[T{" <a] >0 asd— oo.

n>1
Since the sequence { Yren }5; is uniformly integrable for every ¢ > 0, it follows
from (4.10) that the sequence {A}, is also uniformly integrable.

By the Dunford-Pettis compactness criterion (Meyer (1966), p. 20, or
Dunford & Schwartz (1963), p. 294), uniform integrability of the sequence
{A™}*_, guarantees the existence of an integrable random variable A4,, as well
as of a subsequence {A™}%_, which converges to A, weakly in L':

lim E(€A{) = E(A,)

k=
for every bounded random variable &. To simplify typography we shall assume
henceforth that the preceding subsequence has been relabeled and shall denote

it simply as {4}, . By analogy with (4.7), we define the process {4,, %} as
a right-continuous modification of

(4.11) A=Y, +EAIlF); 0<t<a
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4.11 Problem. Show that if {4} is a sequence of integrable random
variables on a probability space (Q, #, P) which converges weakly in L'toan
integrable random variable A, then for each o-field ¥ = &, the sequence
E[A™|%] converges to E[A|%] weakly in L.

Let IT = | J2, I, For t e I, we have from Problem 4.11 and a comparison
of (4.7) and (4.11) that lim,_, E((4{”) = E({A,) for every bounded random
variable &. For s, te I with 0 < s <t < a, and any bounded and nonnegative
random variable &, we obtain E[¢(4, — A,)] = lim,_,,, E[£(A" — A{)] Z 0,
and by selecting & = 1, . ., we get A, < A, as. P. Because IT is countable,
for a.e. w e Q the function ¢ — A,(w) is nondecreasing on I, and right-continuity
shows that it is nondecreasing on [0, a] as well. It is trivially seen that 4, = 0,
as. P. Further, for any bounded and right-continuous martingale {¢,, #}, we
have from (4.2) and Proposition 4.3:

2"
E(A™) =E Y & [AR — A ]
=1 -1 J J-1
2"
= E Z é,l‘n) [Yt;n) - Y,(_n) ]
=1 J-1 -1

2n
=E j; Eun [Agr — A, ],

where we are making use of the fact that both sequences {4, — Y, %} and
{A™ — Y, &}, for teIl,, are martingales. Letting n — oo one obtains by virtue
of (4.5):

E J ¢, dA, = E J &_dA,,
(0,a} (0,al

as well as E fo,&,dA, = E {0 1 ¢ dA;, Vte[0,a], if one remembers that
{& 10y F.; 0 < s < a} is also a (bounded) martingale (cf. Problem 3.24). There-
fore, the process A defined in (4.11) is natural increasing, and (4.6) follows with
M, =E[X, - A]#]l0<t<a

Finally, if the submartingale X is of class D it is uniformly integrable, hence
it possesses a last element X, to which it converges both in L' and almost
surely as t —» oo (Problem 3.19). The reader will have no difficulty repeating
the preceding argument, with a = oo, and observing that E(4,) < co. O

Much of this book is devoted to the presentation of Brownian motion as
the typical continuous martingale. To develop this theme, we must specialize
the Doob-Meyer result just proved to continuous submartingales, where we
discover that continuity and a bit more implies that both processes in the de-
composition also turn out to be continuous. This fact will allow us to conclude
that the quadratic variation process for a continuous martingale (Section 5)
is itself continuous.
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4.12 Definition. A submartingale {X,, #;0 <t < oo} is called regular if for
every a > 0 and every nondecreasing sequence of stopping times {T, };.; < ¥,
with T = lim,_,, T,, we have lim,_, E(X1 ) = E(X7).

4.13 Problem. Verify that a continuous, nonnegative submartingale is regular.

4.14 Theorem. Suppose that X = {X,;0 <t < oo} is a right-continuous sub-
martingale of class DL with respect to the filtration {#,}, which satisfies the
usual conditions, and let A = {A,; 0 < t < 0o} be the natural increasing process
in the Doob-Meyer decomposition (4.6). The process A is continuous if and only
if X isregular.

Proor. Continuity of A yields the regularity of X quite easily, by appealing
to the optional sampling theorem for bounded stopping times (Problem
3.23(i)).

Conversely, let us suppose that X is regular; then for any sequence
{T,}x-, as in Definition 4.12, we have by optional sampling: lim,_, E(4y) =
lim, ., E(Xry,) — E(My) = E(Ar), and therefore Ay (@) T Ar(,)(w) except for
w in a P-null set which may depend on T.

To remove this dependence on 7, let us consider the same sequence {IT,}2%,
of partitions of the interval [0, a] as in the proof of Theorem 4.10, and select
a number A > 0. For each interval (t{”,1{?,),j =0, 1, ..., 2" — 1 we consider
a right-continuous modification of the martingale

ég") = E[}~ A A,(er'%], t](-") <t< t;:,)l.

This is possible by virtue of Theorem 3.13. The resulting process {&");
0 <t < a} is right-continuous on (0, a) except possibly at the points of the
partition, and dominates the increasing process {4 A A,;0 <t < a}; in par-
ticular, the two processes agree a.s. at the points ¢, ..., t4). Because A is a
natural increasing process, we have from (4.4)

EJ é;")dAs=EJ EMdA; j=0,1,...,2"— 1,
@, @, 4

and by summing over j, we obtain

4.12) E J EMdA, = E J EmdA,,
(0,1] (0,11

for any 0 <t < a. Now the process

m_JER—(AA4), 0<t<a
UP! 0, —a,

is right-continuous and adapted to {#}; therefore, for any ¢ > 0 the random
time

TLE)=aninfl0<t<a;n”>el=aninf{0<t<a; & — (LA A4)>e
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is an optional time of the right-continuous filtration {4}, hence a stopping
time in %, (cf. Problem 2.6 and Proposition 2.3). Further, defining for each
n > 1 the function ¢,(-): [0, a] = I, by @,(t) = t7y; £ <t <17, we have
o,(T,(2)) € &,. Because £ s decreasing in n, the increasing limit T, =
lim, .. T,(€) exists a.s., is a stopping time in %, and we also have

T, = lim ¢,(T,(¢)) as.P.

By optional sampling we obtain now

2n—1

E[f(rnl(s)] = Zl E[E('1 A At;.';’l|9'—T,,(s))1{:;."’<T,,(s)st;.';’,}]
=

= E[A A Ay (1,0}
and therefore

E[(A A A(p,,(r,,(s))) — (A A AT,,(:))] = E[f(r":(s) —(AA AT,,(;))]
= E[I{T,,(s)<a}(f(r":(s) —(AA AT,,(&)))]
> eP[T,(e) < al.

We employ now the regularity of X to conclude that for every ¢ > 0,
1
P[Q,>¢]l =P[T () <a] < ;E[(i A Ay tyen) — (A A Ag )] =0

asn — oo, where Q, £ supg<,<.|E™ — (A A A,)|. Therefore, this last sequence
of random variables converges to zero in probability, and hence also almost
surely along a (relabeled) subsequence. We apply this observation to (4.12),
along with the monotone convergence theorem for Lebesgue-Stieltjes integra-
tion, to obtain

EJ (A A A)dA, = EJ (AAnA_)dA, 0<t< o,
(0,11 0,11

which yields the continuity of the path t— 4 A A,(w) for every 4 > 0, and
hence the continuity of t— 4,(w) for P-a.e. weQ. O

4.15 Problem. Let X = {X,, #;0 <t < co} be a continuous, nonnegative
process with X, =0 a.s, and A = {4,, #;0 <t < co} any continuous, in-
creasing process for which

4.13) E(X7) < E(Ay)

holds for every bounded stopping time T of {#}. Introduce the process
V; £ max, ., ., X,, consider a continuous, strictly increasing function F on
[0, o) with F(0) = 0, and define G(x) 2 2F(x) + x [Yu" dF(u); 0 < x < cc.
Establish the inequalities

E(A

(4.14) P[VTZGJSTT); ve>0
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EG A A
(4.15) P[VTZs,AT<5]s¥; Ve>0,6>0
(4.16) EF(Vy) < EG(A;)

for any stopping time T of {#}.

4.16 Remark. If the process X of Problem 4.15 is a submartingale, then 4 can
be taken as the continuous, increasing process in the Doob-Meyer decom-
position (4.6) of Theorems 4.10 and 4.14.

4.17 Remark. The corollary

.15y P[V;>¢l < M + P[4, > 5]

of (4.15) is very useful in the limit theory of continuous-time martingales; it is
known as the Lenglart inequality. We shall use it to establish convergence
results for martingales (Problem 5.25) and stochastic integrals (Proposition
3.2.26). On the other hand, it follows easily from (4.16) that

2 —
(4.17) Evp) < PEay; o<p<1

holds for any stopping time T of {#}.

1.5. Continuous, Square-Integrable Martingales

In order to appreciate Brownian motion properly, one must understand the
role it plays as the canonical example of various classes of processes. One such
class is that of continuous, square-integrable martingales. Throughout this
section, we have a fixed probability space (2, #, P) and a filtration {%,} which
satisfies the usual conditions (Definition 2.25).

5.1 Definition. Let X = {X,, #;0 <t < o0} be a right-continuous martin-
gale. We say that X is square-integrable if EX? < oo for every ¢t > 0. If, in
addition, X, = 0 a.s., we write X € .#, (or X e 43, if X is also continuous).

5.2 Remark. Although we have defined .#% so that its members have every
sample path continuous, the results which follow are also true if we assume
only that P-almost every sample path is continuous.

For any X € #,, we observe that X2 = {X?, #,;0 <t < o} is a nonnega-
tive submartingale (Proposition 3.6), hence of class DL, and so X2 has a unique
Doob-Meyer decomposition (Theorem 4.10, Problem 4.9):

X2=M,+A4; 0<t<w
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where M = {M,, #;0 <t < o0} is a right-continuous martingale and 4 =
{A,, #;0 <t < oo} is a natural increasing process. We normalize these pro-
cesses sO that My = A, =0, as. P. If X e .#$, then A and M are continuous
(Theorem 4.14 and Problem 4.13); recall Definitions 4.4 and 4.5 for the terms
increasing and natural.

5.3 Definition. For X e .#,, we define the quadratic variation of X to be the
process <X, £ A,, where A is the natural increasing process in the Doob-
Meyer decomposition of X?. In other words, (X) is that unique (up to
indistinguishability) adapted, natural increasing process, for which (X >, = 0
as. and X? — <X is a martingale.

5.4 Example. Consider a Poisson process {N;, ;0 < ¢ < oo} as in Definition
3.3 and assume that the filtration {£} satisfies the usual conditions (this can
be accomplished, for instance, by “augmentation” of { #"}; cf. Remark 2.7.10).
It is easy to verify that the martingale M, = N, — At, & of Problem 3.4 is in
My, and (M), = At.

If we take two elements X, Y of .#,, then both processes (X + Y)? —
(X + Y)and (X — Y)* — (X — Y) are martingales, and therefore so is their
difference 4XY — [(X + Y> — <X — Y)].

5.5 Definition. For any two martingales X, Y in .#,, we define their cross-
variation process {X,Y) by

XY, LKX +Y), — <X - Y),) 0<t<oo,

and observe that XY — (X,Y) is a martingale. Two elements X, Y of .#,
are called orthogonal if {X,Y ), = 0, a.s. P, holds for every 0 < t < co.

The uniqueness argument in Theorem 4.10 also shows that (X, Y is, up
to indistinguishability, the only process of the form 4 = A — A with 4D
adapted and natural increasing (j = 1,2), such that XY — A is a martingale.
In particular, <X, X> = (X). For continuous X and Y, we give a different
uniqueness argument in Theorem 5.13.

5.6 Remark. In view of the identities
E[(X, — XY, — Y)IF] = E[X,Y, — X,Y,|#]
= E[{X,Y), — X, Y)J|#],

valid P as. for every 0 < s <1 < oo, the orthogonality of X, Y in .4, is
equivalent to the statements “XY is a martingale” or “the increments of X
and Y over [s, ] are conditionally uncorrelated, given £.”.

5.7 Problem. Show that {-, - > is a bilinear form on .#,, i.e., for any members
X, Y, Z of .#, and real numbers «, 8, we have
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() <X + BY,Z) = alX,Z) + <Y, Z),

(i) <X,Y)=<Y,X),

(iii) [<X,Y)I? £ <XH<Y).
)

(iv) For P-ae. weQ,

(@) — &) S KX D (@) — (X)) + Y () = (YD (w)];
0<s<t< oo,

where &, denotes the total variation of £ £ <X, Y> on [0, ¢].

The use of the term quadratic variation in Definition 5.3 may appear to be
unfounded. Indeed, a more conventional use of this term is the following. Let
X ={X,;0<t < o} bea process, fix t > 0, and let I1 = {to,t1s. .., tm}, With
0=t,<t; <t, < - <t, =t beapartition of [0,£]. Define the p-th variation
(p > 0) of X over the partition Il to be

fe—1 ! ”

voan =y 1, — X, 1"
k=1

Now define the mesh of the partition IT as ||[TT|| = max; c,<mlty — tieq|- If
V,®(IT) converges in some sense as ||| — 0, the limit is entitled to be called
the quadratic variation of X on [0,t]. Our justification of Definition 5.3 for
continuous martingales (on which we shall concentrate from now on) is the
following result:

58 Theorem. Let X be in M5. For partitions TI of [0,t], we have
limg o V2(IT) = <X, (in probability); i.e., for every € > 0,1 > O there exists
6 > 0 such that |I1|| < & implies

PLIV2(IN) — (XD, > e] <.

The proof of Theorem 5.8 proceeds through two lemmas. The key fact
employed here is that, when squaring sums of martingale increments and taking
the expectation, one can neglect the cross-product terms. More precisely, if
Xe#rand 0 <s <t <u<v,then
We shall apply this fact to both martingales X e .#, and X*> — (X). In the
latter case, we note that because

E[(X, — X,)’|#]) = E[X] — 2X,E[X,|Z] + XJ|#]
= E[X; — XZ|#] = E[{X), — {XDu|F),

the terms Xu2 - <X>v - (X3 - <X>u) and (Xu - Xu)2 - (<X>u - <X>u) have
the same conditional expectation given &, namely zero, and thus the expecta-
tion of products of such terms over nonoverlapping intervals is still zero.
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59 Lemma. Let X € 4, satisfy | X,| < K < oo for all se[0,1], as. P. Let
1= {tost1s--stm}, With O =1ty <t, <--- <t, =t, be a partition of [0,t].
Then E[V2(I1)]*> < 6K*.

ProofF. Using the martingale property, we have for 0 < k <m — 1,
Z,

m 2
"‘] B E[{F;rl X, - X"')} %"]

=E[ S (x2-x2) ?]

j=k+1

E|: (th - Xt,-‘,)z

J=k+H

SO
m—1 m
E|: Z (Xt - Xt,-,,)z(th th l)2:|
k=1 j=k+1
m—1 m
(5.h = E[ (X, — X, )* Y ELX, t,_1)2|9—'tk]]
k=1 j=k+1

We also have

M=

(5.2) E[

k

It

1

(X, — X,kwl)“] < 4K’E [Z (X, — X,H)Z] < 4K*.

Inequalities (5.1) and (5.2) imply

E[VOm)? = E[z (X, — X,k_,)4]
k=1

m—1 m
+ 2E|: Z (th - th,,)Z(th - th41)2:|
1

k=1 j=k+1
< 6K*. O
5.10 Lemma. Let X € 45 satisfy | X,| < K < oo for all se[0,t], as. P. For
partitions IT of [0,t], we have

lim EV*(IT) = 0.

-0

Proor. For any partition IT, we may write

V) < VA mi(X; [T,
where

(53) m(X; 0) £ sup{|(X, — X,);0<r<s<ts—r<J)

is measurable because the supremum can be restricted to rational s and r. The
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Holder inequality implies
EV®(IT) < (E[V,2(D)1%)(Emd (X | TT]))Y.

As ||TI| approaches zero, the first factor on the right-hand side remains
bounded and the second term tends to zero, by the uniform continuity on
[0, t] of the sample paths of X and by the bounded convergence theorem.

O

PROOF OF THEOREM 5.8. We consider first the bounded case: | X,| < K < o0 and
(X,> < K hold for all se[0,t], as. P. For any partition IT = {to,t1,...,tn}
as earlier we may write (see the discussion preceding Lemma 5.9 and relation

(5.3))
m 2
E(V2(I) — {X>,)? [Z - X, ) — KX, — <X>,,(_,)}}

m

Z E[(X,, — X, ) — (XD, — XD, )]

p2
<2 Z EL(X, — X, )* + (X, — XDy 7]

< 2EV;H(ID) + 2E[<XD, m (KX (T[]

As the mesh of IT approaches zero, the first term on the right-hand side of this
inequality converges to zero because of Lemma 5.10; the second term does as
well, by the bounded convergence theorem and the sample path uniform con-
tinuity of (X ). Convergence in L? implies convergence in probability, so this
proves the theorem for martingales which are uniformly bounded.

Now suppose X € .5 is not necessarily bounded. We use the technique of
localization to reduce this case to the one already studied. Let us define a
sequence of stopping times (Problem 2.7) forn = 1, 2,... by

= inf{t > 0; | X,| > nor (XD, > n}.

Now X{" £ X,,r is a bounded martingale relative to the filtration (£}
(Problem 3.24), and likewise {X?, 1, — (XD, .1, % 0 < t < oo} is a bounded
martingale. From the uniqueness of the Doob-Meyer decomposition, we see
that

(5.4) (XM = LX)y n1,
Therefore, for partitions IT of [0,t], we have
2
lim El:z (th/\T th,,AT,,)Z - <X>1AT,,:| =0.
|1j—o

Since T,1 oo as., we have for any fixed ¢t that lim,_,, P[T, < t] = 0. These
facts can be used to prove the desired convergence of V?(II) to <X}, in
probability. O
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5.11 Problem. Let {X,, #;0 <t < oo} be a continuous process with the
property that for each fixed t > 0 and for some p > 0,

lim V®II)= L, (in probability),

|f1j—0
where L, is a random variable taking values in [0, c0) a.s. Show that for g > p,
limrj—o V(1) = 0 (in probability), and for 0 < g < p, lim . VO = o
(in probability) on the event {L, > 0}.

5.12 Problem. Let X bein .45, and T be a stopping time of {#,}. If (X > = 0,
a.s. P, then we have P[X;,,=0; VO<t < 0] = 1.

The conclusion to be drawn from Theorem 5.8 and Problems 5.11 and 5.12
is that for continuous, square-integrable martingales, quadratic variation is
the “right” variation to study. All variations of higher order are zero, and,
except in trivial cases where the martingale is a.s. constant on an initial
interval, all variations of lower order are infinite with positive probability.
Thus, the sample paths of continuous, square-integrable martingales are quite
different from “ordinary” continuous functions. Being of unbounded first
variation, they cannot be differentiable, nor is it possible to define integrals of
the form [(Y,(w)dX (w) with respect to X e.45 in a pathwise (ie., for every
or P-almost every weQ), Lebesgue-Stieltjes sense. We shall return to this
problem of the definition of stochastic integrals in Chapter 3, where we shall
give [td’s construction and change-of-variable formula; the latter is the coun-
terpart of the chain rule from classical calculus, adapted to account for the
unbounded first, but bounded second, variation of such processes.

It is also worth noting that for X e .#%, the process (X ), being monotone,
is its own first variation process and has quadratic variation zero. Thus, an
integral of the form | Y,d<X ), is defined in a pathwise, Lebesgue-Stieltjes sense
(Remark 4.6 (1)).

We discuss now the cross-variation between two continuous, square-
integrable martingales.

513 Theorem. Let X = {X,, #;0<t<oo}and Y = {X,, #;0<t < 0} be
members of M5. There is a unique (up to indistinguishability) {%}-adapted,
continuous process of bounded variation {A,, #;;0 < t < oo} satisfying Ao =0
as. P, such that {X,Y, — A,, #;0 <t < co} is a martingale. This process is
given by the cross-variation <X, Y ) of Definition 5.5.

Prook. Clearly, A = (X, Y) enjoys the stated properties (continuity is a con-
sequence of Theorem 4.14 and Problem 4.13). This shows existence of 4. To
prove uniqueness, suppose there exists another process B satisfying the condi-
tions on A. Then

M2(XY-A) -(XY—-B=B—A

is a continuous martingale with finite first variation. If we define
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T, = inf{t > 0: |M,| = n},

then {M{™ 2 M, 1, %; 0 <t < oo} isa continuous, bounded (hence square-
integrable) martingale, with finite first variation on every interval [0,¢]. It
follows from (5.4) and Problem 5.11 that

<M>t/\ T, — <M(")>t =0 as, t=0.

Problem 5.12 shows that M™ = 0 a.s., and since T, T oc as n — co, we conclude
that M =0, as. P. O

5.14 Problem. Show that for X, Y e.#5 and I = {to,t,...,t,} a partition of
(0,21,
im Y (X, — X, )Y, — Y )=<XY) (n probability).

111 —0 k=1

Twice in this section we have used the technique of localization, once in the
proof of Theorem 5.8 to extend a result about bounded martingales to square-
integrable ones, and again in the proof of Theorem 5.13 to apply a result about
square-integrable martingales to a continuous martingale which was not
necessarily square-integrable. The next definitions and problems develop this
idea formally.

5.15 Definition. Let X = {X,, %; 0 <t < oo} be a (continuous) process with
X, = 0 as. If there exists a nondecreasing sequence {T,}%., of stopping times
of {#},such that {X" & X, ,, #;0 <t < oo} is a martingale for eachn > 1
and P[lim,_, T, = o] = 1, then we say that X is a (continuous) local martin-
gale and write X € 4" (respectively, X e.#"°° if X is continuous).

5.16 Remark. Every martingale is a local martingale (cf. Problem 3.24(1)), but
the converse is not true. We shall encounter continuous, local martingales
which are integrable, or even uniformly integrable, but fail to be martingales
(cf. Exercises 3.3.36, 3.3.37, 3.5.18 (iii)).

5.17 Problem. Let X, Y be in .#%"¢. Then there is a unique (up to indis-
tinguishability) adapted, continuous process of bounded variation (X, Y)
satisfying (X, YD, = 0 a.s. P, such that XY — (X, Y) e M If X =Y, we
write (X ) = (X, X, and this process is nondecreasing.

5.18 Definition. We call the process (X, Y) of Problem 5.17 the cross-variation

of X and Y, in accordance with Definition 5.5. We call {X) the quadratic
variation of X.

5.19 Problem.

(i) A local martingale of class DL is a martingale.
(i) A nonnegative local martingale is a supermartingale.
(iii) If M € .#“" and S is a stopping time of {%}, then E(M§) < ECM)y,
where M2 2 lim,_,,, M?.
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We shall show in Theorem 3.3.16 that one-dimensional Brownian motion
(B, #;0<t< oo} is the unique member of .#¢'°° whose quadratic variation
at time t is t; i.e., B} — t is a martingale. We shall also show that d-dimen-
sional Brownian motion {(B),...,B?), #;0 < t < oo} is characterized by
the condition

<B(i)’ B(j)>, = 5ijt, t>0,

where ; is the Kronecker delta.

5.20 Exercise. Suppose X € .#, has stationary, independent increments. Then
(X>, = t(EX]), t > 0.

521 Exercise. Employ the localization technique used in the solution of
Problem 5.17 to establish the following extension of Problem 5.12: If X e
', and for some stopping time T of {#} we have {(X)>; = 0 as. P, then
P[X7;,,=0;V0 <t < o] = 1. In particular, every X e .#°'"*° of bounded
first variation is identically equal to zero.

We close this section by imposing a metric structure on .#, and discussing
the nature of both .#, and its subspace .#¢ under this metric.

5.22 Definition. For any X € #, and 0 < ¢t < o0, we define

1X1. £ /EX2).

We also set
pxpa 3 Elnd
n=1

Let us observe that the function ¢t || X||, on [0, o) is nondecreasing,
because X ? is a submartingale. Further, | X — Y| is a pseudo-metric on .4,
which becomes a metric if we identify indistinguishable processes. Indeed,
suppose that for X, Ye.#, we have | X — Y| = 0, this implies X, = Y, as. P,
for every n > 1, and thus X, = E(X,|#) = E(Y,|%) =Y, as. P, for every
0 <t < n Since X and Y are right-continuous, they are indistinguishable
(Problem 1.5).

5.23 Proposition. Under the preceding metric, M, is a complete metric space,
and .4 a closed subspace of M.

PROOF. Let us consider a Cauchy sequence {X™}%, < 4, lim, ., [ X™ —
X™| = 0. For each fixed ¢, {X"}<, is Cauchy in L*(Q, %, P), and so has
an L2-limit X,. For0 < s < t < oo and 4 € %,, we have from L*-convergence
and the Cauchy-Schwarz inequality that lim,., E[1,(X" — X)] =0,
lim,., E[1,(X{" — X,)]=0. Therefore, E[1,X,"]= E[1,X{"] implies
E[1,X,]=E[1,X,], and X is seen to be a martingale; we can
choose a right-continuous modification so that X e.#,. We have
limn—m(, HX(") - X“ = 0
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To show that .#5 is closed, let {X™}%; be a sequence in .#3% with limit X
in .#,. We have by the first submartingale inequality of Theorem 38:

1 1
P|: sup |X{" — X,| 28:|S—2E|X(T")— X2 ==51X" - X|3-0
£ £

0<t<T

as n — oo. Along an appropriate subsequence {n, };~; we must have

1 1
P[ sup | XM — X|| 2~} <5 k=1
0<t<T k 2

and the Borel-Cantelli lemma implies that X" converges to X, uniformly on
[0, T, almost surely. The continuity of X follows. ]

524 Problem.Let M = {M,, %, 0 <t < oo} be a process in .#, U .#*" and
assume that its quadratic variation process (M) is integrable: ECM ), < 0.
Then:

(i) M is a martingale, and M and the submartingale M? are both uni-
formly integrable; in particular, M, = lim,, M, exists as. P, and
EMZ = ECM);

(ii) we may take a right-continuous modification of Z, = E(MZ|#,) — MZ;
t = 0, which is a potential.

5.25 Problem. Let M € .#°"° and show that for any stopping time T of {#},

] < B0 MDD 4 premy, =),

(5.5 P|: max |M,| = ¢

0<t<T

V&> 0,8 > 0. In particular, for a sequence {M™}2., < .#'°° we have

(5.6) (M, 250 = max [M"| =20

n—oo
0<t<T

5.26 Problem. Let {M,, #;0<t < w}and {N,%;0<t< oo} on (Q, &, P)
be continuous local martingales relative to their respective filtrations, and
assume that &, and ¥, are independent. With £ g(F u %), show that
(M, #;0<t< o}, {N,#;0<t<oo} and {M|\N,, #,0<1t< o0} are
local martingales. If we define % = (Ns>:0(H; L A7), where A is the collec-
tion of P-negligible events in &, then the filtration {J#} satisfies the usual
conditions, and relative to it the processes M, N and MN are still local
martingales. In particular, (M,N) = 0.

1.6. Solutions to Selected Problems

1.8. We first construct an example with A ¢ #X. The collection of sets of the form
{(X,,,X,,,...)e B}, where Be B(R)®@ AR ® - and 0 <t, <t, < <t
forms a o-field, and each such set is in 97,3‘ Indeed, every set in 9",:‘ has such a
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2.6.

27.

2.17.

representation; cf. Doob (1953), p. 604. Choose Q = [0, 2), # = #([0, 2)), and
P(F) = meas(F N[0, 1]); F € &, where meas stands for “Lebesgue measure.”
For w € [0, 1], define X,(w) = 0, ¥Vt > 0; for w € (1, 2), define X,(w) = 0if t # o,
X, (w)=1.Choose t,=2.1fA e Z;‘, then for some Be Z(R)® #(R)® -+ and
some sequence {1, }i; < [0, 2], wehave 4 = {(X,,, X,,,...) € B}. Choose € (1, 2),
t¢{t;,ty,...}.Sincew="risnotin Aand X, (f)=0,k=1,2, ..., we see that
(0,0,...)¢ B.But X, (w)=0,k=1,2,..., for all we [0, 1]; we conclude that
[0, 11 » A = {J, which contradicts the definition of 4 and the construction of X.

We next show that if ZX = #,_ and %, is complete, then Ae %, . Let N = Q
be the set on which X is not RCLL. Then

A= <U A,,) ~ N,
n=1

where

3
Il

® 1
A"= m U {Iqu_X“‘ >;}
1 41,426 Qn[0.10)
|41 =42 <(1/m)

Try to argue the validity of the identity {Hy <t} = { J;co {X,eT}, for any
O<s<t
t > 0. The inclusion 2 is obvious, even for sets which are not open. Use right-

continuity, and the fact that I is open, to go the other way.

(Wentzell (1981)): For xe R, let p(x,T') = inf{||x — yl|; ye T}, and consider the
nested sequence of open neighborhoods of I' given by I, = {xeR% p(x,T) <
(1/m)}. By virtue of Problem 2.6, the times T, £ Hr ; n > 1, are optional. They
form a nondecreasing sequence, dominated by H = Hp, with limit T2 lim,_,, T, <
H, and we have the following dichotomy:

On{H=0}: T,=0,Ynx=1
On {H > 0}: there exists an integer k = k(w) > 1 such that
T,=0, Vi<n<k, and O0<T,<T,,,<H;, Vnzk

We shall show that T = H, and for this it suffices to establish T > H on
{H>0,T < 0}

On the indicated event we have, by continuity of the sample paths of X: X =
tim, ., X, and X, edl,, € T,;Vm > n >k Now we can let m - o0, to obtain
Xyel;Vn >k and thus Xy e ()2, I, = I'. We conclude with the desired result
H < T. The conclusion follows now from {H <t} = [\, {T, <}, valid for
t>0,and {H =0} = {X,eT}.

For every Ae #; we know that A~ {T < S} belongs to both #; (Lemma
2.16) and % (Lemma 2.15), and therefore also to #r,s = %Frn F. Con-
sequently, jA I{TSS}E(Z|97TAS)dP = jAm{TsS}ZdP = jAn{Tgs}E(Zlg'_r)dP =
§alir<sy E(Z|F1)dP, so (i) follows.

For claim (it) we conclude from (i) that

L1 s} ELE(Z|F)\Fs] = Ell (15 E(Z|F )| Fs] = Ellir <5y E(Z| Fs 1)1 F5]
= 1{1‘ss}E[Z|9_'sAT]a

which proves the desired result on the set {T < S}. Interchanging the roles of §
and T and replacing Z by E(Z{ %), we can also conclude from (i) that
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1{s<T}E[E(Z‘9'-T)‘-9'—S] = 1{s<T}E[E(Z|'g;T)|9_'SA r]
= 1(s<r}E[Z‘9'—sAr]-

2.22. We discuss only the second claim, following Chung (1982). For any A€ %, we

223

3.2,

have
A=|{ [An{S<r<T}>u[Am{S=oo}].
€0

Now An{S<r<T}=An{S <r}n{T >r}is an event in r, as is easily
verified, because An{S <rje#. On the other hand, AN {S=w}=
[AN{S = 0}]n{T = oo} is easily seen to be in Fy. It follows that A€ #r.

T is an optional time, by Lemma 2.11, and so %, is defined and contained in
&y, for every n > 1. Therefore, Fry < (&4 Fr,+- To go the other way, con-
sider an event A such that An {T, < t} € %, foreveryn > landt > 0. Obviously
then, An{T <t} =AU {TL <t} =Us(dn {T, < t})e %, and thus
A€ F;,. The second claim is justified similarly, using Problem 2.22.

(i) Fix s = 0 and a nonnegative integer n. Consider the “trace” o-field % of all
sets obtained by intersecting the members of #" with the set {N,=n}.
Consider also the similar trace o-field # of o(T},...,T,) on {Ny=n}. A
generating family for ¢ is the collection of sets of the form {N;, <ny,...,
N, <, N;=n},where0 <, <" <t <5, and each such set is a member
of #. A generating family for 5 is the collection of all sets of the form
(S, <ti,...,Spoy Sty Ny=n},where0<t, <" < <5, and each such
set is a member of 4. It follows that 4 = .

Therefore, for every Ae #" there exists Aea(T;,..., T,) such that A
{N, = n} = An{N; = n}. Using the independence of T,., and (S,, 1,} we
obtain

j P[S,+ > tI#N]dP
An{N,=n}

= P[{Sn+l > I}F\Aﬁ{s"ﬁs < Sn+1}]
= P[{Sy + Ty >t} n AN {S, < 5}]

= jw PL{S,>t—u}n AN {5, <s}]Ae *du

-5

. j P[{S,+u>s}nAn{S, < s}]Ae™ 2 du

1]
= e 2 OP{S, + T,,, > s} NnAN{S, < s}]
= e M P[4 {N,=n}].

Summation over n > 0 yields {7 P[Sy,+; > t| % 1dP = e~ #t9 P(4) for every
AeFN
(i) For an arbitrary but fixed k > 1, the random variable ¥, 2 S, 101 — Spi1 =
n+k+1

Yukil T is independent of o(Ty,..., Tu1); it has the gamma density
PLY, edu] = [(Au)""/(k — 1)1]Ae™* du;u > 0, for which one checks easily the
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identity:

k=1 (;0)
P[Y, > 0] = &e""; k>1,0>0.

Jj=0

We have, as in (i),
f PN, - N, < k|#"]dP
An{N;=n}

=P[{N,<n+k}nAn{N,=n}]
= P[{Syse1 > ) AN, =n}]
=P[{Sp+1 + i >t} n An {N, =n}]

= fw PL{S,s; +u>t}nAn{N,=n}] P(Y,edu)

(4]
=P[An{N,=n}] P(Y, >t —5)
+ fﬂ P[{S,;; >t —u}n An{N, = n}]P(Y, edu)
(4]

= PLAN{N, = n}] <k21 g M M

=0 J!
+f e”""""P(Y},edu))
(4]
k —
PN, =n}] 3, e BN
=0 j!

Adding up over n > 0 we obtain

gy BE = Y

k
f PIN, - N, < k|#1dP = P(A) ¥ e :
i j=0 7t

A

for every Ae £ and k > 1, and both assertions follow.

3.7. Let {h,; xe A} be a collection of linear functions from R? —» R for which ¢ =
SUDyc 4 1y Then for 0 < s < t we have

E[o(X)I#] = E[h(X)|#] = hy(X,), VaeA.

Taking the supremum over «, we obtain the submartingale inequality for ¢(X).
Now ||| is convex and E || X, < E(JXV| + - + | X¥|) < 0, s0 | X|| is a sub-
martingale.

3.11. Thanks to the Jensen inequality (as in Proposition 3.6) we have that
{X)}, #;n>1} is also a backward submartingale, and so with 4> O:
AP[|X,| > A] < E|X,| = —E(X,) + 2E(X;) < —1 + 2E(X) < 0. It follows
that sup,. ; P[|X,| > 4] converges to zero as A — oo, and by the submartingale

property:
f X,,*dPsJ dePsf Xt dP.
{(X4>4) {X1>2) {1Xa> 2}
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3.19.

3.20.

3.26.

3.27.
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Therefore, { X, }©, is a uniformly integrable sequence. On the other hand,

0> f X,dP = E(X,) — f X,dP > E(X,) — f X, dP
{Xn<-2} {Xpz—42} {Xn=—4}
= E(X,) - E(X,,) + f X,dP, forn>m.
{Xp<—2}

Given £ > 0, we can certainly choose m so large that 0 < E(X,,) — E(X,) < &/2
holds for every n > m, and for that m we select 4 > 0 in such a way that

£
supf | X, |dP < .
{Kn<=1) 2

n>m

Consequently, for these choices of m and 4 we have:

sup f X, dP < ¢, and thus {X, }72, is also uniformly integrable.
nm J (x> 2}

(@)= (b): Uniform integrability allows us to invoke the submartingale con-
vergence Theorem 3.15, to establish the existence of an almost sure limit X,
for {X,;0<t< oo} as t > o0, and to convert aimost sure convergence into
L'-convergence.

(b) = (c): Let X, be the L!-limitof {X,;0 <t < w}.ForO<s<tand Ae %
we have [, X,dP < [, X,dP, and letting t - co we obtain the submartingale
property [, X,dP < [, X, dP,0<s < 0, AeZ,.

(©)=(a): For 0<t< oo and 4> 0, we have [y X, dP < f(x,>1 X0 dP,
which converges to zero, uniformly in t, as 1100, because P[X,>A] <
(1/ADEX, < (1/)EX,,.

Apply Problem 3.19 to the submartingales {X;*, %;0 <t < oo} to obtain the
equivalence of (a), (b), and (c). The latter obviously implies (d), which in turn
gives (a). If (d) holds, then [, YdP = [, X,dP,V Ae %, Letting t — o0, we obtain
{4 YdP = [, X, dP. The collection of sets A € Z, for which this equality holds
is a monotone class containing the field | J,. o %. Consequently, the equality
holds for every A e %, which gives E(Y|%,) = X, as.

The necessity of (3.2) follows from the version of the optional sampling theorem
for bounded stopping times (Problem 3.23 (i)). For sufficiency, consider 0 < s <
t < o0, A e £, and define the stopping time S(w) £ s1,(w) + t1,(w). The condition
E(X,) = E(X,) is tantamount to the submartingale property E[(X,1,] = E[X,1,].

By assumption, each £, contains the P-negligible events of #. For the right-
continuity of {Z,}, select a sequence {t,}7, strictly decreasing to t; according to
Problem 2.23,

ﬁ =

tn

1>
s

Z

s

9'—T+:,, = '9'_(T+:)+,

It
—

1

and the latter agrees with %, = &, under the assumption of right-continuity
of {#,} (Definition 2.20).

(i) With0 < s <t < oo, Problem 3.23 implies
E[X|Z]=E[Xrr— Xl Fr0s] = Xpoy — X = X, as P
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3.28.

49.

4.11.

(i) Let §; < §, be bounded stopping times of {#}; then for every ¢t = 0,
(=T vOo<ey={S;<T+tjeFr, =%

by Lemma 2.16. It develops that (S, — T) v 0 < (S, — T) v 0 are bounded
stopping times of {#,} and so, according to Problem 3.26,

EXs, = EXs5,-1)v0 2 EXs,_1yv0 = EXG,.
Another application of Problem 3.26 shows that X is a submartingale.
(Robbins and Siegmund (1970)): With the stopping time
T = inf{te[s, co); Z, = b},

the process {Zr ,,, #;0 <t < oo} is a martingale (Problem 3.24 (i)). It follows
that for every Ae Z,,t > s:

f Z,dP = f ZydP
An{Z,<b} An{Z,<b}

=bP[Aﬁ{Zs<b,TSt}]+f Zzl{T>t)dP-

An{Zg<b)

The integrand Z,1 (r>ry 1s dominated by b, and converges to zero as t > o0 by
assumption; it develops then from the dominated convergence theorem that
f Z,dP=b-P[An{Z,<b, T < 0]
AN{Z,<b}

= bf P[T < w|%]dP,
ANn{Zs<b}

establishing the first conclusion. The second follows readily.
(@) According to Problem 3.23 (i) we have

E(X E(X,
f XTdPsf X,dP and P[XT>/1]SMS—(———)
{X,>4) {(X,>4} A A
for every a > 0, A > 0, Te %, and therefore
lim sup f X dP =0
{Xp>4}

Arw Ted,

(b) It suffices to show the uniform integrability of {M;} ... Once again,
Problem 3.23 (i) yields M, = E(M_|%;)a.s. P, for every Te %, and the claim
then follows easily, just as in the implication (d) = (a) of Problem 3.20.

This latter problem, coupled with Theorem 3.22, yields the representation
Xr = E(X,|%7) as. P, VTe for every uniformly integrable martingale X,
which is thus shown to be of class D.

For an arbitrary bounded random variable £ on (Q, #, P),
E[EE(A™|%)] = E[E(¢|%) E(A™|9)] = E[A"E(|9)),
which converges to E[A- E(£|%9)] = E[(E(A|%)).
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4.15.

5.11.

5.12.

5.17.
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Define the stopping times H, = inf{t > 0; X, > ¢}, § = inf{t > 0; 4, > 6} (Prob-
lem 2.7)and T, = TA n A H,. We have

eP[Vy, 2 €] < E[Xp Ly »q] < E(X1) < E(47) < E(4y)

and (4.14) follows because T, 1 T A H,,a.s.as n — co. On the other hand, we have

E(As,7) _EG A Ay)
£ - £

PV, 26 A;<8] < P[Vys=el <

thanks to (4.14), and (4.15) follows (adapted from Lenglart (1977)). From the
identity F(x) = [ Lixow dF(u), the Fubini theorem, and (4.15) we have

PV > u)dF(u) < jw {E(u%‘iﬂ

(¢}

=4

EF(Vy) = j

(¢}

+ P(A; > u)} dF(u)

- r [zP(AT >u) + iE(Aﬂ{AT(,,})]dF(u)

(¢}

=4

= E[ZF(AT) + Ay j

Ar

%dF(u)] = EG(Ay)

(taken from Revuz & Yor (1987); see also Burkholder (1973), p. 26).

Let T = {t,...,t,}, With0 = 1, < t; <+ <'t,, =1, be a partition of [0,]. For
q > p, we have
V@) < VP(I0): max |X, — X

1<k<m

|‘1—P
LY :

The first term on the right-hand side has a finite limit in probability, and
the second term converges to zero in probability. Therefore, the product con-
verges to zero in probability. For the second assertion, suppose that 0 < g < p,
P(L, > 0) > 0 and assume that ¥;/(II) does not tend to oo (in probability) as
ITI| > 0. Then we can find 6 >0, 0 < K < 0, and a sequence of partitions
{T1,}, such that P(4,) = P(L, > 0), where

A, ={L,>0,VoII,) <K}, nx1
Consequently, with IT, = {t},..., 1%}, we have

V(ML) < KmP™(X; (T,) on A, n>1

This contradicts the fact that ¥,®)(I,) converges (in probability) to the positive
random variable L, on {L, > 0}.

Because ¢(X) is continuous and nondecreasing, we have P[{(X};,,=0;
0 <t < o] = 1. An application of the optional sampling theorem to the con-
tinuous martingale M £ X2 — (X) yields (Problem 3.24 (i): 0 = EM;,, =
E[Xx%,,—<{X)r..]=EX%,, which implies P[X;,, =0]=1, for every
0 < t < co. The conclusion follows now by continuity.

There are sequences {S,}, {T,} of stopping times such that S, o, T,1 o0, and
XMAX, s, Y"2Y, ; are {#]-martingales. Define

R,2S, AT, Ainf{t =0:|X,|=n or |Y|=n},
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5.24.

5.25.

and set X = X, x, ¥™ =Y, . Note that R,T oo as. Since XM = X7y |
and likewise for Y™, these processes are also {% }-martingales (Problem 3.24),
and are in .3 because they are bounded. For m > n, X = X(™, and so

B e RO CONMELE VB RS GO

is a martingale. This implies (X™), = (X™3, ., . We can thus decree (X}, &
(X™>, whenever t < R, and be assured that (X is well defined. The process
{X> is adapted, continuous, and nondecreasing and satisfies (X, =0 as.
Furthermore,

Xior, — {Xinr, = (XPP = (XM,

is a martingale for each n, so X2 — (X ) e .#%"°. As in Theorem 5.13, we may
now take (X, Y) =4i[{(X + Y)> —<(X — Y)]

As for the question of uniqueness, suppose both 4 and B satisfy the conditions
required of (X, Y)>. Then M 2 XY — Aand N £ XY — B are in 4", 50 just
as before we can construct a sequence {R,} of stopping times with R, T co such
that M™ 2 M,, , and N® £ N, are in .#5. Consequently M® — N =
B, g, — Aing, €M5 and being of bounded variation this process must be
identically zero (see the proof of Theorem 5.13). It follows that A = B.

If Me#,, then E(M2?)=E(M), <E{M),; VO<t<oo. If Mes#~",
Problem 5.19 (iti) gives E(MZ) < E{M s for every stopping time S; it follows
that the family {Mj}s. s is uniformly integrable (Chung (1974), Exercise 4.5.8),
1., that M is of class D and therefore a martingale (Problem 5.19 (1)).

In either case, therefore, M is a uniformly integrable martingale; Problem 3.20
now shows that M, = lim,_, M, exists, and that E(M|%,) = M, holds as. P,
for every t > 0. Fatou’s lemma now yields

6.1) EM2) = E<lim Mf) < lim E(M?) = lim E(M), = E{M),
t—ao t—a t~w

and Jensen’s inequality: M2 < E(M2|#,), as. P, for every t > 0. It follows that
the nonnegative submartingale M? has a last element, ie., that {M? #;
0 <t < o0} is a submartingale. Problem 3.19 shows that this submartingale is
uniformly integrable, and (6.1) holds with equality. Finally, Z, = E(M2|#,) —
M? is now seen to be a (right-continuous, by appropriate choice of modification)
nonnegative supermartingale, with E(Z,) = E(M2) — E(M?) converging to zero
ast — o0.

Problem 5.19 (iii) allows us to apply Remarks 4.16,4.17 with X = M2, 4 = (M.

1.7. Notes

Sections 1.1, 1.2: These two sections could have been lumped together
under the rubric “Fields, Optionality, and Measurability” after the manner of
Chung & Doob (1965). Although slightly dated, this article still makes
excellent reading. Good accounts of this material in book form have been
written by Meyer [(1966); Chapter 1V], Dellacherie [(1972); Chapter III and
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to a lesser extent Chapter V], Dellacherie & Meyer [(1975/1980); Chapter
1V], and Chung [(1982); Chapter 1]. These sources provide material on the
classification of stopping times as “predictable,” “accessible,” and “totally
inaccessible,” as well as corresponding notions of measurability for stochastic
processes, which we need not broach here.

A new notion of “sameness” between two stochastic processes, called syn-
onimity has been introduced by Aldous. It was expounded by Hoover (1984)
and was found to be useful in the study of martingales.

A deep result of Dellacherie [(1972), p. 51] is the following: for every
progressively measurable process X and I' e Z(R), the hitting time Hy of
Example 2.5 is a stopping time of {#}, provided that this filtration is right-
continuous and that each o-field & is complete.

Section 1.3: The term martingale was introduced in probability theory by
J. Ville (1939). The concept had been created by P. Lévy back in 1934, in an
attempt to extend the Kolmogorov inequality and the law of large numbers
beyond the case of independence. Lévy’s zero-one law (Theorem 9.4.8 and
Corollary in Chung (1974)) is the first martingale convergence theorem. The
classic text, Doob (1953), introduced, for the first time, an impressively com-
plete theory of the subject as we know it today. For the foundations of the
discrete-parameter case there is perhaps no better source than the relevant
sections in Chapter 9 of Chung (1974) that we have already mentioned; fuller
accounts are Neveu (1975), Chow & Teicher (1978), Chapter 11, and Hall
& Heyde (1980). Other books which contain material on the continuous-<,
parameter case include Meyer [(1966); Chapters V, VI], Dellacherie & Meyer
[(1975/1980); Chapters V-VIII], Liptser & Shiryaev [(1977), Chapters 2, 3]
and Elliott [(1982), Chapters 3, 4].

Section 1.4: Theorem 4.10 is due to P. A. Meyer (1962, 1963); its proof was
later simplified by K. M. Rao (1969). Our account of this theorem, as well as
that of Theorem 4.14, follows closely Ikeda & Watanabe (1981).

Section 1.5: The study of square-integrable martingales began with Fisk
(1966) and continued with the seminal article by Kunita & Watanabe (1967).
Theorem 5.8 is due to Fisk (1966). In (5.6), the opposite implication is also
true; see Lemma A.1 in Pitman & Yor (1986).



CHAPTER 2

Brownian Motion

2.1. Introduction

Brownian movement is the name given to the irregular movement of pollen,
suspended in water, observed by the botanist Robert Brown in 1828. This
random movement, now attributed to the buffeting of the pollen by water
molecules, results in a dispersal or diffusion of the pollen in the water. The
range of application of Brownian motion as defined here goes far beyond
a study of microscopic particles in suspension and includes modeling of stock
prices, of thermal noise in electrical circuits, of certain limiting behavior in
queueing and inventory systems, and of random perturbations in a variety of
other physical, biological, economic, and management systems. Furthermore,
integration with respect to Brownian motion, developed in Chapter 3, gives
us a unifying representation for a large class of martingales and diffusion
processes. Diffusion processes represented this way exhibit a rich connection
with the theory of partial differential equations (Chapter 4 and Section 5.7).
In particular, to each such process there corresponds a second-order parabolic
equation which governs the transition probabilities of the process.

The history of Brownian motion is discussed more extensively in Section 11;
see also Chapters 2—4 in Nelson (1967).

1.1 Definition. A (standard, one-dimensional) Brownian motion is a continuous,
adapted process B = {B,, #;0 < t < o0}, defined on some probability space
(Q, #, P), with the properties that B, = 0 a.s. and for 0 < s < ¢, the increment
B, — B, is independent of % and is normally distributed with mean zero
and variance ¢t — s. We shall speak sometimes of a Brownian motion B =
{B,#;0<t<T} on [0,T], for some T >0, and the meaning of this
terminology is apparent.
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If Bis a Brownian motionand 0 = t, < t; <--- < t, < o0, then the incre-
ments {B, — B, }j-1 are independent and the distribution of B, — B, |
depends on ¢; and t;_; only through the difference t; — t;-;; to wit, it is
normal with mean zero and variance t; — t;_,. We say that the process B has
stationary, independent increments. It is easily verified that B is a square-
integrable martingale and (B}, =t,t = 0.

The filtration { #,} is a part of the definition of Brownian motion. However,
if we are given {B,; 0 <t < o0} but no filtration, and if we know that B has
stationary, independent increments and that B, = B, — B, is normal with
mean zero and variance ¢, then {B,, #,0 <t < o0} is a Brownian motion
(Problem 1.4). Moreover, if {#]} is a “larger” filtration in the sense that
FPc F for t >0, and if B, — B, is independent of & whenever 0 < s <t,
then {B,, %0 <t < o} is also a Brownian motion.

It is often interesting, and necessary, to work with a filtration {#} which
is larger than {#}?}. For instance, we shall see in Example 5.3.5 that the
stochastic differential equation (5.3.1) does not have a solution, unless we take
the driving process W to be a Brownian motion with respect to a filtration
which is strictly larger than {# }. The desire to have existence of solutions
to stochastic differential equations is a major motivation for allowing {%} in
Definition 1.1 to be strictly larger than {#2}.

The first problem one encounters with Brownian motion is its existence.
One approach to this question is to write down what the finite-dimensional
distributions of this process (based on the stationarity, independence, and
normality of its increments) must be, and then construct a probability measure
and a process on an appropriate measurable space in such a way that we
obtain the prescribed finite-dimensional distributions. This direct approach
is the one most often used to construct a Markov process, but is rather lengthy
and technical; we spell it out in Section 2. A more elegant approach for
Brownian motion, which exploits the Gaussian property of this process, is
based on Hilbert space theory and appears in Section 3; it is close in spirit
to Wiener’s (1923) original construction, which was modified by Lévy (1948)
and later further simplified by Ciesielski (1961). Nothing in the remainder of
the book depends on Section 3; however, Theorems 2.2 and 2.8 as well as
Problem 2.9 will be useful in later developments.

Section 4 provides yet another proof for the existence of Brownian motion,
this time based on the idea of the weak limit of a sequence of random walks.
The properties of the space C[0, c0) developed in this section will be used
extensively throughout the book.

Section 5 defines the Markov property, which is enjoyed by Brownian
motion. Section 6 presents the strong Markov property, and, using a proof
based on the optional sampling theorem for martingales, shows that Brownian
motion is a strong Markov process. In Section 7 we discuss various choices
of the filtration for Brownian motion. The central idea here is augmentation
of the filtration generated by the process, in order to obtain a right-continuous
filtration. Developing this material in the context of strong Markov processes
requires no additional effort, and we adopt this level of generality.
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Sections 8 and 9 are devoted to properties of Brownian motion. In Section 8
we compute distributions of a number of elementary Brownian functionals;
among these are first passage times, last exit times, and time and level of
the maximum over a fixed time-interval. Section 9 deals with almost sure
properties of the Brownian sample path. Here we discuss its growth as t — o0,
its oscillations near ¢t = 0 (law of the iterated logarithm), its nowhere differ-
entiability and nowhere monotonicity, and the topological perfectness of the
set of times when the sample path is at the origin.

We conclude this introductory section with the Dynkin system theorem
(Ash (1972), p. 169). This result will be used frequently in the sequel whenever
we need to establish that a certain property, known to hold for a collection
of sets closed under intersection, also holds for the o-field generated by this
collection. Our first application of this result occurs in Problem 1.4.

1.2 Definition. A collection 2 of subsets of a set Q is called a Dynkin system if

(i) Qe2,
(i) A, Be% and B = A imply A\Be 2,
(iii) {A4,})%;, € Zand A, = A, < imply | Ji2, 4,€ 2.

1.3 Dynkin System Theorem. Let € be a collection of subsets of Q which is
closed under pairwise intersection. If 9 is a Dynkin system containing %, then
2 also contains the o-field o(%) generated by 6.

1.4 Problem. Let X = {X,;0 <t < oo} be a stochastic process for which
Xo, X,, — X, ..., X,, — X,,_, are independent random variables, for every
integer n > 1 and indices 0 =ty <t; <--- <t, < . Then for any fixed
0 <s <t < oo, the increment X, — X is independent of #*.

2.2. First Construction of Brownian Motion

A. The Consistency Theorem

Let R denote the set of all real-valued functions on [0, o0). An n-dimensional
cylinder set in R is a set of the form

@n C 2 {weR";(w(t,),...,0(t,) € A},

where t,e[0,0), i=1, ..., n, and Ae B(R"). Let € denote the field of all
cylinder sets (of all finite dimensions) in R, and let #(R**) denote the
smallest g-field containing %.

2.1 Definition. Let T be the set of finite sequences t = (t;,..-,t,) of distinct,
nonnegative numbers, where the length n of these sequences ranges over the set
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of positive integers. Suppose that for each ¢ of length n, we have a probability
measure Q, on (R", Z(R")). Then the collection {Q,},. r is called a Sfamily of
finite-dimensional distributions. This family is said to be consistent provided
that the following two conditions are satisfied:

() if s =(t;,ti,,.--»t,) is @ permutation of ¢ = (¢,t5,...,t,), then for any
A;eBR),i=1,...,n, we have

Qg(Al X Ay x o x A,) = Qg(Ail X Ag, X o0 X Ai");
(b) if t = (t1,t2,-..,t,) Withn > 1, s = (t;,15,...,t,-1), and AeB(R"1), then
04 x R) = Qy(A).

If we have a probability measure P on (RI®=, Z(RI%*)), then we can define
a family of finite-dimensional distributions by

2.2) 0,(4) = Plwe RI®=); (wft,), ..., w(t,)) e Al,

where Ae #(R") and t = (ty,...,t,) € T. This family is easily seen to be con-
sistent. We are interested in the converse of this fact, because it will enable us
to construct a probability measure P from the finite-dimensional distributions
of Brownian motion.

2.2 Theorem (Daniell (1918), Kolmogorov (1933)). Let {Q,} be a consistent
family of finite-dimensional distributions. Then there is a probability measure
P on (RO®, B(RIO-)), such that (2.2) holds for every te T.

PROOF. We begin by defining a set function Q on the field of cylinders €. IfC
is given by (2.1) and ¢ = (t,,15,...,1,)€ T, we set

(2.3) Q(C) = 0,(4), Ce%.

2.3 Problem. The set function Q is well defined and finitely additive on €, with
QRO = 1.

We now prove the countable additivity of Q on €, and we can then draw
on the Carathéodory extension theorem to assert the existence of the desired
extension P of Q to #(R>®). Thus, suppose {B, }i, is a sequence of disjoint
sets in 4 with B 2 | J2., B, also in &. Let C,, = B\| Jix, By, so

Q(B) = 9(C,) + 21 Q(By).
k=
Countable additivity will follow from

(2.4) lim Q(C,,) = 0.
Now Q(C,)) = Q(Cps1) + Q(Bpi1) = Q(Cpyy), so the limit in (2.4) exists.
Assume that this limit is equal to £ > 0, and note that [ }m=; C, = .
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From {C,}%-; we may construct another sequence {D,}m=; Which has
the properties D, 2D, 2, (\%.,D,= &, and lim,_,Q(D,) =¢> 0.
Furthermore, each D,, has the form

D, = {0 RO (w(t,), .., 0(tn) € An)

for some A, € #(R™), and the finite sequence ¢t,, £ (t;,...,t,)€ T is an exten-
sion of the finite sequence t,,-; £ (ty,...,t,—1)€ T,m = 2. This may be accom-
plished as follows. Each C, has a form

C, = {0eR*(w(ty),...,0tn ) €Ay };  Am € BR™),

where ¢, = (t,...,t, )€ T Since Cy,; = G, we can choose these representa-
tions so that t,,  is an extension of ¢, , and 4,,,, S A, x R™*7™ Define

D, = {w;o(t))eR},..., Dy, = {0 (0(ty),..., 0(tm, 1)) ER™ 7}
and D,, = Cj, as well as
Dy 11 = {w5(0(ty),..., 0(ty), Oty +1)) € A, x R},...,
Dp,—y = {@;(0(ty),..., 0(ty)s Ot 41)s - s Oty —1)) € A, X Rmz—mim1y
and D,,, = C,. Continue this process, and note that by construction -y Dy =

m;.:=1 Cm = @

2.4 Problem. Let Q be a probability measure on (R”, Z(R")). We say that
AeB(R") is regular if for every probability measure Q on (R", Z(R")) and for
every ¢ > 0, there is a closed set F and an open set G suchthat Fc A= G
and Q(G\F) < ¢ Show that every set in Z(R") is regular. (Hint: Show that the
collection of regular sets is a o-field containing all closed sets.)

According to Problem 2.4, there exists for each m a closed set F,, = 4,, such
that Q, (4,\F,) < ¢2™. By intersecting F,, with a sufficiently large closed
sphere centered at the origin, we obtain a compact set K,, such that, with

E, & {weR"; (), .., 0t,) €Ky},

we have E,, < D,, and
£
The sequence {E,,} may fail to be nonincreasing, so we define
E.=() E
k=1
and we have

E, = {weR®?;(o(t,),..., ot,) €Ky},

where

R, =(K, x R") (K, x R"2) A0 Ky X BIOK,,



52 2. Brownian Motion

which is compact. We can bound Q (K,,) away from zero, since

Im

— 0Dy - 0 <kO (D,..\Ek)>
=1
> QD) — 0 ( U (Dk\Ek)>
k=1
m g
>&— k; —2"; >0

Therefore, K, is nonempty for each m, and we can choose (x{, ..., x™)e K.
Being contained in the compact set K, the sequence {x{™}*_, must have
a convergent subsequence {x{™}e, with limit x,. But {x{"),x{™}¥., is
contained in K,, so it has a convergent subsequence with limit (x;,x5).
Continuing this process, we can construct (x;,X,,...)€R x R x ---,such that
(X1, ..., %) € K,, for each m. Consequently, the set

S={weR% o) =x,i=12...}

is contained in each E,,, and hence in each D,,. This contradicts the fact that
(\e., D, = &. We conclude that (2.4) holds. O

Our aim is to construct a probability measure P on (Q %) £ (R(®*,
A(R*)) so that the process B = {B,, 7,0 < t < oo} defined by B,(w) £
o(t), the coordinate mapping process, is almost a standard, one-dimensional
Brownian motion under P. We say “almost” because we leave aside the
requirement of sample path continuity for the moment and concentrate
on the finite-dimensional distributions. Recalling the discussion following
Definition 1.1, we see that whenever 0 = 5, < s; < s, <-** < 5,, the cumu-
lative distribution function for (B, ,..., B ) must be

(2.5) Fipys(X15- -5 X0)

=J J J p(sl;o,yl)p(sz—Sl;yl,h)m

P(Sy = Snc13 Va1 Yn) Vs .. Ay, dy,

for (x,,...,x,) e R", where p is the Gaussian kernel

(2.6) p(t;x,y) & e 2 50, x, yeR.

2nt
The reader can verify (and should, if he has never done so!) that (2.5) is
equivalent to the statement that the increments {st - st_l}}'=1 are inde-
pendent, and B, — B, | is normally distributed with mean zero and variance
55— Sj_1.
Now let t = (t;,t,,...,t,), where the ¢, are not necessarily ordered but
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are distinct. Let the random vector (B, B,,;...,B,) have the distribution
determined by (2.5) (where the t; must be ordered from smallest to largest to
obtain(sy, .. -,S,) appearingin (2.5)). For 4 € #(R"), let Q,(4) be the probability
under this distribution that (B, , B, ,...,B,) is in 4. This defines a family of
finite-dimensional distributions {Q, },c r-

2.5 Problem. Show that the just defined family {Q,},. r is consistent.

2.6 Corollary to Theorem 2.2. There is a probability measure P on (RO,
B(R)), under which the coordinate mapping process

B(w) = o(t); weR® >0,

has stationary, independent increments. An increment B, — B, where O0<s<t,
is normally distributed with mean zero and variance t — s.

B. The Kolmogorov-Centsov Theorem

Our construction of Brownian motion would now be complete, were it not
for the fact that we have built the process on the sample space R of all
real-valued functions on [0, co) rather than on the space C[0, ) of continuous
functions on this half-line. One might hope to overcome this difficulty by
showing that the probability measure P in Corollary 2.6 assigns measure one
to C[0, c0). However, as the next problem shows, C[0, «0) is not in the o-field
BRI so P(C[0, o)) is not defined. This failure is a manifestation of
the fact that the o-field Z(R>>) is, quite uncomfortably, “too small” for a
space as big as RI®*; no set in Z(RI®*) can have restrictions on uncountably
many coordinates. In contrast to the space C[0, o0), it is not possible to
determine a function in RI®® by specifying its values at only countably
many coordinates. Consequently, the next theorem takes a different approach,
which is to construct a continuous modification of the coordinate mapping
process in Corollary 2.6.

2.7 Exercise. Show that the only 2(R®®)-measurable set contained in C[0, c©)
is the empty set. (Hint: A typical set in Z(Rl%*) has the form

E = {we RO (o(ty), w(t,),... )€ A},
where Ae B(R x R x ).
2.8 Theorem (Kolmogorov, Centsov (1956a)). Suppose that a process X =
{X,;0 <t < T} on a probability space (Q, ¥, P) satisfies the condition
(2.7 EIX,— X <Clt—s'* 0<st<T,

for some positive constants o, B, and C. Then there exists a continuous modification
X ={X,;0 <t < T} of X, which is locally Hélder-continuous with exponent y
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for every ye(0, /o), ie.,

X -X
(2.8) pI:w; sup M < 5] =1,
0<t—s<h(w) [t —s|”
s, te[0, T}

where h(w) is an a.s. positive random variable and 6 > 0 is an appropriate
constant.

Proor. For notational simplicity, we take T = 1. Much of what follows is
a consequence of the Cebysev inequality. First, for any ¢ > 0, we have

E|X, — X,

a

POX, — Xl 2¢] < < Ce™*|t —s['*F,

£
and so X, — X, in probability as s — t. Second, setting t = k/2",s = (k — 1)/2",
and ¢ = 27" (where 0 < y < B/a) in the preceding inequality, we obtain

P[|Xk/2" - X(k—l)/2"| 2 2_}'"] _<_ CZ_"“H}-”),

and consequently,

(29) P[ max |Xk/2" - X(k—l)/2"| 2 Z-Y":|

1<k<2n

2n
= P[ U |Xk/2" - X(k—l)/2"| Z Z_Y":|

k=1

< C2mben,

The last expression is the general term of a convergent series; by the Borel-
Cantelli lemma, there is a set Q* € & with P(Q*) = 1 such that for each w e Q¥,
(2.10) max |Xk/2..(a)) - X(k_l)/zn(w)l < Z_WI’ Vn 2 n*(w),
1<k<2n

where n*(w) is a positive, integer-valued random variable.

For each integer n > 1, let us consider the partition D, = {(k/2");k = 0,
1,...,2"} of [0,1],and let D = { Ji=, D, be the set of dyadic rationals in [0, 1].
We shall fix @ € Q*, n > n*(w), and show that for every m > n, we have

(211)  |X,() - X(w)| <2 > 277 VtseD,0<t—s<2™
j=n+1

For m=n + 1, we can only have t = (k/2™), s = ((k — 1)/2™), and (2.11)
follows from (2.10). Suppose (2.11) is valid form=n+1, ..., M — 1. Take
s <t, s, teD,,, consider the numbers t! = max{ueDy_,;u <t} and s' =
min{ueDy_,; u > s}, and notice the relationships s < s' <t' <t,s' —s <
27M ¢ 1 < 2°M From (2.10) we have | X i(w) — X (@) <27™, | X,(w) —
X,:(w)| <27, and from 2.11) withm =M — 1,

M-1

|X,1(Cl)) — Xsl(a))l <2 Z 2_”.

j=n+1

We obtain (2.11) for m = M.



2.2. First Construction of Brownian Motion 55

We can show now that { X,(w); t € D} is uniformly continuous in ¢ for every
weQ*. For any numbers s, te D with 0 <t — s < h(w) £ 27" '@ we select
n > n*(w) such that 27"*Y <t — s < 27". We have from (2.11)

212) | X(w) — X(w)| <2 Y 27 <ot —s, 0<t—s<hw),
j=n+1
where 8 = 2/(1 — 277). This proves the desired uniform continuity.

We define X as follows. For w¢ Q*, set X,(w) =0, 0 <t < 1. For weQ*
and te D, set X,(w) = X,(w). For w e Q* and t€[0, 1] n D, choose a sequence
{$,}=1 € D with s, — t; uniform continuity and the Cauchy criterion imply
that { X, (@) }*_, has a limit which depends on ¢ but not on the particular se-
quence {s }*_, = D chosen to converge to ¢, and we set X () = lim, _, X; (w).
The resulting process X is thereby continuous; indeed, X satisfies (2. 12) SO
(2.8) is established.

To see that X is a modification of X, observe that X, = X, as. for teD;
forte[0,1] n D and {s %, € Dwiths, - t,we have X; — X, in probability
and X, > X as,soX,= X, as. O

2.9 Problem. A random field is a collection of random variables {X,; te .o/},
where </ is a partially ordered set. Suppose { X,; € [0, T1%},d > 2,isarandom
field satisfying

(2.13) E|X,— X,J* < C|t — s||**#

for some positive constants o, f, and C. Show that the conclusion of Theorem
2.8 holds, with (2.8) replaced by

X(w) - X
(2.14) p[w; sup I_,(w)—s(w)l < 5] =
o<ji-sj<n@ It — sl
s,tE[O,T]d

2.10 Problem. Show that if B, — B, 0 < s < t, is normally distributed with
mean zero and variance t — s, then for each positive integer n, there is a
positive constant C, for which

E|B,— BJ*" = C,|t — sI".
2.11 Corollary to Theorem 2.8. There is a probability measure P on (RIO- ),

B(RIO-))) and a stochastic process W = {W,, #¥,t > 0} on the same space,
such that under P, W is a Brownian motion.

PRrOOF. According to Theorem 2.8 and Problem 2.10, there is foreach T > O a
modification WT of the process B in Corollary 2.6 such that W7 is continuous
on [0, T]. Let

Q; = {w; W,T(w) = B,(w) for every rational te [0, 71},
0 P(Q;) = 1. On & 2 (%-, Qr, we have for positive integers T; and T3,
W,Ti1(w) = W,2(w), for every rational te [0, Ty A T2 ].
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Since both processes are continuous on [0, T; A T,], we must have W7\ (w) =
W, 2(w) for every te[0, T, A T,], €. Define W,(w) to be this common
value. For w ¢, set W(w) = 0for all ¢t > 0. O

2.12 Remark. Actually, for P-ae. weRI®™ the Brownian sample path
{W/(w); 0 <t < oo} is locally Holder-continuous with exponent 7, for every
y€(0, 1/2). This is a consequence of Theorem 2.8 and Problem 2.10.

2.3. Second Construction of Brownian Motion

This section provides a succinct, self-contained construction of Brownian
motion. It may be omitted without loss of continuity.

Let us suppose that {B,, %, t > 0} is a Brownian motion, fix0 < s <t < o0,
and set 0 £ (t + 5)/2; then, conditioned on B, = x and B, = z, the random
variable B, is normal with mean u £ (x + z)/2 and variance ¢ £ (t — 5)/4.
To verify this, observe that the known distribution and independence of the
increments B;, By — B,, and B, — By lead to the joint density

t—s

t_
P[B,edx, Byedy, B,edz] = p(s;0, x)p<—2~£; X, y>p <T; Vs Z> dxdydz

1 _ 2
= p(s;0,x)p(t — s;x,2)" exp{—(y 2 }dxdydz

o./2n 20?
in the notation of (2.6), after a bit of algebra. Dividing by
P[B,edx, B,edz] = p(s;0, x)p(t — s; x,z)dx dz,

we obtain

(3.1 P[B(t+s)/2 Edy|Bs =x,B=z]= : e~ bmae? dy

a./2n
The simple form of this conditional distribution for B,,,;,, suggests that we
can construct Brownian motion on some finite time-interval, say [0, 1], by
interpolation. Once we have completed the construction on [0, 1], a simple
“patching together” of a sequence of such Brownian motions will result in
a Brownian motion defined for all ¢ > 0.

To carry out this program, we begin with a countable collection {&{;
kel(n), n=0,1,...} of independent, standard (zero mean and unit variance)
normal random variables on a probability space (Q, %, P). Here I(n) is the set
of odd integers between 0 and 27 i.e., I{0) = {1}, I(1) = {1}, I(2) = {1, 3}, etc.
For each n > 0, we define a process B™ = {B™; 0 < t < 1} by recursion and
linear interpolation, as follows. For n > 1, B{j}.-. will agree with B{};.",,

k=0,1,..., 2" % Thus, for each value of n, we need only specify B for
keI(n). We set
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0
B =0, B =P

If the values of B{:X., k=0, 1, ..., 2! have been specified (so BV s
defined for 0 <t < 1 by piecewise-linear interpolation) and kel(n), we de-
qote s = (k — /2" t = (k + 1)/2", p=4(B"V + B"™V), and ol=(t—19)/4=
1/2"*! and set, in accordance with (3.1),

Bl(c'/g" = B{hs £ p+ ol

We shall show that, almost surely, B™ converges uniformly in ¢ to a continuous
function B, and {B,, #2,0 < t < 1} is a Brownian motion.

Our first step is to give a more convenient representation for the processes
B™, n=0,1,.... We define the Haar functions by H{®(t) = 1,0 <t < 1, and
forn> 1, kel(n),

gz, Kol K
E 2" —_— 2" E
HP () = D2 k < k+1
E n— 2" E
LO, otherwise.

We define the Schauder functions by
t
(L) = J H"w)du, 0<t<1,n=0kel(n).
0

Note that S{(f) = t, and for n > 1 the graphs of S are little tents of height
2-@+172 centered at k/2" and nonoverlapping for different values of ke I(n).
It is clear that B© = &®S{(t), and by induction on n, it is easily verified that

62  B@=3 ¥ @S0, 0<t<lnz0.

m=0 kel(m)
3.1 Lemma. As n — oo, the sequence of functions {B™(w);0 <t < 1}, n >0,
given by (3.2) converges uniformly in t to a continuous function {B(w);0 <t <1},

Jor ae. weQ.

PRrOOF. Define b, = max, ¢ ;n |£0]. For x >0

2 (* _,
(33) P& > x] = \/:J e % du
n X
© -x2/2
< \/EJ B vz gy = \ﬁi ,
T ). T X
which gives

2 g2
Plb,>n] = P|: U {&m > n}] < 2"PlIEM] > n] < \/; ,n> 1.

kel,

=
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Now Y2, 2" "?/n < o0, so the Borel-Cantelli lemma implies that there
is a set O with P() = 1 such that for each we{} there is an integer n{w)
satisfying b,(w) < n for all n > n(w). But then

Y OENSP@I < Y, n2TDR < oo
n=n(w) kel(n) n=n(w)
so for we ), B™(w) converges uniformly in ¢ to a limit B,(w). Continuity of
{B(w); 0 <t < 1} follows from the uniformity of the convergence. O

Under the inner product {f,g> = [} f(t)g(t)dt, L*[0,1] is a Hilbert space,
and the Haar functions {H{"; ke I(n), n > 0} form a complete, orthonormal
system (see, e.g., Kaczmarz & Stetnhaus (1951), but also Exercise 3.3 later).
The Parseval equality

Sgdy=Y Y SLHPGHD,
n=0 kelm
applied to f = 1,5, and g = 1o 4 yields
(3.4) Y OY SPmss)=sAt; 0<st<L

n=0 kel(n)
3.2 Theorem. With {B"}%, defined by (3.2) and B, = hm,_,, B, the process

{B,, #2;0 < t < 1} is a Brownian motion on [0, 1].

PRrOOF. It suffices to prove that, for0 = t, < t; <~ <t, < 1, the increments
{B,J_ — B,j_l}};, are independent, normally distributed, with mean zero and
variance t; — t;_;. For this, we show thatfor L,eR,j=1,...,n andi=./—1,

(3.5) E[exp {i Y. (B, — B,H)}] =] exp {—%z}(t,. - tj_,)}.
= j=1

Set A,,, = 0. Using the independence and standard normality of the random
variables {&}, we have from (3.2)

E[e"p{_i (Ajs1 — ,11.)3,‘}”’}]
= E[exp{—i Yy oam i (Aj41 — if)Sl(c"')(tf)}:I
0 kel(m) j=1
= ﬁ H E exp{—i{}{"’ i (ijﬂ - ij)Sl(cm)(tj)}:l
j=1

m=0 ke lI(m)

L
Mz

3
il

~

M 1 n 2
H H CXP[“‘E{Z (Aj+1 — ij)Sl(c"')(tj)} :|
m=0 ke I(m) j=1

l n n M
= CXP[—E Y, Y (A — AR — 4) Y Y Sl(cm)(ti)sl(cm)(tj)}

j=1i=1 m=0 ke I(m)

Letting M — oo and using (3.4), we obtain
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" 1

3.3 Exercise. Prove Theorem 3.2 without resort to the Parseval identity (3.4),
by completing the following steps.

(a) The increments {B{}. — B{.,);-}421 are independent, normal random
variables with mean zero and variance 1/2".

(b) If 0=ty <t, <--<t, <1 and each ¢; is a dyadic rational, then the
increments {B,j - B,J_l}}'=1 are independent, normal random variables with
mean zero and variance (t; — t;_;).

(¢) The assertion in (b) holds even if {t;}}- is not contained in the set of
dyadic rationals.

3.4 Corollary. There is a probability space (Q, &, P) and a stochastic process
B={B, #20<t< w} on i, such that B is a standard, one-dimensional
Brownian motion.

PRrOOF. According to Theorem 3.2, there is a sequence (Q,, %, P,),n=1,2,...
of probability spaces together with a Brownian motion {X{";0 <t <1}
on each space. Let Q=Q; x Y, x , F=F Q% ® -, and P =P, x
P, x --- . Define B on Q recursively by

B=XY 0<t<l],

B =B, + X"V, n<t<n+1Ll

This process is clearly continuous, and the increments are easily seen to be
independent and normal with zero mean and the proper variances. OdJ

2.4. The Space C[0, o0), Weak Convergence,
and the Wiener Measure
The sample spaces for the Brownian motions we built in Sections 2 and 3

were, respectively, the space RI®* of all real-valued functions on [0, co)
and a space Q rich enough to carry a countable collection of independent,
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standard normal random variables. The “canonical” space for Brownian
motion, the one most convenient for many future developments, is C[0, 00),
the space of all continuous, real-valued functions on [0, cc) with metric

o0
@ plon,02) 2 5 20 max (0400 = w,(0] A 1)

n=1 o<t<n
In this section, we show how to construct a measure, called Wiener measure,
on this space so that the coordinate mapping process is Brownian motion.
This construction is given as the proof of Theorem 4.20 (Donsker’s invariance
principle) and involves the notion of weak convergence of random walks to
Brownian motion.

4.1 Problem. Show that p defined by (4.1) is a metric on C[0, o) and, under
p, C[0, o0) is a complete, separable metric space.

4.2 Problem. Let %(%,) be the collection of finite-dimensional cylinder sets of
the form (2.1); i.e.,

21y  C={weC[0,0)(@(,),...,0lt,))eA); n>1, AcBR"),

where, for alli = 1, ..., n, t,e [0, 00) (respectively, t;€ [0,]). Denote by 4(%,)
the smallest o-field containing %(%,).

Show that ¥ = #(C[0, 0)), the Borel o-field generated by the open sets in
C[0, ), and that &, = ¢, }(#(C[0, 0))) £ 2(C[0, o0)), where ¢,: C[0,c0) —»
C[0, ) is the mapping (@,w)(s) = w(t A s5);0 < s < 0.

Whenever X is a random variable on a probability space (2, %, P) with
values in a measurable space (S, %(S)), i.e., the function X: Q — § is #/%(S)-
measurable, then X induces a probability measure PX ! on (S, %(S)) by

(4.2) PX~(B) = P{weQ; X(w)e B}, BeA(S).

An important special case of (4.2) occurs when X = {X,;0 <t < oo}isa
continuous stochastic process on (Q, #, P). Such an X can be regarded as
a random variable on (Q, &, P) with values in (C[0, ), #(C[0, o0))), and
PX ! is called the law of X. The reader should verify that the law of a
continuous process is determined by its finite-dimensional distributions.

A. Weak Convergence
The following concept is of fundamental importance in probability theory.

4.3 Definition. Let (S, p) be a metric space with Borel o-field #(S). Let {P,}7,
be a sequence of probability measures on (S, %(S)), and let P be another

measure on this space. We say that {P,}, converges weakly to P and write
P, > P, if and only if
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lim | f(s)dP,(s) = J f(s)dP(s)
n—w JS S
for every bounded, continuous real-valued function f on S.
It follows, in particular, that the weak limit P is a probability measure, and
that it is unique.

4.4 Definition. Let {(Q,, &, P,)}+-; be a sequence of probability spaces, and
on each of them consider a random variable X, with values in the metric space
(S, p). Let (Q, #, P) be another probability space, on which a random variable
X with values in (S, p) is given. We say that {X,}i., converges to X in distri-
bution, and write X, % X, if the sequence of measures {P,X, '}, converges
weakly to the measure PX .
Equivalently, X, % X if and only if
lim E,f(X,) = Ef(X)

for every bounded, continuous real-valued function f on S, where E, and E
denote expectations with respect to P, and P, respectively.

Recall that if S in Definition 4.4 is R?, then X, 3 X if and only if the
sequence of characteristic functions ¢,(u) £ E,exp{i(u, X,)} converges to
o(u) & Eexp{i(u, X)}, for every ue R This is the so-called Cramér-Wold
device (Theorem 7.7 in Billingsley (1968)).

The most important example of convergence in distribution is that provided
by the central limit theorem. In the Lindeberg-Lévy form used here, the
theorem asserts that if {£,}52, is a sequence of independent, identically distri-
buted random variables with mean zero and variance 62, then {S, } defined by

1 n

2

nk=1

S, =

converges in distribution to a standard normal random variable. It is this fact
which dictates that a properly normalized sequence of random walks will

converge in distribution to Brownian motion (the invariance principle of Sub-
section D).

4.5 Problem. Suppose { X, }&, is a sequence of random variables taking values
in a metric space (S, p,) and converging in distribution to X. Suppose (S, p,)
is another metric space, and @: S; — S, is continuous. Show that ¥, £ ¢(X,)
converges in distribution to Y £ ¢(X).

B. Tightness

The following theorem is stated without proof; its special case S = R is used
to prove the central limit theorem. In the form provided here, a proof can
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be found in several sources, for instance Billingsley (1968), pp. 35-40, or
Parthasarathy (1967), pp. 47-49.

4.6 Definition. Let (S, p) be a metric space and let IT be a family of probability
measures on (S, #(S)). We say that I is relatively compact if every sequence
of elements of IT contains a weakly convergent subsequence. We say that
Il is tight if for every & > 0, there exists a compact set K =S such that
P(K)>1 — ¢, forevery Pell.

If {X,},c 4 is a family of random variables, each one defined on a prob-
ability space (Q,, %, P,) and taking values in S, we say that this family is
relatively compact or tight if the family of induced measures {P, X, 1,4 has
the appropriate property.

4.7 Theorem (Prohorov (1956)). Let I1 be a family of probability measures on
a complete, separable metric space S. This family is relatively compact if and
only if it is tight.

We are interested in the case S = C[0, o). For this case, we shall provide
a characterization of tightness (Theorem 4.10). To do so, we define for each
we C[0, ), T > 0, and § > 0 the modulus of continuity on {0, T7]:
4.3) mT(w,8) 2 max |w(s) — o).

|s—t]<é
0<s,t<T

48 Problem. Show that mT(w,d) is continuous in we C[0, ) under the
metric p of (4.1), is nondecreasing in 6, and lim;y omT(w,d) = 0 for each
we C[0, ).

We shall need the following version of the Arzela-Ascoli theorem.

49 Theorem. A set A = C[0, c0) has compact closure if and only if the follow-
ing two conditions hold:

4.4) sup |w(0)| < oo,
weAd
4.5) lim sup mT(w,8) =0 for every T > 0.
40 wed

PRrOOF. Assume that the closure of A, denoted by A, is compact. Since 4 is
contained in the union of the open sets

G, = {weC[0, ), |w(0)| <n}, n=12..

it must be contained in some particular G,, and (4.4) follows. For ¢ > 0, let
K;={weA; m"(w,0) = ¢}. Each K, is closed (Problem 4.8) and is contained
in A, so each K is compact. Problem 4.8 implies ﬂ»o K; = &, so for some
3(e) > 0, we must have K, = . This proves (4.5).
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We now assume (4.4), (4.5) and prove the compactness of A. Since C[0, )
is a metric space, it suffices to prove that every sequence {w,}s=; S A has
a convergent subsequence. We fix T > 0 and note that for some 6, > 0, we
have mT(w,d,) < 1 for each we A; so for fixed integer m > 1 and t€(0, T]

with (m — 1)d, <t <md,; A T, we have from (4.5):

(0] < 10O+ . lo(ks,) — o(k — D3|+ o) — olm — H3,)

<|w@) + m.
It follows that for each re @7, the set of nonnegative rationals, {w,(r)}.=; is
bounded. Let {ro,7,,7;,...} be an enumeration of Q*. Then choose {w{” };%,,

[ el

a subsequence of {w,}3, with w{”(r,) converging to a limit denoted w(r,).
From {®{'}#_,, choose a further subsequence {w{" }7, such that w{"(r,) con-
verges to a limit w(r,). Continue this process, and then let {@,}i=, = {0} 3=,
be the “diagonal sequence.” We have @,(r) = w(r) for each re Q*.

Let us note from (4.5) that for each ¢ > 0, there exists d(¢) > O such that
|@,(s) — @,(t)] < & whenever 0 <s, t < T and |s — t| < J(e). The same in-
equality, therefore, holds for @ when we impose the additional condition
s, te Q™. It follows that w is uniformly continuous on [0, T]n Q% and so has
an extension to a continuous function, also called w, on [0, T]; furthermore,
lo(s) — w(t)] < ¢ whenever 0 < s,t < T and |s — t| < d(¢). For n sufficiently
large, we have that whenever t € [0, T], there is some r,e Q@ with k < nand
It — r,| < 6(e). For sufficiently large M > n, we have |®.(r;) — o(r;)| < & for
allj=0,1,...,nand m > M. Consequently,

|@m(t) — @(O)] < |D(t) = Du(1)] + | D) — ()] + |02(r) — w(P)]
<3 Ym>M0<t<T
We can make this argument for any T > 0, so {®,}7-, converges uniformly

on bounded intervals to the function w e C[0, o). O

4.10 Theorem. A sequence {P,}%., of probability measures on (C[0,00),
A(C[0, ov))) is tight if and only if

(4.6) lim sup P,[w: |(0)] > 4] =0,
itw nx>1
@4.7) lim sup P,[w;mT(®,8) > €] =0, YVT>0,¢>0.
540 n>1

PrOOF. Suppose first that {P,}, is tight. Given n > 0, there is a compact
set K with P,(K)> 1 — 5, for every n > 1. According to Theorem 4.9, for
sufficiently large 4 > 0, we have |w(0)] < 4 for all @€ K; this proves (4.6).
According to the same theorem, if T and ¢ are also given, then there exists o
such that mT(w, 8) < ¢ for 0 < § < §, and w € K. This gives us (4.7).

Let us now assume (4.6) and (4.7). Given a positive integer T and n > 0,
we choose 4 > 0 so that
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sup P,[w; |w(0)] > A] < n/27".

n>1

We choose &, > 0,k = 1,2, ... such that

1
su;; P, I:a); mT(w, 6,) > %:| < p/2THAL

Define the closed sets

1 0
AT={w,|w(0)|Sl,mT(w,ék)S—,kz laza---}a A= m ATa
T=1

k
SOP(A) 21— on2T** =1 —p/2T and P(A) = 1 —n,foreveryn = L.
By Theorem 4.9, A is compact, so {P,}, is tight. O

4.11 Problem. Let { X™}>_, be a sequence of continuous stochastic processes
X™ ={X™;0<t< o} on(Q,Z,P),satisfying the following conditions:

(i) supn>1 E|X§) &2 M < o0,
(ii) sup,»; E|X™ — X™9* < Cplt —s|'*?;, VT >0and0<s,t<T

for some positive constants «, f, v (universal) and C; (depending on T > Q).
Show that the probability measures P,, £ P(X™)™';m > 1 induced by these

processes on (C[0, o0), Z(C[0, c0))) form a tight sequence.

(Hint: Follow the technique of proof in the Kolmogorov-Centsov Theorem

2.8, to verify the conditions (4.6), (4.7) of Theorem 4.10).

4.12 Problem. Suppose {P,}7, is a sequence of probability measures on
(C[0, o), B(C[0, ov))) which converges weakly to a probability measure P.
Suppose, in addition, that { f,}., is a uniformly bounded sequence of real-
valued, continuous functions on C[0, o) converging to a continuous function
f, the convergence being uniform on compact subsets of C[0, c0). Then

(4.8) Iim J fi(w)dP,(w) = J Sf(w)dP(w).
n—x JC[0,) C[0.x)

4.13 Remark. Theorems 4.9, 4.10 and Problems 4.11, 4.12 have natural exten-

sions to C[0, o0)?, the space of continuous, R?-valued functions on [0, c0). The

proofs of these extensions are the same as for the one-dimensional case.

C. Convergence of Finite-Dimensional Distributions

Suppose that X is a continuous process on some (Q, %, P). For each o,
the function ¢ X,(w) is a member of C[0, cv), which we denote by X(w).
Since #(C[0, «0)) is generated by the one-dimensional cylinder sets and X,(-)
is #-measurable for each fixed t, the random function X: Q — C[0, o) is
F |B(C[0, ov))-measurable. Thus, if {X™}7; is a sequence of continuous

processes (with each X™ defined on a perhaps distinct probability space
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(Qy> Fn> Fa)), We Can ask whether X™ 3 X in the sense of Definition 4.4. We
can also ask whether the finite-dimensional distributions of {X ™}, converge
to those of X, i.e, whether

(Xt(:l)’ Xt(:)’ LR Xt(:)) z (Xil’ X’z’ e X )

’ tg

The latter question is considerably easier to answer than the former, since
the convergence in distribution of finite-dimensional random vectors can be
resolved by studying characteristic functions.

For any finite subset {t,,...,t,} of [0, c0), let us define the projection mapping
.. C[0, 0) - R? as

Tty @) = (@(21)s -, O(La)).
If the function f: R? —» Ris bounded and continuous, then the composite map-
ping fom,,, .., C[0,0) - R enjoys the same properties; thus, X m "—_“J_% X
implies

......

lim E,f(X,...,X™) = lim E,(fom,

n—->oo n—o

= E(foﬂ:tl ..... t,,)(X) = Ef(th’---’Xt,,)-

)(X™)

..... ty

In other words, if the sequence of processes { X}, converges in distribution
to the process X, then all finite-dimensional distributions converge as well.
The converse holds in the presence of tightness (Theorem 4.15), but not in
general; this failure is illustrated by the following exercise.

4.14 Exercise. Consider the sequence of (nonrandom) processes
X" =nt- g 1pm(t) + (1 = nt) Ly, 1m(t)

0<t < oo,n>landlet X, = 0,t > 0.Show that all finite-dimensional distri-
butions of X converge weakly to the corresponding finite-dimensional distri-
butions of X, but the sequence of processes {X™}y., does not converge in
distribution to the process X.

4.15 Theorem. Let {X}%_; be a tight sequence of continuous processes with
the property that, whenever 0 < t; < -+ < ty < 00, then the sequence of random
vectors {(X",...,X{"™)}x_; converges in distribution. Let P, be the measure
induced on (C[0, ), B(C[0, ©))) by X™. Then {P,}7., converges weakly to
a measure P, under which the coordinate mapping process W(w) £ w(t) on
C[0, ) satisfies

X", XMW, W,), 0<t; <<t <owdxl
ProoF. Every subsequence {X™} of {X™} is tight, and so has a further
subsequence {£™} such that the measures induced on C[0, o) by {X®}
converge weakly to a probability measure P, by the Prohorov theorem 4.7. If
a different subsequence {X™} induces measures on C[O0, o) converging to
a probability measure Q, then P and Q must have the same finite-dimensional
distributions, i.e.,
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P[weC[0, w); (o(ty),. .., w(ty)) € Al = Q[we C[0, ); (@(ty), ... () e A],
0<t; <ty < <ty<ow, AecBRY), d=1

This means P = Q.

Suppose the sequence of measures {P,}7; induced by {X™x, did not
converge weakly to P. Then there must be a bounded, continuous function
f: C[0, o) = R such that lim,_, | f(w)P,(dw) does not exist, or else this limit
exists but is different from | f(w)P(dw). In either case, we can choose a
subsequence { B}, for which lim,_, | f(w)P,(dw) exists but is different from
{ f(w)P(dw). This subsequence can have no further subsequence {P,}2.; with
P, % P, and this violates the conclusion of the previous paragraph. O

We shall need the following result.

4.16 Problem. Let {X™}=,, {Y™}®,, and X be random variables with
values in a metric space (S, p); we assume that for each n > 1, X and Y™ are
defined on the same probability space. If X 4 X and p(X™, Y™) >0 in
probability, as n — oo, then Y 4 X asn— oo.

D. The Invariance Principle and the Wiener Measure

Let us consider now a sequence {&;}72; of independent, identically distributed
random variables with mean zero and variance ¢2, 0 < 6% < o0, as well as
the sequence of partial sums So =0, S, =) %, ¢, k> 1. A continuous-time
process Y = {Y,;t > 0} can be obtained from the sequence {S«}izo by linear
interpolation; i.e.,

(49) Y= S[[t]] +(t— H:t]])i[[tﬂi'l’ t =0,

where [t] denotes the greatest integer less than or equal to t. Scaling appro-
priately both time and space, we obtain from Y a sequence of processes { X" }:

(4.10) X =
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Note that with s=k/n and t=(k + l)/n, the increment X{» — X =
(I/Gﬁ)fkﬂ is independent of ZX™ = ¢(¢,, ..., &,). Furthermore, X" — X"
has zero mean and variance t — s. This suggests that {X;"; t > 0} is approxi-
mately a Brownian motion. We now show that, even though the random
variables &; are not necessarily normal, the central limit theorem dictates that
the limiting distributions of the increments of X ™ are normal.

4.17 Theorem. With {X™} defined by (4.10) and 0 <t < -~ <t; < ©, we
have

2
(xX™,...,X") > (B,,....,B,) asn— o,
where {B,, FE, t > 0} is a standard, one-dimensional Brownian motion.
PROOF. We take the case d = 2; the other cases differ from this one only by
being notationally more cumbersome. Set s = ty, t = t,. We wish to show
(X{", X1™) 5 (B,. B,).

Since
1

ag./n

( Xt(") B

1
Spe]| < a—ﬁlii[m}]ﬂl,

we have by the Cebysev inequality,

1 1
P|: xm— Si["'] >8jl£2——>0
a./n en
as n — oo. It is clear then that
H (X, XMy — ——=(Sgsn]» Speap) | = O in probability,
o /n

so, by Problem 4.16, it suffices to show
1

ag./n

(S{sn]s Siem]) % (B, B,).

From Problem 4.5 we see that this is equivalent to proving

1 [lo] [
<zg Y Qﬂ@&—m.

6 /n\ij=1 ~ j=[s]+1

The independence of the random variables {£;}72, implies

iy [snl i [¢n]
lim E|:exp {l_u Y &+ S Y 5,-}]
no o/ni= o/n i=[m]+1

iy [snl i [tn]
@411) =1lim EI:exp{ e Y éj}] lim EI:exp{ ad I[Z]] éj}:l,
n—cwo g nij=1 n—w g n j=[sn]+1
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provided both 11m1ts on the right-hand side exist. We deal with lim, -
Elexp{(iu/o/m) Y. s"‘ 1 £;}7; the other limit can be treated similarly. Since

| o] S5 e
—__n;l T o/ [sn] JZ 2

and, by the central limit theorem, \/ Jo\/[sn]) Zi[s"né converges in distri-
bution to a normal random variable with mean zero and variance s, we have

inu I[sn] 2
lim E[exp{ Y 51}] = e “2,
n—-w og./nij=1
iv [enl] 2
lim E[exp{ Y 6,}] = e T2,
n—w g/ ni= [sn]+1

Substitution of these last two equations into (4.11) completes the proof. [J

— 0 in probability,

Similarly,

Actually, the sequence {X™} of linearly interpolated and normalized random
walks in (4.10) converges to Brownian motion in distribution. For the tightness
required to carry out such an extension (recall Theorem 4.15), we shall need
two auxiliary results.

4.18 Lemma. Set S, = ) *_, £;, where {{;}i2, is a sequence of independent,
identically distributed random variables, with mean zero and finite variance
6% > 0. Then, for any € > 0,

— 1

lim lim — P|: max |S§j >saﬁ:|=
540 noo O 1<j<no]+1

PROOF. By the central limit theorem, we have for each 6> 0 that

(1/o/[n8] + 1)Sjus3+1 converges in dlstnbutlon to a standard normal ran-

dom variable Z, whence (1//n6)S{us1+1 2 7. Fix A > 0 and let {oe}iz, bea
sequence of bounded, continuous functions on R with ¢ | 1(-x, —aju14.00)- We
have for each i,

lim P[|Spsj+1] = Ao/nd] < lim Ecpk< \/—55[[..51]+1> = Epi(2).

n—x n—oo

Let k - oo to conclude
- 1
(4.12) ,1.13.1 P[|Sns3+1| = Ao /nd] < PL|Z| = 4] SFEIZP, A>0.

We now define T = min{j > 1;|§;| > saﬁ}. With 0 < § < ¢?/2, we have
(imitating the proof of the Kolmogorov inequality; e.g., Chung (1974), p. 116):
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(4.13) P[ max |sj|>sa\/ﬁ}

0<j<na]+1

< P[|s[[m,]+1| > 0/n(e — \/20)]
+ z PLIS[sye1] < 0/ne — /20)|t = j1P[z = j1.

But if = j, then [S[usp44| < a\f n(e — /20) implies |S; — Spusp+1| > 04/2n0.
By the Cebysev inequality, the probability of this event is bounded above by

1 R . 1 [na]+1 , 1 '
Tnda? LS = St =71 =255 B 2, &) <5, 1<i<[n]
i=j
Returning to (4.13), we may now write

P|: max |Sj|>saﬁ]

o<j<[néf+1

1
< P[IS[uspas] = 0 /n(e — /20)] + 5 Plr <[]

< P[ISpuspe1] = 0 /nle — /20)] +%P|: max  |S| > saf],

0<j<[nd]+1
from which follows
P|: max S| > saﬁ] < 2P[|Spusye1| = 04/n(e — /20)].
0<j<[né]+1

Setting A = (¢ — /25)/\/3 in (4.12), we see that

1 2./6
lim - P|: max  |S;] > saﬁ] < ¢E|Z|3,
n—w 0<j<[no]+1 (g— /25)3

and letting 6 | O we obtain the desired result. |

4.19 Lemma. Under the assumptions of Lemma 4.18, we have for any T > 0,

lim WnP[ max  [Sj — S > saﬁ] =
o0 now 1<j<[no]+1
0<k<[nT]+1

PROOF. For 0 < 6 < T, let m = m(5) > 2 be the unique integer satisfying
T/m < § < T/(m — 1). Since

I+ _T
now [MO] +1 6 ’

We have [nT] + 1 <([nd] + 1)m for sufficiently large n. For such a large
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n, suppose |S;. — Sl > 80'\/;1 for some k, 0 < k < [nT] + 1, and some j,
1 <j < [nd] + 1. There exists then a unique integer p, 0 < p <m — 1, such
that

([nd] + Hp < k <([nd] + D(p + 1)
There are two possibilities for k + j. One possibility is that
([nd] + Dp<k+j<([né] + D(p+ 1),

in which case either |S, — S([[..:;]]+1)p| >%sa\/_, or else [Sis; — Snsj+11pl >
1eo./n. The second possibility is that

([né] + D(p + 1) < k +j <([nd] + D(p + 2),

. . . 1
in which case either [y — S(ns+1)pl > gsa\/_, |Sna]+1)p — Sqmal+ i+l >
Yea/n, or else | Sns)+1)p+1) — Skrsl > %sa\/r_n. In conclusion, we see that

{ max  |Si — Sl > sa\/;}
1<j<[né]+1
0<k<[nT]+1

" 1
<y { max_{Sj.pusfe1) ~ Spifnsf+n) >§8°'\/'_'}-

1<j<[né]+1

But
1
P max  |[§ i+ p([no]+1) — Sp([[n.s]]+1)| > 530'\/;’
1<jgno]+1

1
=P max  |§] > 586\/;’1’

1<j<[né]+1

and thus:

1
P|: max  [Sj — Sk|>sa\/_:| m+1) |: max |Sj|>—sa\/r_1:|.
1<j<[né]+1 1<j<[né]+1 3

0<k<[nT]+1

Since m < (T/5) + 1, we obtain the desired conclusion from Lemma 4.18.

O

We are now in a position to establish the main result of this section, namely
the convergence in distribution of the sequence of normalized random walks
in (4.10) to Brownian motion. This result is also known as the invariance
principle.

4.20 Theorem (The Invariance Principle of Donsker (1951)). Let (QQ, &, P) be
a probability space on which is given a sequence {&;};2, of independent, identi-
cally distributed random variables with mean zero and finite variance ¢* > 0.
Define X = {X{™; t > 0} by (4.10), and let P, be the measure induced by X™
on (C[0, ), Z(C[0, c0))). Then {P,}x., converges weakly to a measure P,,
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under which the coordinate mapping process W,(w) 2 w(t) on C[0, x0) is a
standard, one-dimensional Brownian motion.

PrOOF. In light of Theorems 4.15 and 4.17, it remains to show that {X™}=_
is tight. For this we use Theorem 4.10, and since X§” = 0 a.s. for every n, we
need only establish, for arbitrary ¢ > 0 and T > 0, the convergence

(4.14) lim sup P|: max | X" — X"| > s:| =0.
540 n>1 ls—t|<é
0<s,i<T

We may replace sup, -, in this expression by lim, _, , since for a finite number
of integers n we can make the probability appearing in (4.14) as small as we
choose, by reducing J. But

P|: max |X§"’—X,"')|>s:|=P|: max |1/s—lc|>sa\/;::|,

|s—tj<é |s—t]|<né
0<s,t<T t<n
and
max [Y,— Y| < max 1Y, = Y[ < max [S; — S5l
|s—t| <né js—t|<[né]+1 1<jg[né]+1
O<st<nT 0<s,t<[nT]+1 0<k<[nT]+1

where the last inequality follows from the fact that Y is piecewise linear and
changes slope only at integer values of . Now (4.14) follows from Lemma 4.19.
O

4.21 Definition. The probability measure P, on (C[0, ), #(C[0, 0))), under
which the coordinate mapping process W,(w) £ w(t),0 < t < ,is a standard,
one-dimensional Brownian motion, is called Wiener measure.

4.22 Remark. A standard, one-dimensional Brownian motion defined on any
probability space can be thought of as a random variable with values in
C[0, w0); regarded this way, Brownian motion induces the Wiener measure
on (C[0, w), Z(C[0, o))). For this reason, we call (C[0, ), A(C[0, o)), P,
where P, is Wiener measure, the canonical probability space for Brownian
motion.

2.5. The Markov Property

In this section we define the notion of a d-dimensional Markov process
and cite d-dimensional Brownian motion as an example. There are several
equivalent statements of the Markov property, and we spend some time
developing them.
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A. Brownian Motion in Several Dimensions

5.1 Definition. Let d be a positive integer and u a probability measure on
(R4, B(RY). Let B={B, #F;t = 0} be a continuous, adapted process with
values in R?, defined on some probability space (Q, #, P). This process is called
a d-dimensional Brownian motion with initial distribution p, if

(i) P[BoeI] = u(I), VI eB®R);

(i) for 0 < s < t, the increment B, — B, is independent of Z; and is normally
distributed with mean zero and covariance matrix equal to (¢ — s)I,, where
I, is the (d x d) identity matrix.

If u assigns measure one to some singleton {x}, we say that B is a d-
dimensional Brownian motion starting at Xx.

Here is one way to construct a d-dimensional Brownian motion with
initial distribution p. Let X(w,) = @, be the identity random variable on
(R%, B(R%), ), and for each i=1, ..., d, let B® = {B® FP9,t>0} be a
standard, one-dimensional Brownian motion on some Q, F9, PY). On the
product space

(R" x QW) x --+ x Q(d)’ gg(ﬂ@)@g;(ﬂ@... ®9"("),,u x PO x -+ % P(")),

define
Bt(w) ‘A_ X(wO) + (Et(l)(wl)a LERE E}d)(wd))a
and set #, = 2. Then B = {B,, #;t > 0} is the desired object.

There is a second construction of d-dimensional Brownian motion with
initial distribution y, a construction which motivates the concept of Markov
family, to be introduced in this section. Let P9, i =1, ..., d be d copies of
Wiener measure on (C[0, c0), B(C[0, ))). Then P° Aphx...x PDis a
measure, called d-dimensional Wiener measure, on (C[O, 00)?, B(C[0, a0)?)).
Under P°, the coordinate mapping process B,(w) £ (1) together with the

filtration {#?} is a d-dimensional Brownian motion starting at the origin. For
x € R?, we define the probability measure P~ on (C [0, o), #(C[0, 0)*)) by

5.1 P*(F) = P°(F — x), Fe#(C[O0, o)),
where F — x = {we C[0, 00)"; w(-) + xe F}. Under P, B2 {B,#2t=0}
is a d-dimensional Brownian motion starting at x. Finally, for a probability
measure z on (R?, #(R?)), we define P* on Z(CI0, 0)?) by
(5.2) P¥(F) = j P*(F)u(dx).

Rd

Problem 5.2 shows that such a definition is possible.

5.2 Problem. Show that for each F € #(C[0, 0)%), the mapping x— P*(F ) is
B(RY)/B([0, 1])-measurable. (Hint: Use the Dynkin System Theorem 1.3.)
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5.3 Proposition. The coordinate mapping process B = {B,, #/;t > 0} on
(C[0, o), B(C[0, )*), P*) is a d-dimensional Brownian motion with initial
distribution p.

5.4 Problem. Give a careful proof of Proposition 5.3 and the assertions
preceding Problem 5.2.

55 Problem. Let {B, = (B",...,B®), #;0<t< o} be a d-dimensional
Brownian motion. Show that the processes

MOLBY _BO F:. 0<t<oo,1<i<d

are continuous, square-integrable martingales, with (M®, MYy, = 1;; 1 <,
j < d. Furthermore, the vector of martingales M = (M®, ..., M) is inde-
pendent of ;.

5.6 Definition. Given a metric space (S, p), we denote by %(S)* the completion
of the Borel o-field %(S) (generated by the open sets) with respect to the
finite measure u on (S, #(S)). The universal o-field is U(S) & HMWS)“, where
the intersection is over all finite measures (or, equivalently, all probability
measures) u. A %(S)/%#(R)-measurable, real-valued function is said to be
universally measurable.

5.7 Problem. Let (S, p) be a metric space and let f be a real-valued function
defined on S. Show that f is universally measurable if and only if for every
finite measure u on (S, #(S)), there is a Borel-measurable function g,: S - R
such that u{xeS; f(x) # g,(x)} = 0.

5.8 Definition. A d-dimensional Brownian family is an adapted, d-dimensional
process B = {B,, #;t > 0} on a measurable space (Q, %), and a family of
probability measures {P*}, . g4, such that

(i) for each F e #, the mapping x— P*(F) is universally measurable;
(ii) for each xeR%, P*[B, = x] = 1;
(iii) under each P*, the process B is a d-dimensional Brownian motion
starting at x.

We have already seen how to construct a family of probability measures
{P*} on the canonical space (C[0, c0)%, B(C[0, c0)%)) so that the coordinate
mapping process, relative to the filtration it generates, is a Brownian motion
Starting at x under any P*. With & = A(C[0, 0)*), Problem 5.2 shows
that the universal measurability requirement (i) of Definition 5.8 is satisfied.
Indeed, for this canonical example of a d-dimensional Brownian family, the
mapping x — P*(F) is actually Borel-measurable for each F e #. The reason
we formulate Definition 5.8 with the weaker measurability condition is to
allow expansion of # to a larger o-field (see Remark 7.16).
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B. Markov Processes and Markov Families

Let us suppose now that we observe a Brownian motion with initial distribution
p up to time s, 0 < s < t. In particular, we see the value of B,, which we call y.
Conditioned on these observations, what is the probability that B, is in
some set T' e B(RY)? Now B, = (B, — B,) + B, and the increment B, — B; is
independent of the observations up to time s and is distributed just as B,_;
is under P°. On the other hand, B, does depend on the observations; indeed,
we are conditioning on B;=y. It follows that the sum (B, — B) + B, is
distributed as B,_, is under P*. Two points then become clear. First, knowledge
of the whole past up to time s provides no more useful information about B, ¢
than knowing the value of B;; in other words, :

(5.3) P*[B,eT|#] = P*[B,eT|B], 0<s<1{, T € B(R?).
Second, conditioned on B; = y, B, is distributed as B, is under P?;ie.,

(5.4) P*[B,eT|B,= y] = P’[B_,eT], 0<s<tTe®R.

5.9 Problem. Make the preceding discussion rigorous by proving the following.
If X and Y are d-dimensional random vectors on (Q, &, P), 4 is a sub-o-field
of #, X is independent of 4 and Y is ¥-measurable, then for every I e #(R%):

(5.5) P[X + YeI'|%] = P[X + YeT|Y], as.P;
(56) P[X + YeI'|Y =y]=P[X +yel], for PY '-ae yeR*

in the notation of (4.2).

5.10 Definition. Let d be a positive integer and p a probability measure on
(RY, B(R%)). An adapted, d-dimensional process X = {X,, #; t > 0} on some
probability space (Q, %, P*) is said to be a Markov process with initial
distribution p if

(i) P*[XoeTl] = (), VT e BR7);
(i) for s, t > 0 and T € #(R%),

P*[X,,eT|#] = P'[X,,,eT|X,], Ptas.

Our experience with Brownian motion indicates that it is notationally and
conceptually helpful to have a whole family of probability measures, rather
than just one. Toward this end, we define the concept of a Markov family.

5.11 Definition. Let d be a positive integer. A d-dimensional Markov family
is an adapted process X = {X,, #;t > 0} on some (Q, ), together with a
family of probability measures {P*},.gs 0n (Q, F), such that

(a) for each F € #, the mapping x — P*(F) is universally measurable;
(b) P*[Xo=x]=1,VxeR%
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(c) for xeR?, 5,1 > 0 and I' e B(R?),
P[X,,.eT|#] = P[X,.,eT|X,], P*as;
(d) for xe R% s, t > 0and I e B(R?),
P[X,.,eT|X, =y] = PP[X,eT], P*X;'-ae.y

in the notation of (4.2).

The following statement is a consequence of Problem 5.9 and the discussion
preceding it.

5.12 Theorem. A d-dimensional Brownian motion is a Markov process. A
d-dimensional Brownian family is a Markov family.

C. Equivalent Formulations of the Markov Property

The Markov property, encapsulated by conditions (¢} and (d) of Definition 5.11,
can be reformulated in several equivalent ways. Some of these formulations
amount to incorporating (c) and (d) into a single condition; others replace
the evaluation of X at the single time s + ¢ by its evaluation at multiple times
after s. The bulk of this subsection presents those formulations of the Markov
property which we shall find most convenient in the sequel.

Given an adapted process X = {X,, %;t = 0} and a family of probability
measures {P*},.gs On (Q, F), such that condition (a) of Definition 5.11 is
satisfied, we can define a collection of operators {U, },» o which map bounded,
Borel-measurable, real-valued functions on R? into bounded, universally
measurable, real-valued functions on the same space. These are given by

(5.7) (U.f)(x) & E*f(X)).

In the case where f'is the indicator of I' € #(R?%), we have E*f(X,) = P*[X,eT],
and the universal measurability of U, f follows directly from Definition 5.11 (a);
for an arbitrary, Borel-measurable function f, the universal measurability of
U.f is then a consequence of the bounded convergence theorem.

5.13 Proposition. Conditions (c) and (d) of Definition 5.11 can be replaced by:
(€) For xeR® s,t>0and T eBRY,

P[X. €T #] = (Ulr)(X,), P*as.

PROOF. First, let us assume that (c), (d) hold. We have from the latter:
P[X,.eT|X, = y] = (U1;)(y) for P*X;'-ae yeR%

If the function a(y) 2 (U,15)(y): R - [0, 1] were #(R?)-measurable, as is the
Case for Brownian motion, we would then be able to conclude that, for all
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xeR?, s> 0: P*[X,,,elX,]=aX,), as. P and from condition (c):
P*[X,.eT|%] = a(X,), a.s. P*, which would then establish ().

However, we only know that U,1(-) is universally measurable. This means
(from Problem 5.7) that, for given s, ¢ > 0, x € R4, there exists a Borel-measurable
function g: R? - [0, 1] such that

(5.8) (U1p)(y) = g(y), for PX;"-ae. yeR:,
whence
(5.9 (U 1p)(X,) = g(X,), as. P~

One can then repeat the preceding argument with g replacing the function o.
Second, let us assume that (e) holds; then for any given s,t > 0 and xeR?,
(5.9) gives

(5.10) P*[X,.eT|#] = g(X,), as. P~

It follows that P*[X,,,€T'|#] has a o(X,)-measurable version, and this
establishes (c). From the latter and (5.10) we conclude

PA[X,,,eT|X, =yl = g(y) for P*X;'-ae ye R,
and this in turn yields (d), thanks to (5.8). O

5.14 Remark on Notation. For given w e Q, we denote by X, (w) the function
t+—> X4 (w). Thus, X,, . is a measurable mapping from (Q, #) into ((R%)10-=,
B((RH*=)), the space of all R-valued functions on [0, ) equipped with
the smallest o-field containing all finite-dimensional cylinder sets.

5.15 Proposition. For a Markov family X, (Q, %), {P*}, ra, we have:
(¢') For xeR? s > 0 and F e B(R")*),
P*[X,, € F|#] = P*[X,..€F|X], P*as;
(d) For xeR?, s > 0 and F € B((R")'>®),
P*[X,,.€F|X,=y]l = PP[X €F], P*X l-ae. y.
(Note: If T e B(R?) and F = {we(R)"); w(t)eT}, for fixed t = 0, then (¢')
and (d’) reduce to (c) and (d), respectively, of Definition 5.11.)

ProOF. The collection of all sets F € B((R?)1%*) for which (¢') and (d’) hold
forms a Dynkin system; so by Theorem 1.3, it suffices to prove (¢) and (d')
for finite-dimensional cylinder sets of the form

F = {0e®Y)"; w(ty)eTy, ..., olt,-1)eT,-1, oft) € L.},

where 0 =t < t; < <t,, [;e R, i=0,1,...,nand n> 0. For such
an F, condition (c’) becomes
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(511) PX[X erO""’Xs+t ern—19 Xs+t er‘nl'g';]
= P*[X,ely, ..., Xo,,_ €T,_1, Xy €T1X], Pas.
We prove this statement by induction on n. For n = 0, it is obvious. Assume

it true for n — 1. A consequence of this assumption is that for any bounded,
Borel-measurable ¢: R" - R,

(5.12) E*[o(X,, ..., X, NF] = E*[0(X,, ..., Xoui, )IX], Pras.
Now (c) implies that
(5.13)  P*[X,eTl,, ..., Xy, €01, Xy €T, 5]

= E*[lix,ero o Xpu,, et} P71 Xorr, €Tl Fory, JIF]
= Ex[l{XsEFO,...,Xsﬂ EF"_,}PX[Xs+t"erans+t"_,]|'?s]'

Any Fx_, -measurable random variable can be written as a Borel-measurable
function of Xs+, . (Chung (1974), p. 299), and so there exists a Borel-measurable
function g: R? — [0 1], such that P*[X,., eT,|X,., 1= 9(Xss,, ) as. P~
Setting ¢(xo, ..., Xp—1) 2 1 (Xo)... I, (X,—1)g(x,—1), We can use (5.12) to
replace &, by ¢(X;) in (5.13) and then, reversing the previous steps, to obtain
(5.11). The proof of (d') is similar, although notationally more complex.  []

It happens sometimes, for a given process X = {X,, %; t > 0} on a measur-
able space (Q, ), that one can construct a family of so-called shift operators
0: Q- Q, s > 0, such that each 6§, is # /% -measurable and

(5.14) X, (w)= X,(6,w); YVweQ, s1>0.

The most obvious examples occur when Q is either (R*)>* of Remark 5.14
or C[0, c0)? of Remark 4.13, & is the smallest o-field containing all finite-
dimensional cylinder sets, and X is the coordinate mapping process X,(w) =
o(t). We can then define 6,0 = w(s + *), ie,

(5.15) b)) =owis+1), t=0.
w O,w
Ii sttt t ~
s\ W
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When the shift operators exist, then the function X, (w) of Remark 5.14
is none other than X (f,w), so {X,,.€F} = 0;!{X eF}. As F ranges over
B(RY0), {X € F} ranges over FX. Thus, (¢) and (d') can be reformulated
as follows: for every Fe X and 5 > 0,

() P*[6;'F|#] = P*[6;'F|X,], P*as.
(d”) P*[6;'F|X, =y] = P[F], P*X;'-ae.y.

In a manner analogous to what was achieved in Proposition 5.13, we can
capture both (¢”) and (d”) in the requirement that for every Fe #J and s > 0,

() P*[6;'F|#] = P*(F), P*as.

Since (") is often given as the primary defining property for a Markov
family, we state a result about its equivalence to our definition.

5.16 Theorem. Let X = {X,, #,; t > 0} be an adapted process on a measurable
space (Q, F), let {P*}, qpa be a family of probability measures on (Q, ), and
let {0,}50 be a family of F/F-measurable shift-operators satisfying (5.14).
Then X,(Q, F), {P*} < s is a Markov family if and only if (a), (b), and (¢") hold.

5.17 Exercise. Suppose that X, (Q, %), {P*},.rs is a Markov family with
shift-operators {6,},5,. Use (¢") to show that for every xeR?, s 2 0, Ge %,
and Fe #%,

(") P*[G n 67'F|X,] = P[G|X,1P*[6;'F|X,], P*-as.

We may interpret this equation as saying the “past” G and the “future” ;' F
are conditionally independent, given the “present” X,. Conversely, show that
(c¢”) implies (c").

We close this section with additional examples of Markov families.

5.18 Problem. Suppose X = {X,, #; t > 0} is a Markov process on (Q2, #, P)
and @: [0, ) —» R?and ¥: [0, o) — L(R% R?), the space of linear transforma-
tions from R? to R, are given (nonrandom) functions with ¢(0) = 0 and ¥(¢)
nonsingular for every t > 0. Set Y, = ¢(t) + () X,. Then Y = {Y,, #; t > 0}
is also a Markov process.

5.19 Definition. Let B = {B,, #;; t > 0}, (Q, %), {P*}.r« be a d-dimensional
Brownian family. If z € R? and o € L(R? R?) are constant and o is nonsingular,
then with Y, 2 ut + 6B, we say Y = {Y,, %; t > 0}, (Q, F), {P" *},cpais a
d-dimensional Brownian family with drift u and dispersion coefficient o.

This family is Markov. We may weaken the assumptions on the drift and
diffusion coefficients considerably, allowing them both to depend on the
location of the transformed process, and still obtain a Markov family. This is
the subject of Chapter 5 on stochastic differential equations; see, in particular,
Theorem 5.4.20 and Remark 5.4.21.



2.6. The Strong Markov Property and the Reflection Principle 79

5.20 Definition. A Poisson family with intensity A > Qis a process N = {N,, %;
¢ > 0} on a measurable space (Q, #) and a family of probability measures
{P*} e n> Such that

(i) for each E e #, the mapping x+— P*(E) is universally measurable;
(ii) for each xeR, P*[N, = x] = |;
(iii) under each P*, the process { N, = N, — N, #:t > 0} is a Poisson process
with intensity 4.

521 Exercise. Show that a Poisson family with intensity 4 > 0 is a Markov
family. Show furthermore that, in the notation of Definition 5.20 and under
any P*, the o-fields #J and %, are independent.

Standard, one-dimensional Brownian motion is both a martingale and a
Markov process. There are many Markov processes, such as Brownian motion
with nonzero drift and the Poisson process, which are not martingales. There
are also martingales which do not enjoy the Markov property.

5.22 Exercise. Construct a martingale which is not a Markov process.

2.6. The Strong Markov Property and the
Reflection Principle

Part of the appeal of Brownian motion lies in the fact that the distribution of
certain of its functionals can be obtained in closed form. Perhaps the most

fundamental of these functionals is the passage time T, to a level b e R, defined
by

(6.1) T,(w) = inf{t > 0; B(w) = b}.

We recall that a passage time for a continuous process is a stopping time
(Problem 1.2.7).

We shall first obtain the probability density function of T, by a heuristic
argument, based on the so-called reflection principle of Désiré André (Lévy
(1948), p. 293). A rigorous presentation of this argument requires use of
the strong Markov property for Brownian motion. Accordingly, after some
motivational discussion, we define the concept of a strong Markov family and
Prove that any Brownian family is strongly Markovian. This will allow us
to place the heuristic argument on firm mathematical ground.

A. The Reflection Principle

Here is the argument of Désiré André. Let {B,, #; 0 < t < o} be a standard,
one-dimensional Brownian motion on (Q, &, P°). For b > 0, we have
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P°[T, <t] = P°[T, <t,B,>b] + P°[T, <t,B, < b].

Now P°[T, <t, B, > b] = P°[B, > b]. On the other hand, if T, <t and
B, < b, then sometime before time t the Brownian path reached level b, and
then in the remaining time it traveled from b to a point ¢ less than b. Because
of the symmetry with respect to b of a Brownian motion starting at b, the
“probability” of doing this is the same as the “probability” of traveling from
b to the point 2b — c. The heuristic rationale here is that, for every path
which crosses level b and is found at time t at a point below b, there is a
“shadow path” (see figure) obtained from reflection about the level b which
exceeds this level at time ¢, and these two paths have the same “probability.”
Of course, the actual probability for the occurrence of any particular path is
zero, so this argument is only heuristic; even if the probability in question were
positive, it would not be entirely obvious how to derive the type of “symmetry”
claimed here from the definition of Brownian motion. Nevertheless, this
argument leads us to the correct equation

P°[T, <t,B,<b] =P°[T, <t,B > b] = P°[B, > b],

Shadow path
2b —c}| "
[}
'P."I’l
-

b /J\'f’\ )

‘\_‘M\_\J
°r B
W . -
Ty t
which then yields
1] 0 2 ® —x2/2
(6.2) P[T, <t] =2P°[B,>b] = [— e " dx.
T Jp-12
Differentiating with respect to t, we obtain the density of the passage time
b 2
(6.3) PO[T,edt] = Le“’ 2tdt, t> 0.
J2nt?

The preceding reasoning is based on the assumption that Brownian motion
“starts afresh” (in the terminology of It6 & McKean (1974)) at the stopping
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time T;, i.e., that the process {B,,y, — Br,; 0 < t < oo} is Brownian motion,
independent of the o-field Zr, . If T, were replaced by a nonnegative constant,
it would not be hard to show this; if T, were replaced by an arbitrary random
time, the statement would be false (cf. Exercise 6.1). The fact that this “starting
afresh” actually takes place at stopping times such as T, is a consequence of
the strong Markov property for Brownian motion.

6.1 Exercise. Let {B,, #;t > 0} be a standard, one-dimensional Brownian
motion. Give an example of a random time S with P[0 < S < 0] = 1, such
that with W, 2 Bg,, — Bs, the process W = {W,, #”;t > 0} is not a Brownian
motion.

B. Strong Markov Processes and Families

6.2 Definition. Let d be a positive integer and u a probability measure on
(R?, #(R%)). A progressively measurable, d-dimensional process X = {X,, #;
t > 0} on some (Q, %, P*) is said to be a strong Markov process with initial
distribution u if

(i) P*[Xo€T] = u(I), VT e B[R’
(i) for any optional time S of {%,}, t > 0 and I' € A(R?),
P*[Xg.,eT|Fsr] = P*[ X5 €T|X], P*-as.on {S < o).

6.3 Definition. Let d be a positive integer. A d-dimensional strong Markov
family is a progressively measurable process X = {X,, Z;t >0} on some
(Q, #), together with a family of probability measure {P*},.gs On (Q, F),
such that:

(a) for each F € #, the mapping x— P*(F) is universally measurable;

(b) P[X, =x]=1,VxeRY

(c) for xeR?, t > 0, I'e #(R%), and any optional time S of {#},
P*[Xg,, €T |%,] = P[Xs4,€T|Xs], P*as.on{S< oo}

(d) for xeR?, t > 0, I e #(R%), and any optional time S of {#},

P[Xs.,eT|Xs = y] = PP[X,eT], P*X5'-ae.y.

6.4 Remark. In Definitions 6.2, 6.3, {Xs,, eI} 2 {S < o0, X;,,€l'} and
P*X{1(R%) = P*(S < o). The probability appearing on the right-hand side
of Definition 6.2(ii) and Definition 6.3(c} is conditioned on the s-field gener-
ated by X as defined in Problem 1.1.17. The reader may wish to verify in this
connection that for any progressively measurable process X,

P'[X;,,eT|Fs.] = P*[ X5, €T|Xs] =0, Ptas.on {§ = oo},

and so the restriction S < oo in these conditions is unnecessary.
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6.5 Remark. An optional time of {#,} is a stopping time of {#. } (Coroliary
1.2.4). Because of the assumption of progressive measurability, the random
variable X appearing in Definitions 6.2 and 6.3 1s Fs,-measurable (Pro-
position 1.2.18). Moreover, if S is a stopping time of {#]}, then Xy is Fs-
measurable. In this case, we can take condittonal expectations with respect to
5 on both sides of (c) in Definition 6.3, to obtain

P [Xs. €T\ %] = P*[Xs,.€T|Xs], P*as.on{S <o}

Setting S equal to a constant s > 0, we obtain condition (c) of Definition 5.11.
Thus, every strong Markov family is a Markov family. Likewise, every strong
Markov process is a Markov process. However, not every Markov family
enjoys the strong Markov property; a counterexample to this effect, involving
a progresstvely measurable process X, appears in Wentzell (1981), p. 161.

Whenever S is an optional time of {# } and u > 0, then § + u is a stopping
time of {&} (Problem 1.2.10). This fact can be used to replace the constant s
in the proof of Proposition 5.15 by the optional time S, thereby obtaining
the following result.

6.6 Proposition. For a strong Markov family X = {X, %#;t >0}, (Q,F),
{P*}, cma> we have
(c') for xe R F e B(RY), and any optional time S of {#,},
P*[Xs.. € F| %, ] = P*[Xss € F|Xsl, P*as on{S< oo};
d) for xeR?, F e B((R*)1), and any optional time S of { %},
P*[Xs, €F|Xs = y] = P[X.€F], P*X5'-ae.y.

Using the operators {U,},s o in (5.7), conditions (c) and (d) of Definition 6.3
can be combined.

6.7 Proposition. Let X = {X,, % t > 0} be a progressively measurable process
on (Q, %), and let {P*}, ga be a family of probability measures satisfying (a)
and (b) of Definition 6.3. Then X, (Q, F), {P*},cra is strong Markov if and
only if for any {&,}-optional time S, t >0, and x € R, one of the following
equivalent conditions holds:

(¢) forany T e B(R%),
P*[ X5, €T %] = (U1p)(Xs), P*as.on{S < oo}
(¢) for any bounded, continuous f: R* > R,

E[f(Xs:)1 %541 = (Uf)(Xs), P¥as.on {S < 0.

PRrOOF. The proof that (e) is equivalent to (c) and (d) is the same as the proof
of the analogous equivalence for Markov families given in Proposition 5.13.
Since any bounded, continuous real-valued function on R? is the pointwise
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limit of a bounded sequence of linear combinations of indicators of Borel sets,
(¢') follows from (¢) and the bounded convergence theorem. On the other hand,
if (¢') holds and T’ = R? is closed, then 1y is the pointwise limit of { oty
where f,(x) = [1 — np(x,T)] v Oand p(x,T) = inf{[ix — y|; yeTI'}. Each f is
bounded and continuous, so (€) holds for closed sets I'. The collection of sets
I e B(R?) for which (e) holds forms a Dynkin system, so, by Theorem 1.3, ()
holds for all T e Z(R?). 0O

6.8 Remark. If X = {X,, #;t >0}, (Q %), {P*},.pa is a strong Markov
family and p is a probability measure on (R4, B(R?)), we can define a proba-
bility measure P* by (5.2) for every F € #, and then X on (Q, F, P*)is a strong
Markov process with initial distribution p. Condition (ii) of Definition 6.2 can
be verified upon writing condition (e) in integrated form:

j (U,1;)(Xs)dP* = P*[Xs,,eT, F]; Fe,,
F

and then integrating both sides with respect to u. Similarly, if X, (Q, %),
{P*}, cga is a Markov family, then X on (Q, #,P*)isa Markov process with
initial distribution p.

It is often convenient to work with bounded optional times only. The
following problem shows that stating the strong Markov property in terms
of such optional times entails no loss of generality. We shall use this fact in
our proof that Brownian families are strongly Markovian.

6.9 Problem. Let S be an optional time of the filtration { %} on some (Q, #, P).

(i) Show that if Z, and Z, are integrable random variables and Z, = Z,
on some %, -measurable set 4, then

E[(Z,|%5.]1 = E[Z,|%.], as.onA
(ii) Show under the conditions of (i) that if s is a positive constant, then
E[Z,|Fs.] = E[Z,|F5n9+], as.on{S<sinA

(Hint: Use Problem 1.2.17(i)).
(iii) Show that if () (or (¢')) in Proposition 6.7 holds for every bounded
optional time S of {%,}, then it holds for every optional time.

Conditions (¢) and (¢') are statements about the conditional distribution of
X at a single time S + ¢ after the optional time S. If there are shift operators
{6} 5, satisfying (5.14), then for any random time S we can define the random
shift O5: {S < o0} - Q by

6 =0, on{S=s}.

In other words, 6 is defined so that whenever S(w) < oo, then
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XS(w)+t(w) = X (bs(w)).

In particular, we have { X, € E} = 65! {X. € E}, and (¢') and (d’) are, respec-
tively, equivalent to the statements: for every x e R?, F e #%, and any optional
time S of {#,},

) P*[65'F| %, ] = P*[65'F|Xs], P*as.on{S< o};

d”) P*[65F|Xs = y] = P'(F), P*X5'-ae.y.

Both (¢”) and (d”) can be captured by the single condition:

(¢”) for xe RY, Fe £X, and any optional time S of {#},
P*[05'F|%,] = P*(F), P*as.on{S < o).

Since (¢”) is often given as the primary defining property for a strong
Markov family, we summarize this discussion with a theorem.

6.10 Theorem. Let X = {X,, %t > 0} be a progressively measurable process
on (Q, F), let {P*}, .ga be a family of probability measures on (Q, F), and let
{0,}s>0 be a family of F|F-measurable shift operators satisfying (5.14). Then
X,(Q, %), {P*} . crais astrong Markov family if and only if (a),(b), and (¢”) hold.
6.11 Problem. Show that (¢”) is equivalent to the following condition:

(¢”) For all x € R%, any bounded, #X-measurable random variable Y, and
any optional time S of {%}, we have

E*[Y o0y %, ] = E*(Y), P*as.on{S < oo}.

(Note: If we write this equation with the arguments filled in, it becomes

E*X[Y o84 %5, ] () = J Y(w')PXso @) (dw'), P*-ae we{S < 0},

Q

where (Y 0 65)(@") £ Y(fs¢-(@")).)

C. The Strong Markov Property for Brownian Motion

The discussion on the strong Markov property for Brownian motion will
require some background material on regular conditional probabilities.

6.12 Definition. Let X be a random variable on a probability space (Q, #, P)
taking values in a complete, separable metric space (S, %(S)). Let ¥ be a
sub-g-field of &#. A regular conditional probability of X given % is a function
0:Q x #(S)— [0,1] such that

(i) for each weQ, Q(w; ) is a probability measure on (S, £(S)),
(ii) for each E e %(S), the mapping w+— Q(w; E) is ¥-measurable, and
(iii) for each Ec #(S), P[X €E|%](w) = Q(w; E), P-ae. w.
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Under the conditions of Definition 6.12 on X, (Q, #, P), (S, #(S)),and %, a
regular conditional probability for X given % exists (Ash (1972), pp. 264-265,
or Parthasarathy (1967), pp. 146-150). One consequence of this fact is that
the conditional characteristic function of a random vector can be used to
determine its conditional distribution, in the manner outlined by the next
jemma.

6.13 Lemma. Let X be a d-dimensional random vector on (Q, #F, P). Suppose
@ is a sub-o-field of F and suppose that for each weQ, there is a function
o(w; -): R* > C such that for each ue R,

o(w;u) = E[e!Y|9](w), P-ae w.

If, for each w, (w; *) is the characteristic function of some probability measure
P° on (R, B(RY)), i.e.,

plw;u) = f ' 9Pe(dx),
Ra

where i = / — 1, then for each T € B(R?), we have
P[X el |%](w) = P°(T'), P-ae w

ProOF. Let Q be a regular conditional probability for X given %, so for each
fixed u € R? we can build up from indicators to show that

(6.4) o(w;u) = E[e!™“?|%9](0w) = J e’ ¥0(w;dx), P-ae.w.
Rd

The set of w for which (6.4) fails may depend on u, but we can choose a
countable, dense subset D of R? and an event e # with P(@) = 1, so that
(6.4) holds for every we8 and ueD. Continuity in u of both sides of (6.4)
allows us to conclude its validity for every w e and ue R?. Since a measure
is uniquely determined by its characteristic function, we must have P =
Q(w; -) for P-a.e. w, and the result follows. dJ

Recall that a d-dimensional random vector N has a d-variate normal
distribution with mean pe R? and (d x d) covariance matrix X if and only if
it has characteristic function

(6.5) EeiteN) = pltwm=wIu2. e [Rd,

Suppose B = {B,, #;t > 0}, (Q, #), {P*}, .« is a d-dimensional Brownian
family. Choose u € R? and define the complex-valued process

t
Mt & exXp [i(u9 Bt) + 5 Ilul|2:|9 t= 0.

We denote the real and imaginary parts of this process by R, and I,, respectively.



86 2. Brownian Motion

6.14 Lemma. For each x e R?, the processes {R,, #; t > 0} and {I,, #; t > 0}
are martingales on (Q, #, P~).

Proor. For 0 < s < t, we have

E*[M,| Z, ]—E"[Mexp((uB B)+

—° ||uu2> ﬂ
—° ||u||2>] =M,

where we have used the independence of B, — B, and £, as well as (6.5). Taking
real and imaginary parts, we obtain the martingale property for {R, #;t =0}
and {I,, #; t > 0}. |

= MSE"[exp< (u, B, — B)+

6.15 Theorem. A d-dimensional Brownian family is a strong Markov family.
A d-dimensional Brownian motion is a strong Markov process.

PROOF. We verify that a Brownian family B = {B,, %; t > 0},(Q, #), {P*} s
satisfies condition (e) of Proposition 6.7. Thus, let S be an optional time of
{#}. In light of Problem 6.9, we may assume that § is bounded. Fix x € R.
The optional sampling theorem (Theorem 1.3.22 and Problem 1.3.23 (i)
applied to the martingales of Lemma 6.14 yields, for P*-a.e. weQ:

E*[exp(i(u, Bs.,))| 5. ] () = CXP[ i(u, By(o)(@)) — IIMIIZJ

Comparing this to (6.5), we see that the conditional distribution of By, given
s+, 1s normal with mean By,,,(w) and covariance matrix tI,. This proves (e).

O

We can carry this line of argument a bit further to obtain a related result.

6.16 Theorem. Let S be an a.s. finite optional time of the filtration {9"} for the
d-dimensional Brownian motion B = {B,, %, t > 0}. Then with W, £ Bg., — By,
the process W = {W,, #; t > 0} is a d-dimensional Brownian motion, indepen-
dent of F,.

Proor. We show that for every n2 1, 0<t,<---<t, < o0, and Upy ooy
u,€ R we have as. P:

(6.6) E[exp(iuk, W,“>/s+} 1 ex [—3 —tk_l)nuan];

thus, accordmg to Lemma 6.13 and (6.5), not only are the increments
{W, — W,_ }i-1 independent normal random vectors with mean zero and
covariance matrices (t; — t;—;)I,;, but they are also independent of the o-field
Zs.. This substantiates the claim of the theorem.
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We prove (6.6) for bounded, optional times S of {#}; the argument given
in Solution 6.9 can be used to extend this result to a.s. finite S. Assume (6.6)
holds for some n, and choose 0 < t, < - < t, < t,+,. Applying the equality
in the proof of Theorem 6.15 to the optional time S + t,, we have

67 E{xpliltne, W, — Wl sy}
E{exp[i(un+l9 Bs+z,,ﬂ)] |97(s+,")+ } expl —iuy41, Bs+z,,)]
exp[__%(tn'i-l - trl)”un+l”2]9 P'a.S.

-
= E[exp <i 2, W, — V",k,)>
k=1

: E{exp(i(un+l9 VV!,,H - I/V!,.))l‘gis‘*"n)+}

Therefore,

n+1
E|:exp <i Z (uk9 VVtk - VVtkl)>
k=1

=]
l n
= CXP[—E(tm - t..)llu,.ﬂllz] E[exp<i Y (e, W, — VI’,k,,)>
k=1

n+1 l
= k_l_ll exp[_z(tk - tk—l)”uk”2:|, P-as.,

which completes the induction step. The proof that (6.6) holds for n =1 is
obtained by setting t, = 0 in (6.7). O

In order to present a rigorous derivation of the density (6.3) for the passage
time T, in (6.1), a slight extension of the strong Markov property for right-
continuous processes will be needed.

6.17 Proposition. Let X = {X,, %, t > 0},(Q, %), {P*} e be a strong Markov
family, and the process X be right-continuous. Let S be an optional time of {#,}
and T an F,-measurable random time satisfying T(w) = S(w) for all weld
Then, for any x e R? and any bounded, continuous f: R - R,

(6.8) E*[ f(X1)|Fs+ 1(@) = (Ure)-sin S ) Xsi (@), P*ae we{T < o}

ProoF. For n > 1, let

S+ %([[2"(7" —S)]+1, ifT<oo,

oo, ifT=o0,
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sothat T, =S+ k27" when (k — 1)27"< T — S < k2™". We have T, | T on
{T < o0}. From (¢') we have for k > 0,

E*[f(Xs1x2-)| Fs+]1 = (Ugan f)(X5), P*-as.on {S < o0},
and Problem 6.9 (i) then implies
Ex[f(XT,,)|'7's+] (w) = (UT,,(w)—S(w)f)(XS(w)(w))9 P*ae . we {T < oo}.

The bounded convergence theorem for conditional expectations and the right-
continuity of X imply that the left-hand side converges to E*[ (X ;)| %5, 1(w)
as n — o0. Since (U, f)(y) = E’f(X,) is right-continuous in ¢ for every yeR?,
the right-hand side converges t0 (Ur(,)—sw).f) (Xs(w)(@))- O

6.18 Corollary. Under the conditions of Proposition 6.17, (6.8) holds for every
bounded, (R®)/%(R)-measurable function f. In particular, for any T e B(R")
we have for P*-a.e. we{T < oo}:

P [X;el| % ](w) = (UT(w)—S(w) 1) (Xs(w)(w))~

PROOF. Approximate the indicator of a closed set I' by bounded, continuous
functions as in the proof of Proposition 6.7. Then prove the result for any
I' € Z(R%), and extend to bounded, Borel-measurable functions. O

6.19 Proposition. Let {B,, #,;t > 0} be a standard, one-dimensional Brownian
motion, and for b # 0, let T, be the first passage time to b as in (6.1). Then T,
has the density given by (6.3).

PRrOOF. Because { — B,, %; t > 0} is also a standard, one-dimensional Brownian
motion, it suffices to consider the case b > 0. In Corollary 6.18 set S = T,,

T t ifS<i,
T oo ifS>1
and I = (~o0, b). On the set {T < o0} = {S < t}, we have Bs(,)(@) = b and
(Ur(w)—S(w)lr)(BS(w)(w)) = % Therefore,

P°[7},<t,B,<b]=J

P°[ByeT|%,]1dP° = l100[7;, <1
{To<t) 2
It follows that
P°[T, <t]=P°[T, <t,B,>b] + P°[T, <1, B, < b]
= P°[B, > b] + 1P°[T, < 1],
and (6.2) is proved. O

6.20 Remark. It follows from (6.2), by letting ¢t — oo, that the passage times
are almost surely finite: PO[T, < c0] = 1.
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621 Problem. Recall the notions of Poisson family and Poisson process from
Definitions 5.20 and 1.3.3, respectively. Show that the former is a strong
Markov family, and the latter is a strong Markov process.

7.7. Brownian Filtrations

In Section 1 we made a point of defining Brownian motion B = {B,, #;t = 0}
with a filtration {&} which is possibly larger than {#F} and anticipated
some of the reasons that mandate this generality. One reason is related to
the fact that, although the filtration {#?2} is left-continuous, it fails to be
right-continuous (Problem 7.1). Some of the developments in later chapters
require either right or two-sided continuity of the filtration {#}, and so in
this section we construct filtrations with these properties.

Let us recall the basic definitions from Section 1.1. For a filtration {#; t > 0}
on the measurable space (@, F), we set Fiy = (|s>0Fess for 120, F_ =
o\ }y<t F) for t >0, Fo_ = Fo, and F,, = (| =0 F). We say that {#]} is
right- (respectively, left-) continuous if %, = Z, (respectively, Z,_ = %) holds
for every 0 < t < oo. When X = {X,, FX;t = 0} is a process on ({2, ), then
left-continuity of {#X} at some fixed ¢ > 0 can be interpreted to mean that
X, can be discovered by observing X, 0 < s < t. Right-continuity means
intuitively that if X has been observed for0 <s <1, then nothing more can
be learned by peeking infinitesimally far into the future. We recall here that
FX=0(X;;0<s5<1).

7.1 Problem. Let {X,, #X;0 <t < oo} be a d-dimensional process.

(i) Show that the filtration {#X } is right-continuous.
(i) Show that if X is left-continuous, then the filtration {F[} is left-
continuous.
(iii) Show by example that, even if X is continuous, {FX} can fail to be
right-continuous and {.. } can fail to be left-continuous.

We shall need to develop the important notions of completion and augmen-
tation of o-fields, in the context of a process X = {X,, #;0 <1 < o0} with
initial distribution x on the space (Q, #X, P*), where P*[X,el] = u(@y,
I e #(R?). We start by setting, for 0 <t < o,

NP2 (F<Q;31GeFX with F = G, PG) = 0}.

A® will be called “the collection of P*-null sets” and denoted simply by A4

7.2 Definition. For any 0 <t < co, we define

(i) the completion: F} £ o(F¥ o N¥), and
(ii) the augmentation: FF & o(FX U N™)
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of the o-field #X under P*. For t = oo the two concepts agree, and we set
simply F# £ ¢(FX U ™).

The augmented filtration { #}} possesses certain desirable properties, which
will be used frequently in the sequel and are developed in the ensuing problems
and propositions.

7.3 Problem. For any sub-o-field 4 of #X, define %* = o(% U A™*) and
H ={F = Q3IGe%Fsuchthat FAGe 4™}

Show that ¥* = #. We now extend P* by defining P*(F) £ P*(G) whenever
Fe%* and Ge ¥ is chosen to satisfy F A Ge A4"*. Show that the probability
space (Q, ¥*, P*)is complete:

Fe%* PYF)=0,DcF = De%"~

7.4 Problem. From Definition 7.2 we have &} = FF, for every 0 <t < co.
Show by example that the inclusion can be strict.

7.5 Problem. Show that the o-field #* of Definition 7.2 agrees with

f;écr(U 9’)

t>0

7.6 Problem. If the process X has left-continuous paths, then the filtration
{F/!} is left-continuous.

A. Right-Continuity of the Augmented Filtration
for a Strong Markov Process

We are ready now for the key result of this section.

7.7 Proposition. For a d-dimensional strong Markov process X = {X,, FX;
t > 0} with initial distribution p, the augmented filtration {F}} is right-
continuous.

ProoOF. Let (Q, X, P*) be the probability space on which X is defined.
Fix s >0 and consider the degenerate, {%*}-optional time S =s. With
O<to<t, < <t <s<ty,, < <t, and Ty, ..., T, in Z(R?), the
strong Markov property gives

PA[X, €Ty, ..., X, eT,|FX
= l{XrUel"U,...,X,nel",,} Pu[Xt,,H e1_‘n+1a R ] Xtmermlxs]a

P-as. It is now evident that P*[X, eTy,..., X, €I, |#}X] has an F}-
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measurable version. The collection of all sets F e #X for which P*[F |FX]
has an FX-measurable version is a Dynkin system. We conclude from the
Dynkin System Theorem 1.3 that, for every Fe #X, the conditional prob-
ability P*[F|#X ] has an #-measurable version.

Let us take now Fe FX < FX; we have P*[F|F%] =1, as. P s0 15
has an Z *-measurable version which we denote by Y. Because G 2y =1}e
FXand FAG < {1 # Yje 4™, we have Fe #* and consequently % <
Fr520.

Now let us suppose that FeZL; for every integer n>1 we have
FeF qmy as well as a set G,e FX m such that FAG,e A We define
G 2 (2= Um Gy andsince G = (=4 | 2n G, for any positive integer M,
we have Ge FX < F*. To prove that F € #}, it suffices to show F AGeAN™*
Now

G\F (Q G,,)\F = G (G\F) e A"~
n= n=1

On the other hand,

F\G=Fm<ﬂ U G,,) =Fm<U N G,”,)
m=1 n=m m=1 n=m
= [Fm N G ]g U FnGp)= U (F\G,) e A™
m=1 n=m m=1 m=1
It follows that Fe #¥, so F¥ < F! and right-continuity is proved. O

78 Corollary. For a d-dimensional, left-continuous strong Markov process
X = {X,, #X, t > 0} with initial distribution p, the augmented filtration {F#}
is continuous.

7.9 Theorem. Let B = {B,, #2;t > 0} be a d-dimensional Brownian motion
with initial distribution p on (Q, 2, P*). Relative to the filtration {F*},
{B,,t =0} isstilla d-dimensional Brownian motion.

ProOF. Augmentation of o-fields does not disturb the assumptions of Definition
5.1

7.10 Remark. Consider a Poisson process {N,, #;0 <t < oo} as in De-
finition 1.3.3 and denote by {%} the augmentation of {#}}. In conjunction
with Problems 6.21 and 7.3, Proposition 7.7 shows that {#,} satisfies the usual
conditions; furthermore, {N,, #;0 <t < oo} is a Poisson process.

Since any d-dimensional Brownian motion is strongly Markov (Theorem
6.15), the augmentation of the filtration in Theorem 7.9 does not affect the
strong Markov property. This raises the following general question. Suppose
{X, FX;t =0}isa d-dimensional, strong Markov process with initial distri-
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bution y on (Q, #X, P#). Is the process {X,, F/; t > 0} also strongly Markov?
In other words, is it true, for every optional time S of {##}, t >0 and
I' e (R%), that

(7.1)  P*[Xs..eT|#¢] = P[Xs,,eT|Xs], P'-as.on{S< o0}?

Although the answer to this question is affirmative, phrased in this generality
the question is not as important as it might appear. In each particular case,
some technique must be used to prove that {X,, #X; t > 0} is strongly Markov
in the first place, and this technique can usually be employed to establish the
strong Markov property for {X,, ##;t > 0} as well. Theorems 7.9 and 6.15
exemplify this kind of argument for d-dimensional Brownian motion. None-
theless, the interested reader can work through the following series of exercises
to verify that (7.1) is valid in the generality claimed.

In Exercises 7.11-7.13, X = {X,, #*;0 <t < o0} is a strong Markov
process with initial distribution u on (Q, #X, P*).

7.11 Exercise. Show that any optional time S of {#}} is also a stopping time
of this filtration, and for each such S there exists an optional time T of {FX}
with {S # T} e 4™ Conclude that F¢, = F¢ = F4, where F4 is defined to
be the collection of sets 4 € #* satisfying A N {T <t} e F£ V0 <t < o0.

7.12 Exercise. Suppose that T is an optional time of {#X}. For fixed positive
integer n, define

T, on{T = w0}

T,=9k k=1 _ . _k
2n’ on on - on "

Show that T, is a stopping time of {#X}, and F4 < o(F3 U A™*). Conclude
that #¢ < o(#7, U #™*). (Hint: Use Problems 1.2.23 and 1.2.24.)

7.13 Exercise. Establish the following proposition: if for each t > 0,T e Z(RY),
and optional time T of {#X}, we have the strong Markov property

(72)  P[X7,€l|#F,]=P*[Xr,,eT|X;], P“as on{T < o},
then (7.1) holds for every optional time S of {F}}.

This completes our discussion of the augmentation of the filtration generated
by a strong Markov process. At first glance, augmentation appears to be a
rather artificial device, but in retrospect it can be seen to be more useful and
natural than merely completing each o-field #X with respect to P*. It is more
natural because it involves only one collection of P*-null sets, the collection
we called A%, rather than a separate collection for each ¢ > 0. It is more useful
because completing each o-field #X need not result in a right-continuous
filtration, as the next problem demonstrates.
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7.14 Problem. Let {B,; t > 0} be the coordinate mapping process on (C[0, o),
A(C[0, 0))), P° be Wiener measure, and &, denote the completion of %2
under P°. Consider the set

= {we C[0, ), w is constant on [0, £] for some £ > 0}.

Show that: (i) PO(F) = 0, (ii) F e #&,, and (iii) F ¢ %o.

B. A “Universal” Filtration

The difficulty with the filtration {#/}, obtained for a strong Markov process
with initial distribution g, is its dependence on . In particular, such a filtration
is inappropriate for a strong Markov family, where there is a continuum of
initial conditions. We now construct a filtration which is well suited for this
case.

Let {X,, #X;t > 0},(Q, FZ), {P*} . ra be a d-dimensional, strong Markov
family. For each probability measure p on (R’ B(R?), we define P* asin (5.2);

muﬂ:f P*(F)u(dx), VFeZFEL,
Rd

and we construct the augmented filtration {#}} as before. We define

(7.3) FLENF 0<t< oo,

"
where the intersection is over all probability measures u on (R%, #(R%)). Note
that £X < & < ##,0 < t < oo for any probability measure u on (R?, Z(R?));
therefore, if { X,, #X; t > 0} and {X,, #/; t > 0} are both strongly Markovian
under P# then so is {X,, Z,;t > 0}. Because the order of intersection is
interchangeable and {#/} is right-continuous, we have

Z=NOF=NOF=0F=F

s>t oy u s>t

Thus {Z,} is also right-continuous.

7.15 Theorem. Let B = {B,, #?;t > 0} (Q, 9"" {P*},cra be a d-dimensional
Brownian family. Then {B, ﬁ;, t > 0}, (Q, %), {P*}iena is also a Brownian
Samily.

PRrooF. It is easily verifed that, under each P*, {B,, %, t > 0} is a d-dimensional
Brownian motion starting at x. It remains only to establish the universal
measurability condition (i) of Definition 5.8. Fix F e Z,,. For each probability
measure y on (R% B(R?Y)), we have Fe ¥, so there is some Ge #2 with
FAGen* Let Ne &P satisfy FAG < N and P*(N) = 0. The functions
g(x) £ P*(G) and n(x) & P*(N) are universally measurable by assumption.
Furthermore,
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f n(x)u(dx) = P¥(N) = 0,
Rd

so n =0, p-ae. The nonnegative functions h,(x) £ P*(F\G) and h,(x) &
P*(G\F) are dominated by n, so h, and h, are zero p-a.c., and hence h, and
h, are measurable with respect to #(R?)*, the completion of #(R?) under U,
Set f(x) £ PX(F). We have f(x) = g(x) + h,(x) — h,(x), so [ is also B(R)*-
measurable. This is true for every p; thus, f is universally measurable. O

7.16 Remark. In Theorem 7.15, even if the mapping x+— P*(F) is Borel-
measurable for each Fe #2 (cf Problem 5.2), we can conclude only its
universal measurability for each F € Z,. This explains why Definition 5.8 was
designed with a condition of universal rather than Borel-measurability.

C. The Blumenthal Zero-One Law

We close this section with a useful consequence of the results concerning
augmentation.

7.17 Theorem (Blumenthal (1957) Zero-One Law). Let {B,, Z;;t > 0}, (Q, %),
{P*};cRra be a d-dimensional Brownian family, where Z. is given by (7.3). If
FeZ,, then for each x € R* we have either P*(F) =0 or P*(F) = 1.

PrOOF. For F e %, and each x e R?, there exists G € £ such that P*(F A G) = 0.
But G must have the form G = {B, eI} for some I" € Z(R?), so

PX(F) = PX(G) = P*{ByeT} = 1.(x). O
7.18 Problem. Show that, with probability one, a standard, one-dimensional

Brownian motion changes sign infinitely many times in any time-interval
0,e],e > 0.

7.19 Problem. Let {W,, #;0<t< oo} be a standard, one-dimensional
Brownian motion on (, &, P), and define
Sy =inf{t > 0; W, > b}; b>0.

(i) Show that for each b > 0, P[T, # S,] = 0.
(i) Show that if L is a finite, nonnegative random variable on (QZ,P)
which is independent of #Y, then {T; # S;} e # and P[T, # S,] = 0.

2.8. Computations Based on Passage Times

In order to motivate the strong Markov property in Section 2.6, we derived
the density for the first passage time of a one-dimensional Brownian motion
from the origin to b # 0. In this section we obtain a number of distributions



2.8. Computations Based on Passage Times 95

related to this one, including the distribution of reflected Brownian motion,
Brownian motion on [0,a] absorbed at the endpoints, the time and value of
the maximum of Brownian motion on a fixed time interval, and the time of the
last exit of Brownian motion from the origin before a fixed time. Although
derivations of all of these distributions can be based on the strong Markov
property and the reflection principle, we shall occasionally provide arguments
based on the optional sampling theorem for martingales. The former method
yields densities, whereas the latter yields Laplace transforms of densities
(moment generating functions). The reader should be acquainted with both
methods.

A. Brownian Motion and Its Running Maximum

Throughout this section, {W,, %;0 <t < w0}, (Q, %), {P*},.g Will be a one-
dimensional Brownian family. We recall from (6.1) the passage times

T,=inf{t = 0; W,=b}; beR,
and define the running maximum (or maximum-to-date)

8.1) M, = max W,

0<s<t

8.1 Proposition. We have fort >0anda < b, b = O:

2(2b — 2b — a)?
82  PO[Weda Meab] = 222 =9 exp{—( %) }da db.
< 2nt3 2t
PROOF. For a < b, b > 0, the symmetry of Brownian motion implies that
(Us L)) & PP[W-, < a] = PIW, > 2b — a]

2 (Usslzp-a,m)b); 0<s<t

Corollary 6.18 then yields
PO[VVz < a“g;Tb+]-= (Ut-—Tbl(—oo,a])(b) = (Ut—Tbl[Zb-—a,oo))(b)
= P°[W,>2b — al|F;,.], as. P°on{T, <t}

Integrating both sides of this equation over {T, <t} and noting that
{T, <t} = {M, > b}, we obtain

PO[W, <a, M, > b] = P°[W, > 2b — a, M, = b]

=P[W,>2b—d] =

! J‘w e™* 12 Iy,
</ 2nt J2b-a

Differentiation leads to (8.2). U
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8.2 Problem. Show that for t > 0,
(8.3) P°[M,edb] = P°[{W,|edb] = P°[M, — W,edb]
2

=——_¢24p. p>0,
2t

8.3 Remark. From (8.3) we see that

o

LJ
J2n N

By differentiation, we recover the passage time density (6.3):

(8.4) P°[T, <t] =P°[M,>bh] = e *2dx; b>0.

(8.5) PO[T,edt] = Le"’z/z'dt; b>0,t>0.
< 2nt3

For future reference, we note that this density has Laplace transform
(8.6) E% T = ¢ > 0,4> 0.

By letting ¢ 1 c0 in (8.4) or « | 0 in (8.6), we see that P°[T, < o] = 1. Itisclear
from (8.5), however, that E°T, = co.

8.4 Exercise. Derive (8.6) (and consequently (8.5)) by applying the optional
sampling theorem to the {&}-martingale

8.7) X, =exp{AW, — 3A%t}; 0<t< oo,
with 1 = /20 > 0.

The following simple proposition will be extremely helpful in our study of
local time in Section 6.2.

8.5 Proposition. The process of passage times T = {T,, #r_,;0 < a < oo} has
the property that, under P® and for 0 < a < b, the increment T, — T, is inde-
pendent of #;_, and has the density

b - 2
PO[T, — T,edf] = —— 2 e ®=a2t gy 0 <t < oo,
2mt3

In particular,

(8.8) EO[e T T g7 ] = e -2, 45

Proor. This is a direct consequence of Theorem 6.16 and the fact that
L, —T,=inf{t>0; Wy ,, — Wy =b—al}. O
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B. Brownian Motion on a Half-Line

When Brownian motion is constrained to have state space [0, o0), one must
specify what happens when the origin is reached. The following problems
explore the simplest cases of absorption and (instantaneous) reflection.

8.6 Problem. Derive the transition density for Brownian motion absorbed at
the origin {W, , 1., #; 0 < t < oo}, by verifying that

8.9) P*[Wedy, To > t]=p-(t;x,y)dy
2 [p(t;x,y) — p(t;x, —y)1dy; t>0, x,y>0.

8.7 Problem. Show that under PP, reflected Brownian motion |W| 2 {|W|, #;
0 <t < oo} is a Markov process with transition density

(8.10) P°[|W,i | edy||W| = x] = p.(s;x,y)dy
A [p(s;x,y) + p(s;x, —y)1dy; s>0,t=0and x,y > 0.

8.8 Problem. Define Y, 2 M, — W;0 < t < co. Show that under P°, the process
Y = {Y,, #;0 <t < oo} is Markov and has transition density

(8.11) PO[Y,, edy|Y,=x]=p.(s;x,y)dy; s>0,t>0andx,y=0.

Conclude that under P° the processes |W| and Y have the same finite-
dimensional distributions.

The surprising equivalence in law of the processes Y and | W| was observed
by P. Lévy (1948), who employed it in his deep study of Brownian local time
(cf. Chapter 6). The third process M appearing in (8.3) cannot be equivalent
in law to Y and |W)|, since the paths of M are nondecreasing, whereas those
of Y and |W| are not. Nonetheless, M will turn out to be of considerable
interest in Section 6.2, where we develop a number of deep properties of
Brownian local time, using M as the object of study.

C. Brownian Motion on a Finite Interval

In this subsection we consider Brownian motion with state space [0, a], where
a is positive and finite. In order to study the case of reflection at both
endpoints, consider the function ¢: R — [0,a] which satisfies @(2na) = 0,
o((2n + a) =a;n=0, +1, £2,..., and is linear between these points.

8.9 Exercise. Show that the doubly reflected Brownian motion {¢(W,), #;
0 <t < oo} satisfies

PiloW)edyl= ) p+(t;x,y+2na)dy; 0<y<a0<x<at>0

n=—x
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The derivation of the transition density for Brownian motion absorbed at Q
and aie, (W, r,n1,, %;0 <t < 0}, is the subject of the next proposition.

8.10 Proposition. Choose 0 < x < a. Thenfort > 0,0 < y < a:

(8.12) PWedy, oA T,>t]1= Y p_(tx,y+ 2na)dy.

n=-—-a

Proor. We follow Dynkin & Yushkevich (1969). Set g, 2 0, 7, £ T, and
define recursively g, £ inf{t > 1,_;; W,=a}, 1, = inf{t >0, W,=0};n=1,
2,.... We know that P*[t, < 0] = 1, and using Theorem 6.16 we can show
by induction on n that 6, — 7,_, is the passage time of the standard Brownian
motion W.,. — W, to a, 1,—aq, is the passage time of the standard
Brownian moton W.,, — W, to —a, and the sequence of differences 01 — To,
Ty = 01, 62 — Ty, Tp — 0, ... consists of independent and identically distri-
buted random variables with moment generating function e/ (cf. (8.8)).
It follows that 7, — 74, being the sum of 2n such differences, has moment

generating function e~2v2% and so

Pz, — 1o < t] = P°[T,,, < (]
We have then
(8.13) lim P*[1, <t]=0;, 0<t< c0.

n—w

For any ye(0,0), we have from Corollary 6.18 and the symmetry of
Brownian motion that

P[W, > y|# .1 = PX[W,< —)|#,.] on{r, <1},

and so for any integer n > 0,
(8.14) P[W, 2y 1,<t]=P[W,< -y, 1,<t] = P[W, < —y, 0, < t].
Similarly, for y e(—o0, a), we have

PXW, < )|, 1= P[W,22a— J|#,.] on{s, <1},
whence
(8.15) P[W, <y, 6,<t]=P[W,>2a—y,0,<t]

=P [W,>2a-y1,,<t]; n>1.

We may apply (8.14) and (8.15) alternately and repeatedly to conclude, for
O<y<an>0

PXW, >y, 7, <t] = P*[W, < —y — 2nd],
P W, < y,0,<t] = P[W, <y~ 2na],

and by differentiating with respect to ¥, we see that
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(8.16) P*[W,edy, 1, < t] = p(t; x, —y — 2na)dy,
(8.17) P*[W,edy, 6, < t] = p(t; x, y — 2na)dy.
Now set 7, = 0, po, = T,, and define recursively
n, = inf{t > p,_;; W, =0}, p,=inf{t>m,;W=a}; n=12....
We may proceed as previously to obtain the formulas

(8.18) lim P*[p, < t]=0;, 0<t< o,

8.19) P [Wedy,p, <t]=p(t; x, =y +(2n+ Da)dy; 0<y<an=Q,
(820) P*[Wedy,mn,<t]=p(t;x,y+ 2na)dy; O0<y<a,n>0.

It is easily verified by considering the cases To < T, and Tp > T, that
Tyoy V Ppoy = Op AT, and 6, V T, =T, A p3n 2 L. Consequently,

P [W,edy, 1oy A Po_y <t] = P*[Wedy, 1, <t]+ P [Wedy,p,, <t]

(821 — P*[W,edy, 0, A 7, <],

and

(8.22) P*[W,edy, 0, Am,<t]= P*[W,edy, o, < t] + P*[W,edy, n, < t]
— P [Wedy, 1, A p, < t].

Successive application of (8.21) and (8.22) yields for every integer k > 1:

(8.23) )

P [W,edy, 1o A po <t] = "; {P*[W,edy, 1,y <t] + P*[Wedy, p,-y <t]

— P*[W,edy, 6, <t] — P*[W,edy, n, < t]}
+ P*[W,edy, 1, A p < t].

Now we let k tend to infinity in (8.23); because of (8.13), (8.18) the last term
converges to zero, whereas using (8.16), (8.17) and (8.19), (8.20), we obtain from
the remaining terms:

P [Wedy, T A T, > t]

P*[W,edy] — P*[Wedy, 1o A po < ]

Y po(t;x,y+2na)dy; 0<y<at>Q0.

Il

n=—0o 0
8.11 Exercise. Show that fort > 0,0 < x < a:
1 o0 2 2
(824) P*[T, A T,edt] = Y | (2na +x) exp{—w
A/ 271,13 n=-—w 2t

(2na + a — x)*
+ (2na + a — x)exp — dt.
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It is now tempting to guess the decomposition of (8.24):
(8.25)

1 e 2 2
P[Tyedt, Ty < T,] = Y (2na + x)exp{—w} dt,

N 2nt3 n=—w 2t

(8.26)
1 © 2 Y]
PTedt, T, < Ty] = Z (2na + a — x)exp{_(na_’_—ax)}dt'

\ 2at3 ns=w 2t

Indeed, one can use the identity (8.6) to compute the Laplace transforms of
the right-hand sides; then (8.25), (8.26) are seen to be equivalent to

8.27 E*[e~"To1,, . _ sinh((a — x)\/fo—z)
( ) [e {To<T,}] sinhia ﬁ&)
(8.28) EXe™ ™ r, <] = M

sinh(a \/E;) '

We leave the verification of these identities as a problem. Note that by adding
(8.27) and (8.28) we obtain the transform of (8.24):

cosh <<x — g) ﬂ)
(8.29) E*[e7TorTa)] = .
cosh <; \/Eo—z>

This provides an independent verification of (8.24).

8.12 Problem. Derive the formulas (8.27), (8.28) by applying the optional
sampling theorem to the martingale of (8.7).

8.13 Exercise. Show thatfora > 0,0 < x < a:

a—Xx
P[T,<T]="" pPT,<T,]=".
a a

8.14 Problem. Show that EX(Ty A T,)=x(a — x); 0<x <a.

D. Distributions Involving Last Exit Times

Proposition 8.1 coupled with the Markov property enables one to compute
distributions for a wide variety of Brownian functionals. We illustrate the
method by computing some joint distributions involving the last time before
t that the reflected Brownian motion Y of Problem 8.8 is at the origin. Note
that such last exit times are not stopping times.
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8.15 Proposition. Define

(8.30) 0,2 sup{0 <s<t;W,=M,}
Then for acR, b > a*,0 < s < t, we have:
8.31)

bib — B (b—a)
P°[W,eda,M,edb,9,eds]=—(b—Lexp|:—— b-a ]dadbds.

n/s3(t — s)? 25 2(t—>9)

PrOOF. Forb>0,6> 0> 0,x >0,a<band 0 <s <t, we have

(8.32) P°|:b< M,<b+ 3, Woeb —dx, max W, <b, W,eda:|

s<u<Lt

< P[b<M,<b+4,0,<s Web—dx, Weda]

s<u<t

sP°|:b<Mssb+ 5, W.eb — dx, max W, < b+, W,eda:|.
Divide by 6 and let 8 | 0, ¢ | O (in that order). The upper and lower bounds in

the preceding inequalities converge to the same limit, which is

(8.33) P°[M,edb, 6, < s, W,eb — dx, W,eda]

= P°|:Msedb, W.eb — dx, max W, <b, W,eda:|
s<u<t
= P°[M,edb, W,eb — dx]-P**[M,_, < b, W,_;eda]

b+ x [ {(x+/1+)2 (2b—a)2}
exp< —

=7r s3(t —s) 262 2
(x+p)? a
exp { g7 % dxdadb,

where we have used (8.2) and
b(t — s) + (a — b)s 2As(t—s)
Hx : , 0= ———
In terms of ®(z) 2 (1/4/2m) [*, e~**2 dx we may now evaluate the integrals
) 2
j (b + x)exp {—wi—)} dx = gle #iP

2
0 20

>

+3b+(b—a)eo 2n'd><—"—i>,
t o

and so integrating out x in (8.33) and using the equality

£+(bi(b—a))2_b2+(b—a)2

8.3 _b ,
®.34) 2062 2t 2s  2(t—59)
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we arrive at the formula

P°[M,edb, 6, < s, W,eda] =

2 Uy (2b - a)z
S LRt

2
- d)<—%)aexp{—;—t}j|dadb.

Note that 9/0s(—u /o) = 1/26((b/s) + (b — a)/(t — 5)), and so

0
aPO[M,edb, 6, < s, W,eda]

—Mex {—%}—%}dadbds. O

8.16 Remark. If we define 6, 2 inf{0 <'s <t; W, = M,} to be the first time W
attains its maximum over [0, ], then (8.32) is still valid when 6, is replaced by
6,. Thus, 6, and 4, have the same distribution, and since §, < 6,, we see that
P°[d, = 6] = 1. In other words, the time at which the maximum over [0,1]
is attained is almost surely unique.

8.17 Problem. Show thatforb>0,0 < s < t:

P°[M,edb, 0,eds] = _ b ey ds,
n/s3(t — )
whence
P°[6,eds] = L, P°[M,edb| 6, = 5] = B g-vas g,
./ s(t — ) s

In particular, the conditional density of M, given 6, does not depend on t.
We say that 6, obeys the arc-sine law, since

2
P°[6, < 5] =—arcsin\/§; 0<s<tt>0.
n

8.18 Problem. Define the time of last exit from the origin before ¢ by

(8.39) nesup{0<s<t W,=0}
Show that y, obeys the arc-sine law; i.e.,
d
P'lyeds]=—= . 0<s<t

nﬁ/s(t—s),

(Hint: Use Problem 8.8.)

8.19 Exercise. With 7, defined as in (8.35), derive the quadrivariate density
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P°[W,eda, M,edb, y,eds, 6,e du]
B —2ab? ub? a?
T 2ru(s — w(t — 5))*? P T 2u(s—u)  2(t—5)

O<u<s<t,a<0<b

}da dbdsdu;

2.9. The Brownian Sample Paths

We present in this section a detailed discussion of the basic absolute properties
of Brownian motion, i.., those properties which hold with probability one
(also called sample path properties). These include characterizations of “bad”
behavior (nondifferentiability and lack of points of increase) as well as “good”
behavior (law of the iterated logarithm and Lévy modulus of continuity) of the
Brownian paths. We also study the local maxima and the zero sets of these
paths. We shall see in Section 3.4 that the sample paths of any continuous
martingale can be obtained by running those of a Brownian motion according
to a different, path-dependent clock. Thus, this study of Brownian motion has
much to say about the sample path properties of much more general classes
of processes, including continuous martingales and diffusions.

A. Elementary Properties

We start by collecting together, in Lemma 9.4, the fundamental equivalence
transformations of Brownian motion. These will prove handy, both in this
section and throughout the book; indeed, we made frequent use of symmetry
in the previous section.

9.1 Definition. An Ré-valued stochastic process X = {X,; 0 <t < oo} iscalled
Gaussian if, for any integer k > 1 and real numbers 0 <t; <t; <--* < < 0,
the random vector (X, , X,,,..., X,,) has a joint normal distribution. If the
distribution of (X,, , Xy4r,»---» X;44,) dOes not depend on ¢, we say that the
process 1s stationary.

The finite-dimensional distributions of a Gaussian process X are determined
by its expectation vector m(t) £ EX,; t > 0, and its covariance matrix
p(s,t) & E[(X, — m(s))(X, —m(®))'}; 5120,

where the superscript T indicates transposition. If m(t) = 0; t > 0, we say that
X is a zero-mean Gaussian process.

9.2 Remark. One-dimensional Brownian motion is a zero-mean Gaussian
process with covariance function

9.1 ps,t)=sAt;, st=0.
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Conversely, any zero-mean Gaussian process X = {X,, #X;0 <t < oo} with
a.s. continuous paths and covariance function given by (9.1) is a one-
dimensional Brownian motion. See Definition 1.1.

Throughout this section, W = {W,, #;0 <t < oo} is a standard, one-
dimensional Brownian motion on (Q, &#, P). In particular W, = 0, a.s. P, For
fixed weQ, we denote by W(w) the sample path t1— W,(w).

9.3 Problem (Strong Law of Large Numbers). Show that

W,
9.2) lim— =0, as.

t—=o0
(Hint: Recall the analogous property for the Poisson process, Remark 1.3.10)
9.4 Lemma. When W = {W,, #,;0 < t < o0} is a standard Brownian motion,
S0 are the processes obtained from the following “equivalence transformations”:
(i) Scaling: X = {X,, #,;0 <t < oo} defined for ¢ > 0 by
1
(9.3) X,=7VK, ; 0<t<oo.
¢

(i) Time-inversion: Y = {Y,, #*;0 <t < o} defined by

tW,, ; O<t< oo
9.4 =4 ’
04) ' {0 ; =0
(it) Time-reversal: Z = {Z,, #%;0 <t < oo} defined for T > 0 by
9.5) Zi=Wr—Wp_, ; 0<t<T

(iv) Symmetry: —W = {-W,, #;0 <t < w0}.

PrOOF. We shall discuss only part (ii), the others being either similar or
completely evident. The process Y of (9.4) is easily seen to have a.s. continuous
paths; continuity at the origin is a corollary of Problem 9.3. On the other hand,
Y is a zero-mean Gaussian process with covariance function

1 1
E(YSY,)=St<—/\;>=S/\ t; s5,t>0
s
and the conclusion follows from Remark 9.2. O

9.5 Problem. Show that the probability that Brownian motion returns to the
origin infinitely often is one.

B. The Zero Set and the Quadratic Variation

We take up now the study of the zero set of the Brownian path. Define
(9.6) Z 4 {(t,w)e[0, ) x Q; W(w) =0},
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and for fixed w € Q, define the zero set of W(w):

(9.7 Z,2{0<t< oo; W) =0}

9.6 Theorem. For P-a.e. w€Q, the zero set &,

(i) has Lebesgue measure zero,
(i) is closed and unbounded,
(iii) has an accumulation point at t = 0,
{iv) has no isolated point in (0, c), and therefore
(v) is dense in itself.

PROOF. We start by observing that the set Z of (9.6) is in #([0, 0))® Z,
because W is a (progressively) measurable process. By Fubini's theorem,

E[meas(Z,,)] = (meas x P){Z) = J‘w P[W,=0]dt = 0,
0

and therefore meas(Z,,) = 0 for P-ae. weQ, proving (i); here and in the
sequel, meas means “Lebesgue measure.” On the other hand, for P-a.c. w€ Q
the mapping t— W(w) is continuous, and %, is the inverse image under
this mapping of the closed set {0}. Thus, for every such o, the set &, is
closed, is unbounded (Problem 9.5), and has an accumulation point at t =0
(Problem 7.18).

For (iv), let us observe that {weQ Z, has an isolated point in (0, )} can
be written as

9.8) ) {weQthere is exactly one s€(a,b) with W(w) = 0}

a,beQ
0 <a<b<oo

where Q is the set of rationals. Let us consider the family of almost surely
finite optional times

B Ainf{s>t; W,=0) t=0.
According to (iii) we have fo = 0, a:s. P; moreover,
Bs (@) = inf{s > Bw); Wiiw) = 0}
= B() + inf{s > O; W,yp,(@) — Wpo®) = 0} = Bilw)

for P-ae. weQ, because {W,p — W50<s< oo} is a standard Brownian
motion (Theorem 6.16). Therefore, for 0 <a <b < o,

{weQ; there is exactly one s€(a,b) with W,(w) = 0}
c {weQ fw) <b and By (w)(®@) > b}

has probability zero, and the same is then true for the union (9.8). O

9.7 Remark. From Theorem 9.6 and the strong Markov property in the form
of Theorem 6.16, we see that for every fixed be R and P-a.c. w €, the level set
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Z,(b) 2 {0 <t < 03 W(w) = b}

is closed, unbounded, of Lebesgue measure zero, and dense in itself.

The following problem strengthens the result of Theorem 1.5.8 in the special
case of Brownian motion.

9.8 Problem. Let {IT,}>; be a sequence of partitions of the interval 0, t] with
lim,,, [[TT,| = 0. Then the quadratic variations

VOL,) & Y W — W |2
k=1

of the Brownian motion W over these partitions converge to t in L2, as n — co.
If, furthermore, the partitions become so fine that Y @, IT,]| < oo holds, the
preceding convergence takes place also with probability one.

C. Local Maxima and Points of Increase

As discussed in Section 1.5, one can easily show by using Problem 9.8 that for
almost every w €€, the sample path W(w) is of unbounded variation on every
finite interval [0,t]. In the remainder of this section we describe just how
oscillatory the Brownian path is.

9.9 Theorem. For almost every w €, the sample path W(w) is monotone in no
interval.

Proor. If we denote by F the set of weQ with the property that W(w) is
monotone in some interval, we have

F= ) {weQ W(w)ismonotone on [s, t1},

s,teQ
0 <s<i<w

since every nonempty interval includes one with rational endpoints. There-
fore, it suffices to show that on any such interval, say on [0, 1], the path W (w)
is monotone for almost no w. By virtue of the symmetry property (iv) of
Lemma 9.4, it suffices then to show that the event

AL (weQ; W(w)is nondecreasing on [0, 1]}
is in # and has probability zero. But A = &, A,, where

n=1
n—1
A,. A Q {CUEQ; u/(H-l)/,,(Cl)) — VVi/n(w) > O}E'g;

has probability P(A4,) = [ 126 PTW;s1ym — Wy = 0] = 27" Thus, P(4) <
lim,,, P(4,) = 0. O
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In order to proceed with our study of the Brownian sample paths, we need
a few elementary notions and results concerning real-valued functions of one
variable.

9.10 Definition. Let f: [0,0) » R be a given function. A number ¢ > 0 is
called

(i) a point of increase of size §, if for given d > 0 we have f(s) < f(t) < f(u)
for every se[(t — 8)*,t) and ue(t,t + 81; a point of strict increase of size
d, if the preceding inequalities are strict;

(ii) a point of increase, if it is a point of increase of size é for some 0>0;a
point of strict increase, if it is a point of strict increase of size & for some
o> 0;

(iii) a point of local maximum, if there exists a number 6 > 0 with f(s) < f(¢)
valid for every se[(t — 8)*,t + 0]; and a point of strict local maxi-
mum, if there exists a number 6 > 0 with f(s) < f(t) valid for every
sel(t—8)", t + 6\{t}.

9.11 Problem. Let f: [0, c0) — R be continuous.

(i) Show that the set of points of strict local maximum for f is countable.
(ii) If f is monotone on no interval, then the set of points of local maximum
for f is dense in [0, ).

9.12 Theorem. For almost every w e, the set of points of local maximum for
the Brownian path W (w) is countable and dense in [0, ), and all local maxima
are strict.

ProOF. Thanks to Theorem 9.9 and Problem 9.11, it suffices to show that the
set

A = {weQ; every local maximum of W, () is strict}

includes an event of probability one. Indeed, A includes the (countable) inter-
section of events of the type

9.9) Ay, i B {weﬁ; max W,(w)— max W(w) # 0},

ty<t<ty ty<t<t,
taken over all quadruples (¢;,¢,,t5,t,) of rational numbers satisfying 0 < ¢; <
t, < t3 <t, < co. Therefore, it remains to prove that for every such quadruple,
the event in (9.9) has probability one. But the difference of the two random
variables in (9.9) can be written as

(W, — W,)+ min [W, (o)~ W(@)]+ max [W(o) - W, ()]

<t<t ty<t<ty

and the three terms appearing in this sum are independent. Consequently,
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«© 0
PLA,, .. 1= PIW, — W, #x +y] P[ min (W, — W,)EdXJ
0 — t <t<tp
'P|: max (W, — W,s)edyil =1
ty<t<ty
because P[W,, — W, #x + y] = 1. O

Let us now discuss the question of occurrence of points of increase on the
Brownian path. We start by observing that the set

A = {(t,w)€[0, 00) x Q; tis a point of increase of W.(w)}

is product-measurable: A e #([0, 0)) ® . Indeed, A can be written as the
countable union A = | )_; A(m), with

A(m) & {(t, w)e [0, o0) x Q; max Wiw) = W(w)= min Ws(w)},

= m)* <s<t t<s<t+(1/m)
and each A(m) is in #([0, 00)) ® F. We denote the sections of A by
A2 {weQ; (t,w)eA}, A, 2 {te[0, ) (t, w)eA},
and A,(m), A,(m) have a similar meaning. For 0 < ¢ < o,
P[A(m]< P[W,,, — W,>0; VYse[0,1/m]]1=0

because {W,,, — W,;s > 0} is a standard Brownian motion (Problem 7.18);
now A, = | J=_; A,(m) gives also

9.10) PA)=0; 0<t<oo

as well as

e o}

J meas(A,)dP = (meas x P)(A) = J P(A)dt=0

Q 0

from Fubini’s theorem. It follows that P[we Q; meas(A,) = 0] = 1. The ques-
tion is whether this assertion can be strengthened to Ploe A, = O] =1,
or equivalently

9.11) PlweQ; the path W (w) has no point of increase] = 1.

That the answer to this question turns out to be affirmative is perhaps one of
the most surprising aspects of Brownian sample path behavior, We state this
result here but defer the proof to Chapter 6.

9.13 Theorem (Dvoretzky, Erd6s, & Kakutani (1961)).  Almost every

Brownian sample path has no point of increase (or decrease); that is, (9.11)
holds.

9.14 Remark. We have already seen that almost every Brownian path has a
dense set of local maxima. If T(w) is a local maximum for W (w), then one



29. The Brownian Sample Paths 109

might imagine that by reflection (replacing W;(w) — Wr)(®) by —(W,(w) —
Wio(@)) for t > T(w)), one could turn the point T(w) into a point of increase
for a new Brownian motion. Such an approach was used successfully at the
beginning of Section 6 to derive the passage time distribution. Here, however,
it fails completely. Of course, the results of Section 6 are inappropriate in this
context because T(w) is not a stopping time. Even if the filtration {#,} is right-
continuous, so that {w € Q; W.(w) has a local maximum at t} is in & for each
¢ > 0, it is not possible to define a stopping time T for {#,} such that W (w)
has a local maximum at T(w) for all w in some event of positive probability.
In other words, one cannot specify in a “proper way” which of the numerous
times of local maximum is to be selected. Indeed, if it were possible to do this,
Theorem 9.13 would be violated.

9.15 Remark. It is quite possible that, for each fixed t > 0, 2 certain property
holds almost surely, but then it fails to hold for all ¢ >0 simultaneously
on an event whose probability is one (or even positive!). As an extreme and
rather trivial example, consider that Pwe Q; W,(w) # 1] = 1 holds for every
0 <t < oo, but P[weQ; W(w) # 1, for every te [0, w0)] = 0. The point here
is that in order to pass from the consideration of fixed but arbitrary ¢ to the
consideration of all t simultaneously, it is usually necessary to reduce the latter
consideration to that of a countable number of coordinates. This is precisely
the problem which must be overcome in the passage from (9.10) to (9.11),
and the proof of Theorem 9.13 in Dvoretzky, FErdos & Kakutani (1961) is
demanding' because of the difficulty of reducing the property of “being a point
of increase” for all t > 0 to a description involving only countably many co-
ordinates. We choose to give a completely different proof of Theorem 9.13 in
Subsection 6.4.B, based on the concept of local time. We do, however, illustrate
the technique mentioned previously by taking up a less demanding question,
the nondifferentiability of the Brownian path.

D. Nowhere Differentiability

9.16 Definition. For a continuous function f: [0, 00) - R, we denote by

(9.12) Df(t) = iim w

B0+ h

the upper (right and left) Dini derivates at t, and by

(9.13) D.f(t)= lim &iﬁ;ﬂ

h—0+

the lower (right and left) Dini derivates at t. The function f is said to be

t See, however, Adelman (1985) for a simpler argument.
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differentiable at t from the right (respectively, the left), if D*f(t) and D, f@)
(respectively, D™f(t) and D_ f(t)) are finite numbers and equal. The function
/ is said to be differentiable at ¢ > 0 if it is differentiable from both the right
and the left and the four Dini derivates agree. At t = 0, differentiability is
defined as differentiability from the right.

9.17 Exercise. Show that for fixed t e [0, c0),
(9.14) PlweQ; D*W(w) = o and D, Wj(w) = —~oo]=1.
9.18 Theorem (Paley, Wiener & Zygmund (1933)). For almost every w e Q,

the Brownian sample path W (w) is nowhere differentiable. More precisely, the
set

(9.15) {weQ; for each te [0, o0), either D* Wi(w) = o0 or D, W(w) = —0}

contains an event F e & with P(F) = 1.

9.19 Remark. At every point ¢ of local maximum for W(w) we have
D* W(w) < 0, and at every point s of local minimum, D, W,(w) = 0. Thus, the
“or” in (9.15) cannot be replaced by “and.” We do not know whether the set
of (9.15) belongs to £

ProoOF. It is enough to consider the interval [0,1]. For fixed integers j > 1,
k > 1, we define the set

(9.16) A= U (| {weQ W, (0) — W(o)| <jh.
tef0,1] he[0,1/k]

Certainly we have

s

{we —c0 < D, W(w) < D W(w) < o, for some te[0,1]} = { Ap,
=1

k

1

and the proof of the theorem will be complete if we find, for each fixed j, k, an
event Ce # with P(C) = 0 and Ay cC

Let us fix a sample path € Ay, i€, suppose there exists a number
te[0,1] with |W,,,(w) — W,(w)| < jh for every 0 < h < 1/k. Take an integer
n > 4k. Then there exists an integer i, 1 <i < n, such that i—-YYn<t<
i/n, and it is easily verified that we also have ((i + v)/n)) —t < (v + )/n<
L/k,for v = 1, 2, 3. It follows that

Wit 1yn(@) = Win(@)] < [Wyiiqym(@) — W) + | W, (0) — W,(w)|
< 2‘1 + 1 = 31
n n
The crucial observation here is that the assumption w € A, provides infor-
mation about the size of the Brownian increment, not only over the interval
Li/n,(i + 1)/n], but also over the neighboringintervals [(i + 1)/n, (i + 2)/n] and
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[+ 2)/n,( + 3)/n]. Indeed,
3 Yy
|VV(i+2)/n((U) - VV(i+1)/n(w)| <| VV(i+z)/n — W+ VV(i+1)/n AR ? + ; = ;’

4 3 Tj
| Wit 3yn(@) — Wi 2ym(@)] < {Wir3n — Wi + Weizym — Wil < Y + .

Therefore, with

3 2v+1
Cz(") £ 01 {CUEQQ |VV(i+v)/n(w) - VV(i+v—1)/n(w)| < ]},

n
we have observed that 4 < )iy C” holds for every n > 4k. But now
\/’_'(VV(Hv)/n — Wisv-1ym) 27Z; v=123

are independent, standard normal random variables, and one can easily verify
the bound P[|Z,| < €] < &. It develops that

10553
(9.17) P(C") < T/jz; i=1,2...,n
We have 4; < C upon taking
(9.18) ce N Ucrhes,
n=4k i=1
and (9.17) shows us that P(C) < inf,s 4 P({ =1 C") = 0. O

9.20 Remark. An alternative approach to Theorem 9.18, based on local time,
is indicated in Exercise 3.6.6.

9.21 Exercise. By modifying the preceding proof, establish the following
stronger result: for almost every w €Q, the Brownian path W (w) is nowhere
Hélder-continuous with exponent y > 1. (Hint: By analogy with (9.16), consider
the sets

(9.19)
Ay 2 {0eQ |W,i(0) — W(w)| < jh? for some te[0,1] and all he [0, 1/k1}

and show that each 4, is included in a P-null event.)

E. Law of the Iterated Logarithm

Our next result is the celebrated law of the iterated logarithm, which describes
the oscillations of Brownian motion near t = 0 and as t — co. In preparation
for the theorem, we recall the following upper and lower bounds on the tail
of the normal distribution.
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9.22 Problem. For every x > 0, we have

(9.20

® 1
e e ¥ < f e Ry < —e~ ¥,
x

x X

9.23 Theorem. (Law of the Iterated Logarithm (A. Hin¢in (1933))). For almost
every weQ, we have
— w, w
() Tm— @ _ (ii) lim (@) -

= —_— = l’
tho | /2tloglog(1/t) o | /2tloglog(1/t)

(i) Tim Wi(w) (iv) lim V(@)

—_— = l’ —_— . —
t~o | /2t]loglogt t~o | /2tloglogt

9.24 Remark. By symmetry, property (ii) follows from (i), and by time-inversion,
properties (iii) and (iv) follow from (i) and (i1), respectively (cf. Lemma 9.4).
Thus it suffices to establish (i).

-1

PROOF. The submartingale inequality (Theorem 1.3.8 (1) applied to the ex-
ponential martingale {X,, %;0 < t < o} of (8.7) gives for A > 0,>0:

A
9.21) P[max <Ws - —s> > ﬁ:| = P[max X, > e‘ﬂ:| <e
0<s<t 2 0<s<t

With the notation h(t) £ | /2t loglog(1 /t) and fixed numbers 6, 6 in (0, 1), we
choose 4 = (1 + )07 "h(6"), B = $h(6"), and t = 0" in (9.21), which becomes

A 1
P W —— < . 1.
L‘i‘l’&( : zs>2ﬁ ]‘(nlog(l/e))”"’ "=

The last expression is the general term of a convergent series; by the Borel-
Cantelli lemma, there exists an event Qgs€ F of probability one and an
integer-valued random variable Ngs, so that for every weQ,; we have

1

max [Ws(w) -

O<s<on

Thus, for every te(9"*!, 0"]:

; 539_"h(9"):| < %h(f’"); n 2 Nos(w).

Wi(w) < max W (w) < <l +

0<s<on

>h(9") < ( 1+ g) 0712 p(y).

N

Therefore,

W.() AP
——=<|14+2)07"2; n>N,
anl;p; o h(0) < + > ;1= Nys(w)
holds for every weQ,;, and letting n1 o0 we obtain

7= Wi(w) 0\ ._
lim ——— ~ )12 s. P.
tlfl(’)l ho s<1+2>9 , a.s
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By letting 6 | 0, 01 1 through the rationals, we deduce
— W

922 lim— <1 asP

622 o

In order to obtain an inequality in the opposite direction, we have to employ
the second half of the Borel-Cantelli lemma, which relies on independence.
We introduce the independent events

Ay = Wy — Woner 2 /1= 0R(O™}; n=1,2,...,

again for fixed 0 < 8 < 1. Inequality (9.20) with x = /2logn + 2loglog(1/6)
provides lower bounds on the probabilities of these events:

P(4,) P|:Wen = Worn :| - e *?  const. s 1
J=Pl—F/—m==x |2 > ; —|.
/o — ot J2m(x + 1/x) n log 6

Now the last expression is the general term of a divergent series, and the second
half of the Borel-Cantelli lemma (Chung (1974), p. 76, or Ash (1972), p. 272)
guarantees the existence of an event Qy € # with P(Q,) = 1 such that, for every
weQ, and k > 1, there exists an integer m = m(k,w) > k with

9.23) Wym(@) — Womni(@) = /1 — Oh(O™).

On the other hand, (9.22) applied to the Brownian motion — W shows that
there exist an event Q* € # of probability one and an integer-valued random
variable N*, so that for every w e Q*

9.24) — Wi (@) < 20(0"") < 40'71(6");, n = N*(w).

From (9.23) and (9.24) we conclude that, for every we QN Q* and every
integer k > 1, there exists an integer m = m(k,) = k v N*{w) such that

Wom(w)
—WZ\/I —9—4\/5.

By letting m — oo, we conclude that lim,y o (W;/h(t)) = /1 — 6 — /40 holds
a.s. P, and letting @ | 0 through the rationals we obtain

lim il > 1 P |
im — >1; as. P.
t{0 h(t)

We observed in Remark 2.12 that almost every Brownian sample path is
locally Holder-continuous with exponent y for every y € (0,1), and we also saw
in Exercise 9.21 that Brownian paths are nowhere locally Holder-continuous
for any exponent y >3. The law of the iterated logarithm applied to
(W, — W; 0 < h < oo} for fixed t > 0 gives

©25) e W — Wil

o ﬁ

Thus a typical Brownian path cannot be “locally Hélder-continuous with

= o0, P-as.
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exponent y = 3” everywhere on [0, c0); however, one may not conclude from

(9.25) that such a path has this property nowhere on {0, «0); see Remark 9.15
and the Notes, Section 11.

F. Modulus of Continuity'

Another way to measure the oscillations of the Brownian path is to seek a
modulus of continuity. A function g(-)is called a modulus of continuity for the
Junction f: [0, T]>RifO<s<t<Tand|t —s/<$ imply | f(t) — f(5)] <
g(d), for all sufficiently small positive 8. Because of the law of the iterated
logarithm, any modulus of continuity for Brownian motion on a bounded
interval, say [0, 1], should be at least as large as . /2d1oglog(1/5), but because
of the established local Holder-continuity it need not be any larger than a
constant multiple of 67, for any ye(0, 1/2). A remarkable result by P. Lévy
(1937) asserts that with

(9.26) g(6) 2 /251og(1/5); & >0,

cg(d) is a modulus of continuity for almost every Brownian path on [0, 1] if
¢ > 1, but is a modulus for almost no Brownian pathon [0,1]if0 <c < 1.
We say that g in (9.26) is the exact modulus of continuity of almost every
Brownian path. The assertion just made is a straightforward consequence of
the following theorem.

9.25 Theorem (Lévy modulus (1937)). With g:(0,1] = (0, ) given by (9.26),
we have

— 1
9.27) P|:1im —— max |W,— W= 1] =1
3o 9(5) 05s<t§1
t—-s<

PrROOF. With n> 1, 0 < 0 < 1, we have by the independence of increments
and (9.20):

P|: max |Wyn — Wiopyonl < (1 — 9)1/29(2_")] = (1 = &)*" < exp(—¢&27),
1<j<an
where ¢ £ 2P[2"2W, ;. > (1 - 0)22"2g(2")] = 2¢™%2/, /2x(x + 1/x) and

x = /(1 — 6)2nlog?2. It develops easily that for n > 1, we have & > g2~"1-9)
where o > 0, and thus

P|: max [Wn — Wy_yyel < (1 — 9)1/2g(2"")] < exp(—a2").
1<jgon

By the Borel-Cantelli lemma, there exists an event Q e F with P(Q,) = 1 and

* This subsection may be omitted on first reading; its results will not be used in the sequel.
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an integer-valued random variable N, such that, for every w e Qy, we have

m lglfixz | W 2n() — W1y (@) > </ 1—6; n= Nyw)
<jgon

Consequently, we obtain

— 1
im — max |W,—W|>=1-6,

abo 9(d) o<s<i<1
t—s<o

and by letting 6 | 0 along the rationals, we have

— 1
lim — max |W,—W/|>1, as P
sto g(9) OSs<é§1

t—s=<

For the proof of the opposite inequality, which is much more demanding,
we select 8(0,1) and £ > (1 + 9)/(1 — 6)) — 1, and observe the inequalities

1

928) P max ———-—

( ) [ogqu" g(k2 ")
k=j—i<2n®

[2r] k
<Y P[ max | Wesian — Wiznl 2 a+ 8)g<i;>:|

k=1 O<i<itk<2n

2 | Wy 0] &
<2r pll ¥ > (1 +¢) [lo —:l
kzl |: k27" ( ) gkz

The probability in the last summand of (9.28) is bounded above, thanks to
(9.20), by a constant multiple of n~12(k27")1*9? and

nd 2nf4+1 no v
r{zz 1o o J Lo g 20 1)
v

k=1 0

| Wijzn — Wizl = 1+ Ej\

3

where v = 1 + (1 + ¢)% Therefore,

P max M_"WI/JZ"'ZI + ¢ sz_lm’
osi<iszn  9(k/2") NG

k=j—ig2n
withp=(1-0)(1+ €)> — (1 + ), a positive constant by choice of &. Again
by the Borel-Cantelli lemma, we have the existence of an event Q€ # with
P(Q,) = 1,and of an integer-valued random variable N, such that

(9.29) 27 1-ON0) < 1; Ywey
e

and
”’Vj/z"(w) - VVi/zn(w)|
0si<izzt g(k/2")

=j—i<2

(9.30) <1+4+& n=Nyw),we,
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9.26 Problem. Consider the set D = | )i, D, of dyadic rationals in [0, 1], with
D,={k2™ k=0,1,...,2"}. For every weQ, and every n > Ny(w), the
inequality

6.31) IWi(w) — W) < (1 + 8)[2 '=i-l 927 +g(t - S)]

is valid for every pair (s, f) of dyadic rationals satisfying 0 < t — s < 27%1-9)
(Hint: Proceed as in the proof of Theorem 2.8 and use the fact that g(-) is
strictly increasing on (0, 1/¢].)

Returning to the proof of Theorem 9.25, let us suppose that the dyadic
rationals s, t in (9.31) are chosen to satisfy the stronger condition
(9.32) 270ENA-0 £ 5 Ay g« 27RO
But then (9.29) implies 27" ~® < 1/e; n > N,(w), and because g is increas-
ing on (0, 1/e] we have
Y g27) < g2 < — 2 ez
j=n+1 1—86

holds for an appropriate constant ¢ > 0. We may conclude from (9.31), (9.32),
and the continuity of W (w) that for every weQ, and n > N,(w),

2c

1

—— max |W(w) — W(w)| <(1 + s)[l +

g(3) 0<s<t<1 1
t—s=

holds for all § e [27¢* D=6 37r(1-0)) | etting n — oo, we obtain

—8(n+1)2
ey

— 1
lim — max |Wj(w)— W(w) <1 +5,
540 9(0) o<s<i<1
t—s=0
and because g is strictly increasing on (0, 1/e] we may replace the condition
t —s =20 byt — s <9 inthe preceding expression. It remains only tolet 8 | 0
(and hence simultaneously ¢ | 0) along the rationals, to conclude that

— 1
lim — max |W(w) - W(w)| <1; as.P.
540 9(0) o<s<i<1

t—s<éd

The proof is complete. O

2.10. Solutions to Selected Problems

1.4. For fixed 0 <'s <t < o0, and arbitrary integer n > 1 and indices 0 = s, < 5 <
< sy =5, the o-field o(Xo, X ,-- -, X, ) = 6(Xo, Xy, — Xigr---5 X, X, )is

Sn Sn-1

independent of X, — X,. The union of all o-fields of this form (over n > 1,
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(Sps-»Sn—q) @S described) constitutes a collection & of sets independent of
X, — X,, which is closed under finite intersections. Now 2, the collection of all
sets in ZX which are independent of X, — X,, is a Dynkin system containing €.
From Theorem 1.3 we conclude that #X = o(%) is contained in 2. In fact,
FrX=9.

2.3. Suppose that there exist integers n > 1, m = 1, index sequences t=(ty,--»tn)s
s = (Sg»---»Sm) and Borel sets AecB(R"), Be BR™) so that Ce ¥ admits both
representations C = {weRE); (@), ---> w(t,))eA} = {0eRO™; (@(sy), -
@(s,,)) € B}. It has to be shown that

@3 0,(4) = 0(B).

Case 1: m = n, and there is a permutation (iys---»in) Of (1,...,n) so that s;=1¢,,
1<j<n

In this case, A = {(x1,..., X)) R (X;5 . x,;,) € B}. Both sides of (2.3) are measures
on #&(R"), and to prove their identity it suffices to verify that they agree on sets of the
form A=Ay x - x A,, ;e BR) (hence B = A;, x - x Ay). But then (2.3) is just
the first consistency condition (a) in Definition 2.1.

Case 2:m>nand {t;,....t.} € {S1s---»5m}-

Without loss of generality (thanks to Case 1) we may assume thaty; =s, 1 <j<n
Then we have B = A x Rfwithk =m —n > 1,and (2.3) follows from the second con-
sistency condition (b) of Definition 2.1.

Case 3: None of the above holds.

We enlarge the index set, to wit: {q1--a} = {tr>- - 6.} U {sy,-..»8m), With
m v n<1<m+ n,and obtain a third representation

C = {weR"*; (w(qy), - ol(q))eE}, EeBR).

By the same reasoning as before, we may assume that g; = f;, t<j<nThenE=A4x
R and, by Case 2, Q,(4) = Q,(E) with ¢ = (g1, -+ q). A dual argument shows
Q,(B) = Qy(E)

The preceding method (adapted from Wentzell (1981)) shows that Q is well defined
by (2.3). To prove finite additivity, let us notice that a finite collection {C;}7=, < € may
be represented, by enlargement of the index sequence if necessary, as

C = {we RO ((ty), - .-, 0(t,) € 4;}, A;€ BR")

for every 1 < j < m. The A;s are pairwise disjoint i the C;'s are, and finite additivity
follows easily from (2.3), since

O C = {we RO ((ty)s - - - » O(ts)) € O Aj}.
=1 =1

Finally, R*® = {we R®) o(f)e R} for every t > 0, and s0 QRO = Q,(R) = 1.

24, Let % be the collection of all regular sets. We have @ e #. To show & is closed
under complementation, suppose A € #,soforeache >0, wehavea closed set F
and an open set G such that F < A < G and Q(G\F) < &. But then F* is open,

¢ is closed, G° < A° < F*, and Q(F\G°) = Q(G\F) < ¢ therefore, AeF.To
show # is closed under countable unions, let 4 = { )iz 4i where A, e # for
each k. For each ¢ > 0, there is a sequence of closed sets {F,} and a sequence of
open sets {G,} such that F, € 4, < G and Q(G\F) < &2"" k=1,2,.... Let
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G = & Geand F = | J=, F,, where m is chosen so that Q(|_i, F\Upe, F) <
¢/2. Then G is open, F is closed, F € A € G, and

&

0@\ so(a\Uh)+o(U mr)<E b+ =e

Therefore, # is a o-field.

Now choose a closed set F. Let G, = {xeR"; |x — y|| < 1/k, some yeF}. Then
each G is open, G, 2 G, 2 -, and ()%, G, = F. Thus, for each ¢ > 0, there
exists an m such that Q(G,\F) < ¢. It follows that Fe &#.

Since the smallest o-field containing all closed sets is B(R"), we have
F = B(R".

Fix t = (t,,t5,...,t,), and let s = (ti;» b, ., t; ) be a permutation of t. We have
constructed a distribution for the random vector (B,,, B,,,..., B, ) under which

QA x Ay x-» x A,)= P[(B,,,...,B, )e A, x ** x A,]
= P[(B,il,...,B,‘")eA,-l X x A
= Qy(A;, X * x Ay).
Furthermore, for Ae BR" ") and s’ = (t;,t5,...,t,-,),
QA x R) = P[(B,,...,B,_ )€ A] = Q (A).

Again wetake T = 1.Itisa bit easier to visualize the proofif we use the maximum
norm |||(t;,t5,...,2.)|| £ max, ., 4|t;| in R? rather than the Euclidean norm.
Since all norms are equivalent in R, it suffices to prove (2.14) with It — sl
replaced by |||t — s]|l. Introduce the partial ordering < in R? by (s, 55, ... ,89) <
(t1,t5,....ty)ifand only if s, < t;,i = 1, ...,d. Define the lattices

k d @©
L,={—2—";k=0,1,...,2"—1}; nx1, L=|J)L,

n=1

and for seL,, define N,(s) = {teL,;s <t, ||t — s|| = 27"}. Note that L, has
2" elements, and for each seL,, N,(s) has d elements. For se L, and te N,(s)
Cebysev's inequality applied to (2.13) gives (with 0 < y < a/p),

PLIX, — X,| = 27"} < c27"@*rh==n,

>

and consequently,

selL,
te Nnp(s)

P| max |X,— X,| > 2_’"] < dC2 mémen,

The Borel-Cantelli lemma gives an event Q* e # with P(Q*) = 1, and a positive,
integer-valued random variable n*, such that

max | X (o) — X(o)l <27, n=n*w), veQ*

e Vet
Now let R,(s) = {teL,;s <t ||t — 5| = 27"}. For se L, and t e R,(s), there is
a sequence s =s,, sy, ..., S, =t with m<d and s,eN,(s;_,), i=1, ..., m.
Consequently,
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(10.1) max |X,(@) — X)) < 427" n=n*o),oed”
eL

s n
te Ry(s)

We now fix we Q*, n > n*(w), and show that for every m > n, we have

(10.2) X (0) — X (o) < 2d Y, 279 Vi, s€Ln s<t e = sl <27

j=n+1
Form = n + 1, wecanonly havete R,(s), and (10.2) follows from (10.1). Suppose
(10.2) is valid form =n + 1,...,M — 1. Taket, seL,, s <t There 1s a vector
steLy_; " Ry(s)anda vectort! € L,_, with t & Ry (t")such thats < st<tt <t
From (10.1) we have,

| X (o) — Xy(@)| <d27™, [X(0) - Xp (o) < d27™,
and from (10.2) withm = M — 1, we have

M-1
lX,l((D) —_ sz((l))l < 2d Z 2—”.
j 1

j=nt
We obtain (10.2) for m = M.
For any vectors s, te L with s <tand 0 < It = sl < h(w) £ 277 we select
n > n*(w) such that 27"V < It — sl < 27" We have from (10.2)

X)) — X @) <2d Y, 277 <3l — sl

j=n+1
where 8 = 2d/(1 — 277). We may now conclude as in the proof of Theorem 2.8.

The n-dimensional cylinder sets are generated by those among them which are
n-fold intersections of one-dimensional cylinder sets; the latter are generated by
sets of the form H = {we C[0, ), w(t,)e G}, where G is open in R. But H is
open in C[0, ), because for each w,e H, this set contains a ball B(w,, &) 2
{we C[0, %), plw, w,) < &}, for suitably small ¢> 0. It follows that ¥ <
A(C[0, )). Because C [0, o) is separable, the open sets are countable unions of
open balls of the form B(w,,£) as previously. Let Q be the set of rattonals in
[0, o0). We have

B(wg,8) = {w: i % sup (Jw(t) — a® A 1) < 8}.

n=1 o<t<n
te@Q

The set on the right is @-measurable, so B(C[0,0)) 4.
For the second claim, notice that with any cylinder set C of the form (2.1) we
have

o71(C) = {0 e C[0,0); (9@ (t1),--- (@o)(t,) € A}
= {weC[0, o), (0t A ty), ..., 0t A t)eA €%,

s0 ¢ (%) € %, On the other hand, for any C €%, we have ty, ..., 1y in [0,t] and
Ae B(R") so that

C = {we C[0, ) ((ty), ---» @) € A}
= {0eC[0, ) (@(t A ty), ... @t A t)eA} = ¢ ()
and thus €, < ¢, ' (¥). It follows that 6, = ¢; (%), which establishes the claim.
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We have to show

4.6y lim sup P[|X{”| > A] =0, and
A-xe m>1
@y lim sup P l: max |[X™ — X{™| > s] =0
pIom>1 jt~sl<p
O<t,s<T

for all positive numbers ¢, T. Relation (4.6) is an immediate consequence of (i)
and of the Cebysev inequality. It suffices to prove (4.7) for T = 1. Let n > 0and
&£ > 0 be given. We denote X™ simply by X, and employ the notation of the
proof of Theorem 2.8. With

Q2N { max Xy — Xgqy20] < 2“"‘},
n=l (l<kg2n
we have from (2.9): P() < C, Y 2,27"#~*Y < y, provided [ is a large enough
integer. Now for every we Q, and n > I, we have from (2.12):
max |X,(0) - X,(o)| < 627,
[e=s|<2n
t,seD
where § £ 2/(1 — 277). It follows that, given ¢ > 0, # > 0, there exists an integer
n = n(e,n) such that for every weQ,:
max | X™(0) — X!™(w)] < ¢, Vm>1

{t—sj<27"
O<t,s<1

(we have used the continuity of the sample path ¢+ X{™(«)), and consequently

m>1 t—s|<27n
0<ts<l1

sup P |: max |X™ — XM > s} < PEX) <.
|

Let(Q,, #,, P,)denote the space on which X, and Y, are defined, and let E, denote
expectation with respect to P,. Let X be defined on (Q, &, P). We are given that
lim,., E, f(X") = Ef(X) for every bounded, continuous f:S — R and that
p(X™, Y™) - 0 in probability. To prove Y™ 3 X it suffices to show
lim E,[f(X"™) — f(Y")]=0

whenever f is bounded and continuous. Let such an f be given, and set
M = sup,.s|f(x)| < 0. Since {X™}= | is relatively compact, it is tight; so for
each ¢ > 0 there exists a compact set K < S, such that P,[X™e K] > | — ¢/6M,
Vn > 1.Choose 0 < 6 < | so|f(x) — f(y)| < ¢/3 whenever xe K and p(x, y) < 6.
Finally, choose a positive integer N such that P,[p(X™, Y™) > 0] < ¢/6M,
Vn > N. We have

J LAX™) — f(Y™)]dP,| < gP..[X"" €K, p(X™, Y™) < 4]
a,

+2M P,[X"¢K]
+2M-P,[p(X™, Y") > §] <.

The collection of sets F e B(C[0, o0)?) for which x1— PX(F) is #(R*)/#([0,1])-
measurable forms a Dynkin system, so it suffices to prove this measurability for
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all finite-dimensional cylinder sets F of the form
F = {0eC[0, 0)%; o(to)€ Lo, -, 0ty) € L},

where 0 =t, < t, < - <t, [;€BR,i=0,1,....n But

PX(F) = 15,(x) j

ry

J‘ Paltys X, Y1) - Palln — ta-15 Vn-1> Y)Yy .- Y1,
.

where p,(t; x, y) & 2nt)*?exp{—(lIx — yl2/26)}. This is a Borel-measurable
function of x.

If for each finite measure u on (S, #(S)), there exists g, as described, then for each
aeR, {xeS;f(x) < a} A{xeS;g,(x) < «} has p-measure zero. But {g, < a}€
B(S),s0 {f <a} e Z&(S)*. Since this is true for every u, we have {f < a} e ¥(S).

For the converse, suppose f is universally measurable and let a finite measure
u be given. For reQ, the set of rationals, let U(r) = {x€S; f(x) < r}. Then
f(x) = inf{re Q; xe U(r)}. Since U(r)e #(S)*, there exists B(r)e #(S) with
u[BAU@®] =0,reQ. Define

g,(x) 2 inf{reQ; xe B()} = in(fz @(x),

where ¢,(x) = r if xeB(r) and @,(x) = © otherwise. Then g,: S — R is Borel-
measurable, and {x€S; f(x)# g.(x)} € Uree[BNA U(r)], which has p-
measure zero.

We prove (5.5). Let us first show that for D e B(R® x R?), we have
(10.3) P[(X,Y)eD|¥9] = P[(X, Y)eD|Y].
If D = B x C, where B, C e B(R%), then

Ellxepliregl9] = lyeqiEQlxen) 9] = liyeqyP[X€B].

For the same reasons, E[l{xEB)l{yEC}I Y] = l{yec)P[XEB], so (10.3) holds for
this special case. The sets D for which (10.3) holds form a Dynkin system
containing all measurable rectangles, s0 (10.3) holds for every De (R x RY).
To prove (5.5), set D = {(x, y); x + yel}.

A similar proof for (5.6) is possible.

(i) By Corollary 1.2.4,Sisa stopping time of {#,.}. Problem 1.2.17 (i) implies
E[Z,|%s.] = E[Z:|Fs 09+, s on{S<s}

This equation combined with (i) gives us the desired result.
(i) Suppose that S is an optional time of {#,), and that (e) holds for every
bounded optional time of {%}. Then for each s > 0,

P [Xsrgs € Fsan+] = (Ulp)(Xsas) Pras.
But on {S < s}, we have X(s s+ = X541, 50 (i) implies
P*[ Xy, €T | F5i] = P*[Xsn5+t €01 Fsnn+]
= (U1)(Xs0) = (Ulp)(Xy), P*as.on{S<s}

Now let s co to obtain (e) for the (possibly unbounded) optional time S.
The argument for (') is the same.
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(l) ﬂs>r 9';{ = ﬂp: ﬂpo 9-}{; = s>19—'sx = Zf
(i) The o-field % is generated by sets of the form F = {(X,,,..., X, )eT}, where
0=t < <t,=rand T e B(R™). Since X, = lim,, ., X;_forany sequence
{Sm}m=1 < [0,1) satisfying s,, 1 ¢, we have F e .
(i) Let X be the coordinate mapping process on C[0, ). Fix t > 0. The
nonempty set F £ {we C[0, 0); w has a local maximum at t}isin £, since
foreachn > 0,

F= O N Ao 0@) > o)} e £,

n re
t—rj<1/m

On the other hand, a typical set in &, has the form G = {we C[0, o0); (wlt,),
o(ty),...)eT}, for {;}2, = [0,f] and Te AR x R x ---). We claim that
F = G cannot hold for any Ge %#X. Indeed, suppose we have Fn G # ¥
for some G e %,*. Then given any we F N G, the function

5(s) & o(s),0<s<t,
a(s) &
ot)+s—t; s>t

is in G but not in F, so F cannot agree with any Ge %X, This shows that
the filtration {#*} is not right-continuous. With %, = ¥, we have

4 = U(U N -%i;) = U(U *Z.fﬂ)/z) =#lcF cy,
s<t €>0 S<t

so the failure of {#"} to be right-continuous implies the failure of {#X } to

be left-continuous.

Clearly, 5 is a o-field: e H#, Fe implies that there exists an event Ge %
with F*A G° = F A Ge 4™, and finally for any sequence {F,}%., < # we have
a companion sequence {G,}™, < ¥ such that

n=1 =

(U F,,>A<U G,,> s U (F,AG)e ™
n=1 n=1 n=1
which yields | i, F,e .

Further, the observation FAG=N<«F = GAN yields the characterization
#H ={F=Q3Ge¥%, NeA™* such that F = GAN}. It follows that J# < ¥*.
On the other hand, # contains both ¢ and A4*, and since it is a o-field:
Gt =0(GuAN) S H#.

For completeness, let us observe that the requirements F e @*, P*(F) = Oimply
the existence of Ge% such that N = FAGe 4™ and PHG)=0. Now F is
contained in N U G and hence F is in 4™, as is any subset of F,

Let {B;;t >0} be the coordinate mapping process on C[0, ). Let P* on
(C[0, o), B(C[0, ©0))) be the probability measure under which B = {B,, #5;
t > 0} is a one-dimensional Brownian motion with initia! distribution u. The set
F={w o) = 0} has P*-measure zero, so Fe /™% < F¢. If F is also in the
completion Z¢ of F& under P¥ then there must be some GeFE with Fc G
and P*(G) = 0.Such a G must be of the form G = {w: 0(0)eT} forsomeT e BR),
and the only way G can contain Fisto have I = R. But then P*(G) # 0.1t follows
that F is not in &
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Clearly, #* < #* holds for every 0 <t < 00, $0 FL & F*. For the opposite
inclusion, let us take any Fe#* Problem 7.3 guarantees the existence of an
event Ge ZX such that N = F A Ge A%, But now FX < » (we have F* =
Fr e FE for every 0<t < o0), and thus GeZ¥ News* < Ft imply
F=GANe#Z}.

Repeat the argument employed in Solution 7.5, replacing #* by #* and #} by
ZX and using the left-continuity of the filtration {#X} (Problem 7.1).

Let {B,, Z;t > 0}, (Q, %), {P*} g be a one-dimensional Brownian family. For
e #(R), define the hitting time Hp(w) = inf {t = 0; B(w)eT}. According to
Problem 1.2.6, H. ., is optional, so {H, .= 0} is in Z,, = %,. Likewise,
H(-w,o,eﬁo. Because of the symmetry of Brownian motion starting at the
origin, P°[Hg,,) = 0] = P°[H(-y,0) = 0]. According to the Blumenthal zero-
one law (Theorem 7.17), this common value is either zero or one. If it were
zero, then P°[B, =0, VO <t <¢ for some ¢ > 0] =1, but this contradicts
Problem 7.14 (i). Therefore, P°[H ) = 0] = P°[H_y,0p=0] =1, and for
each ©e{Hg. o) =0} N {H_x,0 =0}, there are sequences s, 10, t,10 with
B, (®) > 0, B, () <0 foreveryn > 1.

For fixed weQ, T,(w) is a left-continuous function of b and Sy(w) is a right-
continuous function of b. For fixed beR, T, is a stopping time and §, is an
optional time (Problem 1.2.6), so both are FY-measurable. According to Re-
mark 1.1.14, the set A = {(b,w)e [0, ) x Q; T(w) # Sy(w)} is in ([0, 0)) ®
ZY. Furthermore, 4, 2 {weQ; (b,w)e A} is included in the set

{0€Q; B(®) 2 Wry(g)+:i(®) — Wr,)(@) < 0 for some ¢ > Oand all te[0,¢]},

which has probability zero because {B;, FP 0 <t< oo}isastandard Brownian
motion (Remark 6.20 and Theorem 6.16), and Problem 7.18 implies that B takes
positive values in every interval of the form [0,¢] with probability one. This
establishes (i). For (ii), it suffices to show

PlweQ; (L(w),w)e A] = J‘w P(A,)P[Ledb].
0

If A were a product set A= C x D; Ce %([0, 0)), De %Y, this would follow
from the independence of L and £ . The collection of sets A€ B([0,0)) ® F
for which this identity holds forms a Dynkin system, so by the Dynkin system
Theorem 1.3, this identity holds for every set in Z([0, c0)) ® FY.

We havefors > 0,t>0,b>a, b>0;

Po[vvl+s S a’Mt+s < blg—;l] = PO |:vvl+s < a’Mt < b’ max pVl+u < bl‘%]

O<u<s
VK]-

The last expression is measurable with respect to the o-field generated by the
pair of random variables (W,, M,), and so the process {(W, M), #;0<t < o0}
is Markov. Because Y, is a function of (W,, M,), we have

PO[Y,,,e|%] = P°[Y,.,eTIW, M] TR

= I{M,Sb} Pol:VVH-s < a, max pVH—u <b

O<u<s
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In order to prove the Markov property for Y and (8.11), it suffices then to show
that

POLY,,,edylW, = w,M, = m] = p.(s; m — w, y) dy.
Indeed, for b > m > w, b > a, m > 0 we have
P°[W,,,eda,M,, e db|W, = w,M, = m]
= POI:W,ﬂeda, max W, edb|W,=w,M, = m]

O<uc<s
= P*[W,eda,M,edb] = P°[W,eda — w,M,edb — w]

_2(2b—a—w)exp{_(2b—-a—w)2

b
P }dad X

2ms3

thanks to (8.2), which also gives
PO[VVHSEda:MHs =m|W, = w, M, = m]

= POI:W,Heda, max W, <m|W,=wM,= m]

O<ucx<s

= P*[W.eda,M, <m] = P°[W,eda — w,M, <m — w]

1 (a —w)? { (2m—a—w)2]
—ﬁ%[exp - —expy—————|.

Therefore, P°[Y,,,edy| W, = w, M, = m] is equal to

f POLW,,,eb — dy, M,,,edb|W, = w,M, = m] db
(m, )

+ POLWem —dy, M, = m|W, = w,M, = m] = p,(s; m — w,y)dy.

Since the finite-dimensional distributions of a Markov process are determined
by the initial distribution and the transition density, those of the processes |W|
and Y coincide.

8.12. The optional sampling theorem gives
e? = E* X, = E*X, \ront1, = Ex[exp{j‘u/l/\Tu/\Ta =AM AT, A )}
Since W, 1, . r, is bounded, we may let t > oo to obtain
e = E*[exp{iWy, 1, — }4%(T, A T))}]
= E*[1ig,cr,e 2] 4 eMEx[l{r,,<ru}e_pT“/2]~

By choosing 4 = +, /2a, we obtain two equations which can be solved simulta-
neously and yield (8.27) and (8.28).

9.3. Forevery 0 < 5 < 7, Doob’s maximal inequality (Theorem 1.3.8 (iv)) gives

W\? 1 4 4
E| sup (= < —E{ sup w2 S_EVV1:2=—Z,
o<t<t t 4 o<t<T 0'2 (2

and with 1 = 2"*1 = 24,
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8
P[ sup M > s] <527
2ncpg2ntt t &
is seen to hold for every ¢ > 0,n > 1. The result (9.2) follows now from the Borel-
Cantelli lemma.

Use Problem 7.18 and Lemma 9.4 (i).

IfTT = {to,t1,.--»tm} is a partition of [0, ], we write VO — ¢ = Y 5=y {(W, —
W, )¢ —(t— ti-1)} as a sum of independent, zero-mean random variables.
Therefore,

m —_ 2 2
EWA) — 1) = Y (t — tk—l)zE[—’—‘(Wlk Wl _ 1] < tE(Z* — 1?10},
k=1 b — b

where Z is a standard normal random variable. The first assertion follows readily.
For the second, we observe that

const. &
Y T, < oo

2
£ n=1

POV, — t] > 6] <
n=1

holds for every ¢ > 0, and by the Borel-Cantelli lemma, P[] V(II,) — t| > &,
infinitely often] = 0. The conclusion follows.

(D. Freedman (1971))
(i) Each point of the set

M, = {te [0, 0); f(s) < f(1), Vse[(t - %>+,t + {l\{t}}

is isolated, so M, is countable. But { 2, M, is the set of points of strict local
maximum for f.

(i) It suffices to show that f has a local maximum in an arbitrary, nonempty
interval (a,b) < [0, ). Let us begin by assuming f(a) < f(b), and let t be the
largest number in [a, b) with f{t) = f(a). Because f is not monotone such a t
exists, and in (t, b) there are two numbers r and s withr < sand f(r) > f(t) v
f(s). Being continuous, f must have a maximum over [t,s], which is a local
maximum in the sense of Definition 9.10 (iti).

If f(a) > f(b), we apply the preceding argument in reverse, defining ¢ to be
the smallest number in (a,b] with f(£) = f(b). If f(a) = f(b), then f must have
a maximum over [a,b] at some re(a,b) and this r is also a point of local
maximum.

Use integration by parts (Chung (1974), p. 231; McKean (1969), p. 4).

It suffices to show that for every m > n = Ny(w), we have

(10.4) |Wie) — Wi@)] < (1 +2) [2 5 9027+ glt = s)]

j=n+

valid for every s, t € D,, satisfying 0 <t —s < 27M1-0 For m = n, (10.4) follows
from (9.30). Let us assume that (10.4) holdsform =n, ..., M — 1. With s, te Dy
and 0 < t — s < 27179 we consider, as in the proof of Theorem 2.8, the num-
bers t! = max{ueDy_;u <t} and s' = min{ueDy-1; 4 2 s} and observe the
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relations 1 — 1! <27M ' — s <2 M and 0 <! —s' <t -5 < 27O < /g,
thanks to (9.29). We have

M-1
[Wi(@) — Walw) < (1 + 8)[2 2 927 + gt - S‘)]
j=n+1
by the induction assumption, and |W,(®) — Wa(w)| < (1 + £)g(2™™) as well as
[ W) — Wa(w)] < (1 + &)g(2™™) because of (9.30). Since g(t! — s') < g(t — s),
we conclude that (10.4) holds with m = M.

2.11. Notes

Section 2.1: The first quantitative work on Brownian motion is due to
Bachelier (1900), who was interested in stock price fluctuations. Einstein (1905)
derived the transition density for Brownian motion from the molecular-kinetic
theory of heat. A rigorous mathematical treatment of Brownian motion began
with N. Wiener (1923, 1924a), who provided the first existence proof.

The most profound work in this early period is that of P. Lévy (1939, 1948);
he introduced the construction by interpolation expounded in Section 23,
studied in detail the passage times and other related functionals (Section 2.8),
described in detail the so-called fine structure of the typical sample path
(Section 2.9), and discovered the notion and properties of the mesure du
voisinage or “local time” (Section 3.6 and Chapter 6). Most amazingly, he
carried out this program without the formal concepts and tools of filtrations,
stopping times, or the strong Markov property.

Section 2.2: The construction of a probability measure from a consistent
family of finite-dimensional distributions is clearly explained in Kolmogorov
(1933); Daniell (1918/1919) had constructed earlier an integral on a space of
sequences. The existence of a continuous modification under the conditions
of Theorem 2.8 was established by Kolmogorov (published in Slutsky (1937));
Loéve ((1978), p. 247) noticed that the same argument also provides local
Holder-continuity with exponent y for any 0 < y < B/a. For related results,
see also Centsov (1956a). The extension to random fields as in Problem 2.9
was carried out by Centsov (1956b).

Section 2.3: The Haar function construction of Brownian motion was
originally carried out by P. Lévy (1948) and later simplified by Ciesielski
(1961). For a similar construction of Brownian motion indexed by directed
sets, see Pyke (1983). Yor (1982) shows that the choice of the complete, ortho-
normal basis in L*[0,1] is not important for the construction of Brownian
motion.

Section 2.41s adapted from Billingsley (1968). The original proof of Theorem
4.20 is in Donsker (1951), but the one offered here is essentially due to
Prohorov (1956). It is also possible to construct a probability space on which
all the random walks are defined and converge to Brownian motion almost
surely, rather than merely in distribution (Knight (1961)).
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Sections 2.5, 2.6: The Markov property derives its name from A. A. Markov,
whose own work (1906) was in discrete time and state space; in that context,
of course, the usual and the strong Markov properties coincide. It was not
immediately realized that the latter is actually stronger than the former; Ray
((1956), pp- 463-464) provides an example of a continuous Markov process
which is not strongly Markov. It scems rather amazing today that a complete
and rigorous statement about the strongly Markovian character of Brownian
motion (Theorem 6.16) was proved only in 1956; see Hunt (1956).

A Markov family for which the function x— E7 f(X,) is continuous for any
bounded, continuous f: R > Rand te [0, o0) is said to have the F eller prop-
erty, and a right-continuous Markov family with the Feller property is strongly
Markovian. Very readable introductions to Markov process theory can be
found in Dynkin & Yushkevich (1969), Wentzell ((1981), Chapters 8-13), and
Chung (1982); more comprehensive treatments are those by Dynkin (1965),
Blumenthal & Getoor (1968), and Ethier & Kurtz (1986). Markov processes
with continuous sample paths receive very detailed treatments in the mono-
graphs by Ité6 & McKean (1974), Stroock & Varadhan (1979), and Knight
(1981).

Section 2.7: The concept of enlargement of a filtration has become very
important in Markov process theory and in stochastic integration. There is a
substantial body of theory on this topic, which we do not take up here; we
instead send the interested reader to the articles in the volume edited by Jeulin
& Yor (1985).

Sections 2.8,2.9: The material here comes mostly from P. Lévy (1939, 1948).
Section 1.4 in D. Freedman (1971) was our source for Theorems 9.6, 9.9 and
9.12, and can be consulted for further information on this subject matter. Our
discussion of the law of the iterated logarithm and of the Lévy modulus follows
McKean (1969) and Williams (1979). Theorem 9.18 was strengthened by
Dvoretzky (1963), who showed that there exists a universal constant ¢ > 0
such that

— | W — W,

P[weg; = | Wiay(0) — W(@)
nio ﬁ

For every weQ, S, 2 {te[0, 0); limyyo (W) = Wjw)|/x/h) < oo} has

been called by Kahane (1976) the set of slow points from the right for the path

W (w). Fubini’s theorem applied to (9.25) shows that meas(&,) = 0 for P ae.
weQ, but, for a typical path, &, is far from being empty; in fact, we have

p[weg; inf EW= 1]: 1.

0<t<w hi0 ﬁ

20,Vte[0,oo)]= 1.

This is proved in B. Davis (1983), where we send the interested reader for more
information and references on this subject.

Chung (1976) and Imhof (1984) offer excellent follow-up reading on the
subject matter of Section 238.



CHAPTER 3

Stochastic Integration

3.1. Introduction

A tremendous range of problems in the natural, social, and biological sciences
came under the dominion of the theory of functions of a real variabls when
Newton and Leibniz invented the calculus. The primary components of this
invention were the use of differentiation to describe rates of change, the use
of integration to pass to the limit in approximating sums, and the fundamental
theorem of calculus, which relates the two concepts and thereby makes the
latter amenable to computation. All of this gave rise to the concept of ordinary
differential equations, and it is the application of these equations to the
modeling of real-world phenomena which reveals much of the power of
calculus,

Stochastic calculus grew out of the need to assign meaning to ordinary
differential equations involving continuous stochastic processes. Since the
most important such process, Brownian motion, cannot be differentiated,
stochastic calculus takes the tack opposite to that of classical calculus: the
stochastic integral is defined first, in Section 2, and then the stochastic differ-
ential is given meaning through the fundamental “theorem” of calculus. This
“theorem” is really a definition in stochastic calculus, because the differential
has no meaning apart from that assigned to it when it enters an integral.
For this theory to achieve its full potential, it must have some simple rules
for computation. These are contained in the change of variable formula
(It&’s rule), which is the counterpart of the chain rule from classical calculus.
We present it, together with some important applications, in Section 3.

Section 4 advances our recurrent theme that “Brownian motion is the
fundamental martingale with continuous paths” by showing how to represent
continuous, local martingales in terms of it, either via stochastic integration
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or via time-change. We also establish the representation of functionals of
the Brownian path as stochastic integrals. The important Theorem 4.13 of
F. B. Knight is established as an application of these ideas.

Stochastic calculus has a fundamental additional feature not found in its
classical counterpart, a feature based on the Girsanov change of measure
(Theorem 5.1). This result provides a device for solving stochastic differential
equations driven by Brownian motion by changing the underlying probability
measure, so that the process which was the driving Brownian motion becomes,
under the new probability measure, the solution to the differential equation.
This profound idea is first presented in Section 5, but does not reach its
culmination until the discussion of weak solutions of stochastic differential
equations in Chapter 5. In some cases, this device is merely a convenient way
of finding the distribution of a functional of an already existent stochastic
process; such an example is provided by the computationsrelated to Brownian
motion with drift in subsection 5.C. In other cases, the change of measure
provides us with a proof of the existence of a solution to a stochastic differ-
ential equation, when the more standard methods fail. This is discussed in
subsection 5.3.B. A particularly nice application of the Girsanov theorem
appears in Section 5.8, where it is used in a model of security markets to
remove the differences among the mean rates of return of the securities. This
reduction of the model permits a complete analysis by martingale methods.
Although “optional” in the sense that stochastic calculus can (and did for 20
years) exist and be useful without it, the Girsanov theorem today plays such
a central role in further developments of the subject that the reader would be
remiss not to come to grips with this admittedly difficult concept.

In Section 6 we employ the stochastic calculus in the study of P. Lévy’s
mesure du voisinage ot local time, a device for measuring the “amount of time
spent by the Brownian path in the vicinity of a certain point.” This concept has
become exceedingly important in both theory and applications; we examine
its connections with reflected Brownian motion, extend with its help the It6
rule to functions which are not necessarily twice continuously differentiable,
and use it as a tool in the study of certain additive functionals of the Brownian
path. Finally, Section 7 extends the notion of local time to general, continuous
semimartingales.

39 Construction of the Stochastic Integral

Let us consider a continuous, square-integrable martingale M = {M,, #;
0 <t< oo} on a probability space (Q, #,P) equipped with the filtration
{#.}, which will be assumed throughout this chapter to satisfy the usual
conditions of Definition 1.2.25. We have shown in Section 2.7 how to obtain
such a filtration for standard Brownian motion. We assume M, =0 as. P.
Such a process M € . is of unbounded variation on any finite interval [0, T']
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(cf. Problems 1.5.11, 1.5.12, and the discussion following them), and conse-
quently integrals of the form

21 Iy(X) = JT Xi(w) dM, ()

cannot be defined “pathwise” (i.c., for each weQ separately) as ordinary
Lebesgue-Stieltjes integrals. Nevertheless, the martingale M has a finite second
(or quadratic) variation, given by the continuous, increasing process (M );
cf Theorem 1.5.8. It is precisely this fact that allows one to proceed, in a highly
nontrivial yet straightforward manner, with the construction of the stochastic
integral (2.1) with respect to the continuous, square-integrable martingale M,
for an appropriate class of integrands X. The construction is due to It (1942a),
(1944) for the special case that M is a Brownian motion and to Kunita &
Watanabe (1967) for general Me.#,. We shall first confine ourselves to
M e /5, and denote by (M) the unique (up to indistinguishability) adapted,
continuous, and increasing process, such that {M? — (M), #;0 <t < oo}
is a martingale (cf. Definition 1.5.3 and Theorem 1.5.13). The construction
will then be extended to general continuous, local martingales M.

We now consider what kinds of integrands are appropriate for (2.1). We
first define a measure p,, on ([0, 20) x Q, ([0, 0)) ® F) by setting

e o}

(22) ty(A) = E J Ly(t, 0)d{M) ().

0
We shall say that two measurable, adapted processes X = {X,, Z;0<t < 0}
and Y = {Y,, ;0 < t < oo} are equivalent if

Xi(w) = Y(w);, py-ae. (t,w)

This introduces an equivalence relation. For a measurable, {#}-adapted

process X, we define
T

(2.3) [x1} & EJ X2 d{M>,,

0
provided that the right-hand side is finite. Then [X]; is the L®-norm for X,
regarded as a function of (¢, w) restricted to the space [0, T] x Q, under the
measure u,,. We have [X — Y], =O0forall T > 0 if and only if X and Y are
equivalent. The stochastic integral will be defined in such a manner that
whenever X and Y are equivalent, then I(X) and I(Y) will be indistinguishable:

PlI(X)=1I;(Y), VO<T< o] =1.
2.1 Definition. Let ¥ denote the set of equivalence classes of all measurable,

{#}-adapted processes X, for which [X]; < oo for all T > 0. We define a
metric on ¥ by [X — Y], where

[X]2 22*”(1 A [X1).
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Let .#* denote the set of equivalence classes of progressively measurable
processes satisfying [X]y < coforall T > 0, and define a metric on £* in the
same way.

We shall follow the usual custom of not being very careful about the dis-
tinction between equivalence classes and the processes which are members of
those equivalence classes. For example, we will have no qualms about saying,
« g% consists of those processes in .# which are progressively measurable.”

Note that & (respectively, £*) contains all bounded, measurable, {F;}-
adapted (respectively, bounded, progressively measurable) processes. Both
% and .#* depend on the martingale M = {M,, #;t = 0}. When we wish to
indicate this dependence explicitly, we write £(M) and £*(M).

If the function t+— (M) (w) is absolutely continuous for P-a.e. @, we shall
be able to construct {§ X,dM, for all X € % and all T > 0. In the absence of
this condition on (M >, we shall construct the stochastic integral for X in the
slightly smaller class #*. In order to define the stochastic integral with respect
to general martingales in 4, (possibly discontinuous, such as the compensated
Poisson process), one has to select an even narrower class of integrands among
the so-called predictable processes. This notion is a slight extension of left-
continuity of the sample paths of the process; since we do not develop stochastic
integration with respect to discontinuous martingales, we shall forego further
discussion and send the interested reader to the literature: Kunita & Watanabe
(1967), Meyer (1976), Liptser & Shiryaev (1977), Ikeda & Watanabe (1981),
Elliott (1982), Chung & Williams (1983).

Later in this section, we weaken the conditions that Me.#sand [X]% < o0,
V T > 0, replacing them by M € .4%" and

T
PU X2d(M), < oo:|= 1, VT>0.
0

This is accomplished by localization.

We pause in our development of the stochastic integral to prove a lemma
we will need in Section 4. For 0 < T < o, let #f denote the class of processes
X in .#* for which X,(w) = O;Vt > T,weQ. For T = oo, £} is defined as the
class of processes X € £* for which Eff X?d(M) < o (a condition we
already have for T < co, by virtue of membership in £*). A process X € Lr
can be identified with one defined only for (t,w)e[0,T] x Q, and so we can
regard £ as a subspace of the Hilbert space

2.4) H#y 2 L2([0,T] x QA([0, T]) ® Fr. fins)-

More precisely, we regard an equivalence class in #7 as a member of . if
it contains a progressively measurable representative. Here and later we
replace [0, T] by [0, 00) when T = co.

2.2 Lemma. For0 < T < o0, £} isaclosed subspace of #r. In particular, LF
is complete under the norm (X7 of (2.3).
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ProoF. Let {X™}~ | be a convergent sequence in .## with limit X € #,. We
may extract a subsequence, also denoted by {X™}%_,, for which

i {(t, 0)€[0,T] x @ lim X{"(w) # X,(w)} = 0.
By virtue of its membership in #;, X is Z([0, T]) ® & -measurable, but may
not be progressively measurable. However, with

AL {(t,w)e[0,T] x © lim X" (w) exists in R},

the process

lim X™(w);, (t,w)eA
Y(@) 2 < nen

0; (t,w)¢ A

inherits progressive measurability from {X™}2_, and is equivalent to X. [J

A. Simple Processes and Approximations

2.3 Definition. A process X is called simple if there exists a strictly increasing
sequence of real numbers {t,}:, with t, = 0 and lim,_ t, = oo, as well as a
sequence of random variables {£, };2, with sup, o |£.(w)] < C < oo, for every
w e, such that ¢, is #_-measurable for every n > 0 and

X(@) = E@) 10 + 3 £ gtk 01 <0, 00

The class of all simple processes will be denoted by .%,. Note that, because
members of %, are progressively measurable and bounded, we have %,
L*M) < L(M).

Our program for the construction of the stochastic integral (2.1) can now
be outlined as follows: the integral is defined in the obvious way for X € %,
as a martingale transform:

- Mt,») + én(Mt - Mt")

i+1

n—1
(2.9) LX) 4 ;) ¢i(M,

= ZO éi(Mt/\tH,l - Mt/\ti)’ 0<t<oo,

where n > 0 is the unique integer for which t, <t < t,,,. The definition is
then extended to integrands X € #* and X € &, thanks to the crucial results
which show that elements of #* and % can be approximated, in a suitable
sense, by simple processes (Propositions 2.6 and 2.8).

2.4 Lemma. Let X be a bounded, measurable, {#,}-adapted process. Then there
exists a sequence {X™}%_, of simple processes such that
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T
(2.6) sup lim E f | X — X,|2dt =0.

T>0 m—w 0

ProOF. We shall show how to construct, for each fixed T > 0, a sequence
{X™D}x_, of simple processes so that

T
lim E J |X T — X,|2dt = 0.

n—w 0

Thus, for each positive integer m, there is another integer n,, such that

" 1
E J | X — X [t < —,
0 m
and the sequence {X™™}=_, has the desired properties. Henceforth, T'is a
fixed, positive number.

We proceed in three steps.

(a) Suppose that X is continuous; then the sequence of simple processes

21
XP(0) & Xo(w) o)) + kZO Xirpnl©) lgrpnarnyrom(t B2 1,

satisfies lim,_, E [§ |X{® — X,|*dt =0 by the bounded convergence
theorem.

(b) Now suppose that X is progressively measurable; we consider the con-
tinuous, progressively measurable processes

tAT
27) Flw) & j X () ds; X{™(w) & m[F(®) — Fy-my+(@)]; m=1,
1]
for t > 0, weQ (cf. Problem 1.2.19). By virtue of step (a), there exists, for
each m>1, a sequence of simple processes {X™™}2, such that
lim,,, E [ | X™" — X(™|2dt = 0. Let us consider the 2([0,T])® #7-
measurable product set
A2t 0)el0, T] x @ lim X"(w) = X,(@)}"

For each weQ, the cross section A, 2 {te[0, T]; (t, w) e A} is in
([0, T]) and, according to the fundamental theorem of calculus, has
Lebesgue measure zero. The bounded convergence theorem now gives
lim,,_ E [51X™ — X,1*dt =0, and so a sequence (Xm0 of
bounded, simple processes can be chosen, for which

T

lim E J | Xmmm) — X |12dt = 0.

m— 0

(c) Finally, let X be measurable and adapted. We cannot guarantee immedi-
ately that the continuous process F = {F;;0 <t < o0} in (2.7) is progres-
sively measurable, because we do not know whether it is adapted. We do
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know, however, that the process X has a progressively measurable modi-
fication Y (Proposition 1.1.12), and we now show that the progressively
measurable process {G, & [{*T Y, ds, #; 0 < t < T}isa modification of F.
For the measurable process 7,(®) = lix 2r.w); 0t < T, weQ, we
have from Fubini: E [{ n(w)dt = [{ P[X,(w) # Y,(w)]dt = 0. Therefore,
fEniw)dt = 0 for P-ae. weQ. Now {F, # G,} is contained in the event
{w; [ n(w)dt > 0}, G, is F-measurable, and, by assumption, &, contains
all subsets of P-null events. Therefore, F, is also #-measurable. Adaptivity
and continuity imply progressive measurability, and we may now repeat
verbatim the argument in (b). O

2.5 Problem. This problem outlines a method by which the use of Proposition
1.1.12, a result not proved in this text, can be avoided in part (c) of the proof
of Lemma 2.4. Let X be a bounded, measurable, {%, }-adapted process. Let
0 < T < o be fixed. We wish to construct a sequence {X®}2, of simple
processes so that

T
(2.8) lim E J |X® — X,|2dt = 0.
k—o0 0
To simplify notation, we set X, =0 for t <0. Let ¢, R—{j27"j=
0,+1,+2,...} be given by

. ._1 .
(p,,(t)=]2" for ]2" <t$%.

(a) Fix s > 0. Show that t — (1/2") < @,(t — s) + s < t, and that

X0 L Xy gres Fis 120
is a simple, adapted process.
(b) Show that lim,yo E [} |X, — X,_,|*dt = 0.
(¢) Use (a) and (b) to show that

n—o0 0 0

T 1
lim E J J |X™9 — X,|2dsdt = 0.

(d) Show that for some choice of s > 0 and some increasing sequence {n, },
of integers, (2.8) holds with X® = X®9)
This argument is adapted from Liptser and Shiryaev (1977).

2.6 Proposition. If the function t— (M) (w) is absolutely continuous with
respect to Lebesgue measure for P-a.e. w €Q, then ¥, is dense in & with respect
to the metric of Definition 2.1.

PRrROOF.

(a) If Xe.¥ is bounded, then Lemma 2.4 guarantees the existence of a
bounded sequence {X"™} of simple processes satisfying (2.6). From these
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we extract a subsequence {X ™}, such that the set

{(t, w) € [0, 0) x & lim X™(w) = X, (@)}
k— 0

has product measure Zero. The absolute continuity of t+— <M >(w) and
the bounded convergence theorem now imply [X™ — X]—> Oas k — oo.
(b) If X € & is not necessarily bounded, we define

X" (w) 2 X, (@) {x,@i<n) 0<t< w,well,

and thereby obtain a sequence of bounded processes in . The dominated
convergence theorem implies

T
[x™ — X2 =E j X,zl{lxt|>n}d<M>t n a0 0
0

for every T > 0, whence lim, [X® — X] = 0. Each X®™ can be ap-
proximated by bounded, simple processes, SO X can be as well. O

When t— (M), is not an absolutely continuous function of the time
variable t, we simply choose a more convenient clock. We show how to do
this in slightly greater generality than needed for the present application.

27 Lemma. Let {4;0<t< o0} be a continuous, increasing (Definition 1.4.4)
process adapted to the filtration of the martingale M = {M,, #;0 <t < oo} If
X={X,%,0<t< w}isa progressively measurable process satisfying

T
Ej X2dA, < ©
0

e o}

for each T > 0, then there exists a sequence {X"};2, of simple processes such
that

T
sup lim E j I X™ — X,|*dA, = 0.

T>0 n—w 0

PROOF. We may assume without loss of generality that X is bounded (cf. part
(b) in the proof of Proposition 2.6), i.e.,

(2.9) X, (@) <C<ow; YVt 0, weld

As in the proof of Lemma 2.4, it suffices to show how to construct, for each
fixed T > 0, a sequence {X™};2, of simple processes for which

T
lim E j |X™ — X,|2dA, = 0.
n—w 0

Henceforth T > 0 is fixed, and we assume without loss of generality that

(2.10) X(=0 Vt>T, wel.
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We now describe the time-change. Since 4,(w) + ¢ is strictly increasing in
t > 0 for P-a.e. w, there is a continuous, strictly increasing inverse function
T,(w), defined for s > 0, such that

Ar @) + T(w)=s; Vs>0.
In particular, T, < sand {T, <t} = {4, + t > s} e &, Thus,foreachs > 0, T,
is a bounded stoppmg time for {#}. Taking s as our new time-variable, we
define a new filtration {%,} by
gs = yTs; s> 0,
and introduce the time-changed process
Y(w) = X1, (o) s20,0eQ,

which is adapted to {%,} because of the progressive measurability of X
(Proposition 1.2.18). Lemma 2.4 implies that, given any ¢ > O and R > 0, there
is a simple process { ¥, %;; 0 < s < oo} for which

R
2.11) EJ |Y? — Y,[2ds < ¢/2.

1]
But from (2.9), (2.10) it develops that

E J Ysz ds=E J l{T,sT}X%',ds
0 0

Ar+T
=EJ X} ds < CHEA;r + T) < oo,
1]

so by choosing R in (2.11) sufficiently large and setting Y = 0 for s > R, we
can obtain

EJ |YF— Y|%ds <&
0

Now Y is simple, and because it vanishes for s > R, there is a finite partition
0=35y<s; < <5, <Rwith

Y () = Eo(0);o)(s) + z &, (@)L, 516 0<s<oo,

where each ¢, is measurable with respect to 4, = /T and bounded in

absolute value by aconstant, say K. Reverting to the orlgmal clock, we observe
that

X2 Yha, = Solig)®) + Z S,y l(T,jil,T,j](tL 0<t<oo,

is measurable and adapted, because ¢;, restricted to {T;, < t} is F-measurable
(Lemma 1.2.15). We have
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T T
E j |X: — X,|?dA, < E j | X — X,|%(dA, + db)

0 0
SEJ |Y? — Y,2ds <.
0

The proof is not yet complete because X¢ is not a simple process. To finish
it off, we must show how to approximate

() 2 ésj,l(w)l(TsJ,»l(w),Tsj(w)](t); 0<t<w,wel

by simple processes. Recall that T, < T; <s; and simplify notation by
taking s;_; = 1, 5; = 2. Set

1+2m*l L )
Ti(m)(w) = kzl ? 1[(k—1)/2M,k/2m)(7;(w)), i=12

and define

™ (w) £ 51(w)l(rg'"’(w),rg"’(w)](t)
2m+ 1

= kzl 61(w)l{T1<(k—1)/2"‘ST2}(w)l((k—l)/2"‘,k/2"‘](t)'

Because {T; <(k —1)2" < T,} € Fy-1ypm and &y restricted to {T; <
(k — 1)/2"} is Fy—y)pm-measurable, ™ is simple. Furthermore,

E J In™ — > dA, < K*[E(Agy» — Ar,) + E(Are = Ar)l—=20 O

0

2.8 Proposition. The set %, of simple processes is dense in &* with respect to
the metric of Definition 2.1.

ProOF. Take A = (M) in Lemma 2.7.

B. Construction and Elementary Properties of the Integral

We have already defined the stochastic integral of a simple process Xe ¥, by
the recipe (2.5). Let us list certain properties of this integral: for X, Ye %, and
0<s<t< oo, wehave

2.12) I,(X)=0, as. P

(2.13) E[I,(X)L%] = I(X), as. P

(2.14) E(L(X))? = E j " X2d(MD,
0

(2.15) X)) = [X1
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(216)  ELU(X) — L(X))*|#] = E[ftX.?d<M>.,

s

37';} as. P

2.17) I@X + BY) = al(X) + BI(Y), o BeR.

Properties (2.12) and (2.17) are obvious. Property (2.13) follows from the fact
that for any 0 < s < t < o0 and any integer i > 1, we have, in the notation of
(2.5),

E[éi(MtAr

i+1

- Mt/\ti)]'gb;] = éi(MS/\tH_l - Ms/\t,-)9 a.s. P;

this can be verified separately for each of the three cases s < t;, t; < s < tivis
and t;,; <s by using the % -measurability of ;. Thus, we see that I(X) =
{I(X), #;0 < t < o0}is a continuous martingale. With 0 < s < t < 00 and m
and n chosen so thatt,_, <s<t,andt, <t <t,,,, we have (cf. the discus-
sion preceding Lemma 1.5.9)

(2.18)
EL(L(X) — L(X))*| %]

n—1 2
= | a0, = M+ S b, M) bt~ )

/
/|

n—1
=E| &M, — M) + ¥ &M,

- Mt,-)z + 53(Mz - Mz")z

it1

n—1
= E| & KM, — <MD ) + ; GM),,,, —<(M>,)
g
= EU' XZd{MD, 9’"]

This proves (2.16) and establishes the fact that the continuous martingale I(X)
is square-integrable: I1(X)e 45, with quadratic variation

+ &M, — <MD,

t
(2.19) AX)y, = f X2 d{M>,
0
Setting s = 0 and taking expectations in (2.16), we obtain (2.14), and (2.15)
follows immediately, upon recalling Definition 1.5.22.
For X e #* Proposition 2.8 implies the existence of a sequence (XM= <
Z, such that [X™ — X] - 0 as n — co. It follows from (2.15) and (2.17) that

HX®) = IX)] = J1(X® = X)) = [X® — X®] 50

as n, m— co. In other words, {I(X™)},2, is a Cauchy sequence in /5. By
Proposition 1.5.23, there exists a process I(X) = {L(X)0<t < oo} in .45,
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defined modulo indistinguishability, such that [|[I{X ™) — I(X)| - 0asn— .
Because it belongs to .#5, I(X) enjoys properties (2.12) and (2.13). For
0<s<t<oo, {I(X™}2, and {L(X™)};L, converge in mean-square to
L,(X) and I(X), respectively; so for Ae %, (2.16) applied to {X™}2, gives

(2.20) E[L(L(X) — L(X)*] = lim E[L(LX®™) — L(X™))’]

n—w

= lim E[lA J ' (Xs"’)2d<M>u]

n—w s

= E[IA J'X3d<M>u],

where the last equality follows from lim,_., [X® — X7, = 0. This proves that
I(X) also satisfies (2.16) and, consequently, (2.14) and (2.15). Because X and
M are progressively measurable, 3 X7 d{M>, is F-measurable for fixed
0 <s <t < o,andso(2.16) gives us (2.19). The validity of 2.1 for X, Ye £*
also follows from its validity for processes in .%,, upon passage to the limit.

The process I(X) for X e £* is well defined; if we have two sequences
{(x"}2, and {Y®}, in %, with the property lim,_, [X® - X]=0,
lim,_,, [Y® — X] = 0, we can construct a third sequence {Z™}x, with this
property, by setting Z"™V = X and Z2" = Y® for n > 1. The limit I(X)
of the sequence {[(Z™)}Z, in .#5 has to agree with the limits of both
sequences, namely {I(X™)}2, and {I(Y™)};%,.

2.9 Definition. For X € £*, the stochastic integral of X with respect to the
martingale Me #4 is the unique, square-integrable martingale I (X)=
{I(X),#;0 <t < oo} which satisfies lim,_,, |[(X™) — I(X)|| = 0, for every
sequence {X™}2, < %, with lim, , [X ™ _ X7 = 0. We write

t
I,(X)=j X, dM; 0<t< 0.
1]

2.10 Proposition. For Me .#5 and X € £*, the stochastic integral I(X) =
{I{X), #;0<t < o} of X with respect to M satisfies (2.12)—(2.16), as well as
(2.17) for every Ye &*, and has quadratic variation process given by (2.19).
Furthermore, for any two stopping times S < T of the filtration {Z,} and any
number t > 0, we have

(2.21) ELL ,p(X)|ZFs] = L\ s(X), as.P.
With X, Y € £* we have, a.s. P:
(2.22) ELU (X)) = L a s i a r(Y) — LA s(Y)) F5]
- EU X, Y, d{M, %}
tAS

and in particular, for any number s in [0, t],
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]

(223)  ELU(X) — LO)ILY) — (V)| #] = E[ft X, Y, d<{M),

Finally,
(2.24) L.(X)=1LZX) as,
where X (w) & X)) < 1o
PROOF. We have already established (2.12)—(2.17) and (2.19). From (2.13) and
the optional sampling theorem (Problem 1.3.24 (ii)), we obtain (2.21). The same

result applied to the martingale {I2(X) — [, X2d(M),, #; t > 0} provides
the identities

EQUin1(X) = 1 25(X))?| F5] = ELIZ (X) — 12, 5(X)| F5)

tAT
= EU X2d{M>,

AS

9’5], P-as.

Replacing X in this equation, first by X + Y and then by X — Y, and sub-
tracting the resulting equations, we obtain (2.22).
It remains to prove (2.24). We write

Lnr(X) = 1(X) = L, p(X — X) — [I(X) - L, (D)].

Both {I,\ (X — X),#; ¢t > 0} and {I(&) — I, , (%), #; t > 0} are in .#5; we
show that they both have quadratic variation zero, and then appeal to
Problem 1.5.12. Now relation (2.22) gives, for the first process,

E[Uar(X — X)— I, 1(X — ®))*| %]
tAT
sAT
a.s. P, which gives the desired conclusion. As for the second process, we have

ELU(X) - L, r(X)?] = E[J

tAT

t

)6 d<M>u] =0,

and since this is the expectation of the quadratic variation of this process, we
again have the desired result. O

2.11 Remark. If the sample paths t— (M) (w) of the quadratic variation
process (M) are absolutely continuous functions of t for P-a.e. w, then
Proposition 2.6 can be used instead of Proposition 2.8 to define I(X) for every
X e We have I(X)e .#5 and all the properties of Proposition 2.10 in this
case. The only sticking point in the preceding arguments under these condi-
tions is the proof that the measurable process F, & Jo X2 d<{M), is {#,}-
adapted. To see that it is, we can choose Y, a progressively measurable
modification of X (Proposition 1.1.12), and define the progressively measur-
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able process G, 2 [4 Y,2d{M>,. Following the proof of Lemma 2.4, step (¢),
we can then show that P[F, = G] = 1 holds for every t > 0. Because G, is
Z-measurable, and % contains all P-negligible events in & (the usual condi-
tions), F is casily seen to be adapted to {#}.

In the important case that M is standard Brownian motion with <M, = t,
the use of the unproven Proposition 1.1.12 can again be avoided. For bounded
X, Problem 2.5 shows how to construct a sequence {X®}, of bounded,
simple processes so that (2.8) holds; in particular, there is a subsequence, also
called {X®}2,, such that for almost every t&[0, T7] we have

t t
F,éj~ Xds = limJ~ (X®)2ds, as. P.
0 k= JO

Since the right-hand side is F-measurable and %, contains all null events in
#, the left-hand side is also Z-measurable for a.e. te[0, T]. The continuity
of the samples paths of {F,; t > 0} leads to the conclusion that this process is
F-measurable for every t. For unbounded X, we use the localization technique
employed in the proof of Proposition 2.6.

We shall not continue to deal explicitly with the case of absolutely con-
tinuous <M> and X € &, but all results obtained for X € £* can be modified
in the obvious way to account for this case. In later applications involving
stochastic integrals with respect to martingales whose quadratic variations
are absolutely continuous, we shall require only measurability and adaptivity
rather than progressive measurability of integrands. O

2.12 Problem. Let W = (W, #;0 <t < oo} be a standard, one-dimensional
Brownian motion, and let T be a stopping time of {#,} with ET < co. Prove
the Wald identities

E(W;) =0, E(W#)=ET.

(Warning: The optional sampling theorem cannot be applied directly because
W does not have a last element and T may not be bounded. The stopping
time ¢ A T is bounded for fixed 0 <t < o0, so E(W,r1) = 0, E(W2 )=
E(t A T),butitisnota priori evident that

(2.25) lim E(W, 1) = EWy, lim E(W2r) = E(WF))

| Sde el t— 00

2.13 Exercise. Let W be as in Problem 2.12, let b be a real number, and let 7,
be the passage time to b of (2.6.1). Use Problem 2.12 to show that for b # 0,
we have ET, = o0.

C. A Characterization of the Integral

Suppose M = {M,, #;0 <t < wc}and N ={N,#;0<t < oo} are in A3,
and take X € ZHM), Y€ L*N). Then IM(X) £ f5 X, dM,, I'(Y) & [o Y, dN;
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are also in .#% and, according to (2.19),

AM(X)Y, = j X2d(MD,, <IM(Y)3, = j Y2 d{N>,.
0 0

We propose now to establish the cross-variation formula

(2.26) CIM(X), IN(Y)D, = J X,Y,d{M,N>,; t>0,P-as.
1]

If X and Y are simple, then it is straightforward to show by a computation
similar to (2.18) that for 0 < s <t < o0,

(2.27) ELUIM(X) — X)) IX(Y) — () F]

= E[J' X,Y,d{M,N>,

s

9-’3]; P-as.

This is equivalent to (2.26). It remains to extend this result from simple
processes to the case of X € Z*(M), Y € Z*(N). We carry out this extension
in several stages, culminating in Propositions 2.17 and 2.19 with a very useful
characterization of the stochastic integral.

2.14 Proposition (An Inequality of Kunita & Watanabe (1967)). If M, N € .45,
X e ¥*(M), and Ye £L*(N), then a.s.

t 3 t 1/2 t 1/2
0 0 0

where &, denotes the total variation of the process & & (M, N on [0,s].

ProOF. According to Problem 1.5.7 (iv), &(w) is absolutely continuous with
respect 10 @(w) 2 L[(M) + (N)](w) for every weQ with P(Q) = 1, and for
every such o the Radon—Nikodym theorem implies the existence of functions
fi(-,0): [0,0) > RB; i = 1, 2, 3, such that

(M)y(w) = J fis,w)dow), <(N)(w)= J f2(s, w)doy(w),
0

0
t
&ilw) = (M, N (w) = J f3(s,w)dolw); 0<t<oc0.
0
Consequently, for «, fe R and w eﬂaﬂ < Q satisfying P(Qaﬂ) = 1, we have
0 < <{aM + BN (w) — (aM + BN, (w)

= J (%f1 (5, @) + 2aBf5(s, @) + B2f5(s, w)) doj(w); 0<u<t< oo.

This can happen only if, for every o eﬂ,ﬂ, there exists a set T g(w) € Z([0, 0))
with {1, do,(w) = 0 and such that
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(2.28) a?f,(t, ) + 2apfs(t, @) + B2f>(t,w) = 0

holds for every t ¢ T,5(w). Now let Q@ £ e pe 0 Qs T(@) 2 | Japeo Tup(@) sO
that P() = L, [ de(w) =0V wed. Fix wel; then (2.28) holds for every
t¢ T(w) and every pair (o, p) of rational numbers, and thus also for every
t¢ T(w), (4, P eR* in particular,

22| X, (@), (8, ) + 201 X, (@) V@)l 3t o)l + | V()2 f2(t, @) = 0;
Vté¢ T(w)

Integrating with respect to dop, we obtain

azj | X, d<MD; + 20 j | X, Y|, + j |Y,|2d(N>=0; 0<t<0,
0 0 0
almost surely, and the desired result follows by a minimization over o. |

2.15 Lemma. If M, Ne #5, XePL*M), and (X"}, = L*(M) is such that
for some T >0,

T
lim j | X — X,|2d(M>, =0; as. P,
n—o Jo
then

lim (IX®),NY, = AX)N>; 0<t<T asP

PROOF. Problem 1.5.7 (iii) implies for 0 <t < T,
IKI(X"™) — 1(X), N2 < KI(X™ = X)), (N>

= j "X = X2 A<My (N 0

0

2.16 Lemma. If M, Ne.#5 and X € ¥*(M), then

(2.29) (M(X),NY, = j X,d(M,N),; VO<t<00,as
1]

PrOOF. According to Lemma 2.7, there exists a sequence {X™}:2, of simple
processes such that
T
sup lim E j | X — X, |2 d{M), =0.
T>0 n—x 0

@

Consequently, for each T > 0, a subsequence (X"}, can be extracted for
which

T
lim j | X0 — X,12d{M>, =0, as.

n—o JO
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But (2.26) holds for simple processes, and so we have
t
UAME ™), N, = f XPAMNY,; 0<t<T
0

almost surely; letting n —» co we obtain (2.29) from Lemma 2.15 and the
Kunita—Watanabe inequality (Proposition 2.14). O

2.17 Proposition. If M, Ne #5, X € $*(M), and Y e ZL*(N), then the equiva-
lent formulas (2.26) and (2.27) hold.

PROOF. Lemma 2.16 states that d{M,I*(Y)), = Y, d{M, N),. Replacing N
in (2.29) by IV(Y), we have

t

<1M(X)J"(Y)>,=J X, d{M,I¥(Y)),

0

t
=J X, Y,d{M,N>; t>0,P-as. ]

0

2.18 Problem. Let M = {M,, #;0 <t < co}and N, = {N,, #;0<t< o0}be
in .#3 and suppose X € £*(M), Y € £X(N). Then the martingales I(X), I¥(Y)
are uniformly integrable and have last elements I(X), I¥(Y), the cross-
variation {I™(X), I(Y)), converges almost surely as t — oo, and

oo

ELI(X)IX(Y)] = EAM(X), I¥(Y)),, = E J X, Y,d{M,N>,.

0

© 2 ©
E<J X,dM,> =EJ XZd(MD,.
0 0

2.19 Proposition. Consider a martingale M e M5 and a process X € L*M). The
stochastic integral I™(X) is the unique martingale ® e A5 which satisfies

In particular,

t

(2.30) (D,N>, = J X, d{M,N>,; 0<t< o,as. P,

0

for every Ne #5.

ProoF. We already know from (2.29) that ® = IM(X) satisfies (2.30). For
uniqueness, suppose ® satisfies (2.30) for every N e M5 . Subtracting (2.29) from
(2.30), we have

(P —-IMX),N) =0, 0<t< o0,as. P.

Setting N = ® — IM(X), we see that the continuous martingale ® — IM(X)
has quadratic variation zero, so ® = [M(X), O
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Proposition 2.19 characterizes the stochastic integral I™(X) in terms of the
more familiar Lebesgue—Stieltjes integral appearing on the right-hand side of
(2.30). Such an idea is extremely useful, as the following corollaries illustrate.

In the shorthand “stochastic differential” notation, the first of these states
that if AN = X dM, then YdN = XY dM.

2.20 Corollary. Suppose M e #5, X € £*(M),and N A IM(X). Suppose further
that Y€ #*(N). Then XY € £*(M) and I¥(Y) = I*(XY).

PROOF. Because (N, = [, X2 d{M),, we have

T T
EJ X2Y2d{(M), = EJ Y,2d(N), < o
1] 1]
for all T>0, so XYeZ*M). For any Ne.#5, (2.26) gives d{N, Ny, =
X,d{M, N>, and thus

t

(M(XY), N, = J X, Y,d(M,N>,
1]

_ J " YACN, R, = <MY, ..

1]
According to Proposition 2.19, I(XY) = IN(Y). O

2.21 Corollary. Suppose M, Me #5, X e £*(M), and X e #*(M), and there
exists a stopping time T of the common filtration for these processes, such that
for P-almost every w,

X r1(@) = X:Ar(w)(w)’ M, ro)(®) = M,, @), 0=t <o

Then
I 1o (X)) = I} reX @), 0<t<oo,for P-ae o

PrOOF. For any N e.#%, we have (M — M,N) ,y =0; 0 <t < 0, and so
(2.29) implies aM(X) — MX), N> np=0;0 <t < 0. Setting N = IM(X) —
1"(X) and using Problem 1.5.12, we obtain the desired result. O

D. Integration with Respect to Continuous, Local Martingales

Corollary 2.21 shows that stochastic integrals are determined locally by the
local values of the integrator and integrand. This fact allows us to broaden
the classes of both integrators and integrands, a project which we now
undertake.

Let M = {M,, #;0<t<o} be a continuous, local martingale on a
probability space (Q, #, P)with My, =0as.,ie,Me.H e loc (Definition 1.5.15).
Recall the standing assumption that {#} satisfies the usual conditions. We



146 3. Stochastic Integration

define an equivalence relation on the set of measurable, {# }-adapted pro-
cesses just as we did in the paragraph preceding Definition 2.1.

2.22 Definition. We denote by 2 the collection of equivalence classes of all
measurable, adapted processes X = {X,,#,; 0 <t < oo} satisfying

T

(2.31) P|:J~ X2 d{MD, < oo:| =1 for every T e [0, o).
1]

We denote by 2* the collection of equivalence classes of all progressively

measurable processes satisfying this condition.

Again, we shall abuse terminology by speaking of 2 and #* as if they were
classes of processes. As an example of such an abuse, we write 2* < 2, and
if M belongs to .#% (in which case both % and #* are defined) we write
& < P and F* c P>

We shall continue our development only for integrands in 2*. If a.c. path
t—={M>(w) of the quadratic variation process ¢<M> is an absolutely con-
tinuous function, we can choose integrands from the wider class 2. The reader
will see how to accomplish this with the aid of Remark 2.11, once we complete
the development for 2*.

Because M is in .#°'°°, there is a nondecreasing sequence {S, }., of stopping
times of {#}, such that lim,_, S, = oo as. P, and {M,,s,%;0<t< w}is
in #5. For X e 2*, one constructs another sequence of bounded stopping
times by setting

t
R.(w)=n A inf{O <t< oo;J~ XZ(w)d (M)y(w) = n}.
0
This is also a nondecreasing sequence and, because of (2.31),lim,, R, = x,
as.P.Forn> 1, weQ, set
(2.32) T, (@) = Ry(w) A S,(w),
(233) MP@) & M7 (0), XP@) = X)L 1z 0t < o0,

Then M®™ e #5 and X" e £*(M™), n > 1, so IM™(X™) is defined. Corollary
2.21 implies thatfor 1 < n < m,

M7(X®) = P (X, 0<t<T,
so we may define the stochastic integral as
(2.34) LX) & IM(X™) on{0<t<T,.
This definition is consistent, is independent of the choice of {S,}x,, and deter-

n=1>
mines a continuous process, which is also a local martingale.

2.23 Definition. For M e .#“'° and X €P*, the stochastic integral of X with
respect to M is the process I(X) = {I(X),%; 0 <t < oo} in 4! defined by
(2.34). As before, we often write [, X,dM, instead of I,(X).
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When M e 45" and X € #*, the integral I(X) will not in general satisfy
conditions (2.13)-(2.16), (2.21)-(2.23), or (2.27), which involve expectations at
fixed times or unrestricted stopping times. However, the sample path properties
(2.12), (2.17),(2.19),(2.24), and (2.26) are still valid and can be easily proved by
localization. We also have the following version of Proposition 2.19.

2.24 Proposition. Consider a local martingale Me #°"° and a process X €
P*(M). The stochastic integral I™(X) is the unique local martingale ® € M
which satisfies (2.30) for every N € #5 (or equivalently, for every N e M),

2.25 Problem. Suppose M, N € 4" and X € Z*(M) N P*(N). Show that for
every pair (a, ) of real numbers we have

IPMAIN(X) = alM(X) + BIN(X).

2.26 Proposition. Let M e #°"°, { X}, = P*(M), X € #*(M) and suppose
that for some stopping time T of {#,} we havelim, ., fo1X" — X,12d{M>, =0,
in probability. Then

P,
n—o0o

sup
0<t<T

t t
j X dM, — j X, dM,

0 0

PRrOOF. The proof follows immediately from Problem 1.5.25 and Proposition
2.24.

227 Problem. Let M e.#" and choose X € #*. Show that there exists a
sequence of simple processes { X™};Z, such that, for every T>0,

n—o© J0o

T
lim J | X® — X,|?d{M> =0

and

lim sup |L(X®)—IL(X) =0

n—w 0<t<T

hold a.s. P. If M is a standard, one-dimensional Brownian motion, then the
preceding also hold with X € 2.

2.28 Problem. Let M = W be standard Brownian motion and X €?. We
definefor0 <s<t< ®

(235) L)L J " X,dW, - % J "Xidu 0002 LX)

The process {exp((,(X)), #; 0 <t < oo} isa supermartingale; it is a martin-
gale if X e Z,.

Can one characterize the class of processes X € 2%, for which the exponen-
tial supermartingale {€xp (X)), F;0 <t < o0} of Problem 2.28 is in fact a
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martingale? This question is at the heart of the important result known as the
Girsanov theorem (Theorem 5.1); we shall try to provide an answer in Section 5.

2.29 Problem. Let W be a standard Brownian motion, ¢ a number in {0, 17,
and 1 = {to,ty,...,t,} a partition of [0,¢] with O =1ty <t, < - <t, =1
Consider the approximating sum

m—1
(2.36) S£ > [ ~9W, + W, W, —W,)
i=0
for the stochastic integral {f, W,dW,. Show that
1 1
(2.37) lim S,(IT) = -W,2 + <8 - —> t
I)—o 2 2

where the limit is in L2. The right-hand side of (2.37) is a martingale if and
only if ¢ = 0, so that W is evaluated at the left-hand endpoint of each interval
[t t;41] in the approximating sum (2.36); this corresponds to the Itd integral.
With ¢ = 7 we obtain the Fisk-Stratonovich integral, which obeys the usual
rules of calculus such as f, W, o dW, = 1W,2; we shall have more to say about
this in Problems 3.14, 3.15. Finally, ¢ = 1 leads to the backward Ité integral
(McKean (1969), p. 35). The sensitivity of the limit in (2.37) to the value of ¢
is a consequence of the unbounded variation of the Brownian path.

We know all too well that it is one thing to develop a theory of integration
in some reasonable generality, and a completely different task to compute the
integral in any specific case of interest. Indeed, one cannot be expected to
repeat the (sometimes arduous) process which fortunately led to an answer in
the preceding problem. Just as we develop a calculus for the Riemann integral,
which provides us with tools necessary for more or less mechanical computa-
tions, we need a stochastic calculus for the Itd integral and its extensions. We
take up this task in the next section.

2.30 Exercise. For M e #°', X e #* and Z an F,-measurable random vari-
able, show that

t t
J ZX,,dM,,=ZJ X, dM,; s<t< w,as.

3.3. The Change-of-Variable Formula

One of the most important tools in the study of stochastic processes of the
martingale type is the change-of-variable formula, or It6's rule, as it is better
known. It provides an integral-differential calculus for the sample paths of
such processes.
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Let us consider again a basic probability space (Q, #, P) with an associated
filtration {&} which we always assume to satisfy the usual conditions.

3.1 Definition. A continuous semimartingale X = (X, #;0<t<oo}is an
adapted process which has the decomposition, P a.s.,

3.1) X,=Xo+M,+B; 0<t<o0,

where M = {M,,#;0<t< oo} e 45" (Definition 1.5.15) and B = {B, %;
0 < t < oo} is the difference of continuous, nondecreasing, adapted processes
{AF,F;0<t < oo}

(32) B=Af —A]; 0<t<oo,

with AF =0, P as. We shall always assume that (3.2) is the minimal de-
composition of B; in other words, A} is the positive variation of B on £0.1]
and A is the negative variation. The total variation of B on [0,t] is then
B2 A+ A

The following problem discusses the question of uniqueness for the de-
composition (3.1) of a continuous semimartingale.

3.2 Problem. Let X = {X,,#;0<t< o} bea continuous semimartingale
with decomposition (3.1). Suppose that X has another decomposition

X,=Xo+ M, +B; 0<t<o0,

where M e .#¢'°° and Bis a continuous, adapted process which has finite total
variation on each bounded interval [0,t]. Prove that P-a.s.,

M,=M, B=B, 0<t<oo.

A. The It6 Rule

Itd’s formula states that a “smooth function” of a continuous semimartingale
is a continuous semimartingale, and provides its decomposition.

3.3 Theorem. (It6 (1944), Kunita & Watanabe (1967)). Let f:R—R be a
function of class C?and let X ={X,,#;0<t< o} be a continuous semi-
martingale with decomposition (3.1). Then, P-as.,

t

(3.3) X)) = f(Xo) + J

0

f(X,)aM; + th’(Xs)st
0

+3 j X )AM,, 0=t <.
0

3.4 Remark. Forfixedwandt > 0,the function X,(w)is bounded for0 <s <,
so f'(X,(w)) is bounded on this interval. It follows that fof"(X,)dM,is defined
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as in the last section, and this stochastic integral is a continuous, local
martingale. The other two integrals in (3.3) are to be understood in the
Lebesgue-Stieltjes sense (Remark 1.4.6 (i), and so, as functions of the upper
limit of integration, are of bounded variation. Thus, { f(X,), %;0 < t < oo} is
a continuous semimartingale.

3.5 Remark. Equation (3.3) is often written in differential notation:

1
3.3y df(X,) = f'(X,)dM, + f'(X,)dB, + 7/ (X)d<{M),

= (X)aX, + 3 [ (X) A<M, 0=t < oo,

This is the “chain-rule” for stochastic calculus.

PROOF OF THEOREM 3.3. The proof will be accomplished in several steps.

Step 1: Localization. In the notation of Definition 3.1 we introduce, for each
n > 1, the stopping time

0, if1Xy| > m,
T,=<inf{t 20, |M,| = nor B > nor (M), =n}; if|X,| <n,
oo; if|Xg]l<nand{...} =g

The resulting sequence is nondecreasing with lim,_,, T, = oo, P-a.s. Thus, if
we can establish (3.3) for the stopped process X" £ X,, ;¢ > 0, then we
obtain the desired result upon letting n — co. We may assume, therefore, that
Xo(w) and the random functions M,(w), B,(w), and (M »,(w) on [0, 00) x Q are
all bounded by a common constant K; in particular, M is then a bounded
martingale. Under this assumption, we have | X,(w)| < 3K;0 < t < 00, weld,
so the values of f outside [ — 3K, 3K] are irrelevant. We assume without loss
of generality that f has compact support, and so £, f', and f” are bounded.
Step 2: Taylor expansion. Let us fix t >0 and a partition IT = {to>ty,
o>t} Of [0,6], with 0 =ty <t; <--- < t,, = t. A Taylor expansion yields

SX) — f(Xo) = i X))~ f(X, )

m 1 m
=2 [(X, )X, — X, )+ 3 Y S ) (X, — X, ),
k=1 k=1

where n,(w) = X () + () (X, (w) — X, ,(w)) for some appropriate 6,(w)

satisfying 0 < 6,(w) < 1, we Q. We conclude that
34 X)) = f(Xo) = J1(TD) + J,(IT) + $J4(TT),

where
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JﬂD%ZfM@M&—&HL

LD 2 Y [, )0~ M)

J3(T) é Z f”(ﬂk)(th tk,l)z'

It is easily seen that J,(II) converges to the Lebesgue—Stieltjes integral
j'of’(Xs)dB a.s. P, as the mesh |II|j = max; <x<mltk — lk-1l of the partition
decreases to zero. On the other hand, the process

() 2 f(X ), 0<s<twel

is in .#* (adapted, continuous, and bounded); we intend to approximate it by
the simple process

ww&fwmwmm+;fmmwmwmm

Indeed, we have EIZ(Y™ — = Efy| Y — Y, d{M);—~ 0 as |TI|| = O, by
the bounded convergence theorem, and so

t
J,Iy = j Y dMsWJ Y, dM;
0
in quadratic mean.
Step 3: The quadratic variation term. J4(IT) can be written as
J5(TD) = J,(T) + J5(I) + J6(ID),

where

1@ 2§ B, - B
1 22 5 50 (B, = B Y~ M)

I 5 o0, = M, )

Because B has total variation bounded by K, we have

|14 ()| + 15D

SZK"f”Hm( max. |B, — B, _ |+ max [M, — M,,Hl),

1<k<m
and, thanks to the continuity of the processes Band M, this last term converges
to zero almost surely as |IT| = O (as well as in LY(Q,#, P), because of the
bounded convergence theorem). As for Jo(IT), we define
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Jg(n) & kZI f”(th_,)(Mtk - Mtk,l)z
and observe

[J§(ID) — Jo(ID)] < V;2(IT)- Jmax |7 — (X, ),

where V(IT) is the quadratic variation of M over the partition I (cf.
Theorem 1.5.8 and the discussion preceding it). According to Lemma 1.5.9
and the Cauchy-Schwarz inequality,

2
E|Jg() — Jo(I)| < ~/48K“\/E <1r33<x Lf"(m) — f”(X,k_,)I> ;

and this is seen to converge to zero as | IT|| — 0 because of the continuity of
the process X and the bounded convergence theorem. Thus, in order to
establish the convergence of the quadratic variation term J 3(IT) to the integral
fof"(X)d{M), in L*Q, &, P) as |IT| - 0, it suffices to compare JX(IT) to
the approximating sum

Jo(I) & z F1X, JCMD, — (M, ),

Recalling the discussion just before Lemma 1.5.9, we obtain

E[J&(IT) — J,5(IT)|?
2

= E| 3 /10 (M, — M, — (M, — M, )}

= E[z L7 (X )M, ~ M, — (M, — <M>,k_1)}2]
< 2|If”l|§o'EL2 (M,|— M, )*+ z (M, — <M>,k,)2]

” !
<2f Ilﬁo'E[V,“"(ﬂ) + (M), max (M), — <M>,,”)],
1<k<m
and Lemma 1.5.10 together with the bounded convergence theorem shows
that the last term in the preceding equations goes to zero as | II|| — 0. Since
convergence in L2 implies convergence in L!, we conclude that

J3(ID) =5 fo ["X)d{M),  inLYQ Z,P).

Step 4: Final Touches. If {II™}2, is a sequence of partitions of [0,t] with
[TI™) —— 0, then for some subsequence {IT"™}= , we have, P-a.s.,

n—ao

k—w

lim J,(IT™)) = f f(X,)dB,,
0
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t
llm JZ(H(nk)) = J‘ f,(Xs) de
k- 0

t
lim J5 (1) = J £7(X) A<M,
k—o 0

Thus, passing to the limit in (3.4), we see that (3.3) holds P-as. for each
0 <t < oo. In other words, the processes on the two sides of equality (3.3) are
modifications of one another. Since both of them are continuous, they are
indistinguishable (Problem 1.1.5). O

We have the following, multidimensional version of 1t0’s rule.

3.6 Theorem. Let {M, 2 (MY,...,M®), #;0 <t < oo} be a vector of local
martingales in M, {B, & (B{"),... ,B®), #,;0 <t < o} avector of adapted
processes of bounded variation with B, =0, and set X, =Xq+ M, + B;
0 <t < oo, where X, is an Fy-measurable random vector in R%. Let f(t,x):
[0, o) x R? - R be of class C'2. Then, a.s. P,
0 a [* 9
(35) f(t,Xt) = f(o, XO) + J a—f(S,Xs)dS + Z J
t i=1 Jo 6xi

t
0

f(s,X,)dBY

a 't g ,
+ 3 J £(s, X;)dM?

(=]
D
Rl

J vt ;
— LX) d(MO, MOy 0t .
t34 ZL v XD > <o
O

37 Problem. Prove Theorem 3.6.

3.8 Example. With M = W = Brownian motion, X, = 0, B, =0 and f(x) =
x2, we deduce from (3.3):
t
W2=2 j W,dW, + t.
0

Compare this with Problem 2.29.

3.9 Example. Again with M = W = Brownian motion, let us consider X € 2
and recall the exponential supermartingale of Problem 2.28:

Z, =exp(() 0st<®
where ¢ = {(X) of (2.35). We now check by application of It6’s rule that this

process satisfies the stochastic integral equation

t
(3.6) Z,=1 +J ZX,dW; 0<t<oo0.
1]
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Indeed, {{;; #;0 <t < oo} is a semimartingale, with local martingale part
N, & [, X, dW, and bounded variation part B, £ — 1o X2 ds. With f(x) = e,
we have

t t 1 t
Z=f) = fo) + J S'(&)dN + J f'(C)dB; + 3 J S E)dLND,
0 0 0

t t 1 1 t
=1+ | ZX,dW, + | Z( —=Xx2)ds+- | z.X2ds
1] 1] 2 2 1]

t
=1 +J Z,X,dW,.
1]

The replacement of dN; by X,dW, in this equation is justified by Corollary
2.20 (actually, the extension of Corollary 2.20 to allow for the present case of
M = W and X e2). It is usually more convenient to perform computations
like this using differential notation. We write

¢, = X,dW, — 1 X2 dt,

and, to reflect the fact that the martingale part of { has quadratic variation
with differential X7 dt, we let (d,)* = X?dt. One may obtain this from the
formal computation

(d¢,)?* = (X, dW, — X} dr)*
= X (dW)? — X7 dW,dt + ;X (dr)?
= X}dt,

using the conventional “multiplication table”

dt 0 0 0
aw, 0 dt 0
aw, o 0 dt

where W, W are independent Brownian motions (recall Problem 2.5.5). With
this formalism, It6’s rule can be written as

dfC) = f'C)dd + 3" (C)dL)?,
and with f(x) = e*, we obtain
dZ, = Z, X, dW, — 3Z X2 dt + 1Z,X? dt
= Z,X,dW,.

Taking into account the initial condition Z, = 1, we can then recover (3.6).
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3.10 Problem. With {Z;0 <t < oo} as in Example 3.9, set Y,=1/Z;0<
¢t < oo, which is well defined because Plinfy<,<7Z > 0] = Plinfy<,<1& >
—o0] = 1. Show that Y satisfies the stochastic differential equation

dY, = Y,X2dt — Y,X,dW, Yo=1.

3.11 Example. One of the motivating forces behind the It6 calculus was a
desire to understand the effects of additive noise on ordinary differential
equations. Suppose, for example, that we add a noise term to the linear,
ordinary differential equation

&r) = a(t)e(t)
to obtain the stochastic differential equation
d¢, = a(t)¢ dt + b(t)aw,,

where a(t) and b(t) are measurable, nonrandom functions satisfying

T T
j la(e)}dt + j pr(t)dt < o0; 0< T < o0,
0 0

and W is a Brownian motion. Applying the It rule to XOX® with X" &
exp[f5a(s)ds] and X{¥ = o + [o b(s) exp[ — [ a(u) du] dW,, we see that &, =
XWX solves the stochastic equation. Note that &, is well defined because,
for0< T < o0:

jT bz(s)exp\:—2 r a(u)du:‘ds < exp\:2 jT |a(u)|du:”T b2(s)ds < 0.
0 0 0 0

A full treatment of linear stochastic differential equations appears in Sec. 5.6.

3.12 Problem. Suppose we have two continuous semimartingales
3.7 X,=X,+ M, +B, Y,=Y+N+C; 0<t<o0,

where M and N are in .#'°¢ and B and C are adapted, continuous processes
of bounded variation with By = Co = 0 a.s. Prove the integration by parts
formula

t t
(3.8) j Xsdn=x,Y,—XoYo—j Y, dX, — (M, N,
0 0

The 1té calculus differs from ordinary calculus in that familiar formulas,
such as the one for integration by parts, now have correction terms such as
{M,N), in (3.8). One way to avoid these corrections terms is to absorb them
into the definition of the integral, thereby obtaining the Fisk—Stratonovich
integral of Definition 3.13. Because it obeys the ordinary rules of calculus
(Problem 3.14), the Fisk—Stratonovich integral is notationally more conve-
nient than the [t6 integral in situations where ordinary and stochastic calculus
interact; the primary example of such a situation is the theory of diffusions on
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differentiable manifolds. The Fisk—Stratonovich integral is also more robust
under perturbations of the integrating semimartingale (see subsection 5.2.D),
and thus a useful tool in modeling. We note, however, that this integral is
defined for a narrower class of integrands than the It0 integral (see Definition
3.13) and requires more smoothness in its chain rule (Problem 3.14). Whenever
the Fisk—Stratonovich integral is defined, the Itd integral is also, and the two
are related by (3.9).

3.13 Definition. Let X and Y be continuous semimartingales with decom-
positions given by (3.7). The Fisk—Stratonovich integral of Y with respect to
Xis

t t t l
(3.9 J YodX, & J Y, dM, + J Y, dB, +5<M,N>,; 0<t<oo,

1] 0 1]
where the first integral on the right-hand side of (3.9) is an It integral.
3.14 Problem. Let X = (X,..., X¥) be a vector of continuous semi-
martingales with decompositions

XO=X9+MP+BY;, i=1,..4d

where each M@ e .#*'*° and each B? is of the form (3.2). If f: R - R is of
class C3, then

t

4 0 .
(3.10) (X)) = f(X,) + 21 J Ew f(X)odXP.
= 0 i

3.15 Problem. Let X and Y be continuous semimartingales and T1 =
{to,t1,...,t,} a partition of [0,t] withO =t, < t, <--- <t, = t. Show that
the sum

m—1 l l
Z 5 Y‘-‘H + EYI: (Xti+l - th')

i=0

converges in probability to {§ Y,odX, as |TI| - 0.

B. Martingale Characterization of Brownian Motion

In the hands of Kunita and Watanabe (1967), the change-of-variable formula
(3.5) was shown to be the right tool for providing an elegant proof of P. Lévy’s
celebrated martingale characterization of Brownian motion in R®. Let us recall
here that if {B, = (B{",...,B¥), #;0 <t < o} is a d-dimensional Brownian
motion on (Q, #, P) with P[By = 0] = 1, then {(B®,B"Y, = §,.t; 1 < k, j < d,
0 <t< oo (Problem 25.5). It turns out that this property characterizes
Brownian motion among continuous local martingales. The compensated
Poisson process with intensity 4 = 1 provides an example of a discontinuous,
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square-integrable martingale with (M 5, =t (c.f. Example 1.5.4 and Exercise
1.5.20), so the assumption of continuity in the following theorem is essential.

3.16 Theorem (P. Lévy (1948)). Let X = {X, = (X!,...,X9),#,0<t< oo}
be a continuous, adapted process in R? such that, for every component 1 < k <d,
the process

M® A x® _ X,  0<t<o,
is a continuous local martingale relative to {#,}, and the cross-variations are
given by
k . :
(3.11) (M® MO, = §;t; 1<k j<d

Then {X,, %,;0 <t < oo} is a d-dimensional Brownian motion.

PrOOF. We must show that for 0 <s <, the random vector X, — X, is
independent of %, and has the d-variate normal distribution with mean zero
and covariance matrix equal to (¢ — s) times the (d x d) identity. In light of
Lemma 2.6.13, it suffices to prove that for each ueR?, withi=,/—1,

(3.12) E[e/®X X\ F] = e WP a5 P.
For fixed u = (uy,...,us)€ R?, the function f(x) = e’ satisfies
0 ) 0*
a~xjf(X) = iu; f(x), mf(?t) = —ujth f(x).
Applying Theorem 3.6 to the real and imaginary parts of f, we obtain
(3.13) e'X) = X 4§ i “jjt el XD MY _% Z uf Jt !X gy,

i=1 s i=1 s

Now | f(x)| <1 for all xeR? and, because (M), = t, we have MY e 5.
Thus, the real and imaginary parts of {ff X dM9, Z,;0 < t < o0} are not
only in ., but also in 43. Consequently,

E[j' elwXo) dMl(,D

For Ae%,, we may multiply (3.13) by e~i®X9] and take expectations to
obtain

97;:‘ =0, P-as.

s

1 t .
E[e"*"%1,] = P(4) — 5 lluli® J E[e'® XX, dv.
This integral equation for the deterministic function t— E[e"X %917 is
readily solved:
E[ei(“vxz—xs) 1,4] — p(A)e—(l/Z)Hullz(t—s), VAeZ,
and (3.12) follows. O
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3.17 Exercise. Let W, = (W, W2, W,®) be a three-dimensional Brownian
motion starting at the origin, and define

3
X =[] sgn(W{"),

i=1

Mt(l) = VV,(”, Mt(Z) = VV,(Z) and Mt(3) — XVV,‘”.

Show that each of the pairs (MM, M®), (MWD, M®) and (MP, M®) is a
two-dimensional Brownian motion, but (M, M@ M®)) is not a three-
dimensional Brownian motion. Explain why this does not provide a counter-
example to Theorem 3.16, i.e., a three-dimensional process which is not a
Brownian motion but which has components in .#¢°° and satisfies (3.11).

3.18 Problem. Let W= {W,=W"Y,... W9 F;0<t<w} be a d-
dimensional Brownian motion starting at the origin, and let Q be a d x d
orthogonal matrix (QT = Q!). Show that W, £ QW, is also a d-dimensional
Brownian motion. We express this property by saying that “d-dimensional
Brownian motion starting at the origin is rotationally invariant.”

C. Bessel Processes, Questions of Recurrence

Another use of the P. Lévy Theorem 3.16 is to obtain an integral representa-
tion for the so-called Bessel process. For an integer d > 2, let W = {W, =
(WD, .., WD), %;0 < t < 0}, {P*}, . pebe a d-dimensional Brownian family
on some measurable space (Q, #). Consider the distance from the origin

(3.14) R 2 W] = /WD) + - + (WD 0<t<w,

so P*[Ry = ||Ix[|]=1.Ifx, ye R? and |[x| = || y|, then there is an orthogonal
matrix Q such that y = Qx. Under P*, W = {W, 2 QW,,#,;0<t < 0} isa

d-dimensional Brownian motion starting at y, but ||| = | W,||, so for any
Fe #(C[0, «0)), we have
(3.15) P*[R eF] = P*[|W|eF]= P’[ReF].

In other words, the distribution of the process R under P* depends on x only
through |/ x||.

3.19 Definition. Fix an integer d > 2, and let W = {W, #;0<t< oo},
{P*},cra be a d-dimensional Brownian family on (Q, #). The process R =
{R, = IW|,#; 0 <t < oo} together with the family of measures {f"},., £
{Pr:0:- 0% o on (Q, F) is called a Bessel family with dimension d. For fixed

r > 0, we say that R on (Q, #, P") is a Bessel process with dimension d starting
atr.



3.3. The Change-of-Variable Formula 159

320 Problem. Show that for each d > 2, the Bessel family with dimension d
is a strong Markov family (where we modify Definition 2.6.3 to account for
the state space [0, 00)).

3.21 Proposition. Let d > 2 be an integer and choose r = 0. The Bessel process
R with dimension d starting at r satisfies the integral equation

td—1

(3.16) R,=r+j ds + B; 0<t< o0,
1] 2Rs
where B={B,#;0<t< oo} is the standard, one-dimensional Brownian
motion
a o fwe

(317) B£Y B®  with BP& J Saw®; 1sis< d.
=1

0 s

Proor. We use the notation of Definition 3.19, except we write P instead of
P Note first of all that R, can be at the origin only when WV is, and so the
Lebesgue measure of the set {0 <s <t R =0}iszero,as. P (Theorem 2.9.6).
Consequently, the integrand (d — 1)/2R; in (3.16) is defined for Lebesgue
almost every s, a.s. P.

Each of the processes B? in (3.17) belongs to M, because

t 1 . 2
EJ (—W;"> ds<t; 0<t<oo
1] Rs

t t
<B(i),B(j) S = J Lz VVs(i)VVs(i) d<W(i), wo >s — 5ij J _12_ VVs(i)VVs(j) ds,
1] Rs 1] Rs

Moreover,

which implies
d

(B) = Zl (B =1,
and we conclude from Theorem 3.16 that B is a standard, one-dimensional
Brownian motion.

It remains to prove (3.16). A heuristic derivation is to apply It&’s rule
(Theorem 3.6) to the function f{x) A x| = /x} + -+ xi: R* > [0, 0), for
which
6ij

4 Xi a? X Xj ..
O = awae O T L=hj<d,

hold on R\{0}. Then R, = f(W,) and (3.16) follows from (3.5). The difficulty
here is that f is not differentiable at the origin, and so Theorem 3.6 cannot be
applied directly to f. This problem is related to our uneasiness about whether
the integral in (3.16) is finite. Here is a resolution. Define
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Y, & |W]* = R2,
and use Itd’s rule to show that
d t » »
=r24 22 J WOAWS + ¢d.
i=1 Jo

Letg(y) = \/;, and for ¢ > 0, define

1
+—=y——=y4  y<s
g9.(») = \/ f 8e./e

fQ y=ze

50 g, is of class C? and lim, 4 g.(y) = g(y) for all y > 0. Now apply It&’s rule
to obtain

(3.18) 6Y) = g.r) + 3 19() + Ji(e) + K.(6),
i=1

where

M (p) & * 1 1 1 1 3 Y W(')dW(')
It (8) = {r, >s}R + {¥, <s} f - ?

" d—1

I{YsZE}‘?R—dS’

re

K,(S) 4 l{Y <e} \/l: (d +2) :|

We now show that, as ¢ | 0, (3.18) yields (3.16). From the monotone conver-
gence theorem, we see that

! d—-1 td—1
limJ() =] 1 ——ds=| ——ds, as.
slfol (&) J; {rs>0} 2R, s J; 2R, S, as

We also have 0 < EK,(¢) < (3d/4\/5) o PLY, < €]ds. The probability in the
integrand is bounded above by

2n \/;
PLov + 7 <1 = |7 [T e rmpapan

o Jo 2ms

and so the integral becomes, upon using Fubini’s theorem and the change of

variable ¢ = p/\/g

' Ve 1]
f P[Ys<£]dssf p<f —e"’z/zsds>dp
0 0 oS
Ve ©
] e
0 i S

P
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But now it is easy to see that this expression is o(\/é) as ¢ | 0, using the rule
of ’'Hopital. Therefore, lim, ;o EK,(¢) = 0. Finally

E[BY — 9@ = E J L< }[i - <3 - 2ffﬂz(W‘“V ds
0 = Rs 2\/2 € *
t 1 Y. 2 W(i) 2
oLl
o O ° 2V ¢ £ R,

sj'P[K<s]ds=o(ﬁ) ase]0.
0

This establishes (3.16). O

Let {R,, #;0<t <o} bea Bessel process with dimension d > 2 starting
at r > 0. Then, for each fixed t > 0, it is clear from (3.14) that P[R, > 0] = L.
A more interesting question is whether the origin is nonattainable:

(3.19) P[R,>0; VO<t<oo]=1

The next proposition shows that this is indeed the case. Of course the situation
is drastically different in one dimension, since PWM| >0, V0<t<o0]=0
(Remark 2.9.7).

3.22 Proposition (Nonattainability of the Origin by the Brownian Path in
Dimension d > 2). Let d > 2 be an integer and r = 0. The Bessel process R with
dimension d starting at r satisfies (3.19).

Proof. It is sufficient to tireat the case d =2, since, for larger d,
(W) 4 -+ 4 (W)? can reach zero only if (W) + (W,?)? does.

We consider first the case r > 0. For positive integers k satisfying (1/k)* <
r < k and n > 1, define stopping times

lk
T,‘=inf{T20;R,=<E>}, S, = inf{t > 0; R, = k}, T,=Thi ASc AR

Because P-almost every Brownian path is unbounded (Theorem 2.9.23), we
have

(3.20) P[ﬁ (S, < o} r\{lim 5, = oo}:l —1
k=1 k

Using (3.16), apply 1t&’s rule to log(R,) to obtain

T l
logR, =logr + j —dB;.

0 Rs
This step is permissible because log is of class C? in an open interval contain-
ing [(1/k)5, k]. For0 < s < T, |1/R,| is bounded, and since T is also bounded,
we have E [§(1/R,)dB; = 0. Therefore,
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(3.21)  logr = E[logR,] = —k(logk) P[T, < S, A n]
+ (logk) P[S, < T, A n] + E[(log R,) Vs, a1 )

Forevery n > 1,logR, on {n < S, A T,} is bounded between — k(logk) and
log k. According to (3.20), as n —» oo we have P[n < S, A T,] — 0. Thus, letting
n— oo in (3.21), we obtain

logr = —k(logk) P[T, < S.] + (logk) P[S, < T,].
If we divide by k(log k) and let k — o0, we see that
(3.22) lim P[T, < §,]1=0.

k=
Now set T = inf{t > 0; R, = 0}, so that T < T for every k > 1. From (3.20)
and (3.22), we have

(3.23) P[T < ] =lim P[T<S]<lim P[T, <S,]=0.
k2w k-
It follows that P[R, > 0,V0 <t < 0] = 1.
Finally, we consider the case r = 0. Recalling the indexing of probability
measures in Definition 3.19, we have from Problem 3.20:

P[R, > 0;Ve <t < 0] = ES{PR[R,>0;V0O <t < 0]} =1

for any fixed & > 0, by what was just proved and the fact that P°[R, > 0] = 1.
Letting ¢ | 0, we obtain the desired result. ||

3.23 Problem. Let R = {R,, %;0 <t < o0} be a Bessel process with dimen-
sion d > 2 starting at r > 0, and define
m= inf R,.
0<t<owo
(i) Show thatifd =2, thenm = 0 a.s. P.
(i) Show thatif d > 3, then m has the beta distribution

c -2

P[mgc]:<—> ; O0<ce<r.
r

(Hint: Adapt the proof of Proposition 3.22. For (ii), an appropriate substitute

for the function f(r) = logr must be used.)

Proposition 3.22 says that, with probability one, a two-dimensional
Brownian motion never reaches the origin. Problem 3.23 (i) shows, however,
that it comes arbitrarily close. By translation, we can conclude that for any
given point ze R?, a two-dimensional Brownian path, with any starting posi-
tion different from z, never reaches the point z, but does reach every disc of
positive radius centered at z. In the parlance of Markov chains, one says that
“every singleton is nonrecurrent,” but that “every disc of positive radius is
recurrent.” For a Brownian motion of dimension 3 or greater, Problem 3.23
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(ii) shows that, once it gets away from the origin, almost every path of the
process remains bounded away from the origin; this lower bound depends, of
course, on the particular path. Thus, d-dimensional spheres are nonrecurrent
for d-dimensional Brownian motion when d > 3.

3.24 Problem. Let R be a Bessel process with dimension d > 3 starting at
r > 0. Show that P[lim,., R, = ©] =1

D. Martingale Moment Inequalities

As a final application of It&’s rule in this section, we derive some useful
bounds on the moments of martingales. The following exercise illustrates the
technique.

325 Exercise. With W= {W,#;0<1t< oo} a standard, one-dimensional
Brownian motion and X a measurable, adapted process satisfying

T
(3.24) E J |X,|2"dt < o
0

for some real numbers T >0and m > 1, show that

T
J X, dw,
0

(Hint: Consider the martingale {M, = fo X, dW,, 7,0 <t < T}, and apply
[t&’s rule to the submartingale | M,|*™.)

2m

(3.25) E

T
< (m@2m — ))"T"'E J | X, |2 dt.
0

Actually, with a bit of extra effort, we can obtain much stronger results. We
shall show, in effect, that for any M € M the increasing functions E(| M;* 12™)
and E({M>M), with the convention

(3.26) M* & max |M|,

0<s<1

have the same growth rate on the entire of [0, o), for every m > 0. This is
the subject of the Burkholder-Davis-Gundy inequalities (Theorem 3.28). We
present first some preliminary results.

3.26 Proposition (Martingale Moment Inequalities [Millar (1968), Novikov
(1971)]). Consider a continuous martingale M which, along with its quadratic
variation process {M>, is bounded. For every stopping time T, we have then

(327 E(|Mp|*™) < CLE(KM)T); m>0
(3.28) B,,,E(<M>¥) < E(|MT|2'"); m>1/2
(3.29) B, E({M>T) < E[(M$?™] < C,EKM)Y), m>1/2
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for suitable positive constants B,,, C,,, C,, which are universal (i.e., depend only
on the number m, not on the martingale M nor the stopping time T).

ProoF. We consider the process
t

Y,éé+s<M>,+M,2=5+(1+s)<M>,+2J M,dM,, 0<t< co,
1]

where § > 0 and ¢ > 0 are constants to be chosen later. Applying the change-
of-variable formula to f(x) = x™, we obtain

(3.30)

Y,"‘=5"‘+m(l+s)f
0

t t

Y d{MD, + 2m(m — 1) J YT MG d(M),
0

t

+2m J Y™ M, dM; 0<t< .
0

Because M, Y, and (M) are bounded and Y is bounded away from zero,

the last integral is a uniformly integrable martingale (Problem 1.5.24). The

Optional Sampling Theorem 1.3.22 implies that E [J ¥""'M,dM, = 0, so

taking expectations in (3.30), we obtain our basic identity

T
(3.31) EYF =06"+ m(l + o)E J Ymld(MD,
1]

T
+ 2m(m — l)EJ Y 2M2 d(M>,.
1]

Case 1: 0 < m < 1, upper bound: The last term on the right-hand side of
(3.31) is nonpositive; so, letting J | 0, we obtain

T
(332) E[e<M)>r+ M7J" <m(1 + ¢)E J (e<M )y + MZy™ 1 d{ M),
0

<m(l + &)™ E JT (MY L A(MD,
1]

=(1 + e LE((MDY).

The second inequality uses the fact 0 < m < 1. But for such m, the function
f(x) = x™; x > 0 s concave, so

(3.33) 27X+ Yy < (x+ )" x>0, y=>0,
m—1
and (3.32) yields: e"E((MDT) + E(IM7>™ < (1 + ) <§> E({M>™), whence

2 1-m
(3.34) E(IM)*™ < [(1 +¢€) <E> — 8’"] E(KM>P).

Case 2:m > 1, lower bound: Now the last term in (3.31) is nonnegative, and
the direction of all inequalities (3.32)—(3.34) is reversed:
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m—1
E(M[*") > [(1 + ) (g) - s'"] E((MDY).
Here, ¢ has to be chosen in (0,(2™™! — 1)7").

Case 3:1 < m < 1, lower bound: Let us evaluate (3.31) with ¢ = 0 and then
let 6 | 0. We obtain

(3.35) E(IMy|*™) = 2m(m — )E jr | M2 d<MD,.
0

On the other hand, we have from (3.33), (3.31):
2" H[emE(KMDT) + E( + M7)"]
< E[e<M)r + (6 + MHI"

T
< o™ +m(l + ¢)E J (6 + MZYy" 1 d<{M),.
0

Letting & | 0, we see that
T

(3.36) 2" [e"E((MDT) + E(IM7|*™] < m(l + ¢)E J |M,|> ™D d<MD;.
0

Relations (3.35) and (3.36) provide us with the lower bound

(l + 8)21_"' 3

-1
E(|M7|*™) 2 8"‘( S — 1 1> E((M>T)

valid for all ¢ > 0.

Case 4: m > 1, upper bound: In this case, the inequality (3.36) is reversed, and
we obtain

(142t

-1
E(|My|*™) < 8"‘( m—1 1> EKM)T),

where now ¢ has to satisfy ¢ > 2m — )2 — L

This analysis establishes (3.27) and (3.28). From them, and from the Doob
maximal inequality (Theorem 1.3.8) applied to the martingale {My,,, %;
0 <t < o0}, we obtain for m > 1/2:

BmE(<M>¥AI) -<— E(lMTAtlzm) S E[(M¥At)2m]
2 2m
< ( i 1) E(|My,,*"™)

2m 2m
<G, ECKM)T.); 0=t <00,

2m — 1

which is (3.29) with T replaced by T' A t. Now let t = oo in this version of (3.29)
and use the monotone convergence theorem. |
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3.27 Remark. A straightforward localization argument shows that (3.27),
(3.29) are valid for any M €.#'°. The same is true for (3.28), provided that
the additional condition E({M>¥) < oo holds.

We can state now the principal result of this subsection.

3.28 Theorem (The Burkholder-Davis-Gundy Inequalities). Let M e.#'*
and recall the convention (3.26). For every m > 0 there exist universal positive
constants k,,, K,, (depending only on m), such that

(3.37) knE((M>F) < EL(M$)*™] < K, E(M)T)
holds for every stopping time T.

Proor. From Proposition 3.26 and Remark 3.27, we have the validity of (3.37)
for m > 1/2. It remains to deal with the case 0 < m < 1/2; we assume without
loss of generality that M, (M) are bounded.

Let us recall now Problem 1.4.15 and its consequence (1.4.17). The right-
hand side of (3.29) permits the choice X = (M*)?, A = C, (M) in the former,
and we obtain from the latter

= CrE((M)T)

E[(MF)*™] < I
—m

for every 0 < m < 1. Similarly, the left-hand side of (3.29) allows us to take
X = B,{M), A= (M*? in Problem 14.15, and then (1.4.17) gives for
O<m< I

1 —
S BIE(CM)P) < E[(M#P*") O
—m

3.29 Problem. Let M = (MY, ..., M) be a vector of continuous, local mar-
tingales, i.c, M® e .#°'° and denote

d
IMI¥ & max M, 4% ) <MP); 0<t<oo.
i=1

0<s<t

Show that for any m > 0, there exist (universal) positive constants 4,,, A,, such
that

(3.38) AmE(AT) < E(IM|$)*" < A,E(47)
holds for every stopping time T.

3.30 Remark. In particular, if the M® in Problem 3.29 are given by
o= § [*xinams
At lo

where {W,=(W",...,W"),#;0<t <o} is standard, r-dimensional
Brownian motion, {X, = (X*?); 1 <i<d,1 <j<r,0<t< oo} is a matrix
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of measurable processes adapted to {#}, and 1,02 2 ¥4, Y5 (X2, then
(3.38) holds with

T
(3.39) Ap = J 1,12 dt.
1]
E. Supplementary Exercises
331 Exercise. Define polynomials H,(x, y); n = 0,1,2,...by

; x, yeER
=0

o" 1
Hn(x9 Y) = 5(1—"Cxp (otx - Eazy)

(C.g., Ho(x9y) =1, Hl(x9y) =X H2(x9y) =x?— Y, H3(X,y) =x3 - 3xy,
H,(x,y) = x* — 6x%y + 3y?, etc). These polynomials satisfy the recursive
relations

0
(3.40) aH,,(x,y) =nH,_,(x,y); n=1, 2, ...

as well as the backward heat equation

(3.41) aH( )+162H( =0 =0,1
. % WX,y 2 72 Ly =0, n=0,1,....

For any M e .#°", verify
(i) the multiple Itd integral computation
t 'ty ty-1 1
J J J dM, ...dM,,dM,, = — H,(M,.{MD,),
0Jo 0 n:

(i) and the expansion

(12 © (X"
(24Y aMt - _’<M>t = Z ——H,,(M,, <M>z)
2 n=0 n!
(The polynomials H,(x, y) are related to the Hermite polynomials

0 & U gon &

ﬁ dx"

by the formula H,(x,y) = ﬁ y"2h,(x/ \/;).)

3.32 Exercise. Consider a functiono: R — (0, c0) which is of class C! and such
that 1/ is not integrable at either +00. Let ¢, p be two real constants, and
introduce the (strictly increasing, in x) function f(t,x) = e [§dy/a(y);
0 <t < o, xR and the continuous, adapted process &, = &o + P foe<ds +
[oesdW,, #;0 <t < 0. Let g(t, -) denote the inverse of f(t, ). Show that the
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process X, = g(t, £,) satisfies the stochastic integral equation

t t
(3.42) X, =X, + J b(X,)ds + J o(X,)dW,;, 0<t<
0

0

for an appropriate continuous function b: R — R, which you should determine.

3.33 Exercise. Consider two real numbers &, y; a standard, one-dimensional
Brownian motion W; and let W™ = W, + ut; 0 <t < co. Show that the
process

t
X, = J exp[d{W,® — W®} - 182(t — s)]ds; 0<t< o0
0

satisfies the Shiryaev-Roberts stochastic integral equation

t t
X, =J (1 + ouX,)ds + 5J X, dW,.
1]

0

3.34 Exercise. Let W be a standard, one-dimensional Brownian motion and
0 < T < c0. Show that

lim sup
f—w O0<I<T

=0, as.

t
e h J ef dw,

0

3.35 Exercise. In the context of Problem 2.12 but now under the condition
E./T < oo, establish the Wald identities

E(W;) =0, E(W?2) =ET

3.36 Exercise (M. Yor). Let R be a Bessel process with dimension d > 3,
starting at r = 0. Show that {M, 2 (1/R¥"%);1 <t < o0}

(1) is a local martingale,
(ii) satisfies sup; <, E(MP) < oo for every 0 < p < d/(d — 2) (and is thus
uniformly integrable),
(i1) is not a martingale.

3.37 Exercise (M. Yor). Let R be a Bessel process with dimension d =2
starting at r = 0. Show that {X, = —logR,; 1 <t < oo} is a local martingale
with Ee*®: < o0 for —o0 < a < 2, t > 1, but X is not a martingale.

3.38 Exercise (Yor, Stricker). Let X be a continuous process and 4 a con-
tinuous, increasing process with X, = A, = 0, a.s.
(i) Suppose that for every 8 e R, the process

Z® & exp(0X, — 16%4);, 0<t< o
is a local martingale. Prove that X e #%'° and (X) = A.
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(ii) Suppose that both X and ZM = exp(X — 3A) are local martingales.
Then again {(X) = 4.

3.39 Exercise (Wong & Zakai (1965b)). Let X be a continuous semimar-
tingale of the form (3.1), and {B™}=, a sequence of processes of bounded
variation, such that P[lim,_, B = X,1 =1 holds for every finite t > 0. If the
function f: R — R is of class C'(R), show that

im [ snmane = | suxax,+ 3 || rovaan,
0

n-w JO 0

holds as. P, for every fixed t > 0.

3.4. Representations of Continuous Martingales
in Terms of Brownian Motion

In this section we expound on the theme that Brownian motion is the fun-
damental continuous martingale, by showing how to represent other con-
tinuous martingales in terms of it. We give conditions under which a vector
of d continuous local martingales can be represented as stochastic integrals
with respect to an r-dimensional Brownian motion on a possibly extended
probability space. Here we have r < d. We also discuss how a continuous local
martingale can be transformed into a Brownian motion by a random time-
change. In contrast to these representation results, in which one begins with
a continuous local martingale, we will also prove a result in which one begins
with a Brownian motion W = {W,#;0<1t< oo} and shows that every
continuous local martingale with respect to the Brownian filtration {#} is a
stochastic integral with respect to W. A related result is that for fixed0 < T <
o0, every Fp-measurable random variable can be represented as a stochastic
integral with respect to W.

We recall our standing assumption that every filtration satisfies the usual
conditions, i.e., is right-continuous, and %, contains all P-negligible events.

4.1 Remark. Our first representation theorem involves the notion of the
extension of a probability space. Let X = (X, %,0<t< oo} be an adapted
process on some (Q, #,P). We may need a d-dimensional Brownian motion
independent of X, but because (Q, F, P) may not be rich enough to support
this Brownian motion, we must extend the probability space to construct this.
Let (Q, %,P) be another probability space, on which we consider a d-
dimensional Brownian motion B={B,%#;0<t< w0}, set Q2 Q x Q,
g4 F®F, PA P x P, and define a new filtration by &, £ # ® %, The
latter may not satisfy the usual conditions, so we augment it and make it
right-continuous by defining
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Z 2 () o(%uA),
s>t
where 4" is the collection of P-null sets in 4. We also complete Z by defining
ZF =0(FuA). We may extend X and B to {F}-adapted processes on
(@, #, P) by defining for (w, d) e Q,

Xt(w’ (D) = Xt(w)’ Et(w$ d)) = Bt(d))
<

Then B = {E,,ﬁ;;o t < oo} is a d-dimensional Brownian motion, inde-
pendent of X, = {X,,Z;0 <t < o0}. Indeed, B is independent of the exten-
sion to Q of any #-measurable random variable on Q. To simplify notation,
we henceforth write X and B instead of X and B in the context of extensions.

A. Continuous Local Martingales as Stochastic Integrals
with Respect to Brownian Motion

Let us recall (Definition 2.23 and the discussion following it) that if W =
{W,#;0 <t < o} is a standard Brownian motion and X is a measurable,
adapted process with P[{ X2ds < o] =1 for every 0 <t < oo, then the
stochastic integral I,(X) = {{, X,dW, is a continuous local martingale with
quadratic variation process (I(X)), = {6 X2 ds, which is an absolutely con-
tinuous function of ¢, P as. Our first representation result provides the
converse to this statement; its one-dimensional version is due to Doob (1953).

4.2 Theorem. Suppose M = {M, = (M),... . M¥), ;0 <t < o} is defined
on (Q, F, P) with MP e 4", 1 < i < d. Suppose also that forl <ij<d, the
cross-variation (MO, MY (w) is an absolutely continuous function of t for
P-almost every w. Then there is an extension (O, Z, P) of (Q, F, P) on which is
defined a d-dimensional Brownian motion W = {W, = (W",... W), Z;
0<t< oo}, and a matrix X = {(X®P),_,, #;0<t < a0} of measurable,
adapted processes with

t

4.1) F[J (X2 ds < oo:|=l; l1<ik<d; 0<t< o0,
0

such that we have, f’-a.s., the representations

d t
4.2) MO =3 J XERAW®;, 1<i<d, 0<t< oo,
k=1 Jo
d t
43) (MO.M, = 3, f XEPXOPEs s 1<ij<d 0<t< oo
=1 Jo

PRrOOF. We prove this theorem by a random, time-dependent rotation of

coordinates which reduces it to d separate, one-dimensional cases, We begin
by defining
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o
(4.4) gl = 2t = - (MO, M,

= lim "[(M(i), MYy, — <Mm, Mm)(:—u/n)r],

n—o

so that the matrix-valued process Z = {Z, = (zH) 2,50t < o0} is

symmetric and progressively measurable. For a = (ay,...,%)€ R, we have

i 4 - d /& )
$ 5 atin = (S M) 20
i=1 j=1 dt \i=1 '

so Z, is positive-semidefinite for Lebesgue-almost every ¢, P-a.s.

Any symmetric, positive-semidefinite matrix Z can be diagonalized by an
orthogonal matrix Q, e, Q™' = Q7,so that Q7' ZQ = A and A'is diagonal
with the (nonnegative) eigenvalues of Z as its diagonal elements. There are
several algorithms which compute Q and A from Z, and one can easily verify
that these algorithms typically obtain Q and A as Borel-measurable functions
of Z. In our case, we start with a progressively measurable, symmetric,
positive-semidefinite matrix process Z, and so there exist progressively mea-
surable, matrix-valued processes {Q,(w) = (@ (@) jo1; F0 <t < oo} and
{A(w) = (5,.1./1,"((»))',-" =P 0st< oo} such that for Lebesgue-almost every
t, we have

d d
(4.5) Y ghighl=Y gitalt=0;; 1<ij< d,
k=1

k

d
(4.6) Y ghizhighi =8;4i 205 1<ij< d,

» (i
(g A

1

a.s. P. From (4.5 w = j we see that (¢)* < 1,50

=1
ith i
t
j (qhi)? d(M®), < (MY, < o0,
0

and we can define continuous local martingales by the prescription

d t
4.7) ND& Y j geidM®; 1<i<d, 0<t<oo.
k=1

0

From (4.4) and (4.6) we have, as. P,

d t
(48) (NO,NOY, =3 ¥ j giatid (MW, MO,

k=1 1= 0

—
—

Il
M=
M=

t
ki kdLJ
.[ qiizilqgl ds

0
= 0y

d s
i J Agds.
0

k=11

[
—

We see, in particular, that
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t
(4.9) J Asds = (ND, < co.
0

We now represent the vector of local martingales N = {(N{V,..., N®), &;
0 <t < oo} as a vector of stochastic integrals on an extended probability
space (Q,%, P), which supports a d-dimensional Brownian motion B =
{B,=(B",...,B®),%,;0 <t < 0} independent of N (cf. Remark 4.1). Since

t l . t
J l{l“;>0}‘)‘—id<N(')>‘s=J‘ l{;_;>0}dsst,
0 s 0

we can define continuous, local martingales
. ! 1 . ! . .
4100 W@ L l{zg>o}ﬁst“) + L 10y dBY; 1<i<d.

From (4.8) and Problem 1.5.26 we have
WOWDS =6,t, 1<ij<d, 0<t< o0,

so, according to Theorem 3.16, W = {W, = (W), ..., W¥), Z; 0 <t < o} is
a d-dimensional Brownian motion. Moreover,

t t
(4.11) J \/,l_;'dWs"" =J lusopdNO =NP, 1<i<d, 0<t< oo,
0 0
because the martingale ff, 1(;;-o) AN, having quadratic variation
t t
J l{l§=0}d<N(i)>s=J l{li:o}i:dSZO,

0 0

is itself identically zero.

Having thus obtained the stochastic integral representation (4.11) for N in
terms of the d-dimensional Brownian motion W, we invert the rotation of
coordinates (4.7) to obtain a representation for M. Let us first observe that
forl <ik<d,

t t
J (q;'”‘)zii‘dssf Ads < oo; 0<t< oo
0 0

by (4.9), so with X{*¥ & gik /3 condition (4.1) holds. Furthermore, (4.11),
(4.7), and (4.5) imply

d t d t
@12 5, [ xewame = 5 [ grany
=1 Jo k=1 Jo

d d t
-5 5 | aratamy

d t

Jj=1 0

which establishes (4.2). Equation (4.3)is an immediate consequence of (4.2). [J
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4.3 Remark. Iffor P-a.e. » € Q, the matrix-valued process Z(w) = H () =1
has constant rank r,1 < r < d,for Lebesgue-almost every t, then the Brownian
motion W used in the representation (4.2) can be chosen to be r-dimensional,
and there is no need to introduce the extended probability space @, Z, P).
Indeed, we may take 4;,..., 47 to be the r strictly positive eigenvalues of Z,,
and replace (4.10) by

(4.10y WO = | —=dN®;, 1<i<r
Since N =0;r+1<i<d0<st<® (witness (4.9)), (4.12) becomes
r t d t
@12y ¥ j XG0 W = Y, j ghkAN® = MP, 1<is<d
k=1 J0O

k=1 JoO

Because (4.10) defines W®,..., W® without reference to the Brownian motion
B, there is no need to extend the original probability space.

The following exercise shows that any vector of continuous local martin-

gales can be transformed by a random time-change into a vector of continuous
local martingales satisfying the hypotheses of Theorem 42

4.4 Exercise. Let {M = MM, M), F,0<t< o} be a vector of con-
tinuous local martingales on some (Q, #, P), and define

M=

d

A6 A <M(i),M(ﬁ>, Afw) 4 /i(i’f)(w),
2 l t

i=

i

1

where A%? denotes total variation of A% on [0,£]. Let T(w) be the inverse
of the function 4,(w) + t, 1., Ar (@) + T(w)=50<s< 0.

(i) Show that for each s, T is a stopping time of {#}.
(ii) Define %, £ #7,,0 <5 < . Show that if {%} satisfies the usual condi-
tions, then {%,} does also.
(iii) Define

NOaMP, 1<i<d 0<s<®.

Show that for each 1<i<d: N®e o', and the cross-variation
(N®, N is an absolutely continuous function of s, a.s. P.

B. Continuous Local Martingales as Time-Changed
Brownian Motions

The time-change in Exercise 4.4 is straightforward because the function 4, + ¢
is strictly increasing and continuous in ¢, and so has a strictly increasing,
continuous inverse T;. Our next representation result requires us to consider
the inverse of the quadratic variation of a continuous local martingale; be-
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cause such a quadratic variation may not be strictly increasing, we begin with
a problem describing this situation in some detail.

4.5 Problem. Let 4 ={A(t);0<t < o} be a continuous, nondecreasing
function with 4(0) = 0, S £ A(cc) < o0, and define for 0 < s < o0:

T(s) = {mf{t 2040 >s) O0<s<S
003 s=S.

The function T = {T(s); 0 < s < 00} has the following properties:

() T is nondecreasing and right-continuous on [0, S), with values in [0, c0).
If A(t) < §;Vt = 0, then limy4 5 T(s) = oo.
(i) A(Ts)=sAS0<s< 0.
(ii)) T(A(?)) =sup{t=>t: A(x) = A()};0 <t < 0.
(iv) Suppose @: [0, c) —» R is continuous and has the property

A(t)) = A@) forsome0 <t, <t = o(t,) = o(t).
Then ¢(T(s)) is continuous for 0 < s < S, and
4.13) o(TADM) =o@t); 0<t < 0.

(v) For0<t,s<ow:s<A()<T(s) <tand T(s) < t=s < A(t).

(vi) If G is a bounded, measurable, real-valued function or a nonnegative,
measurable, extended real-valued function defined on [a,b] < [0, o),
then

b Ab)
(4.14) J G(t)dA(t)=J G(T(s))ds.

a A(a)

4.6 Theorem (Time-Change for Martingales [Dambis (1965), Dubins & Sch-
warz (1965)]). Let M = {M,, #;0 <t < o0} e . #"° satisfy lim,_, (M), =
00, a.s. P. Define, for each 0 < s < o0, the stopping time

4.15) T(s) = inf{t > 0; (M, > s}.
Then the time-changed process
(4.16) B2 My, %2 Fp,; 0<s<ox

is a standard one-dimensional Brownian motion. In particular, the filtration {%,}
satisfies the usual conditions and we have, a.s. P;

(417) M, = B(M),; 0<t< 0.

Proor. Each T(s) is optional because, by Problem 4.5 (v), {Ts) <t} =
{{M}, > s}e #, and {F,} satisfies the usual conditions; these are also satis-
fied by {%,} just as in Problem 4.4 (ii). Furthermore, for each ¢, {M>, is a
stopping time for the filtration {%,} because, again by Problem 4.5 (v),

(M) <s}={T()2t}eFpy=%,; 0<s< 0.
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Let us choose 0 < s; < s, and consider the martingale (M, = M, \ 15, %55
0 <t < oo}, for which we have

<M>z =MD 16y < {M Dy = 525 0<t<®
by Problem 4.5 (ii). It follows from Problem 1.5.24 that both M and M2 — (M)
are uniformly integrable. The Optional Sampling Theorem 1.3.22 implies, a.s. P:
E[332 - le|gsl] = E[MT(S2) - A7T(s,)|'9-;T(s,)] = 09
E[(B,, — B,)*|%,,] = E[(Mx, — M| Fres,)]

= E[<M>T(sz) - <M>T(sl)"g;T(sl)] =53 — §;.

Consequently, B = {B,,%;0 <s < w}isa square-integrable martingale with
quadratic variation (B); = s. We shall know that B is a standard Brownian
motion as soon as we establish its continuity (Theorem 3.16). For this we shall
use Problem 4.5 (iv).

We must show that for all @ in some Q* < Q with P(Q*) = 1, we have:

(4.18) (M), ()= (MY (w) forsome0 <t <t = M, (@) = M|w).

If the implication (4.18) is valid under the additional assumption that ¢, is
rational, then, because of the continuity of (M) and M, itis valid even without
this assumption. For rational ¢, > 0, define

o = inf{t > t;: (M), > (MY}
Ny = Mg +9n0 — M,, 0<s<oo,
50 {Ny, % 150 <s < o0} is in .4 and
(N = Mg 1900 — <MDy =0, as. P.

It follows from Problem 1.5.12 that there is an event Q(t,) < Qwith P(Q(t,)) =
1 such that for all w e Q(t;),

(M), (w) = (M)(w), for some t > t; = M, () = M, ().

The union of all such events Q(t,) as t, ranges over the nonnegative rationals
will serve as Q*, so that implication (4.18) is valid for each w € Q*. Continuity
of B and equality (4.17) now follow from Problem 4.5 (iv). O

47 Problem. Show that if P[S 2 (M), < ] >0, it is still possible to
define a Brownian motion B for which (4.17) holds. (Hint: The time-change
T(s) is now given as in Problem 4.5; assume, as you may, that the probability
space has been suitably extended to support an independent Brownian motion
(Remark 4.1).)

The proof of the following ramification of Theorem 4.6 is surprisingly
technical; the result itself is easily believed. The reader may wish to omit this
proof on first reading.
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4.8 Proposition. With the assumptions and the notation of Theorem 4.6, we have
the following time-change formula for stochastic integrals. If X = {X,,Z,;
0 <t < oo} is progressively measurable and satisfies

4.19) j X2d{M) <o as.,
0
then the process
(4.20) Y, 2 X1, %; 0<s< o
is adapted and satisfies, almost surely:
(421 j Y2ds < oo
0
t (M),
4.22) j X,dM, =j Y,dB,, 0<t< 0,
0 0
T(s) s
4.23) j X, dM, = j Y, dB,; 0<s< 0.
0 0

PROOF. The process Y is adapted to {%,} because of Proposition 1.2.18.
Relation (4.21) follows from (4.19) and (4.14).
Consider the continuous local martingale {J, £ {4, X,dM,,%;0 <t < co}.
If
(4.24) (M, (@) = (M) (w) forsome 0 <t, <t,
then
1y t
Iy, () =j X2 (w)d<{ M () =j X w)d{ M} (@) = (), (o).
0 [

Applying to J the argument used to obtain (4.18), we conclude that for all @
in some Q* = Q with P(Q*) = 1, (4.24) implies the identity J, (w) = J,(w).
According to Problem 4.5 (iv), we have that

T(s)
(4.25) T2 Jpy = j X,dM,; 0<s< oo

0
is continuous, and
(4.26) Toms, = Jrmsy = d 0<t < oo,

almost surely. Let 7, = inf{0 < t < o0; <J), > n},80 {Jn., F0<t < o0}is
amartingale. For 0 < s; <s, and n > 1, we have from the optional sampling
theorem:

E[‘Z;A(M),,A,"I%J = E[JT(sz)/\n/\:,,"g;T(s,)]

= JT(sl)A"Atn = slA<M>nAl"’ a.s.

Each (M}, . is a stopping time of the filtration {%.} because {(MD, . <s}
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={nAT, <TE} ={n<T), Dre2 n} € Frs. By assumption,
lim, o {MDpp., = ®© a8, it follows that J is in "¢ (relative to {g.})
Using this fact, we may repeat the preceding argument to show that -7<M>, =
J, is a continuous local martingale relative to the filtration {(uy,}> Which
contains {%}, and may actually be strictly larger.

In fact, we can choose an arbitrary continuous local martingale N relative
to {%,} and construct N, = N¢u>,» @ continuous local martingale relative to
{Gns,}- If we take N = B, then N = M from (4.17) and so M is in M
relative to {Gu,}- We now establish (4.23) by choosing an arbitrary N =
(N,,%,;,0 <5 < oo} e M and showing that

(4.27) (T, N>, =J Y,d(B,N),; 0<s<o
1]
holds a.s. (see Proposition 2.24). Let N; = Naps,. fix ¢y, and set
M! =My, — M,, N!=Ny, —Nj; 0<t<o0

Both M, N (respectively; M, N) are local martingales relative to {{4<M>ml}
(resp. {%m>,})- We may compute cross-variations thus:

KM, Ny, — AMLND, | = [KME, N, < JCMHEND,
= J(Myey, — MD)END s, = KND)s
where Problem 1.5.7 (iii) has been invoked. We see that if (M) is constant on
an interval, so is (M, N). From Problem 4.5 (iv) we conclude that <M, N1
is almost surely continuous. Because (M, N, has finite total variation for ¢

in compact intervals, the composition (M, N>y, has finite total variation
for s in compact intervals. Finally,

Bst - <M5N>T(s) = MT(s)NT(s) - <M5N>T(s)

is in ' relative to {%;}, s0

(4.28) (B,NY = (M,N)>ps; 0<s<o,as P
Setting s = (M), in (4.28), we obtain
(4.29) (B,N¢ay, = M. NDrasg = SMNDs 0<t<o

almost surely; we have used Problem 4.5 (iv) with ¢ = (M, N). Choose weQ
for which (4.29) holds. Then

r 1.1y(®) A<M, ND(@) = (M, NDy(@) — (M, Ny(w)
0 s~ o~
= <B,N><M>,,(w)(w) - <B,N><M>,,(w)(w)

= j 1[<M>..(w),<M>.,(w»(“)d<B,N Yu(w)
0

=j 110.(T (0, 0)) d<B, N4 (@),

0
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by virtue of Problem 4.5 (v) in the last step. Thus we have for step functions,
and consequently for all Borel-measurable functions G: [0, o) — [0, oo ], that

0

(4.30) Jw Gw)d{M,N>, = J G(T(w)d{B,N>,

0 0
holds a.s. Returning to (4.27), we can use the optional sampling theorem and
(4.30) to write

<-7,N>s = <JT(.), NT(.)>s = <J9N>T(s)

T(s) s
= J X, d{M,N>, = J Y,d{B,N>,; 0<s< o0,as.
0 0

This concludes the proof of (4.23). Replacing s by (M), in (4.23) and using
(4.26), we obtain (4.22). O

4.9 Remark. If, in the context of Theorem 4.6, we have P[S 2 (M),
< o0] > 0, we may take a Brownian motion B on an extended probability
space for which (4.17) holds (Problem 4.7), and the conclusions of Proposition
4.8 are still valid, except now we must define Y by

Yé{Xm,; 0<s<S§,

4.20Y
( ) 0; S <s< o0,

The proof is straightforward but tedious, and it is omitted.

4.10 Remark. Lévy’s characterization of Brownian motion (Theorem 3.16)
permits a bit more generality than expressed in Theorem 4.6. If X = {X,,
F:0<t<oo} is an adapted process with M £ X — X, e.#° and
lim,,,, (M), = w0 as, then the time-changed process

A .
Xo+ Mgy, 42 F,; 0<s<ow

is a one-dimensional Brownian motion with initial distribution PX;t. In
particular, X is independent of

B .
Bs=MT(s)9g’; M OSS<CD

(Definition 2.5.1). Similar assertions hold in the context of Problem 4.7,
Proposition 4.8, and Remark 4.9.

4.11 Problem. We cannot expect to be able to define the stochastic integral
§6 X,dW, with respect to Brownian motion W for measurable adapted pro-
cesses X which do not satisfy [§ X2 ds < ¢ a.s. Indeed, show that if

t 1
P[J stds<oo:|=1, for0<t<1 and Eé{f des=oo},
0 0

then
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limj X, dW, = —li_mj X,dW,= 4+, as.onkE.
1 Jo 1 Jo

4.12 Problem. Consider the semimartingale X, =x + M, + C, with xeR,
Me.#5", C a continuous process of bounded variation, and assume that
there exists a constant p > 0 such that |G| + (M), < pt, VYt >0 is valid
almost surely. Show that for fixed T > 0 and sufficiently large n > 1, we have

Pl max | X,/ =2n|[<ex .
[05:51| A ] p{lSpT

C. A Theorem of F. B. Knight

Let us state and discuss the multivariate extension of Theorem 4.6. The proof
will be given in subsection E.

4.13 Theorem (F. B. Knight (1971)). Let M = {M, = (MDY, M®),Z;0 <
t < o0} be a continuous, adapted process with M®e g, lim,_,, (MP), = o0;
a.s. P, and

4.31) MO MDY =0, 1<i#j<d, 0<t<o.
Define
Ty(s) = inf{t > O;<M®D, >s}; 0<s<oo0, 1<i<d,

so that for each i and s, the random time T(s) is a stopping time for the
(right-continuous) filtration {#,}. Then the processes

BPaMP, 0<s<owo, 1<i<d,

are independent, standard, one-dimensional Brownian motions.

Discussion of Theorem 4.13. The only assertion in Theorem 4.13 which is not
already contained in Theorem 4.6 is the independence of the Brownian
motions B?; 1 < i < d. Theorem 4.6 states, in fact, that BY is a Brownian
motion relative to the filtration {Z? 2 Zr )0, but, of course, these filtra-
tions are not independent for different values of i because 99 = #,;1 <i<d.
The additional claim is that the o-fields 2", #5°,..., F B are independent,
where {#2"} is the filtration generated by B®._ This would follow easily if the
assumption (4.31) were sufficient to guarantee the independence of M@, MY
for i # j; in general, however, this is not the case. Indeed, if W = {W,, #;
0 <t < oo} is a standard Brownian motion, then with

t t
MO A | 1yaodW, MP 2| Ly gdW; 0<t<oo,
t o {W,_O} s o {Ws }

we have M, M@ e .#5 and
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t
<M(”,M(2)>, = f l{W,ZO}l{W,<0} ds=0; 0<t<oo.
0
But MY and M® are not independent, for if they were, (M) and (M®>
would also be independent. On the contrary, we have

t t

Liw,>0yds + J lwcpds=t ; 0<t<co.
0

MO, + (M®), = f
0
F. B. Knight's remarkable theorem states that when we apply the proper
time-changes to these two intricately connected martingales, and then forget
the time-changes, independent Brownian motions are obtained. Forgetting the
time-changes is accomplished by passing from the filtrations {4} to the less
informative filtrations {#5"}.
We shall use this example in Section 6.3 to prove the independence of the
positive and negative excursion processes associated with a one-dimensional
Brownian motion.

D. Brownian Martingales as Stochastic Integrals

In preparation for the proof of Theorem 4.13, we consider a different class of
representation results, those for which we begin with a Brownian motion
rather than constructing it. We take as the integrator martingale a standard,
one-dimensional Brownian motion W = {W,, %,;0 <t < oo} on a probability
space (Q, #, P), and we assume {Z,} satisfies the usual conditions. For 0 <
T < oo, we recall from Lemma 2.2 that #* is a closed subspace of the Hilbert
space #7y. The mapping X — I;(X) from Z} to L*(Q, #r, P) preserves inner
products (see (2.23)):

E JT X, Y dt = E[I;(X)I;(Y)].
0

Since any convergent sequence in
(4.32) Ry £ {I(X), X € 27)

is also Cauchy, its preimage sequence in #;f must have a limit in Z¥. It follows
that #r is closed in L*(Q, #r, P), a fact we shall need shortly.
Let us denote by ¥ the subset of #5 which consists of stochastic integrals

t
I,(X)=J X dWw; 0<t< o,

0

of processes X € Z*:
4.33) MEEX), XeP* M M,.

Recall from Definition 1.5.5 the concept of orthogonality in .#,. We have the
following fundamental decomposition result.
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4.14 Proposition. For every M € #,, we have the decomposition M = N + Z,
where Ne #¥,Ze My, and Z is orthogonal to every element of M%.

PrOOF. We have to show the existence of a process Y e #* such that M =
1(Y) + Z, where Ze #A, has the property

(4.34) (ZJI(X))=0; VXe&*

Such a decomposition is unique (up to indistinguishability), indeed, if we have
M=IY)+Z =I(Y')+ 2" with Y', Y” e #* and both Z' and Z” satisfy
(4.34), then

Z é Z// _ Z/ — I(Y/ _ Y//)

isin 45 and (Z) =<Z,I(Y' — Y”)> = 0. It follows from Problem 1.5.12 that
P[Z,=0,y0<t< o] =1

It suffices, therefore, to establish the decomposition for every finite time-
interval [0, T]; by uniqueness, we can then extend it to the entire half-line
[0, ). Let us fix T > 0, let 7 be the closed subspace of L*(Q, #r, P) defined
by (4.32), and let &+ denote its orthogonal complement. The random variable
M is in L*(Q, #r, P), so it admits the decomposition

4.35) My =I;(Y)+ Zy,
where Ye 2% and Z;e L2(Q, F7, P) satisfies
(4.36) E[Z,I(X)]=0; VXeZ%.

Let us denote by Z = {Z,,#;0<t < oo} a right-continuous version of the
martingale E(Z|#) (Theorem 1.3.13). Note that Z, = Zrfort = T. Obviously
Z e .#, and, conditioning (4.35) on %, we obtain

(4.37) M=ILY)+2Z; 0<t<Tas P.

It remains to show that Z is orthogonal to every square-integrable mar-
tingale of the form I(X); X € %, or equivalently, that {ZIL(X), #;0<t = T}
is a martingale. But we know from Problem 1.3.26 that this amounts to having
E[ZsI(X)] = 0 for every stopping time S of the filtration {#,}, with S < T.
From (2.24) we have Is(X) = I +(X), where X (@) = X,(0) 1 <50} I8 @ Process
in #%. Therefore,

E[ZsIs(X)] = E[E(Z7| F5) (X)) = E[Z;1:(X)]=0
by virtue of (4.36). d

It is useful to have sufficient conditions under which the classes .44 and
¥ actually coincide; in other words, the component Z in the decomposition
of Proposition 4.14 is actually the trivial martingale Z = 0. One such condi-
tion is that the filtration {#} be the augmentation under P of the filtration
{#"} generated by the Brownian motion W. (Recall from Problem 2.7.6 and
Proposition 2.7.7 that this augmented filtration is continuous.) We state and
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prove this result in several dimensions. A martingale relative to this aug-
mented filtration will be called Brownian.

4.15 Theorem (Representation of Brownian, Square-Integrable Martingales
as Stochastic Integrals). Let W = {W, = (W"),... ., W,¥), Z;0<t < 0} be a
d-dimensional Brownian motion on (Q, %, P), and let {#,} be the augmentation
under P of the filtration {#," } generated by W. Then, for any Square-integrable
martingale M = {M,, #;0 < t < o} with M, = 0 and RCLL paths, a.s., there
exist progressively measurable processes YV = {Y 0, #:0 < t < o0} such that

T
(4.38) E‘[ (Y)dt<oo; 1<j<d
0
forevery0 < T < oc, and
d t
(4.39) M=% | YPdWD;, 0<t< co.
i=1 Jo

In particular, M is a.s. continuous. Furthermore, if Y9;1 < j < d, are any other
progressively measurable processes satisfying (4.38), (4.39), then

d [e o]
Y f [, — Y9124t =0, as.
=1Jo

Proor. We first prove by induction on m, where m = 1,...,d, that there are
processes YW Y™ in &* guch that

m t
(4.40) ZEM Y f YOdWD; 0<t < oo
i=1Jo

is orthogonal to every martingale of the form Y ™, {4 X9 dWY, where X e
Z* 1<j<m I m=1, this is a direct consequence of Proposition 4.14.
Suppose such processes exist form — 1, i.e.,

m—1 t
ZAM-Y | YOdWY; 0<t< oo,
=1 Jo

is orthogonal to ) 7o' [, XPdWY for all XPe £*; 1 <j<m— 1. Apply
Proposition 4.14 to write

t
Z,:f Y™AW™ + Z; 0<t < oo,
1]

for some Y™e #* where Z is orthogonal to fo X AW for all X™e
ZL* Forl <j<m-—1and XPe ¥* we have

(Z,I"(X0)y = (Z, 1™ (XD)y — (PP™(Y™), I*(X D)y = 0,

Thus, we have the decomposition (4.40) for M. In particular, with m = d,
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(4.41) (M, W‘f’>,=J YOds; 0<t<oo, 1<j<d.
0

Following Liptser & Shiryaev (1977), pp. 162-163, we now show that, in
the notation of (4.40) with m = d, we have P-ass. that
Z,=0, 0<t <0

First, we show by induction on n thatif0 =s, <5, < " <s,<t and if the
functions fi: R C,0<k<nare bounded and measurable, then

(4.42) E[z,' I fk(Wsk)] -0,
k=0

When n = 0, (4.42) can be verified by conditioning on %, and using the fact
Z, = 0 a.s. Suppose now that (4.42) holds for some n, and choose s, < t. For
6=(0,,...0,)eR fixed and s, <s <1, define withi =/ — 1

ols) & E[Z,' I1 fk(VVsk)eiw’WS)] = E[Zs' I1 fk(Wsk)e“o’W”]-
k=0 k=0
Using Itd’s rule to justify the identity

1O, W) . iO,W,) &7 ewa g 161> {* w0,m
2O = 'O We) 4 % if); e’"qu’——z—— & dy,
j=1

s" s"

we may write

(4.43) E[Z,e'® "\ ZF, | = Z, "™

d s
+3 iHjE[ZSJ 107 qWY) y]
i=1 S

1] 2 s
0 [ [ o]
But (4.40) and (4.41) imply

([ evmsans|s ] -1 || vmoansfs] o

Multiplying (4.43) by [Ti-0 £(W5,) and taking expectations, we obtain

2 s n
@44 ol =06 - "92” j E[zs- [l ﬂ(%k)e“”’w"’]du
k=1

Sn

9 2 s
= @(s,) — ) 2“ j o(uydu, s, <s<t.

By our induction hypothesis, ¢(s,) = 0, and the only solution to the integral
equation (4.44) satisfying this initial condition is ¢(s) = 0; s, < s < t. Thus
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(4.45) E [z,- [T /W, )et® Wﬂ] =0; VOeRe
k=0

With D & Z,-T[i-o (W, ), we define two measures on (R?, Z(R%)) by
pET) = E[D*1:(W,)]; T eB(R?).
Equation (4.45) implies

J €10 (dx) = J eIy (dx) VY OeRY,
Rd Ra

and by the uniqueness theorem for Fourier transforms, we see that u* = ™.
Thus

E[D"f(W)] = E[D™f(W)]; 5p<spu1 25<1,

for any bounded, measurable f: R*— C. This proves (4.42) for n + 1 and
completes the induction step.

A standard argument using the Dynkin System Theorem 2.1.3 now shows
that we have

(4.46) E[Z&]1=0

for every %" -measurable indicator ¢, and thus, for every %"-measurable,
bounded ¢. Since & differs from £" only by P-null sets, (4.46) also holds
for every Z-measurable, bounded ¢. Setting ¢ = sgn(Z,), we conclude that
Z, =0 as. P for every fixed t, and by right-continuity of Z, for all te[0, o)
simultaneously.

The uniqueness assertion in the last sentence of the theorem is proved by
observing that the martingale ) 4, [ (Y. — ¥.9)dW,? is identically zero, and
so is its quadratic variation. |

4.16 Problem. Let W= {W, =MW", . W9, £,0<t<w} be a d-
dimensional Brownian motion as in Theorem 4.15. Let M = {M,, #;
0 <t < oo} be a local martingale with M, = 0 and RCLL paths, a.s. Then
there exist progressively measurable processes YV = (Y9, #;0 <t < o0}
such that

T
J (Y dt<oo; 1<j<d, 0<T< oo,
0

and

d t
M=y J YOdW, 0<t< oo.
j=1

0

In particular, M is a.s. continuous.

4.17 Problem. Under the hypotheses of Theorem 4.15 and with 0 < T < 00,
let £ be an #7-measurable random variable with E€? < oo. Prove that there
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are progressively measurable processes YD, ..., YD satisfying (4.38), and such
that

d T
4.47) E=E() + Z J YW dWY; as. P.
=1 Jo

E. Brownian Functionals as Stochastic Integrals

We extend Problem 4.17 to include the case T = oo. Recall that for M € 45,
we denote by Z*(M) the class of processes X which are progressively measur-
able with respect to the filtration of M and which satisfy E {§ X7 d{M), < .
According to Problem 1.5.24, when X € L*(M), we have |3 X, dM, defined ass.
P.1If W is a d-dimensional Brownian motion, we denote by ZX(W) the set of
processes X which are progressively measurable with respect to the (aug-
mented) filtration of W and which satisfy E fo X2dt < co.

4.18 Proposition. Under the hypotheses of Theorem 4.15, let & be an F -
measurable random variable with EE* < co. Then there are processes ) L
Y@ in £*(W) such that

d o0
E=E@+ Y J YWY, as. P.
=1 Jo

PROOF. Assume without loss of generality that E(¢) =0, and let M, be a
right-continuous modification of E(£|%,). According to Theorem 4.15, there
exist progressively measurable YO, .., Y satisfying (4.38) and (4.39). Jensen’s
inequality implies M? < E(¢*| %), so

i E J' (YU)? ds = E(M), = E(M?) < E(E®) < 00; 0<t <0
i=1 0

Hence, Y9 e £*(W)and M, 2 |3 YD dW is defined for 1 < j < d. Problem
1.3.20 shows that M,, = E(¢|%,,) = &. 0

We leave the proof of uniqueness of the representation in Proposition 4.18
as Exercise 4.22 for the reader.

In one dimension, there is a representation result similar to that of Proposi-
tion 4.18 in which the Brownian motion is replaced by a continuous local
martingale M. This result is instrumental in our eventual proof of Theorem
4.13. Uniqueness is again addressed in Exercise 4.22.

4.19 Proposition. Let M = {M,, #; 0<t<oo}bein M and assume that
lim,_, (M), = ,as. P. Define T(s) by (4.15) and let B be the one-dimensional
Brownian motion

Bsé MT(S)’ gsa 0SS< Q0
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as in Theorem 4.6, except now we take the filtration {&,} to be the augmentation
with respect to P of the filtration {#}?} generated by B. Then, for every
&,-measurable random variable & satisfying EE* < o, there is a process X €
ZLX(M) for which

@

(4.48) £=E@©) + J X,dM,; as. P.
1]

PROOF. Let Y = {Y,,6,;0 < s < o0} be the progressively measurable process
of Proposition 4.18, for which we have

(4.49) EJ Y2 ds < oo,
1]

@

(4.50) £=E(@6) + J Y,dB,.
0
Define X, = Y305, 0 <t < 0.

We show how to obtain an { %, }-progressively measurable process X which
is equivalent to X. Note that because {%,} £ {#;,} contains {ZF} and
satisfies the usual conditions (Theorem 4.6), we have £, = %,; 0 < s < .
Consequently, Y is progressively measurable relative to {%,}. If Y is a simple
process, it is left-continuous (c.f. Definition 2.3), and it is straightforward to
show, using Problem 4.5, that { Y, My 0 <t < oo} is a left-continuous process
adapted to {#,}, and hence progressively measurable (Proposition 1.1.13). In
the general case, let {Y™}Z, be a sequence of progressively measurable
(relative to {&,}), simple processes for which

lim EJ | Y™ — Y,|?ds = 0.

n—w 0

(Use Proposition 2.8 and (4.49)). A change of variables (Problem 4.5 (vi)) yields

(4.51) lim E J |X™ — X |2d(MD, = 0,
n—owo 0

where X{® £ Y§), . In particular, the sequence { X™}%_, is Cauchy in £*(M),

and so, by Lemma 2.2, converges to a limit X € #*(M). From (4.51) we must

have

EJ IXI - Xt|2d<M>t =0,
1]

which establishes the desired equivalence of X and X.
It remains to prove (4.48), which, in light of (4.50), will follow from

J stBs:J X, dM,; as.P.
0 0

This equality is a consequence of Proposition 4.8. O
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PRrOOF OF F. B. KNIGHT'S THEOREM 4.13. Our proof is based on that of Meyer
(1971). Under the hypotheses of Theorem 4.13, let {69} be the augmentation
of the filtration {#2"} generated by B®; 1 <i <d. All we need to show is
that &0, ..., 89 are independent.

For each i, let £® be a bounded, &Y-measurable random variable. Accord-
ing to Proposition 4.19, there is, for each i, a progressively measurable process
X0 = {X® ;0 <t < oo} which satisfies

EJ (XOR (MO, < c0; 1 <i<d,
1]

and for which
&0 = E(EV) +J X9dM®;, 1<i<d
1]

Let us assume for the moment that
4.52) EE?) =0, 1<i<d,
and define the {%,}-martingale

t
éii’éj X0dM®; 0<t<oo, 1<i<d
1]

Itd’s rule and (4.31) imply that

d d t
(4.53) [1&9= Y J I EPXOAMP;, 0<t < 0.
i=1 i=1 Jo j#i
In order to let t —» oo in (4.53), we must show that
s} 2
4.59) E J (]_[ 59’X§“> d{MPy < o0; 1<i<d
o \j#i

Repeated application of Hélder’s inequality yields:

E Jt (H 59’X§"’>2 d{M®

0 \Jj#i
<E {1’[ [ sup (é&”)z]' g >,}
j#ilLo<s<t
12 1/4
S[E sup (éé")“] [E sup (5&2’)"]
0<s<t 0<s<t

2-d
[E sup (ég"’)z‘“‘] ECEMPTFY 0t <o,

0<s<t

For m > 1, Doob’s maximal inequality (Theorem 1.3.8 (iv)), and Jensen’s
inequality (Proposition 1.3.6) give
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2m  \*" )
E Gp2m | < E|e0[m
l:ossltztlés | ]_<2m_ l) |ét |

2m ™ .
E|EW|2m .
<2m_1) |E912" < oo

IA

We have from Proposition 3.26 (see also Remark 3.27):
B-ECCOY" < ERPP < EEP" < oo,

for some positive constant B which does not depend on t. Thus (4.54) holds,
and letting t — oo in (4.53) we obtain the representation

d d ©
=& [T eoxoamp,

The right-hand side, being a sum of martingale last elements (Problem
2.18), has expectation zero. Thus, under the assumption (4.52), we have
ET], &9 = 0. Equivalently, we have shown that for any set of bounded
random variables ¢V, ..., £9, where each ¢ is £9-measurable, the equality

(4.55) E fl [ED — E(¢9)] =0
i=1

holds. Using (4.55), one can show by a simple argument of induction on d that

Efl é“’ — fl Eé(i).
i=1 i=1

Taking 9 = 1, ; 4, 82,1 < i < d, we conclude that the o-fields £,..., 8%
are independent. O

What happens if the random variable £ in Problem 4.17 is not square-
integrable, but merely a.s. finite? It is reasonable to guess that there is still a
representation of the form (4.47), where now the integrands Y%),..., Y9 can
only be expected to satisfy

T
J (Y9)?%dt < c0; as. P.
0

Infact, an even stronger result is true. We send the interested reader to Dudley
(1977) for the ingenious proof, which uses the representation of stochastic
integrals as time-changed Brownian motions. There is, however, no unique-
ness in Dudley’s theorem; see Exercise 4.22 (iii).

4.20 Theorem (Dudley (1977)). Let W = {W,, %,;0 <t < o} be a standard,
one-dimensional Brownian motion, where, in addition to satisfying the usual
conditions, {#,} is left-continuous. If 0 < T < oo and & is an Fr-measurable,
a.s. finite random variable, then there exists a progressively measurable process
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Y = {Y,, #;0 <t < T} satisfying

T
J Y?dt < c0; as. P,
0

such that

T
&= j Y, dW,; as. P.

0

421 Remark. Note in Theorem 4.20 that the filtration {%,} might be generated
by a d-dimensional Brownian motion of which W is only one component. For
an amplification of this point, see Emery, Stricker & Yan (1983).

4.22 Exercise.

(i) In the setting of Proposition 4.18, show that the processes Y,..., Y@
are unique in the sense that any other processes YO, .., Y@ in LXW)
which permit the representation

d 0
E=EQ+ Y j FOawo, as.
=1 Jo
must also satisfy
«© d P ~
j DA YP12dt =0, as.
0o j=l1

(ii) In the setting of Proposition 4.19, show that X is unique in the sense that
any other process X e #*(M) which permits the representation

&= E(@&) + jw X,dM,, as.,

0

must also satisfy

j |X, — X,|2d(M) =0, as

0

(iii) Find a progressively measurable process Y such that

1 1

0< j Y?dt < o0, as., but j Y,dW,=0, as.
0 0

In particular, there can be no assertion of uniqueness of Y in Theorem

4.20.

4.23 Exercise. Is the following assertion true or false? “If M = {M,, #;
0<t<o}and N ={N,F;0<t< o0} arein 4" and KM = (N>, then
M and N have the same law.”
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4.24 Exercise (Hajek (1985)). Consider the semimartingales

t t
X,=X0+Jusds+Jasdm, Y,=Y0+J
0 0 0

t t

m(s)ds+f p(s)dV,

1]
O0<t<w

for 0 <t < oo, where W and V are Brownian motions; the progressively
measurable processes u, o and the Borel-measurable functions m: [0, o) — R,
p: [0, 00) - [0, o0) are assumed to satisfy

w<mit), |o| < p(), Jt {lus] + m(s) + p*(s)}ds < 0, VO<t< oo
1]

almost surely. If X, < Y, also holds a.s. and f is a nondecreasing, convex
function on R, show that

P(X,>¢)<2P(Y, =z c¢c); VceR,
Ef(X,) < Ef(Y)

hold for every t > 0. (Hint: By extending the probability space if necessary,
take W to be a Brownian motion independent of W, and consider the con-
tinuous semimartingales

t t
YO2 Y, + J m(s)ds + J

0 0

t
ades+(—1)'f pX(s) — a2 dW,,  i=1,2)
1]

3.5. The Girsanov Theorem
In order to motivate the results of this section, let us consider independent
normal random variables Z,, ..., Z, on (Q, &%, P) with EZ; =0, EZ? = 1.
Given a vector (iy,. .., i,) € R", we consider the new probability measure P
on (Q, ) given by

- n 1 n

P(dw) = exp[z wZ(w) — 3, Z :| P(dw).

i=1 =1

Then P[Z,edz,,...,Z,edz,] is given by

n 1 n
exp[z HiZi = 5 Y uf]'P[Zledzl,...,Z,,edz,,]
] i=1

(z; — ;1,.)2:| dz,...dz,.

RN |
.M=

= (2n)""? exp [—

i=1

Therefore, under P the random variables Z,, ..., Z, are independent and
normal with EZ, = y; and E[(Z, — ;)?] = 1. In other words, {Z, = Z; — u;
1 < i < n} are independent, standard normal random variables on (Q, #, P).
The Girsanov Theorem 5.1 extends this idea of invariance of Gaussian finite-
dimensional distributions under appropriate translations and changes of the
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underlying probability measure, from the discrete to the continuous setting.
Rather than beginning with an n-dimensional vector (Z4,...,2Z,) of indepen-
dent, standard normal random variables, we begin with a d-dimensional
Brownian motion under P, and then construct a new measure P under which
a “translated” process is a d-dimensional Brownian motion.

A. The Basic Result

Throughout this section, we shall have a probability space (Q,#,P) and a
d-dimensional Brownian motion W = {W, = (WD, , W), F;0<t < o0}
defined on it, with P[W, = 0] = 1. We assume that the filtration {%,} satis-
fies the usual conditions. Let X = {X, = (XD, XD), #;0 <t < oo} be
a vector of measurable, adapted processes satisfying

T
(5.1) PU (X}f>)2dz<oo]=1; l<i<d 0<T< .
1]

Then, for each i, the stochastic integral I W (X ®) is defined and is a member
of M. We set

a f* I
(5.2) Z(x) & CXP[Z j XPawd — Ej ||Xs||2ds:|.
i=1 Jo 0

Just as in Example 3.9, we have

0

d t
(5.3) ZX)=1+ ) j Z(X) X0 dw?,
i=1

which shows that Z(X) is a continuous, local martingale with Zy(X) = 1.

Under certain conditions on X, to be discussed later, Z(X) will in fdpt be a
martingale, and so EZ(X) = 1,0 <t < cC. In this case we can define, for each
0 < T < oo, a probability measure P on #r by

(5.4) P(A) 2 E[1,Z(X)]; AeZr.

The martingale property shows that the family of probability measures
{P;;0 < T < oo} satisfies the consistency condition

(5.5) P4)=B(4), Ae#, 0<t<T

5.1 Theorem (Girsanov (1960), Cameron and Martin (1944)). Assume that
Z(X) defined by (5.2) is a martingale. Define a process W = {W, = (W, ...,
W@), #;0 <t < oo} by

t
(5.6) we A wo — j X®ds; 1<i<d, 0<t<co.
0

For each fixed Te[0, ), the process (W, #;,0<t<T}isa d-dimensional
Brownian motion on (Q, #r, Pr).
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The preparation for the proof of this result starts with Lemma 5.3; the reader
may proceed there directly, skipping the remainder of this subsection on first
reading.

Discussion. Occasionally, one wants W, as a process defined for all t [0, o),
to be a Brownian motion, and for this purpose the measures {P;;0 < T < oo}
are inadequate. We would like to have a single measure P defined on %, so
that P restricted to any %, agrees with Pr; however, such a measure does not
exist in general. We thus content ourselves with a measure P defined only on
FY_ the o-field generated by W, such that P restricted to any & agrees with
P ie,

(5.7 P(A) = E[1,Z,(X)]; AeF}, 0<T< .

If such a P exists, it is clearly unique. The existence of P follows from the
Daniell-Kolmogorov consistency Theorem 2.2.2. We show this when d = 1;
only notational changes are required for the multidimensional case.

Lett = (ty,...,t,) be a finite sequence of distinct, nonnegative numbers, as
in Definition 2.2.1, and let t = max{t,...,t,}. Define

Q) = Ploe (W, (o),.... W, (0)eT], TeBR").

Then {Q,} is a consistent family of finite-dimensional distributions, so there
is a probability measure Q on (R”*, Z(R*->))) such that

Q,(1) = QIweR™; (w(ty),...,w(t,))el]; TeBR")

But the typical set in # has the form {w € Q; W/(w) € B}, where Be B(R!> ™).
Consequently, Q induces a probability measure P on #Y defined by

PlweQ; W(w)eB] £ Q(B);, BeB(R"™),

and this measure satisfies (5.7).

The process W in Theorem 5.1 is adapted to the filtration {#}, and so is
the process {[{ X" ds; 0 <t < oo}; this can be seen as in part (c) of the proof
of Lemma 2.4, which uses the completeness of %,. However, when working
with the measure P which is defined only on #¥, we wish W to be adapted
to {#}. This filtration does not satisfy the usual conditions, and so we must
impose the stronger condition of progressive measurability on X. We have
the following corollary to Theorem 5.1.

5.2 Corollary. Let W = {W,, #;,0<t < o} be a d-dimensional Brownian
motion on (Q, &, P) with P[W, = 0] = 1, and assume that the filtration {Z,}
satisfies the usual conditions. Let X = {X,, #/;0 <t < o} be a d-dimensional,
progressively measurable process satisfying (5.1). If Z(X) of (5.2) is a martingale,
then W = {W,, #¥;0 < t < oo} defined by (5.6) is a d-dimensional Brownian
motion on (Q, F¥, P).
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ProoF. For0 <t, <+~ <t, <t wehave
PLW,,...,W,)el'] = PLW,,....,W,)el']; I e B(R).

The result now follows from Theorem 5.1. O

Under the assumptions of Corollary 5.2, the probability measures P and
P are mutually absolutely continuous when restricted to F7;0< T < .
However, viewed as probability measures on F¥, P and P may not be
mutually absolutely continuous. For example, when d =1 and X, =/, a
nonzero constant, then

Z,(X) = exp[uW, —3p%t]; 0<t<o0

is easily seen to be a martingale. Corollary 5.2 and the law of large numbers
imply

~ 1 ~ 1 - 1
P[lim—m=u]=P[Iim~m=O]=l, P|:lim—W,=/{|=0.
tooo L tooo L PERNS 4

In particular, the P-null event {lim,_, (1/)W, = p} is in 7 for every 0 <
T < o0, so P and Py cannot agree on Fr. This is the reason we require (5.7)
to hold only for 4 € #7 .

B. Proof and Ramifications

We now proceed with the proof of Theorem 5.1. We denote by Ey (E) the
expectation operator with respect to P (P).

53 Lemma. Fix 0 < T < o and assume that Z(X) is a martingale. If 0 < 5 <
t < T and Y is an &,-measurable random variable satisfying E;|Y| < 00, then
we have the Bayes’ rule:

- 1 _
E,[YI#] = mE[YZ,(X)IZ], as. P and Pr.

ProoF. Using the definition of E, the definition of conditional expectation,
and the martingale property, we have for any Ae %;:

E; {IAE%(—)E[YZt(X)lZ]} = E{LE[YZ(X)|#]}

= E[1,YZ,(X)] = E[1,Y] O
We denote by .5 the class of continuous local martingales M = {M,, #;

0 <t < T} on (Q, Fp, P) satisfying P[M, = 0], and define .#5"° similarly,
with P replaced by Pr.
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5.4 Proposition. Fix 0 < T< oo and assume that Z(X) is a martingale. If
M e 45", then the process
t

d
(5.8) MaM - J XOdM WDy F: 0<t<T
i=1 Jo

isin MG If N e M5 and

d t
N&N-Y, J XPd(N, W, 0<t<T,
i=1 Jo

then
(M,N>,=<M,N>; 0<t<T, as PandP,,

where the cross-variations are computed under the appropriate measures.

ProOF. We consider only the case where M and N are bounded martin-
gales with bounded quadratic variations, and assume also that Z,(X) and

4.1 {6 (X9)? ds are bounded in t and w; the general case can be reduced to
this one by localization. From Proposition 2.14

2

t
J XOd{M,Wdy,
0

t
< <M, J (X" ds,
0
and thus M is also bounded. The integration-by-parts formula of Problem 3.12
gives
t

Zt(X)Mt = J

0

d t
Z,(X)dM, + ). J M, XPZ,(X)dW,?,
i=1

0

which is a martingale under P. Therefore, for 0 < s <t < T, we have from
Lemma 5.3:

E;[M,|#] = E[Z(X)M,|#] = M,, as. PandP;.

Z(X)

It follows that M e 7'
The change-of-variable formula also implies:
t
MtNt —<M,N}, = J

t d t
M, dN, +J N,dM, - Y U M, XD d(N, w5,
0 i=1

0 0

t
+J N,x9 d{M, W(f>>,,]
0

as well as

t

Z(X)[MN, — (M,N),] = J

t
Z(X)M,dN, + J Z(X)N,dM,
1]

0

d t
+ Z J [Muﬁu - <MaN>u]X|(4i)Zu(X)dVVuU)'
i=1 Jo
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This last process is consequently a martingale under P, and so Lemma 5.3
implies that for0 < s <t < T

E,[MN, — (M,N>|%] = M,N, — <M,N);; as. Pand P;.
This proves that (M, NY, = (M,N);0 <t < T, as. Prand P. O

PRrOOF OF THEOREM 5.1. We show that the continuous process W on (Q, %1, Pr)
satisfies the hypotheses of P. Lévy’s Theorem 3.16. Setting M = WY in Prop-
osition 5.4 we obtain M = WY from (5.8), so WO e .51, Setting N = W,
we obtain

(WD W0y, = (WD, WH), =5, t; 0<t<Tas Prand P. 0O

Let {M,, %;0 <t < T} be a continuous local martingale under P. With
the hypotheses of Theorem 5.1, Proposition 5.4 shows that M is a continuous
semimartingale under P;. The converse is also true; if {M,,#,0<t<T}
is a continuous martingale under Pr, then Lemma 5.3 implies that for
0<s<t<T:

E[Z(X)M\|F,] = Z(X)E;[M|#,]) = Z(X)M;; as. Pand P,

so Z(X)M is a martingale under P. If M e 45", a localization argument
shows that Z(X) M e .#5". But Z(X)e .4, and so 1t&’s rule implies that M=
[Z(X)M]/Z(X) is a continuous semimartingale under P (cf. Remark 3.4).
Thus, given M €45, we have a decomposition

M,=M,+B; 0<t<T,

where M e.#5"° and B is the difference of two continuous, nondecreasing
adapted processes with B, = 0, P-a.s. According to Proposition 5.4, the process

d t
Mt - <Mt - Z j X;l)d<M’ W(i)>s>
i=1

0

M=

t
=B+ jXé“d(M,W“")s; 0<t<T,

0

1

isin .#%"°, and being of bounded variation this process must be indistinguish-
able from the identically zero process (Problem 3.2). We have proved the
following result.

55 Proposition. Under the hypotheses of Theorem 5.1, every Me . #;'° has
the representation (5.8) for some M € Mc.

We note now that integrals with respect to dW,? have two possible inter-
pretations. On the one hand, we may interpret them by replacing AW, by
dW,® — X®dt so as to obtain the sum of an It6 integral (under P) and a
Lebesgue-Stieltjes integral. On the other hand, W® is a Brownian motion
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under P, so we may regard integrals with respect to dW,? as Itd integrals
under P;. Fortunately, these two interpretations coincide, as the next problem
shows.

5.6 Problem. Assume the hypotheses of Theorem 5.1 and suppose Y = {Y;, #;
0 <t < oo} is a measurable adapted process satisfying PI[IY2dt < 0] =1;
0< T < . Under P we may define the It6 integral {f, Y,dW9, whereas

under P; we may define the It integral [} Y, dW,®, 0 <t < T. Show that for
1 <i<d,wehave

t t t
J Y, dW® = J Y, dw® — J Y,XOds; 0<t<T, as. PandP;.
1] 1] 1]

(Hint: Use Proposition 2.24.)

C. Brownian Motion with Drift

Let us discuss a rather simple, but interesting, application of the Girsanov
theorem: the distribution of passage times for Brownian motion with drift.
We consider a Brownian motion W = {W,, %0 <t < oo} and recall from
Remark 2.8.3 that the passage time 7, to the level b # 0 has density and
moment generating function, respectively:

__Ib am
(5.9) P[T,edt] = Wexp ~a dt; t>0,
(5.10) Ee*To = e""‘\/z; o> 0.

For any real number p # 0, the process W = {W, 2 W, — ut, #7,0 < t < o}
is a Brownian motion under the unique measure P*) which satisfies

P¥(A4) = E[1,Z]; AeFY,
where Z, 2 exp(uW, — 3u?t) (Corollary 5.2). We say that, under P®, W, =

ut + W, is a Brownian motion with drift p. On the set {T, < t} e F N Fp, =

FX 5, we have Z,, 1, = Zr,, so the optional sampling Theorem 1.3.22 and

Problem 1.3.23 (i) imply
(5.11) PWLT, < 1] = E[Yr,<yZ] = EQyr, <y E(Z|F /7 1,)]
= E[I{T[,SI}ZIAT[,] = E[I{Tbsz}ZTb]
= E[l{TbS!}eub—(l/Z)usz]
! 1
= J exp <ub - 2u2s>P[T,,eds].
0

The relation (5.11) has several consequences. First, together with (5.9) it
yields the density of T, under P*®:
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a2
(5.12) PO[T edt] = — 2 _exp by s
< 2nt? 2t

Second, letting t — co in (5.11), we see that

PW[T, < ] = e"Efexp(— 21 T;)],
and so we obtain from (5.10):
(5.13) PW[T, < o] = exp[ub — |ubl]

In particular, a Brownian motion with drift u # O reaches the level b # 0 with
probability one if and only if pt and b have the same sign. If p and b have opposite
signs, the density in (5.12) is “defective,” in the sense that PW[T, < 0] <1

57 Problem. Let T be a stopping time of the filtration {#,”} with P[T < 0] =
1. A necessary and sufficient condition for the validity of the Wald identity

(5.14) Efexp(uWr — 312T)] = 1,
where p is a given real number, is that
(5.15) PW[T < 0] =1

In particular, if be R and pb < 0, then this condition holds for the stopping
time

(5.16) S, & inf{t = 0; W, — ut = b}.

5.8 Problem. Denote by

b b — ut)?
ht;b, ) & b CXP[—(——Q]; t>0,b#0,ueR,

2t 2t

the (possibly defective) density on the right-hand side of (5.12). Use Theorem
2.6.16 to show that

h( - 3 by + by, ) = h( - 3by, ) *xh( - 5bz2, 1) b,b, >0, ueR,

where * denotes convolution.

5.9 Exercise. With i > 0 and W, 2 inf,. W, under P% the random variable
— W, is exponentially distributed with parameter 24, ie.,

PW[— W, edb] = Z'ue'z“b db, b>0.

510 Exercise. Show that
EWe—aTs — exp(ub — |bl/p? + 20), «>0.

5.11 Exercise (Robbins & Siegmund (1973)). Consider, for v > 0 and ¢ > 1,
the stopping time of {#” }:
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R, = inf{t > 0; exp(vW, — $v?t) = c}.
Show that
2logc

v: o

1
P[R, < ] =-, EYR, =
c

D. The Novikov Condition

In order to use the Girsanov theorem effectively, we need some fairly general
conditions under which the process Z(X) defined by (5.2) is a martingale. This
process is a local martingale because of (5.3). Indeed, with

t
T, 2 inf{t >0; max | (Z,(X)XP)ds = n},

1<i<d Jo

the “stopped” processes Z™ £ (ZM & Z . (X), #;0 <t < oo} are martin-
gales. Consequently, we have

E[Znr|#]=Zopr; 0<sstinzl,

and using Fatou’s lemma as n —» oo, we obtain E[Z(X)|#] < Z,; 0<s<t.
In other words, Z(X) is always a supermartingale and is a martingale if and
only if

(5.17) EZ(X)=1, 0<t<
(Problem 1.3.25). We provide now sufficient conditions for (5.17).

5.12 Proposition. Let M = {M,, #;0 <t < oo} be in M"*° and define
Z, =exp[M, — 3{M),]; 0<t< oo

If

(5.18) Elexp{3{(M>}]1<o0; 0<t< o0,

then EZ, = 1,0 <t < 0.

ProoF. Let T(s) = inf{t > 0; (M), > s}, so the time-changed process B of
(4.16) is a Brownian motion (Theorem 4.6 and Problem 4.7). For b < 0, we
define the stopping time for {%,} as in (5.16):

S, = inf{s > 0; B, — s = b}.

Problem 5.7 yields the Wald identity E[exp(Bs, —4S,)] =1, whence

E[exp(3S;)] = e™®. Consider the exponential martingale {Y, £ exp(B, —

(5/2)), 9,0 < s < o0} and define {N,; 2 Y, 5, %; 0 <s < oo}. According to

Problem 1.3.24 (i), N is a martingale, and because P[S, < co] = 1 we have
N,, = lim N; = exp(Bs, — 1S,).

S0
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It follows easily from Fatou’s lemma that N = {N,, %,; 0 < s < oo} is a super-
martingale with a last element. However, EN, = 1 = EN,, so N = {N,, %,;
0 <s < oo} has constant expectation; thus N is actually a martingale with
a last element (Problem 1.3.25). This allows us to use the optional sampling
Theorem 1.3.22 to conclude that for any stopping time R of the filtration {%,}:

E[exp{Bgns, — 3R A 5,)}1=1.
Now let us fix t € [0, o0) and recall, from the proof of Theorem 4.6, that (M),
is a stopping time of {%,}. It follows that for b < O:
(5.19)  E[lis, <cmp explb +38,)] + EN ary, <5,y exP(M, — 3<MD))] = 1.

The first expectation in (5.19) is bounded above by e’ E[exp(3{M),)], which
converges to zero as b | —oo, thanks to assumption (5.18). As b | — oo, the
second expectation in (5.19) converges to EZ, because of the monotone
convergence theorem. Therefore, EZ, = 1;0 <t < 0. O

5.13 Corollary (Novikov (1972)). Let W = {W,=(WY,..., WD), #;0 <
t < o} be a d-dimensional Brownian motion, and let X = {X, = (X{",..., X[9),
Z,;0 < t < o} be a vector of measurable, adapted processes satisfying (5.1). If

1 T
(5.20) E|:exp <§J ||Xs||2ds>:| <ow; 0<T< oo,
0

then Z(X) defined by (5.2) is a martingale.

5.14 Corollary. Corollary 5.13 still holds if (5.20) is replaced by the following
assumption: there exists a sequence {t,}x-o of real numbers with 0 = t, <
t; <--- <t,7 o0, such that

t'l
(5.21) E[exp(%f ||Xs||2ds>:| <o, VYn=1.
tpoy

PrOOF. Let X,(n) = (X{"1y, _, .,(®),..., X[,
martingale by Corollary 5.13. In particular,

E[Z (X()#, 1=2, (X(n)=1 n=1

(1)), so that Z(X(n)) is a

n-tst,

But then,
E[Z (X)] = E[Z, (X)E{Z, (X(W)F, _}]1=E[Z,_ (X)],

and by induction on n we can show that E[Z, (X)] =1 holds for all n > 1.
Since E[Z,(X)] is nonincreasing in ¢ and lim,,, t, = o, we obtain (5.17).
O

5.15 Definition. Let C[0, c0)? be the space of continuous functions x: [0, 0c0) —
RY For 0 < t < oo, define %, £ o(x(s); 0 < s < t), and set ¥ = %, (cf. Prob-
lems 2.4.1 and 2.4.2). A progressively measurable functional on C[0, o) is a
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mapping u: [0, o0) x C[0, «0)? — R which has the property that for each fixed
0 <t < oo, u restricted to [0,t] x C[0, o) is B([0,t]) ® %,/B(R)-measurable.

If u=(uY,..., i) is a vector of progressively measurable functionals on
C[0,0) and W = {W, = (W,D,...,W¥), £;0 <t < o0} is a d-dimensional
Brownian motion on some (€, %, P), then the processes

(5.22) XNw) & 4, Wiw);, 0<t<oo, l<i<d,

are progressively measurable relative to {Z,}.

5.16 Corollary (Benes (1971)). Let the vector u = (u'?,. .., u) of progressively
measurable functionals on C[0, o) satisfy, for each 0 < T < oo and some
K1 > 0depending on T, the condition

(5.23) lue, ) < Kr(1 +x*0)); 0<t<T,

where x*(t) £ maxy<,<, [|x(s)|. Then with X, = (X1, .., X9) defined by (5.22),
Z(X) of (5.2) is a martingale.

Proor. If, for arbitrary T > 0, we can find {t,,...,t,q} such that 0 = ¢, <
t; < <ty = T and (5.21) holds for 1 < n < n(T), then we can construct
asequence {t,}7, satisfying the hypotheses of Corollary 5.14. Thus, fix T > 0.
We have from (5.22), (5.23) that whenever 0 < t,_; <t, < T, then

t
J‘ ||Xs||2ds < (tn - tn—l)K%(l + W’I,'k)25
tny

where W* £ max,., 1 |W,|. According to Problem 1.3.7, the process Y, £
expl(t, — t,-1)K%(1 + ||W])?/4] is a submartingale, and Doob’s maximal
inequality (Theorem 1.3.8(iv)) yields

Eexp[3(t, — t,—)KZ(1 + W¥)?] = E< max Y,2> <d4EY},
0<t<T

which is finite provided that t, — t,_; < 1/TKZ2. This allows us to construct
{to,....twr} as described previously. O

5.17 Remark. Liptser & Shiryaev (1977), p. 222, show that with d = 1 and
0 < & < $, one can construct a process X satisfying the hypotheses of Corol-
lary 5.13 but with (5.20) replaced by the weaker condition

T
E[exp{(%—s)f X,Zdt}] <ow; 0<T< oo,
1]

such that Z(X) is not a martingale.

The next exercise, taken from Liptser & Shiryaev (1977), p. 224, provides a
simple example in which Z(X) is not a martingale. In particular, it shows that
a local martingale (cf. (5.3)) need not be a martingale.
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5.18 Exercise. With W = {W,, #;0 < t < 1} a Brownian motion, we define
T=inf{0<t<Lt+ W =1}
—LWI ; O0<t<1
X, =4 (T—pp rlsTe mEn
0; t=1.

(i) Prove that P[T < 1] = 1, and therefore g X2dt < o0 as.
(i) Apply Ito’s rule to the process {(W,/(1 —))*;0 <t < 1} to conclude that

1 1 1
J X,dW,—-J X2dt
0 2)o

= —1-2 T[ : b Awear< —1
AR M s Tl M

(i) The exponential supermartingale {Z,(X), #;0<t< 1} is not a mar-
tingale; however, for each n>1 and o, = 1— (l/ﬁ), {Z 7o (X), Fs
0 <t < 1} is a martingale.

5.19 Exercise. Let W= {W, %;0<t <o} be a Brownian motion on
(Q, #, P) with P[W, =0] =1, and assume that {#,} is the augmentation
under P of the Brownian filtration {# }. Suppose that, foreach0 < T < o,
there is a probability measure P; on #; which is mutually absolutely
continuous with respect to P, and that the family of probability measures
{P;;0 < T < oo} satisfies the consistency condition (5.5). Show that there
exists a measurable, adapted process X = {X,, ;0 <t < oo} satisfying (5.1),
such that Z(X) defined by (5.2) is a martingale and (5.4) holds for0 < T < 0.
(Hint: Apply Problem 4.16 to the Radon-Nikodym derivative process dP,/dP.)

520 Exercise. Suppose that {L, %;0 <t < co}e.#*"* is such that Z, 4
exp[L, — $¢{L),] is a martingale under P, and define the new probability
measure Pr(A) 2 E(1,Z;); A %;. Establish the following generalization of
Proposition 5.4 and of the Girsanov theorem: if M e #"", then

t
~ 1
M,éM,—<L,M>,=M,—JZd<Z,M>S, Z; OStST

0 “~s

is in .Z¢-°°. (Hint: Imitate the proof of Proposition 5.4.)

36. Local Time and a Generalized 1t6 Rule
for Brownian Motion

In this section we devise a method for measuring the amount of time spent
by the Brownian path in the vicinity of a point x e R. We saw in Section 2.9
that the Lebesgue measure of the level set Z,(x) = {0 <t < o0; Wi(w) = x}
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turns out to be zero, i.e.,
6.1) meas Z,(x) =0, for P-ae weQ,

yielding no information whatsoever about the amount of time spent in the
vicinity of the point x (Theorem 2.9.6 and Remark 2.9.7). In search of a
nontrivial measure for this amount of time, P. Lévy introduced the two-
parameter random field

1
(6.2) L,(x)=1im 4—meas{0 <s<t|W,—x|<e}; tel0, o), xeR
0 €

and showed that this limit exists and is finite, but not identically zero. We
shall show how L,(x) can be chosen to be jointly continuous in (¢, x) and, for
fixed x, nondecreasing in ¢ and constant on each interval in the complement
of the closed set Z,(x). Therefore, (d/dt)L,(x) exists and is zero for Lebesgue
almost every t; ie., the function t+— L,(x) is singularly continuous. P. Lévy
called L,(x) the mesure du voisinage, or “measure of the time spent by the
Brownian path in the vicinity of the point x.” We shall refer to L,(x) as local
time.

This new concept provides a very powerful tool for the study of Brownian
sample paths. In this section, we show how it allows us to generalize It0’s
change-of-variable rule to convex but not necessarily differentiable functions,
and we use it to study certain additive functionals of the Brownian path. These
functionals will be employed in Chapter 5 to provide solutions of stochastic
differential equations by the method of random time-change. Local time will
be further developed in Chapter 6, where we shall use it to prove that the
Brownian path has no point of increase (Theorem 2.9.13). In this section, the
reader can appreciate the application of local time to the study of Brown-
ian sample paths by providing a simple proof of their nondifferentiability
(Exercise 6.6). This exercise shows that jointly continuous local time cannot
exist for processes whose sample paths are of bounded variation on bounded
intervals.

Throughout this section, {W,, ;0 <t < o}, (Q, F), {P*}, g denotes the
one-dimensional Brownian family on the canonical space Q = C[0, co). This
assumption entails no loss of generality, because every standard Brownian
motion induces Wiener measure on C[0, c0) (Remark 2.4.22), and results
proved for the latter can be carried back to the original probability space. We
take the filtration {#) to be {#]} defined by (2.7.3), and we set # = Z,. This
filtration satisfies the usual conditions. In this situation, P# is just a translate
of P%ie.,

(6.3) P*(F) = P)(F — z); Fe#,

(cf. (2.5.1)). We also have at our disposal the shift operators {0,},-, defined
by (2.5.15).

6.1 Definition. A measurable, adapted, real-valued process A = {4,, ;0 <
t < oo} is called an additive functional if, for every ze R and P*-a.e. weQ,
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we have

(6.4) A, (@) = Afw) + 4,60 0<st <.

6.2 Example. For every fixed Borel set B e B(R), we define the occupation time
of B by the Brownian path up to time t as

t
6.5 T(B)#2 j 15(W,)ds = meas{0 < s < t; W,eB};, 0<t< o,
0

where meas denotes Lebesgue measure. The resulting process I'(B) = {T:(B),
F,0<t<w}is adapted and continuous, and is easily seen to be an additive
functional.

A. Definition of Local Time and the Tanaka Formula

Equation (6.2) indicates that doubled local time 2L (x) should serve as a density

with respect to Lebesgue measure for occupation time. In other words, we
should have

(6.6) (B, w) = j 2L,(x,w)dx; 0<t< oo, BEAR).
B

We take this property as part of the definition of local time.

6.3 Definition. Let L = {L,(x, ®); (t,x)€ [0,0) x R,weQ} bea random field
with values in [0, c0), such that for each fixed value of the parameter pair (t, x)
the random variable L,(x) is F-measurable. Suppose that there is an event
Q* e # with P*(Q*) = 1foreveryzeR and such that, for each w € Q*, the func-
tion (t, x) > L,(x, w) is continuous and (6.6) holds. Then we call L Brownian
local time.

6.4 Remark. There is no universal agreement in the literature as to whether
L in Definition 6.3 or 2L is to be called local time. We follow the normalization
(6.6), used by Tkeda & Watanabe (1981).

6.5 Remark. With L as in Definition 6.3 and weQ*, one can immediately
derive (6.2) from (6.6) and the continuity of x> L,(x, ). Further, L(a) =
{L{a), #;0<t < oo} is easily seen to inherit the additive functional property
(6.4) from its progenitor, the occupation time I (Example 6.2).

6.6 Exercise. Assume that Brownian local time exists and show that for each
weQ* of Definition 6.3, the sample path t+— W(w) cannot be differentiable
anywhere on (0, o). (Hint: If t— W(w) is differentiable at ¢, then for some
sufficiently large C and sufficiently small é > 0 we must have |W,(w) —
Wi(w) <Ch;0<h< 4)
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6.7 Problem.
(i) Show that the validity of (6.6) is equivalent to

6.7 th(M(w))ds = ZJw f(x)L(x,w)dx; 0<t< o0,

for every Borel-measurable function f: R — [0, o).
(i) Let 5 be the class of continuous functions h: R — [0, 1] of the form

-

0; xsql,
X —q
L g, <x <4,
q> — 4,
(6.8) h(x) = j 1; g, < x <4,
—x
a2 g <x<q,
qa — 43
L0; X > (q,4,

where q, < q, < q; < q, are rational numbers.

1

Show that if (6.7) holds for all he #, then it holds for every Borel-
measurable function f: R — [0, c0). O

Our plan is the following: we shall assume in the present subsection that
Brownian local time exists, and we shall derive a convenient representation
for it, the Tanaka formula (6.11). In the next subsection it will be shown
that the right-hand side of (6.11) leads to a random field which satisfies the
requirements of Definition 6.3, thus establishing existence.

Let us fix 2 number aeR, and take f(x) in (6.7) to be the Dirac delta
evaluated at x — a, and derive formally the representation

t
(6.9) L,(a,w) = % J (W, (w) — a)ds.

0
But the integral on the right-hand side is only formal. In order to give it
meaning, we consider the nondecreasing, convex function u(x) = (x — a)*,
which is continuously differentiable on R\{a} and whose second derivative in
the distributional sense is u”(x) = (x — a). Bravely assuming that 1td’s rule
can be applied in this highly irregular situation, we write
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6.10) (W,—a)" —(z—a)* = j LW AW, + 3 j (W, — a)ds,
0 0

and in conjunction with (6.9), we have
t

611) La)=W,—a)" —(—a" - f lao(W)dW,; 0=t <00
0

P*-as. for every z € R. Despite the heuristic nature of both (6.9) and (6.10), the
representation (6.11) for local time is valid and will be established rigorously.

6.8 Proposition. Let us assume that Brownian local time exists, and fix a number
acR. Then the process L(a) = {L(a), #;0 <t < oo} is a nonnegative, continu-
ous additive functional which satisfies (6.11) and the companion representations

(612) Li@=(W—-a —(—a + J LW AW, 0<t <o,
0

t
(6.13) 2L,(a)=|W,—a| — |z — al— J sgn(W, —a)dW; 0<t<w
0
as. P?, for every zeR.

6.9 Remark. Any of the formulas (6.11), (6.12), or (6.13) is referred to as the
Tanaka formula for Brownian local time. We need establish only (6.11); then
(6.12) follows by symmetry and (6.13) by addition, since

t
P’[J L (W) dW, = 0; Vo<t< oo:| =1; VzeR
0
In particular, it does not matter how we define sgn(0) in (6.13); we shall define

sgn so as to make it left-continuous, i.e.,

1, x>0
—1; x=0.

6.14) sgn(x) = {

6.10 Remark. The process {(W, — a)*, #;0 <t < oo} is a continuous, non-
negative submartingale (Proposition 1.3.6); it admits, therefore, a unique
Doob-Meyer decomposition (under P%, for any ze R):

(6.15) W,—a)yt=(—a" + M(a + Afa);, 0t <0,
where A(a) is a continuous, increasing process and M(a) is a martingale
(see Section 1.4). The Tanaka formula (6.11) identifies both parts of this
decomposition, as A4,(a) = L,(a) and

t
(6.16) Ma) = j‘ Lo, y(W)dW,; 0 <t < 0.

0

Similar remarks apply to the representations (6.12) and (6.13).
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PRrROOF OF PROPOSITION 6.8. In order to make rigorous the heuristic discussion
which led to (6.11), we must approximate the Dirac delta d(x) by a sequence
of probability densities with increasing concentration at the origin. More
specifically, let us start with the C* function

1
— |, 0 2,
(6.17) p(x) & cexp [(x -1y - l} =x=

0; otherwise

which satisfies {2, p(x)dx = 1 by appropriate choice of the constant ¢, and
use it to define the probability density functions (called mollifiers)

(6.18) palx) £ np(nx)

as well as
x fy
u,(x) & J J pulz — a)dzdy; xeR,n>=1.

We observe that u,(x) = [*,, p,(z — a) dz, and so we have the limiting relations
lim uy(x) = 1, (%), lim u,(x) = (x — a)*, xeR
We now choose an arbitrary ze R. According to It6’s rule,

t l t
(6.19)  u,(W,) — u,(2) = f u(W,)dW, + EJ oW, — a)ds; 0<t< oo,
0 0

a.s. P?. But now from (6.7) and the continuity of local time,

t o0
J P(W, — a)ds = ZJ pulx — @)Ly (x)dx —— 2L,(a); as. P".
0 —

On the other hand,

2
E?

t t
f u, (W) dW, — f N AY A

0 0

t t
= E J |U(Wy) — 1g, o Wi)2 ds < f P=[|Ws —al< ﬂ ds,
0 0
which converges to zero as n — oo. Therefore, for each fixed ¢, the stochastic
integral in (6.19) converges in quadratic mean to the one in (6.16), and (6.11)
for each fixed t follows by letting n — oo in (6.19). Because of the continuity
of the processes in (6.11), we obtain that, except on a P>-null event, (6.11) holds
for0 <t < 0. O

B. The Trotter Existence Theorem

We can employ now the Tanaka representation (6.11) to settle the question
of existence of Brownian local time. This is in fact the only result proved in
this subsection.
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6.11 Theorem (Trotter (1958)). Brownian local time exists.

PRrOOF. We start by showing that the two-parameter random field, obtained
by setting z = 0 on the right-hand side of (6.11), admits a continuous modifi-
cation under P°. The term (W, — a)* — (—a)™ is obviously jointly continuous
in the pair (t,a). For the random field {Mfa),0 <t <0,a€e R} in (6.16) we

have, witha < b,0 < s <t < T and any integer n > 1
t s 2n
J Lig,(Wo) AW, J IS UAT LA }
s 0

E°|M,(a) — M(B)*"
< 4"C,,|:E°<Jt l(,,,(,o,(VV,,)duyl + E°<JS l(,,,,,](W,,)du>":|,
s 0

thanks to (3.37). The first expectation is bounded above by (¢t — 5)", whereas
the second is dominated by

EU l(a,b](vv,)dt]"
0

T T
J J Eo[l(a,b](ml)"'l(a,b](m")]dtn"'dtl

0 0

2n
<4" {EO + E°

T (T T
n! J J . J E°[ W) Lo (W) - - los(W,)]dt,.. . dt; dt;.
t thot

0 Ji

With 0 < t < 6 < T, we have for every yeR,

P°[a<W,,sb|W,=y]sP°[a<Wesb

> (b-a)2/0—1 . b—a
= |— e Fld; € ——x0,
T Jo 2,/0—t
and so

T n
EO[J l(a,b](m)dt]
o]
b—a\* (T T T
Sn!( 5 )J J J [tl(tz—tl)...(t,,—t,,_l)]"”zdt,,...dtzdtl
0 ty th-1

<Curb—a\

b
W,=a+ :|
2

where C,,‘T is a constant depending on n and T but not on a or b. Therefore,
witha < band 0 < s <t < T, we have

(6.20) E°|M,(a) — M(b)1*" < C, ;[(t — 5)" + (b —a)]
< C, rli(t,a) — (s, B)I"
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for some constant C, ;. By the version of the Kolmogorov-Centsov theorem
for random fields (Problem 2.2.9), there exists a two-parameter random field
{I(a); (t,a)e [0, ) x R} such that for P%-a.e. weQ, the mapping (t,a)—
I(a, w) is locally Holder-continuous with exponent y, for any y €(0,4), and for
each fixed pair (¢, a) we have

6.21) PO[l(a) = MJ(a)] = 1.
Now we define
Li@2W—-a*—(-a)"—ILa); 0<t< oo, aeR

For fixed (t,q), L,(a) is an &,-measurable random variable, and the random
field L is P%-a.s. continuous in the pair (¢, a). Indeed, because W, and I,(a) are
both locally Holder-continuous for any exponent ye(0,2), the local time L
also has this property: for every y€(0,3), T > 0, K > 0, there exists a P%-ass.
positive random variable h(w) and a constant § > 0 such that

|Li(a, w) — L(b, w)|

622) Pl we; su <é
o<ltatmi<her I(6a) — (DI
0<s,t<T

-K<a,b<K

Our next task is to show that the random field L,(a) satisfies the identity
(6.6), or equivalently (6.7). For every function h in the class # of Problem 6.7,
define

H(x) & Jm h(u)(x — w)* du = JX J‘y h(u)dudy; xeR

—a0
and observe the identities

X

H'(x) = r h(1)1 4, y(x) dut = J hu)du, H’(x) = h(x).

—o0 —a0

By virtue of Itd’s rule and Problem 6.12, we have P%-a.s. for fixed ¢ > 0:

1 t
2 L h(W,) ds

=HW) - H() — Jt H' (W) aw
0

Jm h(@{(W, —a)* —(—a)"} da - Jt <Jm h(a)l(.,,m)(Ws)da)dWs

o0 0 —0

- r h(a) {(W, — ) —(—a) — J 1(.,,00,(Ws)dws} da
o 0

= Jm h(a)L{a)da + Jm h{a){I,(a) — M(a)} da.

But E°[®, (I(a) — M/(a))*da = [*, E°(I{(a) — M,(@))*da=0 by (6.21).
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Thus, for each fixed t > C, we have for P%-a.e. w€Q

t <o}
6.23) j h(W(w))ds = ZJ‘ h(x)L,(x, ) dx.
0 -

Since both sides of (6.23) are continuous in ¢ and #’ is countable, it is possible
to find an event Q¥ € # with P°(Q¥) = 1 such that for each w € Q¥,(6.23) holds
for every he # and every t > 0. Problem 6.7 now implies that for each w € Qg,
(6.7) holds for every Borel function f: R — [0, o).

Recall finally that Q = C[0, c0) and that P* assigns probability one to the
event Q, 2 {weQ; w(0) = zj. We may assume that Q¥ < Q,, and redefine
L,(x,w) for w¢Q, by setting

Li(x, ) 2 L(x — (0), ® — (0)).

We set Q* = {weQ; w — w(0)eQg}, so that P*Q*) =1 for every zeR
(cf. (6.3)). It is easily verified that L and Q* have all the properties set forth
in Definition 6.3. O

6.12 Problem. For a continuous function h: R — [0, o) with compact support,
the following interchange of Lebesgue and It6 integrals is permissible:

(6.24) j i h(a)( j ' l(a,w,(ws)dws>da
-0 1]
= Jw <Jw h(a)l(,,,w)(Ws)da> dw,, as. P°.
1] -

6.13 Problem. We may cast (6.13) in the form
(6.25) |W, —a| =z —al — Ba)+2L(a);, 0=<t< o,
where B(a) & — [t sgn(W, — a)dW,, for fixed ae R.

(i) Show that for any z€ R, the process B(a) = {B(a), #;0 <t < oo} isa
Brownian motion under P, with P*[By(a) = 0] = 1.

(ii) Using (6.25) and the representation (6.2), show that L(a) = {L(a), #;
0 <t < o0} is a continuous, increasing process (Definition 1.4.4) which
satisfies

(6.26) J lp\@(W)dL(a) =0; as. Pz,
0

In other words, the path t— L,(a, o) is “flat” off the level set Z,(a) =
{0 <t < oo; Wiw) = a}.

(ili) Show that for P%-a.e. w, we have L,(0,w) > 0 for all ¢ > 0.

(iv) Show that for every ze€ R and P*-a.e. o, every point of Z,(a) is a point of
strict increase of ¢+ L(a, ®).
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C. Reflected Brownian Motion and the Skorohod Equation

Our goal in this subsection is to provide a new proof of the celebrated result
of P. Lévy (1948) already discussed in Problem 2.8.8, according to which the
processes

627) {MF — W, 2 max W,— W;0<t<o} and {|W;0<t< 0}
o< t

have the same laws under P°. In particular, we shall present the ingenious
method of A. V. Skorohod (1961), which provides as a by-product the fact
that the processes

(6.28) (M £ max W,;0<t<o} and {2L(0);0<t < o0}

o<s<t

also have the same laws under P°.

6.14 Lemma (The Skorohod equation (1961)). Let z > 0 be a given number
and y(-) = {y(t); 0 < t < oo} a continuous function with y(0) = 0. There exists
a unique continuous function k(-) = {k(t); 0 <t < oo}, such that

i) xO2z+yO)+k(t)=20,0<t< 0,
(i) k(0) = 0, k(*) is nondecreasing, and
(iii) k(-)isflat off {t > 0; x(t) = O}; i.e., [F Lix>o0y dk(s) = 0.

This function is given by

(6.29) k(t) = max |:0, max {—(z + y(s))}:l, 0<t< oo

0<s<t

ProoF. To prove uniqueness, let k(-) and k() be continuous functions with
properties (i)—(iii), where x(-) and X%(-) correspond to k(-) and k(), respec-
tively. Suppose there exists a number T >0 with x(T) > %(T), and let
t2max{0 <t < T;x(t) — X(t) = 0} so that x(t) > %(t) = 0, Vte(r, T]. But
k(-)is flat on {u > 0; x(u) > 0}, so k(r) = k(T). Therefore,

0 < x(T) — X(T) = k(T) — k(T) < k() — k(x) = x(1) — X(1),
a contradiction. It follows that x(T) < %(T) forall T > 0,s0 k < k. Similarly,
k>k
We now take k(-) to be defined by (6.29). Conditions (i) and (ii) are obviously

satisfied. In order to verify (iii), it suffices to show (¥ 1 (xs)>s} dk(s) = O for

every ¢ > 0. Let (¢,,t,) be a component of the open set {s > 0; x(s) > ¢} and
note that

—(z+ y(5)) = k(s) — x(s) < k(t;) — & t; <s<t,.
But then
k(t;) = max [k(tl), max {—(z + y(s))}] < max[k(t,), k(t;) — €],

which shows that k(t,) = k(t,). [l
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6.15 Remark. For every z > 0 and y(-)e C[0, c0) with y(0) = 0, we denote by
A the class of functions ke C[0, c0) which satisfy conditions (i) and (ii) of
Lemma 6.14 and introduce the mappings

(6.30) T(z;y) & max[O, max {—(z + y(s))}]; 0<t<w

0<s<t
(6.31) R(z;)) 2z +y@) + Tz y) 0<t<o0.
In terms of these, the solution to the Skorohod equation is given by
(6.32) k(t) = Ti(z;y),  x(t) = Ri(z; )

and T(z;y) is the minimal element of ", as can be seen from the first part of
the proof of Lemma 6.14.

6.16 Proposition. Let z > 0 be a given number, and B = {B, %;0 <t < oo}
a Brownian motion on some probability space (0,9, Q) with Q[B, = 0] = 1.
We suppose there exists a continuous process k=1{k,%;0<t< oo} such that,
for Q-a.e. 6€ O, we have

() X(0)2z—B(6)+k(0)=0, 0<t<0,
(i) ko(0) =0, tr—>k,(0) is nondecreasing, and
(i) % 10,0 Xs(0)) dky(8) = 0.
Then X = {X,;0<t< oo} under Q has the same law as |W|= {|W;
0 <t < oo} under P

PROOF. The law of the pair (k, X) is uniquely determined, since by Lemma 6.14
k,(6) = T(z; — B.(0)), X,(6) = Rz; —B(0)); 0 <t < oo, for Q-ae. §0O. It
suffices, therefore, on our given measurable space (Q, #) equipped with the
Brownian family {W,, #;0 < t < o}, {P*}, g to exhibit a standard Brown-
jan motion B = {B,, ;0 <t < oo} and a continuous nondecreasing process
k=1{k,%;0<t< oo} such that, for P*-a.e. weld:

|W(o)| = z — B(o) + k(w); 0<t<0,
6.33) ko(w) =0, t—k(w) is nondecreasing, and

j 1 (o} (Wsl@)) dky(@) = 0.

0

But this has already been accomplished in Problem 6.13 (relations (6.25), (6.26)
with a = 0), if we make the identifications

r = -j sgn(W,)dW,, k = 2L(0). g

0

6.17 Theorem (P. Lévy (1948)). The pairs of processes (MY — W, M),
0<t<oo}and {(IWl,2L(0)); 0<t< oo} asin(6.27), (6.28) have the same
laws under P°.
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PRrOOF. Because of uniqueness in the Skorohod equation, we have from (6.33)
(6.34)  2L,(0,0w) = M(w), W, (w)l= MP(w) — B(w); 0<t<o
for P%-a.e. w €€, upon observing that

(6.35) MP(w) = max B,(w) = T,(0; — B())

0<sgt

(Remark 6.15). The assertion follows, since both W and B are Brownian
motions starting at the origin under P°. We also notice the useful identity,
valid for every fixed t € [0, 0):

1
(6.36) M? = lim Emeas{o <s<t;M?— B <g¢}, as. P° O
ed0

6.18 Problem. Show that for every pair (g, z) e R? we have

P’[weQ; lim L,(a, w) = oo:I =1

-0

D. A Generalized 1t6 Rule for Convex Functions

The functions f;(x) = (x — a)*, f5(x) = (x —a)7, and f3(x) = |x — a| in the
Tanaka formulas (6.11)—(6.13) share an important property, namely convexity:
637) fAx+(1—-AD)<HX)+1-f(z); x<z, O0<i<],

which can be put in the equivalent form

(6.38) ﬂwsj

20+ 2T f6y x<y <z

— X zZ— X

upon substituting y = Ax + (1 — 4)z. Our success in representing f(W,) ex-
plicitly as a semimartingale, for the particular choices f(x) = (x — a)* and
J{x) = |x — a|, makes us wonder whether it might be possible to obtain a
generalized Ité formula for convex functions which are not necessarily twice
differentiable. This possibility was explored by Meyer (1976) and Wang (1977).
We derive the pertinent It formula in Theorem 6.22, after a brief digression
on the fundamental properties of convex functions on R,

6.19 Problem. Every convex function f: R — R is continuous. For fixed x € R,
the difference quotient

(6.39) Af(x;h) & W; h#0

is a nondecreasing function of heR\{0}, and therefore the right- and left-
derivatives
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(6.40) DHf(x) 2 lim LS+ By = £(9)

exist and are finite for every x e R. Furthermore,
(6.41) D*f(x) < D f(») < D*f(y) x <,

and D*f(-) (respectively, D™f(-)) is right- (respectively, left-) continuous and
nondecreasing on R.

Finally, there exist sequences {«, }s=; and { §, };=, of real numbers, such that

(6.42) f(x) =sup (t,x + B,); xeR.

n>1

(Hint: Use (6.38) extensively.)

6.20 Problem. Let the function ¢: R — R be nondecreasing, and define
@.(x) = lim @(y), P(x)= j o(u) du.
yox 0
(i) The functions ¢, and ¢_ are right-and left-continuous, respectively, with
(6.43) P_(x) < o(x) < @4(x); xeR.

(ii) The functions ¢, have the same set of continuity points, and equality
holds in (6.43) on this set; in particular, except for x in a countable set N,
we have ¢, (x) = ().

(iii) The function @ is convex, with

D ®(x) = ¢_(x) < ¢(x) < @4 (x) =D P(x); xeR.
(iv) If f: R - Ris any other convex function for which
(6.44) D f(x) < o(x) < D*f(x); xeR,
then we have f(x) = f(0) + ®(x); xeR.

621 Problem. For any convex function f: R — R, there is a countable set
N < R such that f is differentiable on R\N, and

(6.45) f'(x) = D*f(x) = D™f(x); xeR\N.

Moreover

(6.46) f(x) — f(0) = j * () du = j " DEfwydu; xeR
0

0

The preceding problems show that convex functions are “essentially” differ-
entiable, but Itd’s rule requires the existence of a second derivative. For a
convex function f, we use instead of its second derivative the second derivative
measure p on (R, B(R)) defined by

(6.47) u([a, b)) & Df(b) — D f(a)y —oo <a<b< oo
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Of course, if f” exists, then u(dx) = f”(x)dx. Even without the existence of f”,
we may compute Riemann-Stieltjes integrals by parts, to obtain the formula

(6.48) r g()u(dx) = —r g'(x)D"f(x)dx

—0 —a

for every function g: R —» R which is piecewise C* and has compact support.

6.22 Theorem (A Generalized Itd6 Rule for Convex Functions). Let f: R - R
be a convex function and u its second derivative measure introduced in (6.47).
Then, for every z € R, we have a.s. P*:

oo

t
(649) f(W)=f(2) +J D™f(W,) dW, +J L(x)udx) ; 0<t< oo

0 —®
Proor. It suffices to establish (6.49) with ¢ replaced by t A T_, A T,, and by
such a localization we may assume without loss of generality that D*f is

uniformly bounded on R. We employ the mollifiers { p, }:%, of (6.18) to obtain
convex, infinitely differentiable approximations to f by convolution:

(6.50) filx) & f pulx — NF)dy; n> L
It is not hard to verify that f,(x) = {2, p(2)f(x — (z/n))dz and
(6.51) lim f,(x) = f(x), lmf;() =D f(x)

hold for every xeR. In particular, the nondecreasing functions D™f and
{£}2., are uniformly bounded on compact subsets of R. If g: R — Ris of class
C! and has compact support, then because of (6.48),

n2o J—w n-o J-—x

lim Jm gx)f) (x)dx = —lim J‘w g'(x)f, (x)dx

oo

= - J g'x)D"f(x)dx = J g(x)u(dx).
A continuous function g with compact support can be uniformly approximated
by functions of class C!, so that

6.52) lim J gxX)fy (x)dx = J‘w g(x)u(dx).

n—o -

We can now apply the change-of-variable formula (Theorem 3.3) to f,(W,),
and obtain, for fixed t (0, o0):

S(W) — fule) = J’f..’(Ws)dWs + % J' w(W)ds, as. P~
0 0

When n — oo, the left-hand side converges almost surely to f(W,) — f(z), and
the stochastic integral converges in L? to [y D™f(W,)dW, because of (6.51) and



3.6. Local Time and a Ceneralized It Rule for Brownian Motion 215

the uniform boundedness of the functions involved. We also have from (6.7)
and (6.52):

e 0]

t [os)
lim j “"(W,)ds = 2lim j (x)L(x)dx = Zj L,(x)u(dx), as. P*
n—=w JO n—w J—owo —0

because, for P*-a.e. w€Q, the continuous function x — L,(x, w) has support
on the compact set [ming <<, Wilw), Maxo<,<: W,(w)]. This proves (6.49) for
each fixed ¢, and because of continuity it is also seen to hold simultaneously
for all te[0, 0), a.s. P~ ]

6.23 Corollary. If f: R — R is a linear combination of convex functions, then
(6.49) holds again for every z€ R; now, p defined by (6.47) is in general a signed
measure with finite total variation on each bounded subinterval of R.

6.24 Problem. Let a, <a, <''* <a, be real numbers, and denote D =
{ay,...,a,}. Suppose that f: R — R is continuous and f” and f” exist and are
continuous on R\D, and the limits

flax) 2 lim (), f"lax)= lim [7(x)

x—a t+ x—ap +

exist and are finite. Show that f is the difference of two convex functions and,
for every zeR,

t 1 t
(6.53) f(W)=fle) + j f’(W.f)dWs+5j fr(w)ds
Y 0
b5 L@ k)~ [ 05t 0 as P

6.25 Exercise. Obtain the Tanaka formulas (6.11)-(6.13) as corollaries of the
generalized Ito rule (6.49).

E. The Engelbert—Schmidt Zero-One Law

Our next application of local time concerns the study of the continuous,
nondecreasing additive functional

A(w) = jtf(Ws(w))dS; 0<t<oo,
0

where f:R—[0,c0) is a given Borel-measurable function. We shall be
interested in questions of finiteness and asymptotics, but first we need an
auxiliary result.

6.26 Lemma. Let f: R — [0, 00) be Borel-measurable; fix xR, and suppose
there exists a random time T with
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P0<T<w]=1, Po[fo(x + W,)ds < oo] > 0.
[¢]

Then, for some ¢ > 0, we have
(6.54) f Sx + y)dy < 0.

PROOF. From (6.7) and Problem 6.13 (iii), we know there exists an event Q*
with P°(Q*) = 1, such that for every w e Q*:

[ el

T(w)
J Sx + W) ds = ZJ S(x + Y Ly(y, ) dy

0 -
and L) (0, ) >0. By assumption, we may choose weQ* such that
16 f(x + Wyw))ds < oo as well. With this choice of w, we may appeal to
the continuity of Ly, (-, ) to choose positive numbers ¢ and ¢ such that
L1 (y, @) = c whenever |y| < ¢. Therefore,

e T(o)
ZCJ f(x+y)dy$Jv Sx + W(w))ds < oo,

0
which yields (6.54). [

6.27 Proposition (Engelbert—Schmidt (1981) Zero-One Law). Let f: R —
[0, ) be Borel-measurable. The following three assertions are equivalent:

(i) PLfsfW)ds < 0; VO<t<o0]>0,
(i) POLJf(W)ds < o0; VO<t<oo]=1,
(i) f is locally integrable; i.e., for every compact set K = R, we have
[k f(y)dy < 0.

Proor. For the implication (i) = (iii) we fix be R and consider the first
passage time T,. Because P°[T, < co] =1, (i) gives PO[[5'™ f(W,)ds < oo;
VO <t < o] > 0. But then

t+ Typ(w) t+ Ty(w) t
J S(W(w))ds > J S(W(w))ds = J f(b + B(w))ds,
0 Ty(w) 0
where B(w) £ Wit @) — b; 0 < 5 < o0 is a new Brownian motion under
P. 1t follows that for each ¢ > 0, P°[{, f(b + B)ds < 0] > 0, and Lemma
6.26 guarantees the existence of an open neighborhood U(b) of b such that
fue f(»)dy < o0. If K = R is compact, the family {U(b)}}x, being an open
covering of K, has a finite subcovering. It follows that fx S(»dy < oo.

For the implication (iii) = (ii) we have again from (6.7), for P%-a.e. weQ:

My (@)

Lf(Ws(w))dS = ZJ_GO SO Ly, w)dy = ZJ SYL(y, w)dy

my(w)

M (o)
< [ max 2L,(y, w)]f fdy; 0<t< o,

my(@) <y < My(w) my(w)
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where m,(w) = ming <5<, Wi(w), M,(w) = maXo<s<: W.(w). The last integral is
finite by assumption, because the set K = [m(w), M,(w)] is compact. a

6.28 Corollary. For 0 < o < 0o, we have the following dichotomy:

po *ods o VO<t<oo|= 1, fo<a<l
LA ’ - o ifax=1 :

6.29 Problem. The conditions of Proposition 6.27 are also equivalent to the
following assertions:

(iv) P°[fsf(Wy)ds < 0] = 1, for some 0 <t < 0;

(v) P*[[5 f(W)ds < o0; VO<t< 0] = 1, for every xe R;

(vi) for every xeR, there exists a Brownian motion {B,,%,;0 <t < oo} and
a random time S on a suitable probability space (©,%,0Q), such that
Q[Bo=0,0<S<oo]=land

s
Q[J f(x + Byds < oo] > 0.
0

(Hint: Tt suffices to justify the implications (ii) = (iv) = (vi) = (iii) = (v) = (vi),
the first and last of which are obvious.)

6.30 Problem. Suppose that the Borel-measurable function f: R — [0, o0)
satisfies: meas{y€R; f(y) > 0} > 0. Show that

(6.55) P> [weﬁ; Jmf(m(w))ds = oo] =1
0

holds for every x € R. Assume further that f has compact support, and consider
the sequence of continuous processes

l nt
X}"’Q—J f(Wyds; 0<t<oo,n>1
Jnlo
Establish then, under P°, the convergence

(6.56) xm -2, x

in the sense of Definition 2.4.4, where X, £ 2| fll;L,(0) and W, 2
{20 f(y)dy > 0.

3.7. Local Time for Continuous Semimartingales’
The concept of local time and its application to obtain a generalized Itd rule
can be extended from the case of Brownian motion in the previous section

to that of continuous semimartingales. The significant differences are that

* This section may be omitted on first reading; its results will be used only in Section 5.5.
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time-integrals such as in formula (6.7) now become integrals with respect
to quadratic variation, and that the local time is not necessarily jointly
continuous in the time and space variables. We shall use the generalized It
rule developed in this section as a very important tool in the treatment of
existence and uniqueness questions for one-dimensional stochastic differential
equations, presented in Section 5.5.

Let
(7.1 X,=Xo+M+V; 0<t<o
be a continuous semimartingale, where M = {M,, #,;0 <t < oo} isin 4",
V={V,%;0 <t < oo} is the difference of continuous, nondecreasing, adapted
processes with ¥, = 0 a.s., and {&,} satisfies the usual conditions. The results
of this section are contained in the following theorem and are inspired by
a more general treatment in Meyer (1976); they say in particular that con-
vex functions of continuous semimartingales are themselves continuous semi-
martingales, and they provide the requisite decomposition.

7.1 Theorem. Let X be a continuous semimartingale of the form (7.1) on some
probability space (Q, F, P). There exists then a semimartingale local time for
X, ie., a nonnegative random field A = {A(a, w); (t,a)e[0,0) x R, weQ}
such that the following hold:
(i) The mapping (t, a, w)— A{a, w) is measurable and, for each fixed (t, a), the
random variable A (a) is #-measurable.

(i) For every fixed acR, the mapping t+— A (a, ) is continuous and non-
decreasing with Ay(a, w) = 0, and

(71.2) J 1p\a)(X(@))dA(a,0) = 0, for P-ae. weQ.
0
(i) For every Borel-measurable k: R — [0, o0), the identity

(1.3) J' k(X () d<MD (@) = 2 r k(a)A(a,w)da; 0 <t< oo
0

—aoC

holds for P-a.e. weQ.
(iv) For P-a.e. €, the limits

lim A(b,w) = Afa,w) and Afa—,w)=2 lim A (b, w)
e ot

bla bta

exist for all (t,a)e [0, o) x R. We express this property by saying that A
is a.s. jointly continuous in t and RCLL in a.

(v) For every convex function f- R — R, we have the generalized change of
variable formula

(7.4) JX) = f(Xo) + J

0

t t

D™ f(X,)dM; + J D™f(X,)dV,

0

+ J Afa)pda), 0<t< oo, as. P,

a0
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where D™ f is the left-hand derivative in (6.40) and u is the second derivative
measure (6.47).

7.2 Corollary. If f:R— R is a linear combination of convex functions, (7.4)
still holds. Now y defined by (6.47) is a signed measure, finite on each bounded
subinterval of R.

7.3 Problem. Let X be a continuous semimartingale with decomposition (7.1)
and let f: R » Rbeafunction whose derivative is absolutely continuous. Then
f" exists Lebesgue-almost everywhere, and we have the It6 formula:

t

f(X) = f(Xo) + j f1(X,)dM, + j f1(X,)dV;
0

0

1 t
+ EJ fr(X)d{M>s; 0<t<0,as P.

0

7.4 Remark. In the setting of Theorem 6.17, we observe that the reflected
Brownian motion

X, & |W)| = —B +2L(0) 0<t<w

is a semimartingale with X, =0, M = —B, V = 2L(0) under P°. The general-
ized Tt6 rule (7.4) applied to this semimartingale with f(x) = |x| gives in
conjunction with (6.26): X, = —B, — 2L,(0) + 2A,(0), and therefore A,(0) =
2L,0) 0 <t <0, as. PO. In other words, the semimartingale local time of
reflected Brownian motion at the origin is twice the Brownian local time at the
origin, as one would expect intuitively.

By way of preparation for the proof of Theorem 7.1, we provide a con-
struction similar to that used in the proof of Theorem 6.22. Let f: R—> R be
convex. Thanks to the usual localization argument, we may assume that D™f
is uniformly bounded on R and (M), and V, are uniformly bounded in
0 <t < oo and we Q. Applying [t&’s rule to the smooth function £, of (6.50),
we obtain

(1.5) fi(X) = fulXo) + th..'(Xs)dMs + th..’(Xs)st +CM;, 0t <0,
1] 1]
where

t
cm = %j fr(X)d{M); 0<t<®
0

is a continuous, nondecreasing (by the convexity of f,), and {#}-adapted
process. As in Theorem 6.22, we have as n — o0t

fX) - (X)) and ~rf..’(z"’s)st—>th'f(z"’s)st, as.
0 0



220 3. Stochastic Integration

t t

f S (X,) dM, —>f D7 f(X,)dM,, in probability
0 0

for every fixed t. It follows that the remaining term C™ in (7.5) must also

converge in probability to a limit C,(f), and

t t

D’f(Xs)dMs+J D™f(X,)dV,+ C(f), 0<t< 0.
0

(7.6) f(X)=/[(X,)+ J
1]
Now f(X,) is continuous in ¢ and both integrals have continuous modifica-
tions, so we may and do choose a continuous modification of C,(f). Each C*™
is nondecreasing and adapted to {£}; the limit C(f) inherits both these
properties.
With aeR fixed, we apply (7.6) to the functions f;(x) £ (x — a)", f(x) =
(x — a)7, and f5(x) = |x — a| to obtain the Tanaka-Meyer formulas

t t

l(a,w)(Xs) dMs + J l(a,w)(Xs)st + Ct+(a)

(17 (X, —a)" =X, — a)t + J
0

0

t t

l(—w,a](Xs) dMs - J l(—w,a](Xs) st + Ct_(a)

0

(78) (X,—a)” =(Xp—a)” — J
0

t t

sgn(X, — a)dM, + J sgn(X, — a)dV,

(79) 1X; —al =X, —al +J
0

0
+ 2A[(a),

with the conventions (6.14), C;'(a) £ C,(f,), C/(a) & C,(f,), and 2A,(a) &
C,(f;). The processes C(a), A,(a) are adapted, continuous, and nondecreasing
in t, and the random field A (a, w) will be our candidate for the local time of
X. Now (7.7) and (7.8) yield C;"(a) = C; (a) (upon subtraction), as well as

(7.10) Afa) = Cra); 0<t< 0,aeR

(upon addition and comparison with (7.9)).

Although the process {Aa); 0 < t < o0} is continuous for every fixed a, we
do not yet have any information about the regularity of A,(a) in the pair (¢, a).
We approach this issue by studying the regularity of the other terms appearing
in (7.7).

7.5. Lemma. Let X be a continuous semimartingale with decomposition (7.1).
Define

t
I(a) & J 1o (X )dM;; 0<t < oo,aelR
0

The random field I = {I,(a), #;; 0 < t < o0, ae R} has a continuous modification.

In other words, there exists a random field I = {I(a), #;0 <t < 0, acR}
such that:
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(i) For P-a.e. w€Q, the mapping (t,a)— I(a, w) is continuous on [0, ) x R.
(ii) For every te[0, ) and ae R, we have I(a) = I(a), as. P.

PrOOF. By the usual localization argument, we may assume without loss of
generality that there is a constant K for which
(7.11) sup |X,| <K, (My,<K, V.<K

0<t<wo
where 7, is the total variation of V' on [0, ). According to Remark 4.9, we
may choose a Brownian motion B for which we have the equations

(M

t e
(712) Ir(a) é j l(a,oo)(Xv) de = j l(a,oo)(Yu) dBm 0 <t< o,
0

0
T(s)

(713) Hs(a) & J‘ l(a,oo)(Yu) dBu = J‘ l(a,oo)(Xv) de 0<s<w,
0 0

where T(-) is given by (4.15), ¥; A Xpgyfor0<s< {M),, and ¥, is chosen
so that 1y, ) (¥,) =0 for s> (M), and b in some neighborhood of a (cf.
(4.20y, Remark 4.9). We shall prove the existence of a continuous modification
of H by using the extension of the Kolmogorov-Centsov theorem (Problem
2.2.9). According to the latter, it suffices to show

(7.14) E|H,(a) — H, ()" < CL(s2 — sy + (b — a* '
0<s; <s;<o, abeR
for suitable positive constants «, f, and C. Note that
(7.15) E|H,(a) — H, (B)I* < 2°E|H, (a) — H,,(D)I* + 2°E|H, (b) — H, (D)%

and, according to the martingale moment inequality (3.37), we may bound the
latter expectation by

E|H, (b) — H, (b)I* < GEE[KHbYs, — CHB)Y,, 17 < Cyls; — s

When o > 4, this bound is of the type required by (7.14). Thus, it remains only
to deal with the first expectation on the right-hand side of (7.15), i.e., to show

(7.16) E|H,(a) — Hyb)|* < C(b — @?1*h; 0 <s< oo, —o<a<b<oo,

where o > 4, >0,and Cisa positive constant. We fix a < b and introduce
the convex function

fx)= J J l(a,b](z) dzdy,

0 Jo

for which | f| is bounded by b—aand D7f' = 1,4 In particular, passage
to the limit in (7.5) yields

t t l t
f(X) = f{Xo) + jof,(Xo) dM, + jof,(Xo)d% + 3 jo 1.51(Xe) d{MDys.
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Assumption (7.11) and Problem 1.5.24 show that X, and all the preceding
integrals have limits as t — o0, so we may replace t by T(s) (which may be
infinite) to obtain, for every k > 1, the bound

(1.17)

k

< 6k|f(XT(s)) — fXo)* + 6

k

T(s) T(s)
J Lo, 53(Xo) d{MD, J J'(Xy) dM,
0

0

k

T(s)
J S'(Xg)dVy| .

0

+ 6

We bound the terms on the right-hand side of (7.17). The mean-value theorem
implies

|f(Xr) — fXo) < (b — a)f| X7y — Xol < 2°K¥(b — a),
and it is also clear that

k

< Kb —akt

T(s)
J J'(Xp)dVy

0

Applying the martingale moment inequality (3.37) to the stochastic integral
in (7.17), we obtain the bound

k
<lmE

[ ande o}

k

E

T(s)
J f1(X,)dM,

0

T(s)nt
J f(X,)dM,

0

@ k/2
< C,(E[J |f’(Xu)|2d<M>u]
0

< G K**(b — a.

We conclude from these considerations that there exists a constant C, depending
only on k and on the bound K in (7.11), such that

k

E <Ch—af; 0<s<oo, —w<a<b<ow.

T(s)
J‘ 1(a,b](Xv)d<M>u
0

Now (3.37) can be invoked again to establish (7.16) with « =2k and
2(1 + B) = k, provided k > 2. From (7.12), (7.13) we see that I,(a) = H,p (a),
and since {M) is continuous, the existence of a continuous modification for
H implies the same for I. O

The Lebesgue-Stieltjes integral

t
(718) Jt(a) é J 1(a,ao)(Xs)st

1]
appearing in (7.7) can fail to be jointly continuous in (t, a); see Exercise 7.9.
However, it is jointly continuous in t and RCLL in a; the proof is left as a
problem for the reader.
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7.6 Problem. Let X be a continuous semimartingale with decomposition (7.1).
For P-almost every w €Q, we have for all (t,a)€ [0, ) x R:

(7.19) lim J.(b, w) = Ji(a, w),
bla
t
(7.20) lim J(b, ) = J Lo X)) V().
Tt 0
bta

PrOOF OF THEOREM 7.1. Using Lemma 7.5 and Problem 7.6, we choose a
modification of C;"(a) in (7.7) which is jointly continuous in t and RCLL ina.
We take A,(a) and C(a) to satisfy (7.10) for every t, a, and w. In particular,
A[fa, w)is jointly Z([0, 00)) ® A(R) ® F -measurable and satisfies (iv), and the
other measurability claims of (i) and (ii) hold. In particular, it follows from
(7.19), (7.20) that

Ada) — Afa—) = fo Lgy(X)dV

For the proof of (7.2), consider any two rational numbers 0 < u < v < ®©
and the event

H, 2 {we®; X () <a, Vse[uvl}.

From relation (7.7) we have on H,,: Aa,0) = A, (a, ), except for w in a
null set N,,. Let N 2 {Jo<u<v<w Nup and fix weQ\N. The set S(a,w) 2

u,veQ
{0 <t <o Xw) < a} is open and, as such, is the countable union of disjoint
open intervals. Let (a, f) be such an interval. If & < u < v < B, where u and v
are rational, then A (g, ®) = A(a, ). It follows that f.pydA(a, ) = 0, and
thus

(7.21) J: .0 Xi (@) dAfa, 0) = 0.
A similar argument based on (7.8) shows that

(7.22) J: gy (Xi(@)) dAla, 0) = 0, as.
which establishes (7.2).

For the proof of (7.4), we may assume, by the usual localization argument,
that there exists a constant K > 0 such that (7.11) holds. Consequently, we
may also assume without loss of generality that D”f is constant outside
(—K,K), so the second derivative measure p has support on [—K,K). Let
xe[—K, K] be fixed and introduce the function

0, a< —-K-—-1,
@ — x+Ka+K+1; —-K-1<a<-K,
IV=x—a —K<a<x,

0; x <a
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According to (6.48), (6.46), we have for — K < x < K,

(7.23) r (x — a)" u(da) = —r ¢'(@)Df(a)da

—X —0

X

—(x + K) J_K D™ f(a)da + J D™ f(a)da

-K-1 -K

—(x + K) D" f(—K) + f(x) = f(=K),
and from the definition of u:
(7.24) Jw 1,0y (¥)(da) = ([ K, x)) = D" f(x) — D"f(—K).

We may now integrate with respect to u in the Tanaka-Meyer formula (7.7)
and use (7.23) to obtain

(7.25)  f(X) = (X, — X,) D"f(—K) + f(X,) + J J 1, 0)(X;) dM; pi(da)

—© JO

" r f Lo () 4V, u(da) + r Ada)u(da).

- 0 —0

Fubini’s theorem and (7.24) allow us to write

(7.26) r Jt Lig,y(X,) dV; p(da) = tD’f(Xs)st— V: D"f(—K).
—© JO 0

LY

A similar interchange of the order of integration in the integral

(7.27) Jw J' 1ia,0(X) dM p(da) = tD—f(Xs)dMs—M, D f(-K)
—© JO 0

LY

is justified by Problem 7.7 following this proof. Substitution of (7.26), (7.27)
into (7.25) results in (7.4).

Finally, let us consider (7.4) in the special case f(x) = x*. Then p(da) = 2 da,
and comparison of (7.4) with the result from the usual It6 rule reveals that

@

{M>, =2 J A@)da; 0<t< o0,as.

Thus, for any measurable function h(s, w): [0, c0) x Q — [0, c0),
1]

Jw h(s,w)d<{M > (w) =2 J‘w J‘w h(s,w)dA,(a, w)da
- JO

holds for P-ae. weQ. Now if k: R— [0, c0) is measurable, we may take
h(s, w) = 1;g,4(s)- k(Xs(w)) and obtain for P-a.e. w:
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0 - JO

ft k(X () d{M)y(w) = 2 r) ft k(X (w)) dA(a, w)da

=2 f k(a)A(a, w)da; 0 <t <,

—Q0

thanks to (7.2). This completes the proof. O

777 Problem. Let X be a continuous semimartingale with decomposition (7.1),
p be a o-finite measure on (R, #(R)), and h: R— [0, o) be a continuous
function with compact support. Then

J‘ h(a) (J‘ 1(a,oo)(Xs) dMs) .u(da) = J‘ (J‘ h(a) 1(a,oo)(Xs).u(da)) dMs
- 0 0 —©

7.8 Remark. The proof of Theorem 7.1 shows that the semimartingale local
time AM(a) for a continuous local martingale M is jointly continuous in (t, a),
because the possibly discontinuous term J(a) of (7.18) is not present. In
particular, (7.9) becomes then a.s. P:

t
(7.28) |M,—al =M, —al + j sgn(M, — a)dM, + 2AM(a); 0 <1< co.
0

Comparison of (7.28) with the Tanaka formula (6.13) shows that the semi-
martingale local time A¥ (a) for Brownian motion W coincides with the local
time L{a) of the previous section. If M € M5, then for any stopping time T,

(7.29) E|M,,.|=2E[AN (0] 0<t<oo.

79 Exercise. Show by example that Ji(a) defined by (7.18) can fail to be
continuous in a.

7.10 Exercise. Let X be a continuous semimartingale with decomposition
(7.1). Show that for every ae R,

J 1 (X,)d{My, =0, as.P.
0

711 Exercise. Show that the semimartingale local time of a continuous process
of bounded variation is identically zero.

7.12 Exercise (LeGall (1983)). Let X be a continuous semimartingale with
decomposition (7.1), and suppose that there exists a Borel-measurable function
k: (0, 00) — (0, 00) such that fo  (du/k(u)) = o, V& > 0, but for every t€(0, )
we have
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"d{M)
iy sor < 00, as. P.
L k(xy) X0

Then the local time A(0) of X at the origin is identically zero, almost surely.
7.13 Exercise. Consider a continuous local martingale M and denote S, £

maxy<;<, M,, L, £ 2A,(0). Suppose now that f(t,x,y): R* » R is a function
of class C%(R?) which satisfies

o 10
Y297 9
ot + 2 0x?
in R® and
of of

=—(t,0 —(0,)=0
S 600 +5.,0,9)

for every (¢, y) € R%. Show then that the processes f({M>,,|M,|, L,)and f({M>,,
S, — M,, S,) are local martingales.
Deduce also the following:

(i) The process (S, — M,)> — (M), is a local martingale.
(i) For every real-valued function g of class C!(R), the processes
g(L)— M| g'(L) and g(S)—(S,— M) g'(S)

are local martingales.

7.14 Exercise. For a nonnegative, continuous semimartingale X of the form
(7.1) with X, = 0, the following conditions are equivalent:

(i) Visflat off {t > 0, X, = 0}.
(ii) The process [ 1(x, 20} dX;; 0 <t < o0 belongs to .#*1°°.
(iii) There exists N € 4 such that X, = maxg<,<, N, — N,.

3.8. Solutions to Selected Problems

2.5. (a) It is easily verified that u — (1/2") < ¢,(u) < u. Consequently, X{™ is %-
measurable, and since ¢, takes only discrete values, X9 is simple.

(b) The procedure (2.7) results in measurable (but perhaps not adapted) processes
{Xm1=_ such that

m-ow

T
lim Ef |X™ — X,|2dt = 0.
(4]

Thus, for given ¢ > 0, we can find m > 1 so that with X¢ 2 ¥™ we have
E{¥|X; — X,|*dt < &2 The Minkowski inequality leads then to
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T 1/2
<E J‘ 1X, — X,_? dt)
0
T 112 T 172
s(Ej | X, — X:|2dt> + <EJ‘ | XxE — Xf_,,lzdt>
0 0
T 1/2
+ <E j | X2y — Xal® dt)
0
T 12
<2+ <E j |XE— X212 dt) .
0

We can now let 4 | 0 and conclude, from the continuity of X*and the bounded
convergence theorem, that

T
lim E j |X, — X, |2 dt < 4>

nio [

(c) Let i be any nonnegative integer. As s ranges over [i/2", (i + 1)/2"),
@a(t — ) + s ranges over [t — (1/2M, t). Therefore,

T 1 T 2™
E j j |X™9 — X,[2dsdt = 2°E j j IX, — X,_,|2 dhdt

0 0 0 0

2 T
=" j [E j X, — X,_,,lzdt]dh
0 0

T
< max Ej | X, — X2 dt,
O<hg2™ 0
which converges to zero as n — oo because of (b).

(d) From (c) there exists a sequence {n ) of integers, increasing to infinity
as k — oo, such that for meas x meas x P-ae. triple (s,t,@) in [0,1] x
[0, T] x Q, where meas means “Lebesgue measure,” we have
8.1 lim | X™eY (o) — X, (@)}* = 0.

k=0
Therefore, we can select se[0,1] such that for meas x P-a.e. pair (t,w) in
[0, T] x Q, we have (8.1). Setting X% & x®es) we obtain (2.8) from the
bounded convergence theorem.

2.18. By assumption, we have
ECM(X)y = E j X2d{MY; < 0.
1]
Uniform integrability and the existence of a last element for I™(X) follow from

Problem 1.5.24, as does uniform integrability of (/ M(X))?; similarly for I"(Y).
Applying Proposition 2.14 with X,, Y, replaced by X.lu>ry, Ylpsrpn

respectively, we obtain
T+t T+t 172
S(J X3d<M>s'_[ Yszd<N>s> ,

T T

T+t
j X, Y,d{M,N>,

T
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® © /.
S<f X3d<M>s'f de(N)s)lz
T T

as. P. As T — oo, the right-hand side of this inequality converges to zero;
therefore,

whence

f X, Y, d(M,N>,

T

KIM(x), I"(Y)>,=f'Xsst<M,N>s

0

converges as t — oo and is bounded by the integrable random variable

@ 1/2 @ 12
<f X3d<M>s> <f Y3d<N>s> ,
[ [

a.s. P. The dominated convergence theorem gives then

lim E[IM(X)I}(Y)] = lim ECIM(X), I¥(Y)), = ECI™(X), IN(Y)),,

= t-o

=Ef X, Y. d{M,N>,.
0
We also have

E[IZ(X)I5(Y)] = E[(IZ(X) — M (X))IZ(Y) - I'(Y))]
+ E[IMX)I(Y) — IN(Y)]
+ E['(Y)(IZ(X) — (X))
+ E[(X)I}()).

We have just shown that the fourth term on the right-hand side converges to
E{IM(X),I(Y)),, as t —» 0. The other three terms converge to zero because of
Holder’s inequality and the uniform integrability of (I®(X))? and (I¥(Y))%.

With X € 2*(M), we construct the sequence of bounded stopping times {T,}%,
in (2.32). In the notation of (2.33), each X™ is in #*(M™) and therefore can be
approximated by a sequence of simple processes { X™®}%, € %, in the sense

T
lim Ef | Xm0 — XmW12d(M» =0, VT <
k= 0

(Proposition 2.8). Let us fix a positive number T < oo and consider n > T;
we  have  P[[{|X{” — X,|*d{(M}, > 0] = P[[§ X711, <, d{M>, > 0] <
P[T, < T] = P[S, < T or [ X}?d{M), > NJ, and the last quantity converges
to zero as n — oo, by assumption. Now, given any ¢ > 0, we have

T T
Pl:f | Xm0 — X |2 d{M, > e:l < Pl:f | X0 — XM12d(M), > %:l

0 0

T
+ Pl:f | X" — X,|2d{M>, > 0:]

0

2 T

< EEf | X0 — XM2d{M>, + P[T, < T]
0

by the Cebysev inequality.
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For any given & > 0 we can select n; > T s0 that P[T, < T] < 9/2 for every
n > n,, and we can find an integer k. ; > 1 50 that

T &b
E| |X{eked — X2 d(M), < 7
V]

It follows that for e = 6 = 1/j; j = 1, there exist integers n; and k. ; such that,
with YO & x"ke3) we have

T 1 1
P ‘YtU)_Xt‘zd<M>t>_. <-.
0 J J

Then according to Proposition 2.26, both sequences of random variables

T
j Y0 — X,[2d{Mp,, sup |L(Y?)— LX)

0 0<t<T

converge to zero in probability, as j — 00, and there exists a subsequence for
which the convergence takes place almost surely. Having done this construction
for T fixed, we use a diagonalization argument as in the first paragraph of the
proof of Lemma 2.4 to obtain a sequence which works for all T.

In the case that M is Brownian motion, we use Proposition 2.6 rather than
Proposition 2.8 in this construction.

2.29. We have
lm—l 1 m—1
S =3 Y (W2, ~ W)+ <s —§> % (W, — W)’
i=o0 i=

1 1 m—1
R L DU AL
2 2 = i+ t
Recalling the discussion preceding Lemma 1.5.9, we may write
m—1 2 m—1 2
E[ Y W, — W) - t] = E{ S W, — W, ) — (ti — ti)]}
i=0 i=0

-1
=Y ELW,, — W)~ ltwa — )]’

(=3

3
|
—~

m—1
EW,,, - VV:,-)4 - 'Zo (tis1 — t)?

0

m—1
<G _;) (tir — 1)°
< Ctimj,

where we have used Problem 2.2.10. This proves (2.37). To see that & = 0 corre-
sponds to the Itd integral, consider the (piecewise constant) process

sy 0<s<t

i+l

m—1
X-{lé Z VVHI('M
i=0

in #*(W), for which
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t m—1 (tis
Ej IXT — W2 ds = ) j E|W, — W) dt
0 =0 J¢;

m—1 (tisy 1m-1
= Z J‘ (t_‘ti)dt=§ Z (tisg — )* >0
i=0 Ji, i=0

as ||TI} - 0. By definition, the Itd integral [, W, dW, is the L>-limit of S,(IT)

foX1dW,.
3.7. The proof is much like that of Theorem 3.3. The Taylor expansion in Step 2 of

that proof is replaced by

f(tb Xt,‘) - f(tk—h th_l)
= [f(tb Xt,‘) - f(tk-h th)] + [f(tk—h Xt,‘) - f(tk—h th_l)]

0 4 9 .
= af(‘[k!th)(tk — 1) + Zi a_f(tk 1,th-1)(Xt(:) X&) J

St m)(XH — X2 (XD — X9),

where t,_, < 7, < t, and 5, is as before.

J

Let ¥ = 9f(X,)/x;, so according to Itd’s rule (Theorem 3.6)

3.14.
t 62 t 62 i
YO =YP + Z f(X,)dMP + Z f(X,)dBY
0 0x,0x; 0 0%;0x;
1 d d a3
38 & sean MO MO,
k=1 j=1 X;
It follows from (3.9) that
t t 2
f YodX® = f YO dx9 + Z f g TXI MO MO,
o
and now (3.10) reduces to the It6 rule applied to f(X,).
3.15. Let X and Y have the decomposition (3.7). The sum in question is
m—1 1m1
Z zi(XtH, Xt,) + ‘2' z;,) (Yzm - Y;‘)(X,M - Xt()~
=

The first term is [ Y,"dM, + [ Y."dB,, where

Y;n 4 Z 'il('i 'Hl](s) 0<s<y,
and the continuity of Y implies the convergence in probability of (¥,"
Y,)2 d{M), and [5 [¥;® — Y,]dB, to zero. It follows from Proposition 2.26 that

m—1 t
X X, — X) e L Y,dX,.

The other term is
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3.29.

45.

1 m—1 m-—
E Z (M‘iu - M'i)(N‘iu - Mu) +% Zl (M‘iu - M'i)(c'(u - C'i)
i=0 i=0

1m2) 1 m=1
+3 Z (Mi” - N,)(B, " Bl) +3 Z (Bl y B,)(C, T Cl-)’
2= o Y2 T e )

which converges in probability to 1(M, N, because of Problem 1.5.14 and the
bounded variation of B and C on [0, t].

Forx;=>0,i= 1,...,d, we have
x;" + o+ x'rin Sd(xl + o+ xd)m Sd"'“(x;" 4+ + x;n)
Therefore
d m d
8.2) M, ||12™ = [Z (M'U)){l <d"y | M®|2m
i=1 i=1
and
d . d ) m
®3) $ moyr<a(§ Moy | = .
i=1 i=1

Taking maxima in (8.2), expectations in the resulting inequality and in (8.3), and
applying the right-hand side of (3.37) to each M®, we obtain

E(IM|fy" <d™ i E[(MOp} " <d™ i K, E[(M®)7] < Kpd™ E(A7).
i=1 i=1

A similar proof can be given for the lower bound on E(|M||})*™

(1) The nondecreasing character of T is obvious. Thus, for right-continuity, we
need only show that limyyT(0) < T(s), for 0 < s < S. Set t = T(s). The
definition of T(s) implies that for each ¢ > 0, we have A(t + ¢) > s, and for
s<8< At +¢),wehave TO) <t + & Therefore, limgy, T(0) < L.

(i) The identity is trivial for s = S;if s < S, set t = T(s) and choose ¢ > 0. We
have A(f + €) > s, and letting ¢ | 0, we see from the continuity of A that
A(T(s)) = s. If t = T(s) = 0, we are done. If t > 0, then for 0 < ¢ <t, the
definition of T(s) implies A{t — &) < s. Letting ¢ | 0, we obtain A(T(s)) < s.

(it)) This follows immediately from the definition of T().

(iv) By (it), T(A()) =7 if and only if A(z) = A(t),in which case @(7) = ¢(t). Note
that if S < oo and A(f) = A(oo) for some t < 00, then T(A()) = o0 and @ 1s
constant and equal to ¢(f) on [t, c0); hence, @(00) = lim,,, (u) exists and
equals @().

(v) This is a direct consequence of the definition of T and the continuity of A.

(vi) Fora<t, <t < b, let G(t) = 1,..,(1)- According to (v), t; < T(s) <t if
and only if A(t,) < s < A(t2), 50

b A)
j G(H)dA() = Alty) — A(ty) = j G(T(s))ds.

(@)

The linearity of the integral and the monotone convergence theorem imply
that the collection of sets C e #([a, b]) for which

b A(b)
84 j (1) dA() =j (T ds
A

a (a)
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4.7.

4.11.

4.12.
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forms a Dynkin system. Since it contains all intervals of the form [t,,t,)
[a,b], and these are closed under finite intersection and generate %([a, b]),
we have (8.4) for every Ce%([a,b]) (Dynkin System Theorem 2.1.3). The
proof of (vi) is now straightforward.

Again as before, every (M, (resp., T(s)) is a stopping time of {%,} (resp., {#}),
and the same is true of S £ lim,_, , (M), (Lemma 1.2.11). The local martingale M
has quadratic variation (M), < (M d1ispy = S A 83 <5, < oo (Problem 4.5 (ii)),
so again both M, M? — (M) are uniformly integrable martingales, and by
optional sampling:

E[Mz, — Mr(s1)|9'-r(s1)] =0,

E[(Mr(sz) - Mr(s,))2|9'-r(s1)] = E[<M>T(sz) - <M>T(sl)|'g:T(sl)]; as. P.

It follows that Mo T & {My,, 4,; 0 < 5 < o0} is a martingale with (Mo T}, =
(M), and by Problem 4.5 (iv)) MoT has continuous paths. Now if
{(W,,%9;0<s < oo} is an independent Brownian motion, the process

BAW,— W, s+ Mg, % 0<s<o

is a continuous martingale with quadratic variation {(B),=s—(s A S) +
(M} = s, ie., a Brownian motion. For this process, (4.17) is established by
using Problem 4.5 (iv).

Let ¢ be a deterministic, strictly increasing function mapping [0, co) onto [0, 1),
and define M € .#"*° by
O] o)
M,éf X,dW,, so (M),:f X2ds; 0<t< o0,
4] 4]
and lim,_, (M), = 00, a.s. on E. According to Problem 4.7, there is a Brownian
motion B such that

13
f X,dW, = By, where p(t) & (M) 1.

[}

We have lim,4, p(t) = o a.s. on E, and so, by the law of the iterated logarithm
for Brownian motion,

lim By, = —lim B,,, = +00, as.onE.
tt1 et1

(Adapted from Watanabe (1984).) From Problem 4.7 we have the representation
(4.17) for a suitable Brownian motion B. Taking n > 3 max(| x|, pT) and denoting
R, = inf{t = 0; |B| = n/3}, we have the inclusions

{max X > } c { max M| zﬁ} — ((M>r2 R} < {pT 2Ry},
0<t<T 0<t<T 3
which lead, via (2.6.1), (2.6.2), and (2.9.20), to

P[ max |X,| > n] < P[R, < pT]<2P[T,, < pT] = 4P[B,,T > f]

0<t<T 3

4 ® 12 T 2
< j ez < — p—exp{— . }
2n w3 /oT ny\ 2n 18pT

The conclusion follows.
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6.12. Let h have support in [0, 5], and consider the sequence of partitions
k
D, = {b{") = ?b; k= 0,1,...,2"}; n>1

of this interval. Choosing a modification of 15 g, W5) dW, which is continuous
in a (cf. (6.21)), we see that the Lebesgue (and Riemann) integral on the left-hand
side of (6.24) is approximated by the sum

27-1 p t t
x ?h(b’(‘"))<j l(bs:’.m(Ws)dWs>=j F(W)dW,,

k=0 o 0

where the uniformly bounded sequence of functions

n_

b
Fx)2 Y ih(b,(‘"))l(bgu‘m)(x); n>1

k=0

converges uniformly, as n — o0, to the Lebesgue (and Riemann) integral

F(x) 2 J‘w h(a)1 ;. oy(x) da.

Therefore, the sequence of stochastic integrals {5 F(W,)dW,};, converges in
L2 to the stochastic integral [, F(W,)dW,, which is the right-hand side of (6.24).

6.13. (i) Under any P*, B(a) is a continuous, square-integrable martingale with
quadratic variation process

{B(a)), = j [sgn(W, — @))?ds=1; 0<t<o0,as P%
0

According to Theorem 3.16, B(a) is a Brownian motion.

(i) For o in the set Q* of Definition 6.3, we have (6.2) (Remark 6.5), and from
this we see immediately that Ly(a,®) = 0 and L,(a,®) is nondecreasing in t.
For each z€ R, there is a set (e F with P*(@) = 1 such that Z,(a) is closed
for all we@. For we{nQ*, the complement of Z,(a) is the countable
union of open intervals { J,en .. TO prove (6.26), it suffices to show that
.[I, dL (w) = OforeachaeN. Fix an index « and let I, = (u,v). Since W(w) — a
has no zero in (u, v), we know that |W(w) — al is bounded away from the
origin on [u + (1/n), v — (1/m)], where n > 2/(v — u). Thus, for all sufficiently
small ¢ > 0,

1 1
meas{05s5u+—;|Ws—al58}=meas{05ssv——;|Ws—a|ss},
n n

whence Ly (1m(@ ®) = Ly_qm(@ o). It follows that [+ um,o-mdLda, @) =
0, and letting n — o0 we obtain the desired result.

(iii) Setz =a=0in(6.25)to obtain |W,| = —B,(0) + 2L(05,0 <t < 0, as. PO
The left-hand side of this relation is nonnegative; B,(0) changes sign infinitely
often in any interval [0, £],& > O (Problem 2.7.18). It follows that L,(0) cannot
remain zero in any such interval.

(iv) It suffices to show that for any two rational numbers 0 < g <r < o0, if
W,(w) = a for some te(g,7) then L,a o) < L(a,w), P*-ae. o. Let T(w) &
inf{t > q; Wi(w) = a}. Applying (iii) to the Brownian motion {W,,, — a@;
0 < s < oo} we conclude that
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L)@ ®) < Lygyssla,w) foralls >0, P-ae. o,

by the additive functional property of local time (Definition 6.1 and Remark
6.5). For every we {T < r} we may take s = r — T(w) above, and this yields
Lya,w) < L,(a, w).

6.19. From (6.38) we obtain lim,, f(y) < f(x), lim,, f(y) < f(2) and f(y) < lim,4, (),
f(y) < lim,y, f(2). This establishes the continuity of f on R.
For £eR fixed and 0 < h, < h,, we have from (6.38), with x =&, y = ¢ + h,

z=¢&+ hy:

(8.5) Af(&3hy) < Af(S5 k).

On the other hand, applying (6.38) with x = & — h,,y = £ — h;, and z = £ yields
(8.6) Af(&; —hy) < Af(E; —hy).

Finally, with x = £ — ¢,y = &,z = ¢ + §, we have

@7 Af(&; —e) < Af(;0); &0 >0.

Relations (8.5)—(8.7) establish the requisite monotonicity in k of the difference
quotient (6.39), and hence the existence and finiteness of the limits in (6.40).

In particular, (8.7) gives D™ f(x) < D*f(x) upon letting £ | 0, 6 | 0, which estab-
lishes the second inequality in (6.41). On the other hand, we obtain easily from
(8.5) and (8.6) the bounds

(8.8) (y =)D () < f(y) — fX) < (y = x) DSy} x <,

which establish (6.41).

For the right-continuity of the function D*f(-), we begin by observing the
inequality D*f(x) < lim,;, D*f(y); xe R, which is a consequence of (6.41). In the
opposite direction, we employ the continuity of f, as well as (8.8), to obtain for
X<z

f@) - fx) _ lim @)= f(y) > lim D*(y).
zZz—X yix z—Yy yix
Upon letting z | x, we obtain D*f(x) > lim,,, D*f(y). The left-continuity of
D™f(-) is proved similarly.
From (8.8) we observe that, for any function ¢: R — R satisfying

(8.9) D f(x) < o(x) < D*f(x); xeR,
we have for fixed yeR,
(8.10) fx)=Gy(x) 2 f(») + (x — Yoy xeR.

The function G,(-) is called a line of support for the convex function f(-). It is
immediate from (8.10) that f(x) = sup, . G,(x); the point of (6.42) is that f(-)
can be expressed as the supremum of countably many lines of support. Indeed,
let E be a countable, dense subset of R. For any x e R, take a sequence {y, }5>,
of numbers in E, converging to x. Because this sequence is bounded, so are
the sequences {D*f(y,)}i=; (by monotonicity and finiteness of the functions
Df()) and {@(y,) }2=1 (by (8.9)). Therefore, lim,., G, (x) = f(x), which implies
that f(x) = sup, g G,(x).



3.8. Solutions to Selected Problems 235

6.20. (iti) For any x <y < z, we have

O(y) - O ’
(8.11) w(x)S—u=—l—j oW du < ¢(y)
y—x y—XJx
S_I_J" w(u)du:MS(p(z).
z—yJ, z—
This gives
o() < 2= Lo + 2 —00)
zZ—X zZ—X

which verifies convexity in the form (6.38). Now let xty, z|yin(8.11), to
obtain

0_(y) < D"0(y) < () < D*®()) < . () yER.

At every continuity point x of ¢, we have @.(x) = @(x) = D*®(x). The

left- (respectively, right-) continuity of ¢_ and D~ ¢ (respectively, ¢, and

D*®) implies @_(y) = D™ ®(y) (respectively, @.(y) = D*O(y)) for all ye R.
(iv) Letting x | y (respectively, x 1 y) in (6.44), we obtain

D f(y) < () < 9(¥) < 0.(») < DSy yeR

But now from (6.41) one gets

@+(x) < D*f(x) <D f()) < o-(y) < 0y} x <V,

and letting y | x we conclude ¢, (x) = D*f(x), x € R. Similarly, we conclude
¢_(x) = D™f(x); xe R. Now consider the function G £ f — ®, and simply
notice the consequences D*G(x) = DEf(x) — DE®(x) = 0; xeR, of the
preceding discussion; in other words, G is differentiable on R with derivative
which is identically zero. It follows that G is identically constant.

6.29. (iv)=>(vi): Let te(0,c0) be such that PO[fb f(W,)ds < 0] = 1. For x = 0,
just take S = t. For x # 0, consider the first passage time T, and
notice that P°[0 < T, < o0} = 1, P° 2T, <1 >0, and that {B, £
Wyp, —%,0<s < oo} isa Brownian motion under P°. Now, for
every we {2T, < t}:

T () 2T (@) t

j flx + By(w))ds = j f(W(w))du < j f(W(w))du < o,

0 To(®) 0
whence {27, <t} < {[o*f(x + B)ds < o}, a.s. P°. We conclude
that this latter event has positive probability under P°, and (vi)
follows upon taking § = T..

(vi) = (iii): Lemma 6.26 gives, for each xe K, the existence of an open neigh-
borhood U(x) of x with o f()dy < . Now (iii) follows from
the compactness of K.

(iii) = (v): Forfixed x€ R, define g.(y) = f(x + y)and apply the known impli-
cation (iii) = (ii) to the function g,.

7.3. We may write f as the difference of the convex functions
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X

fi(x) £ f(0) + x£'(0) + j

(¢}

j [/"(2)] dzdy, fi(x)2 j j [f"(2)] dzdy,
(4] (4] (4]
and apply (7.4). In this case, u(dx) = f"(x)dx, and (7.3) shows that j“fx A(a)u(da) =

3fof"(X,)d<{M),.

7.6. Let V(w) denote the total variation of V(w) on [0,]. For P-ae. weQ, we have
Vi(w) < o0; 0 < t < oo. Consequently, for a < b,

T

(@) — J(B)| < |J(@) — J(@)] + |Jla) — D) < |V, = Vi + f Lan(Xs)dV,

5
(4]
and these last expressions converge to zero as. as T — t and b | a. Furthermore,

the exceptional set of we Q for which convergence fails does not depend on ¢ or
a. Relation (7.20) is proved similarly.

7.7. The solution is a slight modification of Solution 6.12, where now we use Lemma
7.5 to establish the continuity in a of the integrand on the left-hand side.

3.9. Notes

Section 3.2: The concept of the stochastic integral with respect to Brownian
motion was introduced by Paley, Wiener & Zygmund (1933) for nonrandom
integrands, and by K. 1t6 (1942a, 1944) in the generality of the present section.
1t&’s motivation was to achieve a rigorous treatment of the stochastic differ-
ential equation which governs the diffusion processes of A. N. Kolmogorov
(1931). Doob (1953) was the first to study the stochastic integral as a martin-
gale, and to suggest a unified treatment of stochastic integration as a chapter
of martingale theory. This task was accomplished by Courrége (1962/1963),
Fisk (1963), Kunita & Watanabe (1967), Meyer (1967), Millar (1968), Doléans-
Dade & Meyer (1970). Much of this theory has become standard and has
received monograph treatment; we mention in this respect the books by
McKean (1969), Gihman & Skorohod (1972), Arnold (1973), Friedman (1975),
Liptser & Shiryaev (1977), Stroock & Varadhan (1979), and Tkeda & Watanabe
(1981) and the monographs by Skorohod (1965) and Chung & Williams (1983).
Our presentation draws on most of these sources, but is closest in spirit to
Tkeda & Watanabe (1981) and Liptser & Shiryaev (1977). The approach
suggested by Lemma 2.4 and Problem 2.5 is due to Doob (1953). A major
recent development has been the extension of this theory by the “French
school” to include integration of left-continuous, or more generally, “predict-
able,” processes with respect to discontinuous martingales. The fundamental
reference for this material is Meyer (1976), supplemented by Dellacherie &
Meyer (1975/1980); other accounts can be found in Métivier & Pellaumail
(1980), Métivier (1982), Kopp (1984), Kussmaul (1977), and Elliott (1982).

Section 3.3: Theorem 3.16 was discovered by P. Lévy (1948: p. 78); a different
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proof appears on p. 384 of Doob (1953). Theorem 3.28 extends the Burkholder-
Davis-Gundy inequalities of discrete-parameter martingale theory; see the
excellent expository article by Burkholder (1973). The approach that we follow
was suggested by M. Yor (personal communication). For more information
on the approximations of stochastic integrals as in Problem 3.15, see Yor
(1977).

Section 3.4: The idea of extending the probability space in order to accom-
modate the Brownian motion W in the representation of Theorem 4.2 is due
to Doob (1953; pp. 449-451) for the case d = 1. Problem 4.11 is essentially
from McKean (1969; p. 31). Chapters II of Ikeda & Watanabe (1981) and XII
of Elliott (1982) are good sources for further reading on the subject matter of
Sections 3.3 and 3.4. For a different proof and further extensions of the F. B.
Knight theorem, see Cocozza & Yor (1980) and Pitman & Yor (1986)
(Theorems B.2, B.4), respectively.

Section 3.5: The celebrated Theorem 5.1 was proved by Cameron & Martin
(1944) for nonrandom integrands X, and by Girsanov (1960) in the present
generality. Our treatment was inspired by the lecture notes of S. Orey (1974).
Girsanov’s work was presaged by that of Maruyama (1954),(1955). Kazamaki
(1977) (see also Kazamaki & Sekiguchi (1979)) provides a condition different
from the Novikov condition (5.18): if exp(iM,) is a submartingale, then
Z, = exp(M, — 3{M>,)isa martingale. The same is true if E[exp(iM)] < ©
(Kazamaki (1978)). Proposition 5.4 is due to Van Schuppen & Wong (1974).

Section 3.6: Brownian local time is the creation of P. Lévy (1948), although
the first rigorous proof of its existence was given by Trotter (1958). Our
approach to Theorem 6.11 follows that of Ikeda & Watanabe (1981) and
McKean (1969). One can study the local time of a nonrandom function
divorced from probability theory, and the general pattern that develops is
that regular local times correspond to irregular functions; for instance, for the
highly irregular Brownian paths we obtained Holder-continuous local times
(relation (6.22)). See Geman & Horowitz (1980) for more information on this
topic. On the other hand, Yor (1986) shows directly that the occupation time
BT (B, w) of (6.6) has a density.

The Skorohod problem of Lemma 6.14, for RCLL trajectories y, was
treated by Chaleyat-Maurel, El Karoui & Marchal (1980).

The generalized It6 rule (Theorem 6.22) is due to Meyer (1976) and Wang
(1977). There is a converse to Corollary 6.23: if f(W,)is a continuous semi-
martingale, then f is the difference of convex functions (Wang (1977), Cinlar,
Jacod, Protter & Sharpe (1980)). A multidimensional version of Theorem
6.22, in which convex functions are replaced by potentials, has been proved
by Brosamler (1970).

Tanaka’s formula (6.11) provides a representation of the form f(w) —
f(Wp) + [ g(W,)dW, for the continuous additive functional L,(a), with ae R
fixed. In fact, any continuous additive functional has such a representation,
where f may be chosen to be continuous; see Ventsel (1962), Tanaka (1963).
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We follow Tkeda & Watanabe (1981) in our exposition of Theorem 6.17.
For more information on the subject matter of Problem 6.30, the reader is
referred to Papanicolaou, Stroock & Varadhan (1977).

Section 3.7: Local time for semimartingales is discussed in the volume
edited by Azéma & Yor (1978); see in particular the articles by Azéma & Yor
(pp. 3-16) and Yor (pp. 23-36). Local time for Markov processes is treated
by Blumenthal & Getoor (1968). Yor (1978) proved that local time A,(a) for
a continuous semimartingale is jointly continuous in ¢ and RCLL in a. His
proof assumes the existence of local time, whereas ours is a step in the proof
of existence.

Exercise 7.13 comes from Azéma & Yor (1979); see also Jeulin & Yor (1980)
for applications of these martingales in the study of distributions of random
variables associated with local time. Exercise 7.14 is taken from Yor (1979).



CHAPTER 4

Brownian Motion and Partial
Differential Equations

4.1. Introduction

There is a rich interplay between probability theory and analysis, the study
of which goes back at least to Kolmogorov (1931). It is not possible in a few
sections to develop this subject systematically; we instead confine our atten-
tion to a few illustrative cases of this interplay. Recent monographs on this
subject are those of Doob (1984) and Durrett (1984).

The solutions to many problems of elliptic and parabolic partial differential
equations can be represented as expectations of stochastic functionals. Such
representations allow one to infer properties of these solutions and, con-
versely, to determine the distributions of various functionals of stochastic
processes by solving related partial differential equation problems.

In the next section, we treat the Dirichlet problem of finding a function
which is harmonic in a given region and assumes specified boundary values.
One can use Brownian motion to characterize those Dirichlet problems for
which a solution exists, to construct a solution, and to prove uniqueness. We
shall also derive Poisson integral formulas and see how they are related to
exit distributions for Brownian motion.

The Laplacian appearing in the Dirichlet problem is the simplest elliptic
operator; the simplest parabolic operator is that appearing in the heat equa-
tion. Section 3 is devoted to a study of the connections between Brownian
motion and the one-dimensional heat equation, and, again, we give prob-
abilistic proofs of existence and uniqueness theorems and probabilistic inter-
pretations of solutions. Exploiting the connections in the opposite direction,
we show how solutions to the heat equation enable us to compute boundary
crossing probabilities for Brownian motion.

Section 4 takes up the study of more complicated elliptic and parabolic
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equations based on the Laplacian. Here we develop formulas necessary for
the treatment of Brownian functionals which are more complex than those
appearing in Section 2.8.

The connections established in this chapter between Brownian motion and
elliptic and parabolic differential equations based on the Laplacian are a fore-
shadowing of a more general relationship between diffusion processes and
second-order elliptic and parabolic differential equations. A good deal of the
more general theory appears in Section 5.7, but it is never so elegant and sur-
prisingly powerful as in the simple cases of the Laplace and heat equations
developed here. In particular, in the more general setting, one must rely on
existence theorems from the theory of partial differential equations, whereas
in this chapter we can give probabilistic proofs of the existence of solutions
to the relevant partial differential equations.

4.2. Harmonic Functions and the Dirichlet Problem

The connection between Brownian motion and harmonic functions is pro-
found, yet simply explained. For this reason, we take this connection as our
first illustration of the interplay between probability theory and analysis.
Recall that a function u mapping an open subset D of R? into R is called
harmonic in D if u is of class C? and Au £ Y4, (0%u/dx?) = 0 in D. As we
shall prove shortly, a harmonic function is necessarily of class C* and has
the mean-value property. It is this mean-value property which introduces
Brownian motion in a natural way into the study of harmonic functions.
Throughout this section, {W,, %;0 <t < w0}, (QF), {P*},cps is a d-
dimensional Brownian family and {%,} satisfies the usual conditions. We
denote by D an open set in R? and introduce the stopping time (Problem 1.2.7)

2.1 1p 2 inf{t > 0; W,e D},

the time of first exit from D. The boundary of D will be denoted by D, and
D = D v 8D is the closure of D. Recall (Theorem 2.9.23) that each component
of W is almost surely unbounded, so

(2.2) P[tp <] =1; VxeD < R4 D bounded.

Let B, £ {xeR’; |x|| < r} be the open ball of radius r centered at the origin.
The volume of this ball is

2rdgd?
d 9

dTl'| =
)

2régdz g
24 s a4y
24) I'd/2) r’

2.3 v.a

and its surface area is
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We define a probability measure p, on 0B, by
(2.5) i,(dx) = P°[W,, edx]; r>0.

A. The Mean-Value Property

Because of the rotational invariance of Brownian motion (Problem 3.3.18),
the measure g, is also rotationally invariant and thus proportional to surface
measure on 0B,. In particular, the Lebesgue integral of a function f over B,
can be written in iterated form as

2.6) f f()dx = J S,,J S, dx)dp.
B, 0 a8,

2.1 Definition. We say that the functionu: D — R has the mean-value property
if, for everyae Dand 0 <r < o0 such that a + B, = D, we have

u(a) = J u(a + x)u,(dx).
2B,

With the help of (2.6) one can derive the consequence

r

u(a) = % J u(a + x)dx
B,

of the mean-value property, which asserts that the mean integral value of u
over a ball is equal to the value at the center. Using the divergence theorem
one can prove analytically (cf. Gilbarg & Trudinger (1977), p. 14) that a har-
monic function possesses the mean-value property. A very simple probabilistic
proof can be based on It&’s rule.

2.2 Proposition. If u is harmonic in D, then it has the mean-value property there.

PrOOF. With ae D and 0 < r < oo such that a + B, = D, we have from Ito’s
rule

d tATa4B
0 .
U(Wire,., ) = 4(Wo) + Zl J © (W) dw

0 Xi

tA T+,

+5J Au(W,)ds; 0 <t <oo.
1]

Because u is harmonic, the last (Lebesgue) integral vanishes, and since (0u/0x;);

1 < i < d, are bounded functions on a + B, the expectations under P? of the

stochastic integrals are all equal to zero. After taking these expectations on

both sides and letting t — oo, we use (2.2) to obtain

u(a) = E'u(W,,,,) = j u(a + x)u (dx). O

2B,
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2.3 Corollary (Maximum Principle). Suppose that u is harmonic in the open,
connected domain D. If u achieves its supremum over D at some point in D, then
u is identically constant.

PROOF. Let M = sup, . p u(x),and let Dy, = {x€ D; u(x) = M}. We assume that
D, is nonempty and show that D,, = D. Since u is continuous, Dy, is closed
relative to D. But for ae Dy, and 0 < r < oo such that a + B, = D, we have
the mean value property:

1
M=u(a)=VJ u(a + x)dx,
r JB,

which shows that u = M on a + B,. Therefore, D, is open. Because D is con-
nected, either D,, or D\ D,, must be empty. O

2.4 Exercise. Suppose D is bounded and connected, u is defined and con-
tinuous on D, and u is harmonic in D. Then u attains its maximum over D on
oD. If v is another function, harmonic in D and continuous on D,andv=u
on 0D, then v = u on D as well.

For the sake of completeness, we state and prove the converse of Prop-
osition 2.2. Our proof, which uses no probability, is taken from Dynkin
& Yushkevich (1969).

2.5 Proposition. If u maps D into R and has the mean value property, then u is
of class C* and harmonic.

PROOF. We first prove that u is of class C*. For ¢ > 0, let g,: R* = [0, o) be
the C* function

1
au) = c(s)exp[”xnz — 82]; x|l < e,

0; x|l = &,

where c(¢) is chosen so that (because of (2.6))

e 1
2.7 j g.(x)dx = c(s)J Spexp< 3 2>dp =1
B, 0 p—£
For ¢ > 0 and ae D such that a + B, = D, define

u(a) & L u(@ + x)g.(x)dx = JW u(y)g.(y — a)dy.

From the second representation, it is clear that u, is of class C* on the open
subset of D where it is defined. Furthermore, for every ae D there exists ¢ > 0
so that a + B, = D; from (2.6),(2.7), and the mean-value property of u, we may
then write
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u(a) = J u(a + x)g.(x)dx
B,

¢ 1
= c(e) j S, J u(a + x) exp( 3 2>y,,(dx) dp
o B, pT—&

€ 1
= c(g) L S,u(a)exp <p2 — 82>dp = u(a),

and conclude that u is also of class C*.
In order to show that Au = 0in D, we choose a e D and expand a la Taylor
in the neighborhood a + B,,

29 wasn=u@ s rib@ S T v
. ula+y)=ua i=1 y"axi Y24 =1 yiyjaxiaxj ¢
+o(Iyl?); yeB,

where again ¢ > 0 is chosen so that a + B, = D. Odd symmetry gives us

j yitt(dy) = 0, j yiyite(dy) =0 i #],
0B, 2B,

so upon integrating in (2.8) over B, and using the mean-value property we
obtain

29) u(a) = L u(@ + y)u(dy)
B,

d

14 82
=ula) +5 Y a—;g(a) L y2u,(dy) + o(€?).

i=

(3

But

al—

j vipu(dy) =
2B,

and so (2.9) becomes

d 82
Y j vy =—
i=1 JéB,

g2 5
—z—dAu(a) +0(¢?)=0.

Dividing by ¢2 and letting & | 0, we see that Au(a) = 0. O

B. The Dirichlet Problem

We take up now the Dirichlet problem (D, f): with D an open subset of R? and
f:8D —» R a given continuous function, find a continuous function u: D —» R
such that u is harmonic in D and takes on boundary values specified by f;ie.,
u is of class C2(D) and
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(2.10) Au=0; inD,
(2.11) u=f; ondD.

Such a function, when it exists, will be called a solution to the Dirichlet problem
(D,f). One may interpret u(x) as the steady-state temperature at x € D when
the boundary temperatures of D are specified by f.

The power of the probabilistic method is demonstrated by the fact that we
can immediately write down a very likely solution to (D, f), namely

(212 u(x) & Ef(W,); xeD,
provided of course that
(2.13) E*| f(W,_)| < c0; VxeD.

By the definition of 7, u satisfies (2.11). Furthermore, for ae D and B, chosen
so that a + B, = D, we have from the strong Markov property:

u@) = E°f(W,)) = E{E'Lf(W, )| #,., 1}
= E"{uW,,,, )} = j u(a + x)p,(dx).
" 2B,

Therefore, u has the mean-value property, and so it must satisfy (2.10). The
only unresolved issue is whether u is continuous up to and including dD. It
turns out that this depends on the regularity of 6D, as we shall see later. We
summarize our discussion so far and establish a uniqueness result for (D, f)
which strengthens Exercise 2.4.

2.6 Proposition. If (2.13) holds, then u defined by (2.12) is harmonic in D.

2.7 Proposition. If f is bounded and
(2.14) Pltp,< o] =1, VaeD,

then any bounded solution to (D, f) has the representation (2.12).

PrROOF. Let u be any bounded solution to (D,f), and let D, 2 {xeD;
inf,.sp Ix — yll > 1/n}. From Itd’s rule we have

d tAtg Ao 5 .
u(VVt/\r,, Atp ) = u(WO) + Z j 5:—(Wg)dW§(l), 0<t<oo, n=> 1.
noor i=1 Jo i

Since (6u/dx;) is bounded in B, ~ D,, we may take expectations and conclude
that

u(@ = E°uW, ., rn,, ); 0<t<oo, nx1, aeb,

Ast — o0, n — o, (2.14) implies that u(W, .., .., ) converges to f(W;)), a.s. P*.
The representation (2.12) follows from the bounded convergence theorem.
O
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2.8 Exercise. With D = {(x,,X,); x, > 0} and f(x,,0) =0; x, e R, show by
example that (D, /) can have unbounded solutions not given by (2.12).

In the light of Propositions 2.6 and 2.7, the existence of a solution to the
Dirichlet problem boils down to the question of the continuity of u defined
by (2.12) at the boundary of D. We therefore undertake to characterize those
points ae D for which
(2.15) lim E*f(W,,) = f(a)

x—a
xeD

holds for every bounded, measurable function f: 8D — R which is continuous
at the point a.

2.9 Definition. Consider the stopping time of the right-continuous filtration
{#,) given by op, £ inf{t > 0; W,e D} (contrast with the definition of 1, in
(2.1)). We say that a point aedD is regular for D if P*[o, =0] = 1;ie, a
Brownian path started at a does not immediately return to D and remain there
for a nonempty time interval.

2.10 Remark. A point aedD is called irregular if P°[op = 0] < 1; however,
the event {a, = 0} belongs to ZY, and so the Blumenthal zero-one law
(Theorem 2.7.17) gives for an irregular point a: P°[6;, = 0] = 0.

2.11 Remark. It is evident that regularity is a local condition; i.e., a€dD is
regular for D if and only if is regular for (a + B,)n D, for some r > 0.

In the one-dimensional case every point of 0D is regular (Problem 2.7.18)
and the Dirichlet problem is always solvable, the solution being piecewise-
linear. When d > 2, more interesting behavior can occur. In particular, if
D={xeR%0<|x| < 1} is a punctured ball, then for any x € D the Brownian
motion starting at x exits from D on its outer boundary, not at the origin
(Proposition 3.3.22). This means that u defined by (2.12) is determined solely
by the values of f along the outer boundary of D and, except at the origin,
this u will agree with the harmonic function

i(x) & EXf(W,, )= E(W,,);, x€Bi.

Now u(0) £ f(0), so u is continuous at the origin if and only if f(0) = i(0).
When d > 3, it is even possible for D to be connected but contain irregular
points (Example 2.17).

2.12 Theorem. Assume that d > 2 and fix ae oD. The following are equivalent:

(i) equation (2.15) holds for every bounded, measurable function f:0D-R
which is continuous at a;
(i) a is regular for D;
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(iii) for all ¢ > 0, we have

(2.16) lim P*[t, > ¢] = 0.
ieD

ProoF. We assume without loss of generality that a = 0, and begin by proving
the implication (i)=> (ii) by contradiction. If the origin is irregular, then
P°[6, = 0] = 0 (Remark 2.10). Since a Brownian motion of dimension d > 2
never returns to its starting point (Proposition 3.3.22), we have

lim PO[W, eB,] = P°[W, =0]=0.

rv0

Fix r > 0 for which P°[W, €B,] < (1/4), and choose a sequence {5,}%, for
which0 < 6, < rforallnand é, | 0. With t, £ inf{t > 0; |W,|| > J,}, we have
P°[1,| 0] = 1, and thus, lim,_, P°[1, < 65,] = 1. Furthermore, on the event
{t, < 0p} we have W, eD. For n large enough so that P°[t, < ap] > (1/2),
we may write

s

0/’

1
4> P'IW,,eB] > P°[W,,€B, 1, < o]
= E°(y1, <o} P°[W,, € B|#, ])

- f P*[W,,€B,]P°[x, < op, W, €dx]
DNB;

1
> inf P*[W, eB],
xEDnB‘,

from which we conclude that P**[W, e B,] < (1/2) for some x,eD N B; . Now
choose a bounded, continuous function f:0D - Rsuchthat f=0 outside B,
f < linside B,, and f(0) = 1. For such a function we have

S S 1

lim E*f(W,,)) < lim P*[W, €B,] < 5 < S(0),

n—ow0 n—w0

and (i) fails.
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We next show that (ii) = (iii). Observe first of all that for 0 < 6 < &, the
function

gs(x) & P*[W,eD; 8 < s <¢] = EX(P"[1p>&—0])

= J P’[tp > & — 8] P*[W;edy]
Rd

is continuous in x. But
gs(x) L g(x) & P*[W,eD;0 <5 < ¢&] = P*[op > ¢]

as 60, so g is upper sem_icontinuous. From this fact and the inequality
1, < op, we conclude that lim,o P*[tp > ¢] < lim,_q g(x) < g(0) = 0, by (ii).

xeD

Finally, we establish (iii)=(i). We know that for each r>0,
P*[max, <, <, | W, — Wyl < r] does not depend on x and approaches one as
£} 0. But then

PALIW,, — Wl <712 P*[{max |, — Woll < r}n{rp < e}]

o<t<e

> P°|:max Wil < r:| — P, > €]

0<t<e
Letting x — 0 (xe D) and ¢ | 0, successively, we obtain from (iii)

lim PV, — x|l <r]l=1 0<r<oo.
x—0
xeD

The continuity of f at the origin and its boundedness on oD give us (2.15).
O

C. Conditions for Regularity

For many open sets D and boundary points a€ 0D, we can convince ourselves
intuitively that a Brownian motion originating at a will exit from D immedi-
ately; i.e., a is regular. We formalize this intuition with a careful discussion of
regularity.

We have already seen that when d = 2, the center of a punctured disc is
an irregular boundary point. The following development, culminating with
Problem 2.16, shows that, in R?, any irregular boundary point of D must be
“isolated” in the sense that it cannot be connected to any other point outside
D by a simple arc lying outside D.

2.13 Definition. Let D = R? be open and a € dD. A barrier at a is a continuous
function v: D — R which is harmonic in D, positive on D\{a}, and equal to
zero at a.
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2.14 Example. Let D = B, « R? be open, where 0 <r < 1, and assume
(0,0)e D. If a single-valued, analytic branch of log(x, + ix,) can be defined
in D\(0, 0), then

1 log/x1 + x3

_R - _ :
v(x,,x,) & elog(xl + ix,) [log(x; + ix,)|?
0, (xlaxz) = (0, 0),

is a barrier at (0,0). Indeed, being the real part of an analytic function, v is

harmonic in D, and because 0 < ./x? + x2 < r < 1 in D\(0,0), v is positive
on this set.

(1, x,)€ D\(0,0),

2.15 Proposition. Let D be bounded and a€ dD. If there exists a barrier at a,
then a is regular.

PROOF. Let v be a barrier at a. We establish condition (i) of Theorem 2.12.
With f: @D - R bounded and continuous at a, define M = sup,.;p|f(x).
Choose ¢ >0 and let 6 >0 be such that |f(x) — f(a)] <& if xedD and
|x — a|| < 8. Choose k so that kv(x) > 2M for xeD and ||x — a| = 5. We
then have | f(x) — f(a)] < ¢ + kv(x); xe 0D, so

|E*f(W,)) — fla)l < e+ k-E*o(W,))=¢ + k-v(x); xeD
by Proposition 2.7. But v is continuous and v(a) = 0, so

fim |E¥f(W,) — f(@)] < e.

xeD

Finally, we let ¢ | O to obtain (2.15). O

2.16 Problem. Let D = R? be open, and suppose that ae 0D has the property
that there exists a point b # a in R?\ D, and a simple arc in R?\ D connecting
a to b. Show that a is regular.

In three or more dimensions, it is possible to create a cusped region D so
that the boundary point at the end of the cusp is irregular. We illustrate this
situation in R3. In particular, we will construct a region as demarcated in
the following figure by the broken line, so that, when this region is rotated
about the x;-axis, the resulting solid has an irregular boundary point at the
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origin. It is a simple matter to replace this solid by an even larger one, having
a smooth boundary except for a cusp at the origin (dotted curve). It is a direct
consequence of Definition 2.9 that the origin is also an irregular boundary
point for this larger solid.

2.17 Example (Lebesgue’s Thorn). With d = 3 and {¢,}%., a sequence of posi-
tive numbers decreasing to zero, define

E = {(x;,%3,%3); =1 <x; < 1, x2+x3<1},

F,= {(xl,xz,x3); 27 < xy <27 x5+ x3 < s,,},

o-2\(17)

Now P[(W,®, W,®) = (0,0), for some ¢ > 0] = 0 (Proposition 3.3.22), so the
PO-probability that W = (W, W®, W3) ever hits the compact set K, £
{(xg, X3, %3); 27" S Xy < 27m+1 x, = x5 = 0} is zero. According to Problem
3324, lim,_,, |W| = oo as. P, so for Poae. weQ, the path t— W(w)
remains bounded away from K,,. Thus, if ¢, is chosen sufficiently small, we can
ensure that P°[W,eF,, for some ¢t > 0] < 37" If W, beginning at the origin,
does not return to D immediately, it must avoid D by entering | Ji=; F,- In
other words,

x21
I- ————————————————— s |
l |
| I
| 1
: —
1 .
| -—
| -
l e
| SRR AN
l L, v Xl
| [
|
i ..

| e —— 5
l 1
| |
: I

’_ A

Lebesgue’s Thorn

P°[op = 0] < P°[W,eF,, forsomet>0andn > <Y 3"<l 0O
n=1

If cusplike behavior is avoided, then the boundary points of D are regular,
regardless of dimension. To make this statement precise, let us define for
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yeRN{0} and 0 < 6 < 7, the cone C(y, 0) with direction y and aperture 8 by
C(y,0) = {xeR% (x,y) = lIx] - |yl - cos 6}.

R

Cly, 0)

2.18 Definition. We say that the point aedD satisfies Zaremba’s cone con-
dition if there exists y # 0 and 0 < 8 < n such that the translated cone
a + C(y, 0) is contained in R\ D.

2.19 Theorem. If a point ae 0D satisfies Zaremba’s cone condition, then it is
regular.

PrOOF. We assume without loss of generality that a is the origin and C(y, ) =
R\ D, where y # 0and 0 < 0 < 7. Because the change of variable z = (x/\ﬁ)
maps C(y, 6) onto itself, we have for any t > 0,

P°[W,eC(y,0)] = J Lexp[_ IIxIIZ}dx

o0 (2mt)? 2t

1 llz)|?
= J;(y N exp|:———~2 dz2g>0,

where ¢ is independent of t. Now P°[o, < t] > P°[W,e C(y,0)] = g, and
letting ¢ | 0 we conclude that P°[s;, = 0] > 0. Regularity follows from the
Blumenthal zero-one law (Remark 2.10). O

2.20 Remark. If, for ae 0D and some r > 0, the point a satisfies Zaremba’s
cone condition for the set (a + B,) n D, then a is regular for D (Remark 2.11).
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D. Integral Formulas of Poisson'

We now have a complete solution to the Dirichlet problem for a large class
of open sets D and bounded, continuous boundary data functions f: 6D - R.
Indeed, if every boundary point of D is regular and D satisfies (2.14), then the
unique bounded solution to (D,f) is given by (2.12) (Propositions 2.6, 2.7 and
Theorem 2.12). In some cases, we can actually compute the right-hand side of
(2.12) and thereby obtain Poisson integral formulas.

221 Theorem (Poisson Integral Formula for a Half-Space). Withd > 2,D=
{(x15-.-»Xa) Xa > 0} and f:0D—>R bounded and continuous, the unique
bounded solution to the Dirichlet problem (D, f) is given by

I'(d/2) J xaf ()
é

217 =
@17) ue) == | Ty - xI?

dy; xeD.

2.22 Problem. Prove Theorem 2.21.

The Poisson integral formula for a d-dimensional sphere can be obtained
from Theorem 2.21 via the Kelvin transformation. Let ¢: R\{0} — R?\{0} be
defined by o(x) = (x/ lix|I2). Note that ¢ is its own inverse. We simplify
notation by writing x* instead of @(x).

Forr>0,let B={xeR% fx —cll < r}, where ¢ =re, and ¢; is the unit
vector with a one in the i-th position. Suppose f: 0B — R is continuous (and
hence bounded), so there exists a unique function u which solves the Dirichlet
problem (B, f). The reader may easily verify that

o(B)=H % {x* eR% (x*,¢) > %}

and @(@B\{0}) = 0H = {x*eR% (x*,c)= 1}. We define u*: H-R, the
Kelvin transform of u, by

(2.18) u*(x*) = u(x).

flxc* 12

A tedious but straightforward calculation shows that Au*(x*) =
x| =4 2Au(x), so u* is a bounded solution to the Dirichlet problem (H, i)
where

1

(2.19) f*x*) = o2

f(x); x*edH.

Because H = (1/2r)e, + D, where D is as in Theorem 2.21, we may apply (2.17)
to obtain

t The results of this subsection will not be used later in the text.
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x*eH.

l )
<x7f -5 | f*0*)
220)  ur(xr) = L2 f o dy*;
é

77 Iy* = x*I

Formulas (2.18)—(2.20) provide us with the unique solution to the Dirichlet
problem (B, f). These formulas are, however, a bit unwieldy, a problem which
can be remedied by the change of variable y = ¢(y*) in the integral of (2.20).
This change maps the hyperplane 6H into the sphere dB. The surface element
on dB is S,u,(dy — c) (recall (2.4), (2.5)). A little bit of algebra and calculus on
manifolds (Spivak (1965), p. 126) shows that the proposed change of variable
in (2.20) involves

Sr.ur(dy - C)
Iy 2@=v

(The reader familiar with calculus on manifolds may wish to verify (2.21) first
for the case y* = yfe; + (1/2r)e, and then observe that the general case may
be reduced to this one by a rotation. The reader unfamiliar with calculus on
manifolds can content himself with the verification when d = 2, or can refer
to Gilbarg & Trudinger (1977), p. 20, for a proof of Theorem 2.23 which uses
the divergence theorem but avoids formula (2.21).)

On the other hand,

(2.21) dy* =

Ix — yII?
222 ¥ x¥|2 = ,
(222 b=l Il yl?

1
(223) P — |x — ) = x| *[2(e, x*) — 1] = 2r|}x|? <xif - 2—>'

r
Using (2.18), (2.19), and (2.21)~(2.23) to change the variable of integration in
(2.20), we obtain

dv —
(224)  u(x)=ri3(r — [x — c||2)J fQwddy —0), g
s ly—x|
Translating this formula to a sphere centered at the origin, we obtain the
following classical result.

2.23 Theorem (Poisson Integral Formula for a Sphere). With d > 2, B, =
{xeR% ||x|| <r}, and f: 0B, — R continuous, the unique solution to the
Dirichlet problem (B,,f) is given by

(2.25) u(x):rd-Z(r-||x||2)J SIS xeB,.

2B, Iy — x| ’

2.24 Exercise. Show that for x € B,, we have the exit distribution

ri=2(r?2 — |ix|®)u(d
@) PO, ea) =D,
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E. Supplementary Exercises

2.25 Problem. Consider as given an open, bounded subset D of R? and
the bounded, continuous functions g: D —» R and f: 0D — R. Assume that
u: D — R is continuous, of class C2(D), and solves the Poisson equation

1
~Au= —g; inD
5Au g; in

subject to the boundary condition
u=f; ondD.

Then establish the representation

(2.27) u(x) = EX[f(W,,) + j g(W)dt]; xeD.
0
In particular, the expected exit time from a ball is given by
2 2
(2.28) E*ty = %; x€B,.

(Hint: Show that the process {M, L yW,,,)+ [0 PgW)ds, #;0<t < o}
is a uniformly integrable martingale.)

226 Exercise. Suppose we remove condition (2.14) in Proposition 2.7. Show
that v(x) £ P*[1p = ] is harmonic in D, and if aedD is regular, then

lim,., v(x)=0. In particular, if every point of 8D is regular, then with
xeD

u(x) = EX[ f(W, )1(;)<} ], the function u + Av is a bounded solution to the
Dirichlet problem (D, f) for any ieR. (It is possible to show that every
bounded solution to (D, f) is of this form; see Port & Stone (1978), Theorem
42.12)

2.27 Exercise. Let D be bounded with every boundary point regular. Prove
that every boundary point has a barrier.

2.28 Exercise. A complex-valued Brownian motion is defined to be a process
W= {Wh+iW® F,0<t< oo}, where W ={(WO W), F;0<t< o0}
is a two-dimensional Brownian motion and i = / — 1

(i) Use Theorem 3.4.13 to show that if W is a complex-valued Brownian
motion and f: C — C is analytic and nonconstant, then (under an ap-
propriate condition) fi (W) is a complex-valued Brownian motion with a
random time-change (P. Lévy (1948)).

(i) With £eC\{0}, show that M, A g™ (<t< oo is a time-changed,
complex-valued Brownian motion. (Hint: Use Problem 3.6.30.)

(iii) Use the result in (ii) to provide a new proof of Proposition 3.3.22.
For additional information see B. Davis (1979).
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4.3. The One-Dimensional Heat Equation

In this section we establish stochastic representations for the temperatures in
infinite, semi-infinite, and finite rods. We then show how such representations
allow one to compute boundary-crossing probabilities for Brownian motion.

Consider an infinite rod, insulated and extended along the x-axis of the (¢, x)
plane, and let f(x) denote the temperature of the rod at time t = 0 and loca-
tion x. If u(t, x) is the temperature of the rod at time ¢ > 0 and position x € R,

then, with appropriate choice of units, u will satisfy the heat equation
ou 10%u

31 — =

1) ot 20x?

with initial condition u(0, x) = f(x); x € R. The starting point of our prob-
abilistic treatment of (3.1) is furnished by the observation that the transition
density

1
p(t; x, y) & —P*[W,edy] =

e-(x-y)z/Z'; t> 0, X, Y€ R’
dy \/2?

of the one-dimensional Brownian family satisfies the partial differential
equation

dp 1 62p
(3:2) %200

Suppose then that f: R —» R is a Borel-measurable function satisfying the
condition

(3.3) Jw e | f(x)|dx < oo

—a0

for some a > 0. It is well known (see Problem 3.1) that

[ el

(3.4) u(t,x) & EXf(W,) = J f)p(t; x, y)dy

00

is defined for 0 < t < (1/2a) and x € R, has derivatives of all orders, and satisfies
the heat equation (3.1).

3.1 Problem. Show that for any nonnegative integers n and m, under the
assumption (3.3), we have

n+m nt+m

@ d 1
3.5 T = [ . . _ .
(3.5) =g m () J_wf(y)at,.ax,,.p(t,x,y)dy, O<t<g., xeR

If fis bounded and continuous, then rewriting (3.4) as u(t, x) = E°f(x + W),
we can use the bounded convergence theorem to conclude
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(3.6) flx) = 1i¢m u(t,y), VxeR.
o
y=x

In fact, we have the stronger result contained in the following problem.

3.2 Problem. If f: R — R is a Borel-measurable function satisfying (3.3) and
f is continuous at x, then (3.6) holds.

A. The Tychonoff Uniqueness Theorem

We shall call p(t; x, y) a fundamental solution to the problem of finding a
function u which satisfies (3.1) and agrees with the specified function f at time
t=0.

We shall say that a function u: R™ — R has continuous derivatives up to a
certain order on a set G, if these derivatives exist and are continuous in the
interior of G, and have continuous extensions to that part of the boundary
5G which is included in G. With this convention, we can state the follow-
ing uniqueness theorem. For nonnegative functions, a substantially stronger
result is given in Exercise 3.8.

3.3 Theorem (Tychonoff (1935)). Suppose that the function u is C'2 on the
strip (0, T] x R and satisfies (3.1) there, as well as the conditions

3.7 limu(t,y) =0; xeR,
t{0
yox
(3.8) sup |u(t,x)| < Ke™*: xe€R,
0<t<T

for some positive constants K and a. Then u=00n(0,T] x R.

3.4 Remark. If u, and u, satisfy (3.1), (3.8) and

hm “1(’%}’) = hm “z(t, ,V),
tlo tlo
yox yox

then Theorem 3.3 applied to u; — u, asserts that u; = u, on 0, 7T)x R.

3.5 Remark. Any probabilistic treatment of the heat equation involves a time-
reversal. This is already suggested by the representation (3.4), in which the
initial temperature function f is evaluated at W, rather than W,. We shall see
this time-reversal many times in this section, beginning with the following
probabilistic proof of Theorem 3.3.

Proor oF THEOREM 3.3. Let T, be the passage time of Wto yasin (2.6.1). Fix
xeR, choose n > |x|,and let R, = T, A T_,. With te [0, T) fixed and

p(0,x)2u(T—t—0,x); 0<0<T—1t
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we have from It&’srule, for0 <s< T —1t,
39 w(T — t,x) = v(0,x) = E*v(s A R,, W, . )
= E*[0(s, W) ljsery] + EX[0(Ry, Wa ) Liszry )
Now |v(s, W))| 1;<g,) is dominated by
max |u(T —t —s,y)| < Ke®™,

0<s<T—t
yl<n

and v(s, W,) converges P*-a.s. to zero as s 1 T — t, thanks to (3.7). Likewise,
|0(R,, Wa_)|Liss &) is dominated by Ke® Letting s 1 T — ¢ in(3.9), we obtain
from the bounded convergence theorem:

u(T—t,x) = E*[v(R,, Wg )i, <7-5]-
Therefore, with0 <t < T, |x|<mn,
|u(T — t,x)| < Ke®*P*[R, < T — t]
< Ke"(P°[T,-, < T1+ P°[T,,. < T))

2 2 ® 2 ® 2
< Ke™" \[—(J el dz + J e~ %2 dz),
TN -/ T n+x)//T

where we have used (2.6.2). But from (2.9.20) it is evident that
lim,_, e* [, ., /7€ *"?dz = 0, provided a < 1/2T.

Having proved the theorem for a < (1/2T), we can easily extend it to the
case where this inequality does not hold by choosing T, =0< T} < -+ <
T, = T such that a < (1/2(T; — T,_;));i = 1, ..., n, and then showing succes-
sively that u = 0 in each of the strips (T,_;, T;];i=1,...,n. O

It is instructive to note that the function
A X 0
(3.10) hit,x) & ?p(t; x,0) = —ap(t; x,0); t>0, xeR,

solves the heat equation (3.1) on every strip of the form (0, T] x R; further-
more, it satisfies condition (3.8) for every 0 < a < (1/27T), as well as (3.7) for
every x # 0. However, the limit in (3.7) fails to exist for x = 0, although we
do have lim,A(t,0) = 0.

B. Nonnegative Solutions of the Heat Equation

If the initial temperature f is nonnegative, as it always is if measured on the
absolute scale, then the temperature should remain nonnegative for all ¢ > 0;
this is evident from the representation (3.4). Is it possible to characterize the
nonnegative solutions of the heat equation? This was done by Widder (1944),
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who showed that such functions u have a representation

u(t,X)=r p(t; x, ) AF(y); x€R,

where F: R —» R is nondecreasing. Corollary 3.7 (i), (i) is a precise state-
ment of Widder’s result. We extend Widder’s work by providing probabilistic
characterizations of nonnegative solutions t0 the heat equation; these appear
as Corollary 3.7 (iii), (iv).

3.6 Theorem. Let v(t, x) be a nonnegative function defined on a strip 0, 7) x R,
where 0 < T < oo. The following four conditions are equivalent:

(i) for some nondecreasing function F: R - R,

@

(3.11) v(t,x)=j p(T — t; x, y)dF(y); 0<t<T, xeR

(i) visof class C 1.2 o5 (0, T) x R and satisfies the “backward” heat equation

dv 1%
(3.12) o + Y 0
on this strip;

(iii) for a Brownian family (W, Z;0<s< o}, (QF), {P*}xer and each
fixed te(0, T), x € R, the process {o(t + s, W), F; 0<s<T - t} isamar-
tingale on (Q, #, P*), ,

(iv) for a Brownian family (W, F;0<s < 0}, (Q F), {P*}ccr We have

(3.13) o(t, x) = E*v(t + s, W), O<t<t+s<T, xeR

PrOOF. Since (8/00)p(T — t; x,y) + (1/2)(9*/0xH)p(T — t; x,y) = 0, the impli-
cation (i) => (ii) can be proved by showing that the partial derivatives of
v can be computed by differentiating under the integral in (3.11). Fora > 1 2T

we have
® T 1
j e dF(y)=\/:v<T——,0><oo.
—® a 2a

This condition is analogous to (3.3) and allows us to proceed as in Solution
3.1

For the implications (i )=>(iii) and (i) = (iv), we begin by applying It0’s
rule to v(t+s, W), 0<s<T—t With a < x < b, we consider the passage
times T, and T, as in (2.6.1) and obtain:

o(t + (s A T, A Tp) Wanr,ary) = 06 Wo) + j
0

sATAT, a 1 62
+J~0 (—a—t"'ig)?)l?(t"—o’,m)dﬂ.

sAT, AT

0 it + 0, W,)dW,
ox
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Under assumption (ii) the Lebesgue integral vanishes, as does the expectation
of the stochastic integral because of the boundedness of (§/0x)v(t + o, y) when
a<y<band0 <o <s<T—t Therefore,

(3.14) ot, x) = E¥o(t + (s A T, A T,), Wyng,a1,)-

Now leta | —oo, b1 oo and rely on the nonnegativity of v and Fatou’s lemma
to obtain

(3.15) vit,x) > E*v(t + s, W), O0<t<t+s<T, xeR

Inequality (3.15) implies that for fixed te(0,T) and xeR, the process
{v(t + 5,W,), Z;0 < s < T —t} is a supermartingale on (€, %, P*). Indeed,
for 0 <s, < s, < T —t, the Markov property yields

(3.16) E*[o(t + 52, W )| F, 1(w) = f(W, (w)), for P*-ae wel),
where
(3.17) SO 2 Bole + 55, W, )
(see Proposition 2.5.13). From (3.15), we have

Ev(t + 55, W,,_,) < vt + 54,Y),
andsofor0<t<t+s, <t+s,<T, xeR:
(3.18) o(t + 51, W) = EX[o(t + 55, W, )| &, 1, as. P~

It is clear from this argument that if equality holds in (3.15), then {v(t + s, W}),
Z,;0 < s < T — t} is a martingale. To complete our proof of (ii) = (iii) and
(ii) = (iv ), we must establish the reverse of inequality (3.15).

Returning to (3.14), we may write

olt, %) = EX[o(t + 5, W lp< 1, nryy] + EX[0(t + T @) lir,<s 1,y
+ E*[v(t + T,, D) Y1, <5n 1, ]
< E*o(t + 5, W) + E*[v(t + T;,a) Ly, <5 ]
+ E*[o(t + T, D) 11, <y ]
We will have established (3.13) as soon as we prove

(3.19) lim E*[o(t + T,b)l{r,<y] = O

b—
(a dual argument then shows that lim,,_,, E*[v(t + T;,a)l7, <51 = 0). For
(3.19), it suffices to show that with B > 0 large enough, we have

j E*[o(t + T,, b) Y1, <531 db < 0.

B

Wechoose xeR,0 <t < T,and0 < s <t sothats + t < T. From (2.6.3) and
(3.10) we have

P*[T,edo] = h(o; b — x)do; b>x,0>0.
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For B > x sufficiently large, h(s; b — x) is an increasing function of a€(0,s),
provided b > B. Furthermore, for r (s, t) and B perhaps larger, we have

h(s,b —x) < \/::3 p(r; x, b, b=B.
It follows that

j E*[v(t + T, b)11,<1db = j j u(t + o,b)h(c,b — x)do db
B B

S\/éjj v(t+a,b)p(r;x,b)dbda
s Jo Ja
s\/éj E*v(t + 0, W,)do
7 Jo
S\/éj ot + 0 —r,x)do < o,
7 Jo

where the next to last inequality is a consequence of (3.15). This proves (3.13)
forxeR O0<t<t+s<Taslongass <t

We now remove the unwanted restriction s <. We show by induction on
the positive integers k that if

(3.20) O<t<t+s<T, s<ki,
then
(3.21) o(t,x) = E*v(t + 5, W), Xx€ R.

This will yield (3.13) for the range of values indicated there. We have just
established that (3.20) implies (3.21) when k = 1. Assume this implication
for some k > 1, s0 {v(t + s, W,), F;0<s < kt} is a martingale. Choose s, €
[kt,(k + 1)) and s, €[0, kt) so that 0 < s, — 5y <1 Then

E*ult + 52, W) = EX{E[0(t + 52, W) .1}
= FE*o(t + 5, W) = v(t, x),
where we have used (3.16), (3.17), and the induction hypothesis in the form
E’o(t + s, W,,—5,) = vt + 51, )

Finally, we take up the implication (iv)=-(i). For 0<e<(T/4),(T)2) <t<T,
(3.13) gives

* T— t;x,
o(t — & x) = E*o(T — &, Wr_) = j p( x )

LS Rty
. [T . F.(»),
p 2 3 ’y

* T
Fs(x)éj P(E;O,y>v(T—s,y)dy; xeR.

where F, is the nondecreasing function
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Again from (3.13), F,(00) = E%(T — &, Wy;) = v((T/2) — &,0), and thus

sup F(o0)< max 1(s,0) < 0.
0<e<(T/d) (T/4)<5<(T/2)
By Helly’s theorem (Ash (1972), p. 329), there exists a sequence &, > &, > - >
& | 0 and a nondecreasing function F*: R — [0, c0), such that lim, ., F, (x) =
F*(x) for every x at which F* is continuous. Because for fixed xeR and
te((T/2), T) the ratio (p(T — t; x,)/p((T/2); 0, y)) is a bounded, continuous
function of y, converging to zero as |y| = o0, we have

] T— .
v(t,x) = lim vt — g, x) = J T —t;xy)

k- —0 TO
p R , Y

by the extended Helly-Bray lemma (Loéve (1977), p. 183). Defining F(x) =
[SdF*(y)/p((T/2); 0, y)), we have 3.1 for (T/2) <t < T, xeR.
If 0 < t < (T72), we choose t, €((7/2), T) and use (3.13) to write

o{t,x) = | plty — & X, y)o(ty, y)dy

o T

dF*(y)

{* o @©

= J p(t, — t; %, Y)p(T — t,; y, 2)dy dF(2)

=| PpT—tx 2)dF(2). O

3.7 Corollary. Let u(t, x) be a nonnegative function defined onastrip(0,T) x R,
where 0 < T < . The following four conditions are equivalent:

(iy for some nondecreasing function F: R — R,

(3.22) u(t,x) = J pit; x, NdF(y);, 0<t<T xelR;

(iiy uis of class C*'2 on (0, T) x R and satisfies the heat equation (3.1) there;

(iiiy for a Brownian family {W,, ;0 <s < w0}, (Q, %), {P*}s.r and each
fixed te(0,T), xeR, the process {u(t — s, W,), #; 0 < s <t} is a mar-
tingale on (Q, #, P¥),

(ivy for a Brownian family {W,, %;0 < s < w0}, (Q, %), {P*}..r we have

(3.23) u(t,x) = E*u(t —s5,W,); 0<s<t<T xeR

Proor. If T is finite, we obtain this corollary by defining o(t, x) = u(T — t,x)
and appealing to Theorem 3.6. If T = oo, then for each integer n = 1 we set
v,(t,x) = u(n — t,x); 0 <t < n, xeR. Applying Theorem 3.6 to each v, we see
that conditions (ii), (iii), and (iv)’ are equivalent, they are implied by (i), and
they imply the existence, for any fixed n > 1, of a nondecreasing function
F: R — R such that (3.22) holds on (0,n) x R. For t > n, we have from (3.23):
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< (B ® n n
u(t,x)=E u(i, W,_(,,/2)> = J._w u(i, z>p<t — 5; X, z> dz
j‘_w j‘_w p<59 Z, Y>P<t - —29 X, Z> dZ dF (y)

j p(t; x, y)dF(y). O

—a

3.8 Exercise (Widder’s Uniqueness Theorem).

(i) Let u(t,x) be a nonnegative function of class CV'2 defined on the strip
(0,T) x R,where0 < T < 0, and assume that u satisfies (3.1) on this strip
and

lim u(t,y) =0; xeR.

0

y—ox
Show that u =0 on (0, T) x R. (Hint: Establish the uniform integrability
of the martingale u(t — 5, W), 0 < 5 < t)

(i) Let u be as in (i), except now assume that lim,y, u(t,y) = f(x); xeR.
Show that yox

u(t,X)=j p(t; x, Nfdy; 0<t<T xeR

—a

Can we represent nonnegative solutions v(t, x) of the backward heat equa-
tion (3.12) on the entire half-plane (0, 0) x R, just as we did in Corollary 3.7
for nonnegative solutions u(t,x) of the heat equation (3.1)? Certainly this
cannot be achieved by a simple time-reversal on the results of Corollary 3.7.
Instead, we can relate the functions u and v by the formula

2m x2 1 x
. = [= —_ —-—L ,xeR.
(3.24) v(t, x) ; exp<2t>u<t,t> 0<t< oo, Xx€

The reader can readily verify that v satisfies (3.12) on (0, o) x R if and only
if u satisfies (3.1) there. The change of variables implicit in (3.24) allows us to
deduce the following proposition from Corollary 3.7.

3.9 Proposition (Robbins & Siegmund (1973)). Let v(t, x) be a nonnegative
function defined on the half-plane (0, ©) x R. With T = o, conditions (ii), (iii),
and (iv) of Theorem 3.6 are equivalent to one another, and to (1)":

(i)’ for some nondecreasing function F: R —» R,

@

1
exp(yx —§y2t>dF(y); 0<t<oo,xeR

(325 olt,x)= j‘
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Proor. The equivalence of (ii), (iii), and (iv) for T = o follows from their
equivalence for all finite T. If v is given by (3.25), then differentiation under
the integral can be justified as in Theorem 3.6, and it results in (3.12). If v
satisfies (ii), then u given by (3.24) satisfies (ii), and hence (i), of Corollary 3.7.
But (3.24) and (3.22) reduce to (3.25). O

C. Boundary-Crossing Probabilities for Brownian Motion

Therepresentation (3.25) has rather unexpected consequences in the computa-
tion of boundary-crossing probabilities for Brownian motion. Let us consider a
positive function v(t, x) which is defined and of class C!? on (0, ©) x R, and
satisfies the backward heat equation. Then v admits the representation (3.25)
for some F, and differentiating under the integral we see that

0
(3.26) Ev(t,x)<0; O<t<w,xeR
and that v(t, -) is convex for each t > 0. In particular, lim, 4 v(t, 0) exists. We
assume that this limit is finite, and, without loss of generality (by scaling, if
necessary), that

3.27) lim v(¢,0) = 1.
tdo
We also assume that
(3.28) lim »(t,0) = 0,
t—w
(3.29) lim v(t,x) = c0; 0<t< o0,
(3.30) lim o(t,x)=0, 0<t< o0.

It is easily seen that (3.27)—(3.30) are satisfied if and only if F is a probability
distribution function with F(0+) = 0. We impose this condition, so that (3.25)
becomes

o0

(3.31 v(t,x) = J

o+

1
exp(yx — Eyzt)dF(y); 0<t<w,xeR,

where F(o0) = 1, F(0+) = 0. This representation shows that v(t, -) is strictly

increasing, so for each t > 0 and b > 0 there is a unique number A(t, b) such
that

(3.32) v(t, A(t, b)) = b.

It is not hard to verify that the function A(-,b) is continuous and strictly
increasing (cf. (3.26)). We may define A(0, ) = lim,  , A(t, b).

We shall show how one can compute the probability that a Brownian path
W, starting at the origin, will eventually cross the curve A(-, b). The problem of
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computing the probability that a Brownian motion crosses a given, time-
dependent continuous boundary {/(1); 0 < t < oo} is thereby reduced to find-
ing a solution v to the backward heat equation which also satisfies (3.27)-(3.30)
and v(t, (1)) = b;0 < t < oo, for some b > 0. In this generality both problems
are quite difficult; our point is that the probabilistic problem can be traded
for a partial differential equation problem. We shall provide an explicit solu-
tion to both of them when the boundary is linear.

Let {W,, #;0 <t < 0}, (Q %), {P*} g be a Brownian family, and define

Z, =v(t, W), 0<t<co.

For 0 < s < t, we have from the Markov property and condition (iv) of
Proposition 3.9:

E°[Z|#.] = [(W) = v, W) = Z,, as. P°,

where f(y) 2 E*u(t, W,_,). Inother words, {Z,, ;0 <t < oo} is a continuous,
nonnegative martingale on (Q, &, P%). Let {t,} be a sequence of positive
numbers with t, 0, and set Z, = lim,_,, Z, . This limit exists, P%-a.s., and
is independent of the particular sequence {t,} chosen; see the proof of Prop-
osition 1.3.14(i). Being & -measurable, Z, must be a.s. constant (Theorem
2.7.17).

3.10 Lemma. The extended process Z & {Z,, #;0 <t < oo} is a continuous,
nonnegative martingale under P® and satisfies Zo =1, 2, = 0, P%-as.

PRrOOF. Let {t,} be a sequence of positive numbers with ¢, | 0. The sequence
{Z, o is uniformly integrable (Problem 1.3.11, Remark 1.3.12), so by the
Markov property for W, we have for all t > O:

E°[Z|%,] = E°Z, = lim E°Z, = E°Z, = Z,.
This establishes that {Z,, %; 0 < t < co} is a martingale.

Since Z,, 2 lim,., Z, exists P°-a.s. (Problem 1.3.16), as does Zo 2 lim,y o Z,,
it suffices to show that lim, o Z, = 1 and lim,,, Z, = 0 in P%-probability. For
every finite ¢ > 0, we shall show that
(3.33) lim sup |v(t,x)—1]=0.

t{0 IXISC\/t_

Indeed, for t > 0, |x| < ¢/t:
- 1
(3.34) j exp(—yc\ﬁ - Eyz t> dF(y) < v(t,x)

0+
® 1
< j exp (yc\ﬁ - 5y2t> dF(y).

0+

Because + yc\ﬂ — Y22 < %2, Vy>0, the bounded convergence theo-
rem implies that both integrals in (3.34) converge to 1, as t]0, and (3.33)
follows. Thus, for any ¢ > 0, we can find ¢, ., depending on ¢ and ¢, such that
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l—e<oit,x) <1 +¢; IxISC\ﬂ, O<t<t,,.

Consequently, for0 <t <t

C, &

P°[IZ, - 11> ] = P°[lo(t, W) — 1] > £] < P°[I | > c/t] = 2[1 — ®(0)],

where

d(x) £

l x
e %2 gz,

Letting first ¢ | 0 and then ¢ — oo, we conclude that Z, — 1 in probability as
t | 0. A similar argument shows that

335 Iim sup o(t,x) =0,

(3.35) lim lesfr:ﬂ (t,x)

and, using (3.35) instead of (3.33), one can also show that Z, — 0 in probability
ast— 0. O

It is now a fairly straightforward matter to apply Problem 1.3.28 to the
martingale Z and obtain the probability that the Brownian path {W(w),
0 <t < oo} ever crosses the boundary {A(t,b); 0 < t < 0}.

3.11 Problem. Suppose that v: (0, 00) x R — (0, o) is of class C!*2 and satisfies
(3.12) and (3.27)—(3.30). For fixed b > 0, let A(-,b): [0, 0) = R be the con-
tinuous function satisfying (3.32). Then, for any s > 0 and Lebesgue-almost
every ae R with v(s,a) < b, we have

v(s, a)

(3.36) P°[W, > A(t,b), for some t > s|W, = a] = R

(3.37) PO[W, > A(t,b), for some t > 5]

=1—q><A\(;’§b)>+lr <A\(;;b —yf)dF(y

where F is the probability distribution function in (3.31).

3.12 Example. With u > 0, let v(t, x) = exp(ux — p*t/2), so A(t,b) = ft + 7,
where B = (1/2), y = (1/u)logb. Then F(y) = 1;, .,(»), and so for any s > 0,
B >0, yeR, and Lebesgue-almost every a < y + fs:

(3.38) PO[W, > Bt + y, for some t > s|W, = a] = e 2P0-a+69),
and forany s > 0, > 0, and ye R:

(3.39) PO[W,>pt+ 7y forsomet>s]=1— m(% + [3\/§>
N

+ e‘”’@(% — /3\/§>
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The observation that the time-inverted process Y of Lemma 294 is a
Brownian motion allows one to cast (3.38) with y =0 into the following
formula for the maximum of the so-called “tied-down” Brownian motion or
“Brownian bridge”:

(3.40) P°|: max W,>f

o<t<T

W, = a] — o 2BB-aNT

for T>0,>0,ae a<f,and (3.39) into a boundary-crossing probability
on the bounded interval [0, T]:

(3.41) P°[W, = B + yt, for some [0, T1]

=1- <b<yﬁ+%> + e'2ﬁ7<b<;vﬁ—%>; B>0,yeR.

3.13 Exercise. Show that P°[W, > ft + 7, for some t > 0] = e 2% for >0
and y > 0 (recall Exercise 3.5.9).

D. Mixed Initial/Boundary Value Problems

We now discuss briefly the concept of temperatures in a semi-infinite rod and
the relation of this concept to Brownian motion absorbed at the origin. Suppose
that f:(0,00)> R isa Borel-measurable function satisfying

(3.42) J‘w e | f(x)|dx < ©
0

for some a > 0. We define

1
(3.43) uy (%) & B fW)lroq}s 0<t<5—, x>0,
{To>1) a

The reflection principle gives us the formula (2.8.9)

P [W,edy, T, > t] = p_(t; x, y)dy & [p(t; x, y) = p(; X, —y)1dy

fort>0,x>0,y>0,andso

© 0
(3.44) u(t,x) = j f)p(t; x, ydy — j f(=y)p(t; x, y)dy,
0 —0

which gives us a definition for valid on the whole strip (0,1/2a) x R.
This representation is of the form { 3.4), where the initial datum f satisfies
f() = —f(—ysy>0.1Itis clear then that u, has derivatives of all orders,
satisfies the heat equation (3.1), satisfies (3.6) at all continuity points of f,
and 1

lim u,(t,0) =0; 0<t<5.

st 2a

x40
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We may regard u,(t,x); 0 <t < (1/2a), x > 0, as the temperature in a semi-
infinite rod along the nonnegative x-axis, when the end x = 0 is held at a
constant temperature (equal to zero) and the initial temperature at y > 0 is
J).

Suppose now that the initial temperature in a semi-infinite rod is identically
zero, but the temperature at the endpoint x = 0 at time t is g(t), where
g:(0,1/2a) - R is bounded and continuous. The Abel transform of g, namely

(3.45) uy(t,x) & E¥[g(t — To)lir,<4]

= Jt g(t — 1)h(r,x)dr
0

t

1

= J gs)h(t — s, x)ds; 0<t<—,x>0
0 2a

with h given by (3.10), is a solution to (3.1) because k is, and h(0,x) = 0 for

x > 0. We may rewrite this formula as

1
up(t,x) = E°[g(t — T) 1, <ny]; 0<t< > 0,
and then the bounded convergence theorem shows that

1
lim u,(s,x) =g(t); 0<t < —,
st 2a

limu,(t,y) =0; 0<x < 0.
t{o
y—x

We may add u,; and u, to obtain a solution to the problem with initial datum
f and time-dependent boundary condition g(t) at x = 0.

3.14 Exercise (Neumann Boundary Condition). Suppose that f:(0,0) - R
is a Borel-measurable function satisfying (3.42), and define

1
u(t,x) 2 EXf((W,); O0<t <50 X > 0.

Show that u is of class C''2, satisfies (3.1) on (0, 1/2a) x (0, c0) and (3.6) at all
continuity points of f, as well as

0 1
lsi;'rtlau(s,x)=0; 0<t<%.
xv0

3.15 Exercise (Finite Rod). Suppose that g, k are bounded, continuous func-
tions from (0, ) into R, and f is a bounded, continuous function from (0, b)
into R. We seek a function u which is of class C!'2? on (0, o) x (0, b) and which
has a continuous extension to the boundaries {0} x (0,b), (0, ) x {0}, and
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(0, 0) x {b}, such that
du_10%
ot 20x?
u(0,x) = f(x)y, 0<x<b,
u(t,0)=g(t);, 0O0<t< oo,
u(t,b)=k(t)y 0<t<oo.

on (0, ) x (0,b),

Show that the unique bounded solution to this problem is given by the
expression

(3.46)  u(t,x) = E*Lf(W) ycrynty) + 90 — To)Yro<inTy)
+ k(t — T;,)I{qu,\To}]; O0<t<ow,0<x<b
(Hint: Use Proposition 2.8.10 and Formulas (2.8.25), (2.8.26).)

4.4. The Formulas of Feynman and Kac

We continue our program of obtaining stochastic representations for solu-
tions of partial differential equations. In the first subsection, we introduce the
Feynman-Kac formula, which provides such a representation for the solution
of the parabolic equation

ou

1
4.1 % + ku= zAu +g; (,x)e(0,00) x R?

subject to the initial condition
4.2) u(0,x) = f(x); xeR?

for suitable functions k: R¢ — [0, ), g: (0, 0) X R‘> Rand f: R?> R.
In the special case of g = 0, we may define the Laplace transform

z,(x) & J e u(t,x)dt; xeR’
1]

and using (4.1), (4.2), integration by parts, and the assumption that

lim,., e “u(t,x) = 0; & > 0, xe R, we may compute formally

1 1 {=
4.3) —Az, = ﬁJ‘ e ™ Audt = (a + k)2, — f.
0

The stochastic representation for the solution z, of the elliptic equation 4.3)
is known as the Kac formula; in the second subsection we illustrate its use
when d = 1 by computing the distributions of occupation times for Brownian
motion. The second subsection may be read independently of the first one.
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Throughout this section, {W,, #;0<t < w0}, (Q F), {P*}icra is a d-
dimensional Brownian family.

A. The Multidimensional Formula

4.1 Definition. Consider continuous functions f: R? — R, k: R? — [0, ©), and
g: [0, T] x R? - R. Suppose that v is a continuous, real-valued function on
[0,T] x RY, of class C''% on [0,T) x R? (see the explanation preceding
Theorem 3.3), and satisfies

ov

1
(4.4) —5, tho=3Av+g; on[0,T) x R,

(4.5) (T, x) = f(x); xeR%

Then the function v is said to be a solution of the Cauchy problem for the
backward heat equation (4.4) with potential k and Lagrangian g, subject to the
terminal condition (4.5).

4.2 Theorem (Feynman (1948), Kac (1949)). Let v be as in Definition 4.1 and
assume that

(4.6) max |v(t,x)] + max |g(t,x)| < Ke*™™I*, VxeRe,
0<t<T 0<t<T
Sfor some constants K > 0 and 0 < a < 1/2Td. Then v admits the stochastic
representation
Tt

4.7 o(t,x)= Ex[f(WT_,)exp{—J

0

k(W) dS}

Tt 2]
+J g(t+9,%)exp{—f k(Ws)ds}de]; 0<t<TxeR

0 0

In particular, such a solution is unique.
4.3 Remark.Ifg > 0 on [0, T] x R? then condition (4.6) may be replaced by

(4.8) max |v(t,x)| < Ke**!*; VxeR?
0<t<T
This leads to the following maximum principle for the Cauchy problem: if the
continuous function v: [0, T] x R? > R is of class C'*2 on [0, T) x R? and
satisfies the growth condition (4.8), as well as the differential inequality
ov 1
——+kv>zA d
6t+ v_2 v on[0,7T) x R
with a continuous potential k: R? — [0, c0), then v > 0 on {T} x R implies
v>00n[0,7] x R4,
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4.4 Remark. If we do not assume the existence ofa C 1.2 golution to the Cauchy
problem (4.4), (4.5), then the function defined by the right-hand side of 4.7
need not be C!'2, The reader is referred to Friedman (1964), Chapter 1,
Friedman (1975), p. 147, or Dynkin (1965), Theorem 13.16, for conditions
under which the Cauchy problem of Definition 4.1 admits a solution. This is
the case, for example, if k is bounded and uniformly Holder-continuous on
compact subsets of R?, g is continuous on [0, T] x R?and Holder-continuous
in x uniformly with respect to (¢, x) € [0, T] x R, fis continuous, and for some
constants L and v > 0 we have
max |g(t, )| + /() < L + |x|I"); xR

0<t<T

PROOF OF THEOREM 4.2. We obtain from Itd’s rule, in conjunction with (4.4):

d |:v(t + 6, Wy)exp {— jo k(W,) ds}]
0

o d 0 .
=exp{—j k(Ws)dsH:—g(t+9, Ww,)do + ;av(t+9,%)d%"’:|.

0 i

Let S, = inf{t > 0; [W,| = n\/a}; n>1 We choose 0 <r < T —tand in-
tegrate on [0,r A S,]; the resulting stochastic integrals have expectation zero,
so

raS, ]
v(t,x) = E* j gt + 6, Wo)exp{—j k(W) ds} do
0

0

Sa
+ E* [U(t + Sn’ WS") Cxp{—j k(Ws) ds} I{S"Sr}:|

0

+ E* [v(t +r, W) exp{—j k(Ws)ds} 1{s">,}].
0

The first term on the right-hand side converges to

—t ]
E* jr gt +6, Wo)exp{—j k(Ws)ds}dH

0 0
asn — oo andr1 T — t, either by monotone convergence (if g = 0) or by dom-
inated convergence (it is bounded in absolute value by [{7*|g(t + 6, W) \|d0,
which has finite expectation by virtue of (4.6)). The second term is dominated
by

E*[|v(¢ + S, W ) L5, < 7-n] < Ke®"P[S, < T]

d
< Ke®™™ Yy P"|: max |WY| > n:l

j=1 o<i<T

d
< 2Ke® Y {PX[W > n]
=1

J
+ PX[—W > n]},
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where we have used (2.6.2). But by (2.9.20),

: [T 1 —
adn? px [§}) adn? [ = ~(nFxN22T
e“VPI+EWPW >n]<e Znnix‘ﬁe *
which converges to zero as n — oo, because 0 < a < (1/27d). Again by the
dominated convergence theorem, the third term is shown to converge to
E*[v(T,Wy_,)exp{—[{ " k(W,)ds}] as n — o0 and r1 T — t. The Feynman-
Kac formula (4.7) follows. O

4.5 Corollary. Assume that f: R - R, k: R? > [0, ), and g: [0, 0) x R* > R
are continuous, and that the continuous function u: [0, o) x R? — R is of class
C"2 on (0,0) x R? and satisfies (4.1) and (4.2). If for each finite T > O there
exist constants K > 0 and 0 < a < (1/27Td) such that

max |u(t,x)| + max |g(t,x)| < Ke*™*I’; VxeR,

then u admits the stochastic representation

4.9)
u(t,x) = E* [f(W,)CXp {—J k(VK)ds}

0

t (]
+J g(t—H,%)exp{—J k(Ws)ds}dH]; 0<t<oo,xeR

0 0

In the case g = 0 we can think of u(t, x) in (4.1) as the temperature at time
t > 0 at the point x e R? of a medium which is not a perfect heat conductor,
but instead dissipates heat locally at the rate k (heat flow with cooling).
The Feynman-Kac formula (4.9) suggests that this situation is equivalent to
Brownian motion with annihilation (killing) of particles at the same rate k: the
probability that the particle survives up to time ¢, conditional on the path
{W,;0 < s <t},is then exp{ — [, k(W,)ds}.

4.6 Exercise. Consider the Cauchy problem for the “quasilinear” parabolic
equation
ov

1 1
4.10 _—=— —— 2 ;o d
( ) 3 2AV 2||VV|| +k; in(0,0) x RY,

4.11) V(0,x)=0; xeR?

(linear in (0V/0t) and the Laplacian AV, nonlinear in the gradient VV),
where k: R? > [0, o) is a continuous function. Show that the only solution
V:[0,0) x R* > R which is continuous on its domain, of class C"'? on
(0,00) x R?, and satisfies the quadratic growth condition for every T > 0:

-V, x) <C+alx|? (tx)el0,T] x R?
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where T > O is arbitrary and 0 < a < 1/2Td, is given by
t

(4.12) V{,x)= —log E"[exp{—J~ k(Ws)ds}:l; 0<t< o, xeR.
0

We turn now our attention to equation (4.3). The discussion at the beginning
of this section and equation (4.9) suggest that any solution z to the equation

1
(4.13) (x+K)z=3Az + f; on R?

should be represented as

0 0

(4.14) z(x) = E r f(W,)exp{—oct —Jt k(Ws)ds}dt.

47 Exercise. Let f: R? —» R and k: R? - [0, 00) be continuous, with

o)

4.15) E¥ J

0

If(W,)lexp{—oct —jt k(Ws)ds}dt < o0; VxeRY
0

for some constant a > 0. Suppose that y: R? — R is a solution of class C* to
(4.13), and let z be defined by (4.14). If y is bounded, then ¥ = z; if is non-
negative, then ¥ > z. (Hint: Use Problem 2.25).

B. The One-Dimensional Formula

In the one-dimensional case, the stochastic representation (4.14) has the re-
markable feature that it defines a function of class C? when f and k are con-
tinuous. Contrast this, for example, to Remark 4.4. We prove here a slightly
more general result.

4.8 Definition. A Borel-measurable function f: R — R is called piecewise-
continuous if it admits left- and right-hand limits everywhere on R and it has
only finitely many points of discontinuity in every bounded interval. We
denote by D, the set of discontinuity points of f. A continuous function
f: R — Ris called piecewise CJ,j =1, if its derivatives f®, 1 <i<j— 1 are
continuous, and the derivative fV is piecewise-continuous.

4.9 Theorem (Kac (1951)). Let f:R— R and k: R — [0,00) be piecewise-
continuous functions with

(4.16) J Lf(x + e PV2dy < 0; VxeR,
for some fixed constant o > 0. Then the function z defined by (4.14) is piecewise
C? and satisfies
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4.17) e+ k)z= %z” + f; onR\(D;u D).

4.10 Remark. The Laplace transform computation

@ 1 2 1
J e e g = B2 450 ¢feR

0 /2nt \/i

enables us to replace (4.16) by the equivalent condition

4.16y E‘J e f(W)|dt < 0, VxeR
0

PrOOF OF THEOREM 4.9. For piecewise-continuous functions g which satisfy
condition (4.16), we introduce the resolvent operator G, given by

0 0

(G.9)(x) £ E J e "g(W)dt = ~\/l~2:af eV 22g(y) dy

0

—00

l X 0
=7 U er=V2%g(y) dy +J e"‘"”‘/;g(y)dy} xeR.
N/ LA - x

Differentiating, we obtain

(G.9) (x) = Jw e 21g(y)dy — Jx o N2g()dy; xeR,

(4.18) (G,9)'(x) = —2g(x) + 2a(G,9)(x); xeR\D,.
It will be shown later that

4.19) G, lkz) =G, f — z
and
(4.20) G,(lkz])(x) < o0; VxeR.

If we then write (4.18) successively with g = f and g = kz and subtract, we
obtain the desired equation (4.17) for x e R\(D,; U D,;), thanks to (4.19). One
can easily check via the dominated convergence theorem that z is continuous,
so D, € D,. Integration of (4.17) yields the continuity of z’.

In order to verify (4.19), we start with the observation

t t t
0< J k(%)exp{—f k(W,,)du}ds =1- exp{—f k(W,,)du} <1l; t>0,
0 s 0
and so by Fubini’s theorem and the Markov property:
(Guf = D) = E* J e R V(UL

0

_ B re‘“‘f(W.) J k(W) exp {—j K(W,) du} dsdt
0 1]

s
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= rEx |:k(Ws) r exp{—at —j' k(W,,)du}f(W,)dt] ds
0 s s
= re“"E" [k(Ws) reXp{—at - j k(Wm)du}f(Wm)dt} ds
0 0 0
= EF re-“k(ws)-E*Hmexp{—at —f' k(vvm)du}f(vvﬂ,)dt‘ﬁ;} ds
0 0 0

= E* FE'“‘k(W’s)Z(W’s) ds = (G(k2))(x); x€R,
0

which gives us (4.19). We may replace f in(4.14) by | f| toobtaina nonnegative
function # > |z|, and just as earlier we have

G(1kz))(x) < (G,(k2)(x) = (G,(If]) — D(x) < o0} x€R.
Relation (4.20) follows. O

Here are some applications of Theorem 4.9.

4.11 Proposition (P. Lévy’s Arc-Sine Law for the Occupation Time of (0, c0)).
Let T,(t) 2 [ Lo, 0)(Ws)ds. Then

o ds 2 0
(421) PO[T.(t)<6 =J ———=—'arcsin\/:; 0<f<t.
* ] o m/s(l—s) T t

ProOF. For « > 0, f > 0 the function

2(x) = E¥ J i exp(—at y J W) ds) dt
1] 1]

(with potential k = - 1(,») and Lagrangian f = 1) satisfies, according to
Theorem 4.9, the equation

az(x) = 12"(x) — Bz(x) + I; x>0,
az(x) = 1z2"(x) + L; x <0,
and the conditions
z2(0+) =2z(0—), z'(0+)=z'(0-).
The unique bounded solution to the preceding equation has the form
Ae~=/26H | L. x>0

a+p
z(x) =

1
Be"\/z + - x < 0.
o

The continuity of z(-) and z'(-)at x =0 allows us to solve for

A =(‘/cx+[3—\/&)/(cx+ﬁ)\/&,so
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J e W ECe T gt — 2(0) = ; a>08>0.

0 \/OC(“ + ﬁ)

We have the related computation
0 t e —f)e © at
e™™ dtdf
Jo J‘on1/9(t— 0) Jo HJ‘e —9

1 —(a+f})6 J'oo e
— ds df
77.' J 0 \/3

%

2o + B)
since
® 7t
(4.22) J ¢ _dt= \/i; y >0,
0 \ﬁ Y
The uniqueness of Laplace transforms implies (4.21). O

4.12 Proposition (Occupation Time of (0, co) until First Hitting b > 0). For
p>0,b>0, we have

(4.23) E®exp[ —fT.(T;)] £ E° CXP[—ﬁJ

0

Ty

l(O,m)(Ws) ds]

1
~ cosh b\/ﬁ'

ProofF. With T;,(t) £ (4 1, ,(W,) ds, positive numbers «, §, y and
b 0 (b, 0) s

2(x) & E* J Lio,cr(W)exp (—at — BT, () — yTp(1)) dt,

0
we have

z(0) = E° Jn exp(—at — BT, (1)) dI,(¢)

0
+ E° J‘w exp(—at — BT (t) — yT,(1)) dT (1)
Ty

Since I',(t) > 0 a.s. on {T, < t} (Problem 2.7.19), we have

lim 2(0) = E° r’ exp(—at — BT, (1)) dT. (¢)
0

yteo

4.24) lim lim z(0) = E° JTb exp(— BT .(1))dT (1)
0

ad0 yteo

1
= 501 — E%exp(— BL.(T)].
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According to Theorem 4.9, the function z(-) is piecewise C2 on R and satisfies
the equation (with ¢ = o + ).

az(x) = 1z"(x); x <0,
oz(x) =3z"(x)+ 1, 0<x<b,
(6 +p)z(x) =3¥2"(x)+ L, x>b.
The unique bounded solution is of the form

Ae™V 2, x <0,

- 1
BeV2 4 Ce™ V2 +—; 0<x<b,
z(x) = ]

De‘xﬁm+ L ; x > b.
g+

Matching the values of z(-) and z'(-) across the points x = 0 and x = b, we

obtain the values of the four constants 4, B, C, and D. In particular, z(0) = 4
is given by

sinhb,/2o'+ a+y|:coshb,/2 —l]+ 1

20 o 20 26 +7Y)

2 J— El
(/22 + /2(0 + 1) coshby/20 + ( |20 (" : y) + Jz—a> sinh b/20

whence

2 (coshb/2(x + B) — 1)

. a+ B
b 20 = e 7 B) cosh b2 + ) + 2asinhby/ 20 + )
and
lim lim z(0) = l|:l — ’l—‘]
240 71w B coshb./2f
The result (4.23) now follows from 4.24). 0O

4.5. Solutions to Selected Problems

2.16. Assume without loss of generality thata = 0.Choose 0 < r < ||b]| ~ 1.Itsuffices
to show that a is regular for B, n D (Remark 2.11). But there is a simple arc Cin
R4\D connecting a =0 to b, and in B\C, a single-valued, analytic branch of
log(x, + ix,) can be defined because winding about the origin is not possible.
Regularity of a = Ois an immediate consequence of Example 2.14 and Proposition
2.15.
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2.22.

2.25.
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Every boundary point of D satisfies Zaremba’s cone condition, and so is regular.
It remains only to evaluate (2.12).

Whenever Y and Z are independent random variables taking values in mea-
surable spaces (G, 9) and (H, ), respectively,and f: G x H - Ris bounded and
measurable, then

Ef(Y,Z)=f ff(y,Z)P[YEdYJP[ZGdZI
HJG

We apply this identity to the independent random variables 7, = inf{t > 0,
W@ =0} and {(WN,.., W9 V) 0<t< o), the latter taking values in
C[0, c0)*~*. This results in the evaluation (see (2.8.5))

Exf(VVTD) = f f f(yh“ ~9yd“190)Px[(VVI(1)9-- i) VVt(d_l))e(dyh“ -9dyd—1)]
[} Rd-t

_ ® 1 Iy — x|*
- LD xS fo t(2nt)y? exp|:— 2t :ldt 4,

and it remains only to verify that

© Az 242T(d)2)
5.1 fo t(d+—2)/2€Xp|:_E:ldt=T’ A>0.

For d = 1, equation (5.1) follows from Remark 2.8.3. For d = 2, (5.1) can be
verified by direct integration. The cases of d > 3 can be reduced to one of these
two cases by successive application of the integration by parts identity
J‘w Le"”/z'dt = 2e—1) " le"’lz/z'dt, o> 1.
0 o t¥

ta+1 12

-P*[tpedt]

Consider an increasing sequence {D,}>.; of open sets with D,c D; Y¥n>1
and {2, D, =D, so that the stopping times 1, = inf{t > 0; W,¢D,} satisfy
lim,_, 7, = Ty, a.s. P*. It is seen from It6’s rule that

tAT,

Ms"’éu(wm,)+f gWyds, 5 0<t< o

o
is a P*-martingale for every n > 1, x € D; also, both | M,(w)|, | M™(w)| are bounded
above by

max |u| + (t A Tp(w)) - max|g|, for P*-ae weQ.
D D

By letting n — oo and using the bounded convergence theorem, we obtain the
martingale property of the process M; its uniform integrability will follow as
soon as we establish

5.2 E*tp, < o0, VxeD.

Then the limiting random variable M, = lim,_,, M, of the uniformly integrable
martingale M is identifted as
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3.1

3.2

T

M, = u(W,) + J * g(W)di, as. P*(Problem 1.3.20)

]
and the identity E*M, = E*M,, yields the representation (2.27).

As for (5.2), it only has to be verified for D = B,. But then the function
v(x) = (r* — Ixi2)/d of (2.28) satisfies (1/2)Av = —1 in B, and v =0 on éB,,
and by what we have already shown, {o(W, ., )+ (t A 15), #;0<t < oo} is
a P*-martingale. So v(x) = E*[v(W,,, )+ (t A 15)] = EX(t A 15,), and upon
letting t — oo we obtain E*7p < v(x) < 0.

(Copson (1975)): Fix B>0,¢e>00<t, <y £ (1/2(a + €)), and set B = {(t,x);
to <t<ty,lx| <B} For (t,x)€ B, ye R, we have

(x — )7 1 1 1
av? — <ay? —— _ 2 cgy? —— 24—
y ; y 2:1("" l¥) y 2tly tIIXIIyI
P € B P B
< Iy Iy 4yl -y 55
SV gyt TS Y T o

For any nonnegative integers n and m, there is a constant C(n,m) such that

n+m _ 2
at,.ax,,.l’(t; x,y)| < Cln,m)(1 + |y|2"+"')€xp{—(x 2ty) }; (t,x)eB, yeR,
and so
(5.3) 1 _a:m_ t:
. (y)at"ax'" pt; x, y)

< 1) Clmm)(1 + |y|2"+“)exp{—<a + %) v+ ﬁ—}

2et?
< D(n,m)| f(Y)e™® (,x)eB, yeR,

where D(n,m) is a constant independent of ¢, x, and y. It follows from (3.3) that
the, integral in (3.5) converges uniformly for (t,x)€ B, and is thus a continuous
function of (¢, x) on (0,1/2a) x R.

We prove (3.5) for the case n = 0, m = 1; the general case is easily established
by induction. For (t,x)€ B, (t,x + h)e B, we have

a0

1 1
jLuex + h) — u(t,x)] = j Pt x + h, y) — p(t, x, y)1f()dy

© 3
= j é—p(t; (8, V), VS (¥) dy,
X

—a

where, according to the mean-value theorem, 6,(t, y) lies between x and x + h.
We now let h — 0, using the bound (5.3) and the dominated convergence theorem,
to obtain (3.5).

(Widder (1944)): We suppose f 1s continuous at xo and assume without loss of
generality that f(xo) = 0. For each ¢ > 0, there exists 6 > 0 such that lfl<e
for |y — xo| < 6. We have for x € [xo — (8/2), xo + (6/2)],
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xp+0

xp—d
(5-4) [u(t, x)| Sj [fOp(E; x, y)dy+j Lf(Wp(t; x, y)dy

—ao Xp— 08

+ j (W) p(t; x, y)dy.

xp+d

The middle integral is bounded above by ¢; we show that the other two converge
to zero, as t | 0. For the third integral, we have the upper bound

< 5>2
y—Xo—5

® 2
———ldy.

1 2
(5.5) — j e | f(y)lexp| ay* —
27t Jxp+e 2t

For ¢ sufficiently small, exp[ay® — (y — x, — 6/2)*/2t] is a decreasing function
of y for y > x, + 6 (it has its maximum at y = (x, + 6/2)/(1 — 2at)). Therefore,
the expression in (5.5) is bounded above by

P @ ,
p<t; 0, 5>6Xp[a(xo + 5)2]j e f (W dy

xp+d

which approaches zero as t | 0. The first integral in (5.4) is treated similarly.

4.6. Notes

Section 4.2: The Dirichlet problem has a long and venerable history (see,
e.g., Poincaré (1899) and Kellogg (1929)). Zaremba (1911) was the first to
observe that the problem was not always solvable, citing the example of a
punctured region. Lebesgue (1924) subsequently pointed out that in three or
more dimensions, if D has a sufficiently sharp, inward-pointing cusp, then the
problem can fail to have a solution (our Example 2.17). Poincaré (1899) used
barriers to show that if every point on 4D lies on the surface of a sphere which
does not otherwise intersect D, then the Dirichlet problem can be solved in
D. Zaremba (1909) replaced the sphere in Poincaré’s sufficient condition by a
cone. Wiener (1924b) has given a necessary and sufficient condition involving
the capacity of a set.

The beautiful connection between the Dirichlet problem and Brownian
motion was made by Kakutani (1944a,b), and his pioneering work laid
the foundation for the probabilistic exposition we have given here. Hunt
(1957/1958) studied the links between potential theory and a large class of
transient Markov processes. These matters are explored in greater depth in
It6 & McKean (1974), Sections 7.10-7.12; Port & Stone (1978); and Doob
(1984).

Section 4.3: The representation (3.4) for the solution of the heat equation
is usually attributed to Poisson (1835, p. 140), although it was known to both
Fourier (1822, p. 454) and Laplace (1809, p. 241). The heat equation for the
semi-infinite rod was studied by Widder (1953), who established uniqueness



4.6. Notes 279

and representation results similar to Theorems 3.3 and 3.6. Hartman &
Wintner (1950) considered the rod of finite length. For more examples and
further information on the subject matter of Subsection C, including applica-
tions to the theory of statistical tests of power one, the reader is referred to
Robbins & Siegmund (1973), Novikov (1981), and the references therein.

Section 4.4: Theorem 4.2 was first established by M. Kac (1949) ford=1,
his work was influenced by the derivation of the Schrodinger equation achieved
by R. P. Feynman in his doctoral dissertation. Kac’s results were strengthened
and extended to the multidimensional case by M. Rosenblatt (1951), who also
provided Holder continuity conditions on the potential k in order to guarantee
a C1-2 solution. Proposition 4.12 is taken from 1t6 & McKean (1974).

Let k: R — [0, o0) be continuous and satisfy lim,_, 1, k(x) = o0; then the
eigenvalue problem

1
(k(x) — AP (x) = 5!//"(36); xeR,

with y € L2(R), has a discrete spectrum 4; <4, <... and corresponding eigen-
functions {y;}721 S L%(R). Kac (1951) derived the stochastic representation

1 t
6.1) A, = —lim ?logE‘[exp{—j k(Ws)ds}]
= 0

for the principal eigenvalue, by combining the Feynman-Kac expression

u(t,x) = E* [exp {— jt k(Ws)ds}]
1]

for the solution of the Cauchy problem

ou 1
Fn +ku= EAu; (0,0) x R
6.2)

u(0,x) =1, xeR

(Corollary 4.5), with the formal eigenfunction expansion

u(t, x) = i cye” M (x)
=

for the solution of (6.2). Recall also Exercise 4.6, and see Karatzas (1980) for
a control-theoretic interpretation (and derivation) of this result.

Sweeping generalizations of (6.1), as well as an explanation of its connection
with the classical variational expression

6.3) A= inf {Jw k(x)y2(x)dx + % J%D (' (x)? dx},
eL? - -0
=, w200 dx=1,

are provided in the context of the theory of large deviations of Donsker &
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Varadhan (1975), (1976). This theory constitutes an important recent develop-
ment in probability theory, and is overviewed succinctly in the monographs
by Stroock (1984) and Varadhan (1984).

The reader interested in the relations of the results in this section with
quantum physics is referred to Simon (1979).

Alternative approaches to the arc-sine law for ', (t) can be found in
Exercise 6.3.8 and Remark 6.3.12.



CHAPTER 5

Stochastic Differential
Equations

5.1. Introduction

We explore in this chapter questions of existence and uniqueness for solutions
to stochastic differential equations and offer a study of their properties. This
endeavor is really a study of diffusion processes. Loosely speaking, the term
diffusion is attributed to a Markov process which has continuous sample paths
and can be characterized in terms of its infinitesimal generator.

In order to fix ideas, let us consider a d-dimensional Markov family X =
(X, #;0<t< w0}, (QF), {P*}cRa> and assume that X has continuous
paths. We suppose, further, that the relation

1
(1.1) 11¢n(')1 7 [E*f(X,) — fx)] = (f)(x); VxE R

t
holds for every f in a suitable subclass of the space C?(R?) of real-valued,
twice continuously differentiable functions on R¢; the operator Zf in (1.1)is

given by
(1.2) (of)(x) &

SR

N 16 L
izZl k; a:k(x)m +2 bi(x)—a;
for suitable Borel-measurable functions by, az: RI->R, 1 <, k < d. The left-
hand side of (1.1) is the infinitesimal generator of the Markov family, applied to
the test function f. On the other hand, the operator in (1.2) is called the second-
order differential operator associated with the drift vector b = (by,...,bs) and
the diffusion matrix a = {an}1<ik<a which is assumed to be symmetric and
nonnegative-definite for every x€ R

The drift and diffusion coefficients can be interpreted heuristically in the
following manner: fix x€ R? and let f;(y) 2 yio ful) A (y; — x) (Ve — Xk
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ye R? Assuming that (1.1) holds for these test functions, we obtain
(1.3) EX[X® — x,] = th(x) + oft)
(1.4) E*[(Xf — x)(X{¥ — x,)] = tau(x) + o(t)

ast]0,for 1 <i, k < d. In other words, the drift vector b(x) measures locally
the mean velocity of the random motion modeled by X, and a(x) approximates
the rate of change in the covariance matrix of the vector X, — x, for small
values of t > 0. The monograph by Nelson (1967) can be consulted for a
detailed study of the kinematics and dynamics of such random motions.

1.1 Definition. Let X = {X,, #;0<t <}, (QF), {P*}icpe be a d-
dimensional Markov family, such that

(i) X has continuous sample paths;
(ii) relation (1.1) holds for every f e C*(R*) which is bounded and has bounded
first- and second-order derivatives;
(iii) relations (1.3), (1.4) hold for every x € R?; and
(iv) the tenets (a)-(d) of Definition 2.6.3 are satisfied, but only for stopping
times S.

Then X is called a (Kolmogorov-Feller) diffusion process.
There are several approaches to the study of diffusions, ranging from the
purely analytical to the purely probabilistic. In order to illustrate the traditional

analytical approach, let us suppose that the Markov family of Definition 1.1
has a transition probability density function

(1.5 P[X,edy]l =T(t;x,y)dy; VxeR%Lt>0.
Various heuristic arguments, with (1.1) as their starting point, can then be
employed to suggest that T'(t;x, y) should satisfy the forward Kolmogorov
equation, for every fixed x e R®:

0
(1.6) 5 T Gxy) = 2T x,y) (t.y) (0, 0) x R,
and the backward Kolmogorov equation, for every fixed ye R*:

1.7 %F(t;x, y) = AT x,y); (t,x)e(0,00) x R

The operator &/* in (1.6) is given by

d d 0
1.8)  (@* )y é Z Z LN f(¥)] — Z y.[b:(y)f ],

oy 6 Vi
the formal adjoint of &/ in (1.2), provided of course that the coefficients b, a;
possess the smoothness requisite in (1.8). The early work of Kolmogorov
(1931) and Feller (1936) used tools from the theory of partial differential
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equations to establish, under suitable and rather restrictive conditions, the
existence of a solution T'(t;x,y) to (1.6), (1.7). Existence of a continuous
Markov process X satisfying (1.5) can then be shown via the consistency
Theorem 2.2.2 and the Centsov-Kolmogorov Theorem 2.2.8, very much in the
spirit of our approach in Section 2.2. A modern account of this methodology
s contained in Chapters 2 and 3 of Stroock & Varadhan (1979).

The methodology of stochastic differential equations was suggested by
P. Lévy as an “alternative,” probabilistic approach to diffusions and was
carried out in a masterly way by K. Ito (1942a, 1946, 1951). Suppose that we
have a continuous, adapted d-dimensional process X = {X,, #; 0<t< o0}
which satisfies, for every x € R?, the stochastic integral equation

(19) X9 =x +J bi(X,)ds + Y, j o (X)AW; 0<t<oo,1<is< d
0 =1 Jo

on a probability space (&, F,P¥), where W ={W, #;0<t< oo} is a

Brownian motion in R” and the coefficients b;, ;;: RAESRI<i<d 1<j<r

are Borel-measurable. Then it is reasonable to expect that, under certain

conditions, (1.1)-(1.4) will indeed be valid, with

(1.10) ay(x) & Zl O'ij(x)o'kj(x)'
=
We leave the verification of this fact as an exercise for the reader.

1.2 Problem. Assume that the coefficients b;, 6;; are bounded and continuous,
and the Ré-valued process X satisfies (1.9). Show that (1.3), (1.4) hold for every
xeR¢, and that (1.1) holds for every fe C%(R%) which is bounded and has
bounded first- and second-order derivatives.

It6’s theory is developed in Section 2 under the rubric of strong solutions.
A strong solution of (1.9) is constructed on a given probability space, with
respect to a given filtration and a given Brownian motion W. In Section 3
we take up the idea of weak solutions, a notion in which the probability space,
the filtration, and the driving Brownian motion are part of the solution rather
than the statement of the problem. The reformulation of a stochastic differential
equation as a martingale problem is presented in Section 4. The solution
of this problem is equivalent to constructing a weak solution. Employing
martingale methods, we establish a version of the strong Markov property—
corresponding to (iv) of Definition 1.1—for these solutions; they thereby earn
the right to be called diffusions.

The stochastic differential equation approach to diffusions provides a
powerful methodology and the useful representation (1.9) for a very large
class of such processes. Indeed, the only important strong Markov processes
with continuous sample paths which are not directly included in such a
development are those which exhibit “anomalous” boundary behavior (e.g.,
reflection, absorption, or killing on a boundary).
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Certain aspects of the one-dimensional case are discussed at some length
in Section 5; a state-space transformation leads from the general equation
to one without drift, and the latter is studied by the method of random
time-change. The notion and properties of local time from Sections 3.6, 3.7
play an important role here, as do the new concepts of scale function, speed
measure, and explosions.

Section 6 studies linear equations; Section 7 takes up the connections with
partial differential equations, in the spirit of Chapter 4 but not in the same
detail.

We devote Section 8 to applications of stochastic calculus and differen-
tial equations in mathematical economics. The related option pricing and
consumption/investment problems are discussed in some detail, providing
concrete illustrations of the power and usefulness of our methodology. In
particular, the second of these problems echoes the more general themes of
stochastic control theory.

The field of stochastic differential equations is now vast, both in theory and
in applications; we attempt in the notes (Section 10) a brief survey, but we
abandon any claim to completeness.

5.2. Strong Solutions

In this section we introduce the concept of a stochastic differential equation
with respect to Brownian motion and its solution in the so-called strong sense.
We discuss the questions of existence and uniqueness of such solutions, as well
as some of their elementary properties.

Let us start with Borel-measurable functions by(t, x), o{t,x); 1 <i < d,
1 <j<rfrom[0,00) x R?into R, and define the (d x 1) drift vector b(t, x) =

{bt,x)}1 <i<q and the (d x r) dispersion matrix a(t, x) = {6(t, x)}; <;<a- The
. . . . L . . 1gj<r
intent is to assign a meaning to the stochastic differential equation

(2.1) dX, = b(t, X,)dt + o(t, X,) dW,,

written componentwise as
2.1y dX? = b(t,X,)dt + Y o(t, X,)dWY; 1<i<d,
j=1

where W = {W,; 0 <t < o0} is an r-dimensional Brownian motion and X =
{X,; 0 <t < oo} is a suitable stochastic process with continuous sample paths
and values in RY, the “solution” of the equation. The drift vector b(t, x) and
the dispersion matrix a(t, x) are the coefficients of this equation; the (d x d)
matrix a(t, x) £ a(t, x)o T(t, x) with elements

2.2) ap(t,x) 2 Y ot X)oylt,x); 1<ik<d

j=1

will be called the diffusion matrix.
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A. Definitions

In order to develop the concept of strong solution, we choose a probability
space (Q, #, P) as well as an r-dimensional Brownian motion W = {W,, FY;
0 <t < oo} on it. We assume also that this space is rich enough to accom-
modate a random vector ¢ taking values in R?, independent of # ¥ and with
given distribution

u() = P[¢eT]; TeBR).

We consider the left-continuous filtration

g L0¢E) v FY=0EW;0<s<1) 0<t<o,
as well as the collection of null sets

N AINcQIGeY, WithNESG and P(G) = 0},
and create the augmented filtration
(23) FE2e@uN), 0<t<w; ?méo-(U 97,),

=0

by analogy with the construction of Definition 2.7.2. Obviously, {W,, %;
0<t<oo}isan r-dimensional Brownian motion, and then so is {W,, %;
0<t<ow} (cf Theorem 2.79). It follows also, just as in the proof of
Proposition 2.7.7, that the filtration {#,} satisfies the usual conditions.

2.1 Definition. A strong solution of the stochastic differential equation (2.1),
on the given probability space (Q, #, P)and with respect to the fixed Brownian
motion W and initial condition ¢, is a process X = {X;0<t< oo} with
continuous sample paths and with the following properties:

(i) X is adapted to the filtration {Z} of (2.3),
(i) P[Xo=2¢1=1,
(iii) PLfo {1bi(s: X! + o(s, X,)} ds < 0] = 1 holds for every 1<i<d,
l1<j<rand0<t< o0, and
(iv) the integral version of (2.1)

t t

(24) X, =X, + j b(s,X,)ds + j o(s, X,)dW,; 0<t< >,
0 0

or equivalently,

t r t

2.4y X0 =X+ j by(s, X)ds + Y j 0(s, X,)dwy,
0 =t Jo

0O<t<oo,1<i<d,

holds almost surely.

2.2 Remark. The crucial requirement of this definition is captured in con-
dition (i); it corresponds to our intuitive understanding of X as the “output”
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of a dynamical system described by the pair of coefficients (b, o), whose “input”
is W and which is also fed by the initial datum &.

inputW—— b, —— Xoutput

The principle of causality for dynamical systems requires that the output X,
at time t depend only on ¢ and the values of the input {W,; 0 < s <t} up to
that time. This principle finds its mathematical expression in (i).

Furthermore, when both & and {W,;0 < t < o0} are given, their specification
should determine the output {X,; 0 <t < o0} in an unambiguous way. We
are thus led to expect the following form of uniqueness.

2.3 Definition. Let the drift vector b(t, x) and dispersion matrix o(t, x) be given.
Suppose that, whenever W is an r-dimensional Brownian motion on some
(Q, #, P), £ is an independent, d-dimensional random vector, {#} is given
by (2.3), and X, X are two strong solutions of (2.1) relative to W with initial
condition &, then P[X, = X,; 0 < t < w] = 1. Under these conditions, we say
that strong uniqueness holds for the pair (b,0).

We sometimes abuse the terminology by saying that strong uniqueness holds
for equation (2.1), even though the condition of strong uniqueness requires us
to consider every r-dimensional Brownian motion, not just a particular one.

2.4 Example. Consider the one-dimensional equation
dX, = b(t, X,) dt + dW,,

where b: [0, ®0) x R — R is bounded, Borel-measurable, and nonincreasing in
the space variable; i.e., b(t,x) < b(t,y)forall 0 <t < 0, —0 <y < x < 0.
For this equation, strong uniqueness holds. Indeed, for any two processes XV,
X@ gatisfying P-ass.

t

X0 =X, +J b(s, X" ds + W,; O0<t<ooandi=12,
0

we may define the continuous process A, = X!’ — X{? and observe that

t
A2 =2 J (XD — XDY[b(s, XD) — b(s, X®)]ds <0; 0<t< o0,as. P.

0

B. The It6 Theory

If the dispersion matrix o(t, x) is identically equal to zero, (2.4) reduces to
the ordinary (nonstochastic, except possibly in the initial condition) integral
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equation
t

(2.5 X, = Xo + J b(s, X,) ds.
0

In the theory for such equations (e.g., Hale (1969), Theorem 1.5.3), it is
customary to impose the assumption that the vector field b(t, x) satisfies a local
Lipschitz condition in the space variable x and is bounded on compact subsets
of [0, cc) x R% These conditions ensure that for sufficiently small ¢ > 0, the
Picard-Lindeldf iterations

t
(2.6) X =X, XU =X, + j b(s, X™)ds, n=>0,
0
converge to a solution of (2.5), and that this solution is unique. In the absence
of such conditions the equation might fail to be solvable or might have a
continuum of solutions. For instance, the one-dimensional equation

t
2.7 X, = j | X | ds
0

has only one solution for « > 1, namely X, = 0; however, for 0 < « < 1, all
functions of the form

0; 0<t<s,

= (t_s>ﬂ <t<
;8= 0,
B

with § = 1/(1 — ) and arbitrary 0 < s < 00, solve (2.7).

It seems then reasonable to attempt developing a theory for stochastic dif-
ferential equations by imposing Lipschitz-type conditions, and investigating
what kind of existence and/or uniqueness results one can obtain this way.
Such a program was first carried out by K. It6 (1942a, 1946).

2.5 Theorem. Suppose that the coefficients b(t, x), a(t, x) are locally Lipschitz-
continuous in the space variable; i.e., for every integer n = 1 there exists a
constant K, > 0 such that for everyt >0, ||x|] <n and |yl < n:

(2.8) Ib(t, x) — bt I + llo(t, x) — ot I < Ky llx =yl

Then strong uniqueness holds for equation 2.1.

2.6 Remark on Notation. For every (d x r) matrix ¢, we write
d r

(2.9 lel22 Y Y of
i=1 j=1

Before proceeding with the proof, let us recall the useful Gronwall inequality.

2.7 Problem. Suppose that the continuous function g(¢) satisfies
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(2.10) 0<g)<at)+ P f gis)ds; 0<t<T,
0

with f > 0 and «: [0, T] — R integrable. Then

t

(2.11) gi) <o)+ B J afs)ef9ds; 0<t<T

0

PROOF OF THEOREM 2.5. Let us suppose that X and X are both strong solutions,
defined for all ¢t > 0, of (2.1) relative to the same Brownian motion W and
the same initial condition &, on some (Q, #, P). We define the stopping times
1, = inf{t > 0; | X,|| = n} for n > 1, as well as their tilded counterparts, and
we set S, 2 1, A T,. Clearly lim,,, S, = o0, a.s. P, and

Xt/\s,, - Xt/\s,, = J " {b(“’Xu) - b(“’)?u)} du

tAS,, -
+ J {o(u, X,) — 6(u,X,)} dW,.
0

Using the vector inequality [[v, + - + vl|> < kK2(lv | + -+ + [[5i[|?), the
Hoélder inequality for Lebesgue integrals, the basic property (3.2.27) of sto-
chastic integrals, and (2.8), we may write for0 <t < T

tASn

ElX, s, — Xias,I? < 4EU

0

2
Ib(u, X,) — blw, X, du:|

tAS

r n 2
+ 4E ii []; L (O'ij(u’ X,)— O'ij(u’ )?.,))dW.,"’:l

tAS,
< 4tE J lb(u, X,) — b(u, X,)|>du

0

0

+ 4E JMS" lo(u, X,) — o(u, X,)I? du

t
<4T + DKZ J E|X,ns5, — Xuns,|? du.
0
We now apply Problem 2.7 with g(t) 2 E|| X, s, — X, 15,]|* to conclude that
{X,r5,;0 <t <oo}and {X,,5,;0 <t < oo} are modifications of one another,
and thus are indistinguishable. Letting n — oo, we see that the same is true for
{X;0<t<o}and {X,;0<t < 0} O

2.8 Remark. It is worth noting that even for ordinary differential equations,
a local Lipschitz condition is not sufficient to guarantee global existence of a
solution. For example, the unique (because of Theorem 2.5) solution to the
equation
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t
X,=1+J X2ds

0

is X, = 1/1 — t), which “explodes” as t 1 1. We thus impose stronger conditions
in order to obtain an existence result.

2.9 Theorem. Suppose that the coefficients b(t,x), a(t,x) satisfy the global
Lipschitz and linear growth conditions

(2.12) 1b(t, x) — bt DIl + llatt,x) — ot NI < Klix =yl

(2.13) Ibte, 012 + o, x)I? < K1+ [Ix]1?),

for every 0 <t < 0, XE R?, yeR?, where K is a positive constant. On some
probability space (Q, #, P), let & be an R*-valued random vector, independent of

the r-dimensional Brownian motion W = {W,, F¥:0 <t < oo},and with finite
second moment:

(2.14) E||&|? < .

Let {&,)} be as in (2.3). Then there exists a continuous, adapted process X =
{X,,#;0<t< oo} which is a strong solution of equation (2.1) relative to W,
with initial condition £. Moreover, this process is square-integrable: for every
T > 0, there exists a constant C, depending only on K and T, such that

(2.15) E|X,)? < C(1 + E[¢]?)e™; 0<t<T

The idea of the proof is to mimic the deterministic situation and to construct
recursively, by analogy with (2.6), a sequence of successive approximations by
setting X{¥ = ¢ and

t t
(2.16) X&va&E4 J b(s, X®)ds + J o(s, X¥)aw,;, 0<t< o,
0 0

for k > 0. These processes are obviously continuous and adapted to the
filtration {%,)}. The hope is that the sequence {(x®}g., will converge to a
solution of equation (2.1).

Let us start with the observation which will ultimately lead to (2.15).

2.10 Problem. For every T > 0, there exists a positive constant C depending
onlyon Kand T, such that for the iterations in (2.16) we have

2.17) Elx®|? < c( + E|iE||P)e; 0<t< T,k=0.

PrOOF OF THEOREM 2.9. We have X**1 — X = B, + M, from (2.16), where
t t

Bt = J‘ {b(s9 Xék)) - b(S, Xék_l))} dS, Mr 2 J‘ {6(89 Xék)) - 0.(89 Xék_l))} dVVS
0 0

Thanks to the inequalities (2.13) and (2.17), the process (M, =MD,..., M®9),
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F;0 <t < o} is seen to be a vector of square-integrable martingales, for
which Problem 3.3.29 and Remark 3.3.30 give

E[max llMsllz] <AE Jt lots, X4 — a(s, XF) 2 ds

0<s<t 0

t
< A,K2E J X% — X612 4.
1]

On the other hand, we have E||B,||> < K*t [, E[| X® — X{*~"||? ds, and there-
fore, with L = 4K*(A, + T),

t
(2.18) E[max [ Xk _ X0 Z] <L J E|X% — X% D|24s: 0<t<T
1]

0<s<t
Inequality (2.18) can be iterated to yield the successive upper bounds

k
(2.19) E[max [ X%+ X""||2:| < c*( ) ; 0<t<T,

0<s<t

where C* = maxy,<7 E[| X" — &% a finite quantity because of (2.17).
Relation (2.19) and the Cebysev inequality now give

k
(2.20) P|: max || X% — X{ ! :|< 4C*(4L D ; k=1,2,...,

0<t<T 2k k!
and this upper bound is the general term in a convergent series. From the
Borel-Cantelli lemma, we conclude that there exists an event Q*e & with
P(Q*) = 1 and an integer-valued random variable N(w) such that for every
weQ* maxy <, <1 | X* N w) — XP(w)|| <27, Vk > N(w). Consequently,
(2.21) max | X*¥"™(w) — XPw)| <27% Vm=>1,k> Nw).

0<t<T

We see then that the sequence of sample paths {X®(w), 0 <t < T}, is
convergent in the supremum norm on continuous functions, from which
follows the existence of a continuous limit {X,(w); 0 < ¢ < T} for all weQ*.
Since T is arbitrary, we have the existence of a continuous process X = {X,;
0 < ¢ < oo} with the property that for P-a.e. w, the sample paths {X*(w)}i2,
converge to X (w), uniformly on compact subsets of [0, o). Inequality (2.15)
is a consequence of (2.17) and Fatou’s lemma. From (2.15) and (2.13) we have
condition (iii) of Definition 2.1. Conditions (i) and (ii) are also clearly satisfied
by X. The following problem concludes the proof. O

2.11 Problem. Show that the just constructed process
(2.22) X, 21lim X®;, 0<t<

k=

satisfies requirement (iv) of Definition 2.1.
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2.12 Problem. With the exception of (2.15) and the square-integrability of X,
the assertions of Theorem 2.9 remain valid if the assumption (2.14) is removed.
C. Comparison Results and Other Refinements

In the one-dimensional case, the Lipschitz condition on the dispersion
coefficient can be relaxed considerably.

2.13 Proposition (Yamada & Watanabe (1971)). Let us suppose that the coeffi-
cients of the one-dimensional equation d=r=1)

2.1) dX, = b(t, X,)dt + o(t, X,)dW,
satisfy the conditions

(2.23) b, x) — b(t,y)| < K|x — yl;
(224 la(t,x) — o(t, y)| < h(jx — Y1),

for every 0 <t < o and xeR, yeR, where K is a positive constant and
h: [0, 00) = [0, 00) is a strictly increasing function with h(0) = 0 and

(2.25) J h~2(uydu = o, Ve>0.
0,8)
Then strong uniqueness holds for the equation (2.1).

2.14 Example. One can take the function h in this proposition to be h(u) = u*;
a > (1/2).

PROOF OF PROPOSITION 2.13. Because of the conditions imposed on the function
h, there exists a strictly decreasing sequence {a,}20 < (0,1] with ao =1,
lim,., a, = 0 and (& h™%(u)du = n, for every n = 1. For each n > 1, there
exists a continuous function p, on R with support in (a, a,-,) so that
0 < p,(x) < (2/nh?(x)) holds for every x >0, and % p,(x)dx = 1. Then the
function

I« (¥
(2:26) Yn(x) éj J pa(w)dudy; xeR
1] 1]
is even and twice continuously differentiable, with |¥.(x)| <1 and
lim, ., Ya(x) = Ix| for xeR. Furthermore, the sequence {Ynjnz1 I8
nondecreasing.
Now let us suppose that there are two strong solutions X and X® of (2.1)
with X§ = X@ as. It suffices to prove the indistinguishability of X"’ and
X® under the assumption

t
227 EJ lo(s, XP)|2ds < 00; Ot <o0,i=12
1]
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otherwise, we may use condition (iii) of Definition 2.1 and a localization
argument to reduce the situation to one in which (2.27) holds. We have

t
AR XD X = J {b(s, X{V) — b(s, X{¥)} ds
0

t
n f {o(s, XIV) — o(s X))} dW,
0
and by the It6 rule,

(2.28) ¥n(A,) = Jt Ya(A) [b(s, X)) — b(s, X(¥)]ds

0

1 t
+ 5 J‘ rlll(As) [O'(S, X;I)) - O'(S, X;Z))]Z ds
0

+ Jt ¥alA) Do (s, X{P) — o(s, X{P)] dW,.
0

The expectation of the stochastic integral in (2.28) is zero because of assumption
(2.27), whereas the expectation of the second integral in (2.28) is bounded
above by E [y (A)h*(|A) ds < 2t/n. We conclude that

(2.29) Ey,(A) < E Jt Ya(A,) [b(s, X{1) — b(s, X{¥)] ds +;tl-
0

t

t

SKJ E|As|ds+;; t=0,n>1.
0

A passage to the limit as n— oo yields E|A,| < K [{E|A|ds; t > 0, and

the conclusion now follows from the Gronwall inequality and sample path

continuity. O

2.15 Example (Girsanov (1962)). From what we have just proved, it follows
that strong uniqueness holds for the one-dimensional stochastic equation

t
(2.30) X, = J [ X [*dW; 0<t< o0,

0
as long as « > (1/2), and it is obvious that the unique solution is the trivial
one X, = 0. This is also a solution when 0 < « < (1/2), but it is no longer the
only solution. We shall in fact see in Remark 5.6 that not only does strong
uniqueness fail when 0 < « < (1/2), but we do not even have uniqueness in the
weaker sense developed in the next section.

2.16 Remark. Yamada & Watanabe (1971) actually establish Proposition 2.13
under a condition on b(t, x) weaker than (2.23), namely,

(2.23y [b(t,x) — b(t, )| < xk(lx —yl)y 0<t< o0, xeR, yeR,
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where «: [0, o) — [0, c0) is strictly increasing and concave with x(0) = 0 and
f0.0) (du/xc(u)) = oo for every & > 0.

2.17 Exercise (Itd & Watanabe (1978)). The stochastic equation

t t
X‘=3j X§/3ds+3j X23 4w,

0 0

has uncountably many strong solutions of the form

Xt(e) — 09 0 <t< ﬁ89
VVts; ﬁ85t< 0,

where 0 < ® < o and fe 2 inf{s > ©®; W, = 0}. Note that the function
6(x) = 3x*3 satisfies condition (2.24), but the function b(x) = 3x!? fails to
satisfy the condition of Remark 2.16.

The methodology employed in the proof of Proposition 2.13 can be used
to great advantage in establishing comparison results for solutions of one-
dimensional stochastic differential equations. Such results amount to a certain
kind of “monotonicity” of the solution process X with respect to the drift
coefficient b(t, x), and they are useful in a variety of situations, including the
study of certain simple stochastic control problems. We develop some com-
parison results in the following proposition and problem.

2.18 Proposition. Suppose that on a certain probability space (Q, F , P) equipped
with a filtration {F,} which satisfies the usual conditions, we have a standard,
one-dimensional Brownian motion {W,, #;0 <t < oo} and two continuous,
adapted processes X j = 1,2, such that

t t
231) X9 =x§ + J by(s, XP)ds + J (s, XP)dW,; 0<t<
0 0

holds a.s. for j = 1, 2. We assume that

(i) the coefficients a(t,x), bt,x) are continuous, real-valued functions on
[0,0) x R,
(ii) the dispersion matrix a(t, x) satisfies condition (2.24), where h is as described
in Proposition 2.13,
(i) X§" < XP as.,
(iv) by(t,x) < by(t,x), VO <t < 00, X€ER, and
(v) either b,(t, x) or b,(t, x) satisfies condition (2.23).

Then
(2.32) P[XP < XxP,Vv0<t<oo]=1

Proor. For concreteness, let us suppose that (2.23) is satisfied by b,(t, X).
Proceeding as in the proof of Proposition 2.13, we assume without loss of
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generality that (2.27) holds. We recall the functions ,(x) of (2.26) and create
a new sequence of auxiliary functions by setting ¢,(x) = ¥,(x)" L (x); xe R,
n =1 With A, = XV — X@, the analogue of relation (2.29) is

t

E,(8) — - < E f OuA) [by(5, X") = by(s. X{*)] ds
0

t
=E J @A) by (s, XV) — by (s, X{¥) ] ds
0

t t
+E J A Iby(s, X)) — by(s, XP) ] ds < K J E(A})ds,
1] 1]
by virtue of (iv) and (2.23) for b, (¢, x). Now we can let n — o0 to obtain E(A;") <
K jﬁ, E(A])ds; 0 <t < o0, and by the Gronwall inequality (Problem 2.7), we
have E(A) = 0;ie, XV < XP as. P. |

2.19 Exercise. Suppose that in Proposition 2.18 we drop condition (v) but
strengthen condition (iv) to

(ivy b,(t,x) < by(t,x); 0<t< o0, xeR.

Then the conclusion (2.32) still holds. (Hint: For each integer m > 3, construct
a Lipschitz-continuous function b,(t, x) such that

(2.33) bi(t,x) < b,(t,x) < by(t,x); 0<t<m|x| <m).

It should be noted that for the equation

t
(2.34) X, =¢+ J b(s, X)ds + W; 0<t< o0,
0
with unit dispersion coefficient and drift b(t, x) satisfying the conditions of
Theorem 2.9, the proof of that theorem can be simplified considerably. Indeed,
since there is no stochastic integral in (2.34), we may fix an arbitrary weQ
and regard (2.34) as a deterministic integral equation with forcing function
{W{w); 0 < t < oo}. For the iterations defined by (2.16), and with
D¥(w) & max |X®(w) — X* Nw)l; k=1,2,...,
0<s<t
we have the bound D¥(w) < K [, D¢ (w)ds; 0 <t < oo, valid for every
we Q. The latter can be iterated to prove convergence of the scheme (2.16),
path by path, to a continuous, adapted process X which obeys (2.34) surely.
This is the standard Picard-Lindeldf proof from ordinary differential equa-
tions and makes no use of probabilistic tools such as the martingale inequality
or the Borel-Cantelli lemma.
Lamperti (1964) has observed that, under appropriate conditions on the
coefficients b and o, the general, one-dimensional integral equation



5.2. Strong Solutions 295

t t
(2.4) X, =¢+ J b(X;)ds + J o(X,)dW; 0<t<x,

0 0
can be reduced by a change of scale to one of the form (2.34); see the following
exercise.

2.20 Exercise. Suppose that the coefficients a: R — (0, 00) and b: R —» Rare of
class C2 and C!, respectively; that b’ — (1/2)o6” — (ba’/c)is bounded; and that
(1/6) is not integrable at either +oo. Then (2.4)" has a unique, strong solution
X. (Hint: Consider the function f(x) = {5 (du/o(u)) and apply Itd’s rule to

fX)).

A second important class of equations that can be solved by first fixing the
Brownian path and then solving a deterministic differential equation was
discovered by Doss (1977); see Proposition 2.21.

D. Approximations of Stochastic Differential Equations

Stochastic differential equations have been widely applied to the study of the
effect of adding random perturbations (noise) to deterministic differential
systems. Brownian motion offers an idealized model for this noise, but in many
applications the actual noise process is of bounded variation and non-Markov.
Then the following modeling issue arises.

Suppose that {¥,};; is such a sequence of stochastic processes which
converges, in an appropriate strong sense, to the Brownian motion W =
{W,, #;0 <t < oo}. Suppose, furthermore, that {X,}y, is a corresponding
sequence of solutions to the stochastic integral equations

t t
(2.39) X" =¢+ j b(X"M)ds + j o(XMdv®;, nx=1,

0 0
where the second integral is to be understood in the Lebesgue-Stieltjes sense.
As n— oo, will {X™}2, converge to a process X, and if so, what kind of
integral equation will X satisfy? It turns out that under fairly general condi-
tions, the proper equation for X is

t t
(2.36) X, =&+ j b(X,)ds + j 6(X)odW,,
0 0
where the second integral is in the Fisk-Stratonovich sense.
Our proof of this depends on the following result by Doss (1977).

2.21 Proposition. Suppose that ¢ is of class C3(R) with bounded first and
second derivatives, and that b is Lipschitz-continuous. Then the one-dimensional
stochastic differential equation
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t t

{b(Xs) + %G(XS)O"(XS)} ds + J a(X,)dW,

0

2.36) X, =¢+ J

0

has a unique, strong solution; this can be written in the form
X (o) = u(W(w), Y(w)); 0<t <0, we

for a suitable, continuous function u: R* » R and a process Y which solves an
ordinary differential equation, for every we Q.

2.22 Remark. Under the conditions of Proposition 2.21, the process {a(X,),
Z,;0 <t < oo} is a continuous semimartingale with decomposition

t

a(X,) = a({) +j

[b(Xs)G’(Xs) + %tf(z’fs)(a’(z’fs))2 + %0”(XS)GZ(XS)] ds
0

+ f a(X,)a’'(X)dW,,
0

and so, according to Definition 3.3.13,

t

f a(X;)odW; = % f o(X,)o'(X;)ds + f o(X)dW,.

0 0 0

In other words, equations (2.36) and (2.36)' are equivalent.

PROOF OF PROPOSITION 2.21. Let u(x, y): RZ —» R be the solution of the ordinary
differential equation

0
(2.37) % = o), u(0,y) =y;

such a solution exists globally, thanks to our assumptions. We have then

0%u 0%u ou 0o
238 T¥ s w), —L =, L —1
(2.38) = C (w)a'(u), oy a'(u) P 6yu(0’ =1
which give
a X
(2.39) —u(x, y) = exp {f a’'(u(z,y)) dz} 4 )
dy 0 p(x,y)

Let A > 0 be a bound on ¢’ and ¢”. Then e 4™ < p(x,y) < 4™, and (2.39)
implies the Lipschitz condition

lu(x,y1) — ulx,y,)| < ey, — y,|.
If L is a Lipschitz constant for b, then
Iblu(x, y,)) — b(u(x,y,))| < Le™ |y, — y,|

and consequently, for fixed x, b(u(x, y)) is Lipschitz-continuous and exhibits
linear growth in y. Using the inequality |e*' — e*2| < (e®' v e*2)|z; — z,], we
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may write

||
lp(x, y1) — plx,y2)l < [o(x, y1) v P(X,YZ)]'J |6’ (u(z, y,)) — o' (ulz, y,)) dz
1]

Ixl
< eAIxIJ Alu(z,y,) — ulz, y,)|dz
0

< A|x|eZAlx‘|Y1 — ¥l

For fixed x, p(x, y) is thus Lipschitz-continuous and bounded in y. It follows
that the product f(x,y) £ p(x, ) b(u(x,y)) satisfies Lipschitz and growth
conditions of the form

2400  |f(xy1) — fY) S Lilys — yals —k<xy,y2<k

(241) |/ ) < Ky + Kilyl IxI <k yeR,

where the constants L, and K, depend on k.

We may fix weQ and let Y,(w) be the solution to the ordinary differential
equation

d
(2.42) g M) =71 (W), Y(w)) with Y,(w) = ¢{).

Such a solution exists globally and is unique because of (2.40) and (2.41).
The resulting process Y is adapted to {%}, and the same is true of X,(w) 4
u(W,(w), Y,(w)). An application of It6’s rule shows that X satisfies (2.36). [

We turn our attention to the integral equation (2.35).

223 Lemma. Let P-ae. path V(w) of the process V ={V;0 <t < oo} be
continuous and have finite total variation V.(w) on compact intervals of the form
[0,]. If b, 6: R — R are Lipschitz-continuous, then the equation (2.35) with
V" = V possesses a unique solution.

PROOF. Set X@ = ¢; 0 < t < oo and define recursively for k > 1
(2.43) Xkt 4 g4 Jt b(X¥Yds + Jt o(X¥)dV,;, 0<t< 0.
1] 1]

Then D**D 2 max, o, | X*™) — X¥)| satisfies
DD < L J ' DW(ds + dV,),
1]

where L is a Lipschitz constant for b and . Iteration of this inequality leads to
Lt + V)
DD < D,‘”’(:‘—i; 0<t<o,k=0.

For 0 < t < oo fixed, the right-hand side of this last inequality is summable
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over k, so {X®; 0 < s <t} is Cauchy in the supremum norm on C[0,].
Since t is arbitrary, X*® must converge to a continuous process X, and the
convergence is uniform on bounded intervals. Letting k — oo in (2.43), we see
that X solves (2.395).
If Y is another solution to (2.35), then D, £ max, < | X, — Y,| must satisfy
L¥t + V)
D,sD,(T‘), 0<t<ow, k>0,
which implies that D = 0. l

2.24 Proposition. Suppose that 6 is of class C*(R) with bounded first and second
derivatives, and that b is Lipschitz-continuous. Let {V™;0 <t < o0}, be a
sequence of processes satisfying the same conditions as V in Lemma 2.23, and
let {W,, #,0 <t < oo} be a Brownian motion with

lim sup |[V® — W,|=0, as.,

n—0 0<s<t
for every 0 <t < oo. Then the sequence of (unique) solutions to the integral
equation (2.35) converges almost surely, uniformly on bounded intervals, to the
unique solution X of equation (2.36).

PRrOOF. Let u and f be as in the proof of Proposition 2.21; let ¥,™(w) be the
solution to the ordinary differential equation (cf. (2.42)):

%Yt‘"’(w) = f(V"(w), Y (0));,  Yi(w) = ¢(),

and define X™(w) £ u(V,"(w), ¥ (w)). Ordinary calculus shows that X is
the (unique) solution to (2.35). It remains only to show that with Y defined by
(2.42), we have for every 0 < t < oo:

(2.44) lim sup |- Y| =0, as.

n2oo 0<s<t

Letusfix weQ, 0 <t < o0, and a positive integer k. With L, as in (2.40), we
may choose ¢ > Osatisfyinge < e™™. Let t(w) = t A inf{0 < s < t; | Y (w)| =
k—1or |Ww)|=k—1}, 1) =1t A inf{0 <s <t; | Y™ (w)| = k}. For fixed
w € R, we may choose n sufficiently large, so that | f(V™(w), Y,(w)) — f(W,(w),
Y,(w))| < &% and |V ()| < k hold for every se [0, 7,(w) A 1{"(w)], and thus

d
£(Ys‘"’(w) = Y(0))| < [f(V"(0), (@) — f(V"(), V()]

+ 1 f(VP(0), V(@) = f(W(w), ()
< L YP(0) — Y ()| + &%
An application of Gronwall’s inequality (Problem 2.7) yields

I, "(w) — Y(w) < e2eM <g; 0<s < 1(w) A 1P(w).
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This last inequality shows that 1,(w) < 7{"(@), O we may let first n — oo and
then ¢ | 0 to conclude that
im sup |Y"(w)— Y(@)]=0.

n—oo 0<s< i)

For k sufficiently large we have ,(w) = ¢, and (2.44) follows. O

225 Remark. The proof of Proposition 2.24 works only for one-dimensional
stochastic differential equations with time-independent coefficients. In higher
dimensions there may not be a counterpart of the function u satisfying (2.37)
(see, however, Exercise 2.28 (1)), and consequently Proposition 2.24 does not
hold in the same generality as in one dimension. However, if the continuous
processes {V™}%_, of bounded variation are obtained by mollification or
piecewise-linear interpolation of the paths of a Brownian motion W, then
the multidimensional version of the Fisk-Stratonovich stochastic differential
equation (2.36) is still the correct limit of the Lebesgue-Stieltjes differential
equations (2.35). The reader is referred to Ikeda & Watanabe (1981), Chapter
VI, Section 7, for a full discussion.

E. Supplementary Exercises

2.26 Exercise (The Kramers-Smoluchowski Approximation; Nelson (1967)).
Let b(t, x): [0,00) x R—> Rbea continuous, bounded function which satisfies
the Lipschitz condition (2.23), and for every finite « > O consider the stochastic
differential system

dX@® = y®dt; XP=¢
AY® = ab(t, X®)dt — aY,Pdt + 2 dW,; Y¥ =n,

where &, n are a.s. finite random variables, jointly independent of the Brownian
motion W.

(i) This system admits a unique, strong solution for every value of a€(0, ).
(i) For every fixed, finite T > 0, we have

lim sup |X®—-X,|=0, as,

a—»w 0Zt<T

where X is the unique, strong solution to (2.34).
227 Exercise. Solve explicitly the one-dimensional equation
dX, = (J1+ X2 +3X)dt + /1 + X2 dw,.

2.28 Exercise.

(i) Suppose that there exists an Ré-valued function u(t, y) = (u;(t,),. .., 45, y)
of class C1'2([0, o) x R?), such that



300 5. Stochastic Differential Equations

614' 6u.
—— = b, —(t,y) = a,(tu(t,y)); 1<ij<d
E (t, y) = b, u(t,y)), ayj(,y) o, u(t, y)) LJ

hold on [0, o0) x R where each b,(t, x) is continuous and each o;(t, x) is
of class C''2 on [0, o) x R? Show then that the process

X, 2ult,W) 0<t<oo,

where W is a d-dimensional Brownian motion, solves the Fisk-Stratonovich
equation

(2.36)" dX, = b(t, X,)dt + o(t, X,) o dW,.

(ii) Use the above result to find the unique, strong solution of the one-
dimensional Itd equation

dX, = [ILHX‘ —a(l + t)z]dt +a(l +t)?dW,; 0<t< o0.

5.3. Weak Solutions

Our intent in this section is to discuss a notion of solvability for the stochastic
differential equation (2.1) which, although weaker than the one introduced
in the preceding section, is yet extremely useful and fruitful in both theory
and applications. In particular, one can prove existence of solutions under
assumptions on the drift term b(t, x) much weaker than those of the previous
section, and the notion of uniqueness attached to this new mode of solvability
will lead naturally to the strong Markov property of the solution process
(Theorem 4.20).

3.1 Definition. A weak solution of equation (2.1) is a triple (X, W), (Q, #, P),
{#.}, where

(i) (Q, #, P)is a probability space, and {#,} is a filtration of sub-o-fields
of # satisfying the usual conditions,
(i) X ={X,, #;0<t < co}isacontinuous,adapted R?-valued process,
W={W,#0<t< o0} is an r-dimensional Brownian motion, and
(ii1), (iv) of Definition 2.1 are satisfied.

The probability measure u(I') £ P[X,eT], T e #(R?) is called the initial
distribution of the solution.

The filtration {%,} in Definition 3.1 is not necessarily the augmentation of
the filtration %, = 6(&) v F7,0 <t < o0, generated by the “driving Brownian
motion” and by the “initial condition” £ = X,. Thus, the value of the solution
X, (w) at time t is not necessarily given by a measurable functional of the
Brownian path {W,(w); 0 < s < t} and the initial condition é(w). On the other
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hand, because W is a Brownian motion relative t0 {#,}, the solution X,(w)
at time t cannot anticipate the future of the Brownian motion; besides { Wy(w);
0 < s < t} and {(w), whatever extra information is required to compute X,(w)
must be independent of {Wy(w) — Wi(w); t <0 < o0}

One consequence of this arrangement is that the existence of a weak
solution (X, W), (Q, %, P), {#} does not guarantee, for a given Brownian
motion {W, %,;0<t<oo} on a (possibly different) probability space
(©, #, P), the existence of a process X such that the triple (X, W), (&, Z,P),
{#) is again a weak solution. It is clear, however, that strong solvability
implies weak solvability.

A. Two Notions of Uniqueness

There are two reasonable concepts of uniqueness which can be associated
with weak solutions. The first is a straightforward generalization of strong
uniqueness as set forth in Definition 2.3; the second, uniqueness in distribution,
is better suited to the concept of weak solutions.

3.2 Definition. Suppose that whenever (X, W), (Q, #,P), {#}, and X, w),
(QZ,P), {ﬁf,}, are weak solutions to (2.1) with common Brownian motion
W (relative to possibly different filtrations) on a common probability space
(Q, #, P) and with common initial value, ie,, P[X, = X,] = 1, the two pro-
cesses X and X are indistinguishable: P[X, = X,; V0 <t < oo] = 1. We say
then that pathwise uniqueness holds for equation 2.1).

3.3 Remark. All the strong uniqueness results of Section 2 are also valid for
pathwise uniqueness; indeed, none of the proofs given there takes advantage
of the special form of the filtration for a strong solution.

3.4 Definition. We say that uniqueness in the sense of probability law holds for
equation (2.1)f, for any two weak solutions (X, W),(Q, F, P), {#},and (X, w),
@, #, P), {#,}, with the same initial distribution, i.c.,

P[X,eT] = P[X,eT], VIR,

the two processes X, X have the same law.

Existence of a weak solution does not imply that of a strong solution,
and uniqueness in the sense of probability law does not imply pathwise
uniqueness. The following example illustrates these points amply. However,
pathwise uniqueness does imply uniqueness in the sense of probability law
(see Proposition 3.20).

3.5 Example. (H. Tanaka (e.g., Zvonkin (1974))). Consider the one-dimen-
sional equation
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t
3.1 X, = J sgn(X,)dW,; 0<t< o0,
1]
where
1, x>0,
sgnlx) = {— 1; x<0.

If (X, W), (Q, &F,P), {#} is a weak solution, then the process X = {X,, %;
0 <t< oo} is a continuous, square-integrable martingale with quadratic
variation process {X), = [4sgn’*(X,)ds = t. Therefore, X is a Brownian
motion (Theorem 3.3.16), and uniqueness in the sense of probability law holds.
On the other hand, (— X, W), (Q, %, P), {#Z,} is also a weak solution, so once
we establish existence of a weak solution, we shall also have shown that
pathwise uniqueness cannot hold for equation (3.1).

Now start with a probability space (Q,%,P) and a one-dimensional
Brownian motion X = {X,, ZX,0<t< oo}onit;weassume P[X,=0] =1
and denote by {#X} the augmentation of the filtration {#} under P. The
same argument as before shows that

t

W, & J sgn(X,)dX,; 0<t< o
0

is a Brownian motion adapted to { FX }. Corollary 3.2.20 shows that (X, W),

(Q, #, P), {#7) is a weak solution to (3.1). With {#} denoting the augmen-

tation of {#”}, this construction gives #V < #X, which is the opposite

inclusion from that required for a strong solution!

Let us now show that equation (3.1) does not admit a strong solution. Assume
the contrary; i.e., let X satisfy (3.1) on a given (Q, #, P) with respect to a given
Brownian motion W, and assume #X = # for every t > 0. Then X is
necessarily a Brownian motion, and from Tanaka’s formula (3.6.13) with
a =0, we have

t
W, = J sgn(X,)dX, = | X,| — 2L¥(0)
1]

1
=|X,| —lim=meas{0<s<t;|X,| <&}, 0<t<oo,as. P,
ed0 28
where LX(0) is the local time at the origin for X. Consequently, F¥ = g,

and thus also #X = #/X holds for every t > 0. But this last inclusion is
absurd.

B. Weak Solutions by Means of the Girsanov Theorem

The principal method for creating weak solutions to stochastic differential
equations is transformation of drift via the Girsanov theorem. The proof of
the next proposition illustrates this approach.
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3.6 Proposition. Consider the stochastic differential equation
(3.2) dX,=b(t,X)dt +dW,; 0<t<T,

where T is a fixed positive number, W is a d-dimensional Brownian motion, and
b(t, x) is a Borel-measurable, Ré-valued function on [0, T] x R? which satisfies

3.3) b, x)| < K(1 +x]);, 0<t< T,xeR?

for some positive constant K. For any probability measure p on (R, B(RY)),
equation (3.2) has a weak solution with initial distribution p.

PrROOF. We begin with a d-dimensional Brownian family X = {X,, %#;0 <
t < T}, (Q %), {P*};cna According to Corollary 3.5.16,

a [t I O
Zt & exXp { Z J‘ bj(s5 Xs) dX;]) Y J‘ Hb(s5 Xs)”2 ds}
=t Jo 2 0
is a martingale under each measure P, so the Girsanov Theorem 3.5.1 implies
that, under QF given by (dQ*/dP™) = Zr, the process
t
(3.4) WéX,—XO—J b(s,X,)ds; 0<t<T

0

is a Brownian with Q*[W, = 0] = 1, Vx € R”. Simply rewriting (3.4) as

t

X,=X0+J b(s, X)ds+ W,; 0<t<T,
0

we see that, with 0*(4) £ [reQ*(A)u(dx), the triple (X, W), (Q, F,0"), {#}

is a weak solution to (3.2). O

3.7 Remark. If we seek a solution to (3.2) defined for all 0 <t < o0, we can
repeat the preceding argument using the filtration {#X} instead of {#} and
citing Corollary 3.5.2 rather than Theorem 3.5.1. Whereas {%,} in Proposition
3.6 can be chosen to satisfy the usual conditions, {#X} does not have this
property. Thus, as a last step in this construction, we take 4" to be the
collection of null sets of (@, ZX,0%), set 4, = o(FF¥ U A) and 4, = F. The
filtration {%,} satisfies the usual conditions.

3.8 Remark. It is apparent from Corollary 3.5.16 that Proposition 3.6 can
be extended to include the case

t
(3.5) X,=X0+J b(s,X)ds +W,; 0<t<T,

0
where b(t, x) is a vector of progressively measurable functionals on C[0, )%
see Definition 3.14.

3.9 Remark. Even when the initial distribution p degenerates to unit point
mass at some x € R, the filtration {#¥} of the driving Brownian motion in
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(3.5) may be strictly smaller than the filtration {#*} of the solution process
(see the discussion following Definition 3.1). This is shown by the celebrated
example of Cirel’son (1975). Nice accounts of Cirel'son’s result appear in
Liptser & Shiryaev (1977), pp. 150—151, and Kallianpur (1980), pp. 189-191.

The Girsanov theorem is also helpful in the study of uniqueness in law of
weak solutions. We use it to establish a companion to Proposition 3.6.

3.10 Proposition. Assume that (X©, W®), (QO, FO pO) (FO). i =1, 2, are
weak solutions to (3.2) with the same initial distribution. If

T
(3.6) P“)U ||b(t,X,“’)||2dt<oo:|=l; i=12
1]

then (XY, W) and (X, W) have the same law under their respective
probability measures.

ProoF. For each k > 1, let

t
(3.7 DA TA inf{O <t<T; J
1]

lIb(s, XP))|* ds = k}-
According to Novikov’s condition (Corollary 3.5.13),

(38) &P(XD) £ exp {—J

0

) i)
LAt tAt

. . 1
(b(S, X;l))’ dVVsm) - 5 J

0

1b(s, X2 dS}

is a martingale, so we may define probability measures B on #9, i = 1, 2,
according to the prescription (dB®/dP?) = E¥(X D). The Girsanov Theorem
3.5.1 states that, under P, the process

A
(B9 XO o=X+ J b(s, XMNds+ W 0<t<T

0

is a d-dimensional Brownian motion with initial distribution g, stopped at
time . But ), {W,?;0 <t < 1}, and &P(XP) can all be defined in terms
of the process in (3.9) (see Problem 3.5.6). Therefore, for 0 =¢t, <t; < - <
t, = T and T e ZR**"* 1), we have

(310) POLXD, WL, XD, WD) eT: ofb = T]

1 ~
_— 1)
- J o EB ) L ey wiersaiy =) 4By

1

2)
o BB LW xweheriap-) A
T

2 2 2
= POLXD, W2,..., X2, WP)eT; 19 = T,
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By assumption (3.6), lim,_,, PO[1{ = T] = 1;i = 1,2, so passage to the limit
as k — oo in (3.10) gives the desired conclusion. d

3.11 Corollary. If the drift term b(t,x) in (3.2) is uniformly bounded, then
uniqueness in the sense of probability law holds for equation (3.2). Furthermore,
withQ < t; <t, <--- <t, < T and with the notation developed in the proof of
Proposition 3.6, we have then

(3.11) Q“[(X,l,...,X,")eF]=JR E*[lx,,....x, pery Zrlnldx); T e BR™)

3.12 Exercise. According to Proposition 3.6 and Corollary 3.11, the one-
dimensional stochastic differential equation

(3.12) dX, = —sgn(X,)dt +dW, X, =0

possesses a weak solution which is unique in the sense of probability law.
Show that if (X, W), (Q, #, P), {#,} is such a solution and L,(0) is the local
time at the origin for the Brownian family (X, %}, (QF), {P*}1cw then

(313) Q[X,eT]= e 2E°[1ix,eryexp(—1X,| + 2L,(0)]; T eZR).

(An explicit formula for the right-hand side of (3.13) can be derived from
Theorem 3.6.17 and relation (2.8.2). See Problem 6.3.4 and Exercise 6.3.5.)

3.13 Problem. Consider the stochastic differential equation (2.1) with a(t, x)
a (d x d) nonsingular matrix for every t > 0 and x€ R?. Assume that b(t, x) is
uniformly bounded, the smallest eigenvalue of o(t, x) is uniformly bounded
away from zero, and the equation

(3.14) dX,=o(t, X,)dW,; 0<t<T

has a weak solution with initial distribution y. Show that (2.1) also has a weak
solution for 0 < t < T with initial distribution u. (We shall have more to say
about existence and uniqueness of solutions to (3.14) in Sections 4 and 5.)

3.14 Definition. Let b(t,y) and oty 1 <i<d, 1 <j<r, be progressively
measurable functionals from [0, c0) x C[0, 00)? into R (Definition 3.5.15). A
weak solution to the functional stochastic differential equation

(3.15) dX, = b(t, X)dt + o(t,X)dW,; 0<t <0,
is a triple (X, W), (Q, F, P), { #} satisfying (i), (ii) of Definition 3.1, as well as

t
(iii) J {|bi(s, X)| + 6f(s, X)}ds < o0; 1<i< d 1<j<r, t=0
0

t

t
(iv) X,=X0+j b(s,X)ds+J a(s,X)dW,; 0<t< 0,
0 0
almost surely.



306 5. Stochastic Differential Equations

3.15 Problem. Suppose bi(t,y) and o;(t,y); 1 <i<d, 1 <j<r, are progres-
sively measurable functionals from [0, c0) x C[0, c0)? into R satisfying

(3.16) Ib(E I + llote, nI* < K<1 + max IIy(S)||2>;

0<s<t
VO<t<oo, yeC[0, o),

where K is a positive constant. If (X, W), (Q, #, P), {%,} is a weak solution
to(3.15) with E|| X, ||>™ < oo for some m > 1, then for any finite T > 0, we have

(3.17) E< max ||Xs||2’"> < C(1 + E|Xo|2™e; 0<t<T,

0<s<t
(3.18) E|X,— X" < CA + E|X,[*™)(t—9)™ 0<s<t<T,

where C is a positive constant depending only onm, T, K, and d.

C. A Digression on Regular Conditional Probabilities

We know that indistinguishable processes have the same finite-dimensional
distributions, and this causes us to suspect that pathwise uniqueness implies
uniqueness in the sense of probability law. The remainder of this section is
devoted to the confirmation of this conjecture. As preparation, we need to
state certain results about regular conditional probabilities, in the spirit of
Definition 2.6.12, but in a form better suited to our present needs. We refer
the reader to Parthasarathy (1967), pp. 131-150, and Ikeda & Watanabe
(1981), pp. 1216, for proofs and further information.

3.16 Definition. Let (©, &, P) be a probability space and % a sub-o-field of #.
A function Q(w; A): Q x F — [0, 1] is called a regular conditional probability
for F given % if

(i) for each weQ, Q(w; -) is a probability measure on (Q, %),
(ii) for each Ae %, the mapping w— Q(w; A) is ¥-measurable, and
(iii) for each Ae #, Q(w; A) = P[A|¥9](w); P-ae wel

Suppose that, whenever Q'(w; A) is another function with these properties,
there exists a null set Ne % such that Q(w; 4) = Q'(w; A) for all Ae # and

weQ\N. We then say that the regular conditional probability for # given ¥
is unique.

Note that if X in Definition 2.6.12 is the identity mapping, then conditions
(i)—(iii) of that definition coincide with those of Definition 3.16.

3.17 Definition. Let (QQ, &) be a measurable space. We say that & is countably
determined if there exists a countable collection of sets .# < & such that,
whenever two probability measures agree on .#, they also agree on &#. We
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say that & is countably generated if there exists a countable collection of sets
% < % such that F = 6(%).

In the space C[0, o)™, for an arbitrary integer m > 1, let us introduce the
o-fields

(3.19) B,(C[0,0)") £ o(z(s); 0 <s <) = o, 1 (B(C[0, c)™)

for 0 <t < oo, where ¢,: C[0,0)" — C[0, 00)" is the truncation mapping
(@,2)(s) £ z(t A s);, ze C[0, 00)", 0 < s < . As in Problem 2.4.2, it is shown
that #,(C[0, 0)™) = a(%,), where %, is the countable collection of all finite-
dimensional cylinder sets of the form

C = {ze C[0, 0)™; (2(t,),. ., z(t,)) € 4]

withn > 1,t,€[0,t]nQ,for 1 <i<n,and Ae B(R™) equal to the product
of intervals with rational endpoints. The continuity of ze C[0, o)™ allows us
to conclude that a set of the form C is in ¢(%,), even if the points t; are not
necessarily rational.

It follows that 2,(C[0, c0)™) is countably generated. On the other hand, the
generating class %, is closed under finite intersections, so any two probability
measures on %,(C[0, c0)™) which agree on ¢, must also agree on %,(C[0, c0)™),
by the Dynkin System Theorem 2.1.3. It follows that %Z,(C[0, «0)™) is also
countably determined.

More generally, Theorem 2.1.3 shows that if a o-field & is generated by
a countable collection of sets ¥ which happens to be closed under pairwise
intersection, then & is also countably determined. In a topological space with
a countable base (e.g., a separable metric space), we may take this & to be the
collection of all finite intersections of complements of these basic open sets.

3.18 Theorem. Suppose that Q is a complete, separable metric space, and denote
the Borel o-field F = B(Q). Let P be a probability measure on (Q, %), and let
% be a sub-o-field of . Then a regular conditional probability Q for & given
@ exists and is unique. Furthermore, if # isa countably determined sub-o-field
of 9, then there exists a null set N €9 such that

(iv) Q(w; A) = L(w);, AeH, we\N.

In particular, if X is a 9-measurable random variable taking values in another
complete, separable metric space, then with # denoting the o-field generated
by X, (iv) implies

vy Q(w; {w' e X(w') = X()}) =1, P-ae weQ

When the o-field 4 is generated by a random variable, we may recast the
assertions of Theorem 3.18 as follows.

3.19 Theorem. Let (Q, &, P) be as in Theorem 3.18, and let X be a measurable
mapping from this space into a measurable space (S, &), on which it induces the
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distribution PX"Y(B) 2 P[weQ; X(w)e B], Be &. There exists then a function
Q(x; A): S x F — [0, 1], called a regular conditional probability for # given
X, such that

(i) for each x €S, Q(x; ) is a probability measure on (Q, F),
(ii) for each Ae &, the mapping x— Q(x; A) is & -measurable, and
(iii) for each Ae F, Q(x; A) = P[A|X = x], PX '-ae. x€S8.

If Q'(x;A) is another function with these properties, then there exists a
set Ne & with PX Y (N) = 0 such that Q(x;A) = Q'(x; A) for all Ae F and
x€S\N. Furthermore, if S is also a complete, separable metric space and
& = 98(S), then N can be chosen so that we have the additional property:

(iv) Q(x; {weQ X(w)eB}) = 15(x); Be ¥, xeS\N.
In particular,
{iv)y 0(x; {we® X(w)=x})=1; PX l-ae xeS.

D. Results of Yamada and Watanabe on
Weak and Strong Solutions

Returning to our initial question about the relation between pathwise unique-
ness and uniqueness in the sense of probability law, let us consider two weak
solutions (X9, W) (Q;, F,v)), {F};j = 1, 2, of equation (2.1) with

(3.20) u(B) 2 v, [ XV eB] = v,[XPeB]; BeB(RY).

We set Y9 = X9 - X§; 0<t< oo, and we regard the j-th solution as
consisting of three parts: X§?, W, and Y. This triple induces a measure P;on

(O, B(@®)) 2 (R x C[0, ) x C[0, ),
A(R') ® B(C[0, o)) ® #(C[0, 0)))
according to the prescription
3.21) P(A) £ y[(XP, WD, YN eA], AcB@),j=1,2.

We denote by § = (x, w, y) the generic clement of @. The marginal of each P
on the x-coordinate of 6 is u, the marginal on the w-coordinate is Wiener
measure P,, and the distribution of the (x,w) pair is the product measure
i x P, because X§ is F§-measurable and W is independent of F§
(Problem 2.5.5). Furthermore, under P, the initial value of the y-coordinate
is zero, almost surely.

The two weak solutions (X1, W) and (X*®, W) are defined on (possibly)
different sample spaces. Our first task is to bring them together on the same,
canonical space, while preserving their joint distributions. Toward this end,
we note that on (©, Z(0), P)) there exists a regular conditional probability for
#(0) given (x,w). We shall be interested only in conditional probabilities of
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sets in #(®) of the form R? x C[0, o) x F,where F € Z(C[0, o0)?). Thus, with
a slight abuse of terminology, we speak of

Q4{x,w; F): R x C[0, 0)" x #(C[0, o)) - [0,1]

as the regular conditional probability for #(C[0, w0)?) given (x, w). According
to Theorem 3.19, this regular conditional probability enjoys the following
properties:

(3.22) (i) for each x e R?, we C"[0, 0), Qj{x,w;)isa probability measure on
(C[O, o), B(C[0, o)),

(3.22) (ii) for each F € B(C[0, c0)"), the mapping (x, w)— Q;(x, w; F)is 2RH®
#(C[0, co))-measurable, and

(3.22) (ii) P{G x F) = 5 Q(x, w; F)u(dx)P,(dw), F € B(C[0, 0)"),
G e B(R?Y) ® B(C[0, ©)).

Finally, we consider the measurable space (Q, #),where Q = © x C[0, o)
and & is the completion of the o-field 2(0) ® #4(C[0, o)) by the collection
A of null sets under the probability measure

(3.23) P(dw) £ Q,(x,w;dy;)Q,(x, w;dy;)u(dx) Py(dw).

We have denoted by @ = (x,w,y;,y,) a generic element of Q. In order to
endow (Q, #, P) with a filtration that satisfies the usual conditions, we take

% 2 o{(x,w(s)y1 (5, y, (0 <s <1}, G Lo(GUN),
FAG,, 0<t<oo.
It is evident from (3.21), (3.22) (iii), and (3.23) that
(321 PLwe®; (x,w,y)eA] = 4[(X§, W, YP)ed], Ae#@®),j=1,2,

and so the distribution of (x + y;, w) under P is the same as the distribution of
(X9, W) under v;. In particular, the w-coordinate process {w(t), %;0 <t < o0}
is an r-dimensional Brownian motion on (Q, #, P), and it is then not difficult
to see that the same is true for {w(t), ;0 <t < o0}.

3.20 Proposition (Yamada & Watanabe (1971)). Pathwise uniqueness implies
uniqueness in the sense of probability law.

PrOOF. We started with two weak solutions (XY, W), (Q;, %, v;), {(F9},
j=1,2, of equation (2.1), with (3.20) satisfied. We have created two weak
solutions (x + y;, w), j =1, 2, on a single probability space (Q, %, P), {#},
such that (X, W) under v; has the same law as (x + yj, W) under P. Pathwise
uniqueness implies P[x + y;(t) = x + y,(), YO <t < 0] = 1, orequivalently,

(3.24) Plw = (x,W,y1,y;,) €y =y,1=1.
It develops from (3.21, (3.24) that
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v X, WD YD) e 4] = Plwe; (x,w,y,)e A]
= PlweQ; (x,w,y,)e A]
= V2 [(X82)5 W(Z); Y(Z)) € A]» A e@(@),

and this is uniqueness in the sense of probability law. O

Proposition 3.20 has the remarkable corollary that weak existence and
pathwise uniqueness imply strong existence, We develop this result.

3.21 Problem. For every fixed t >0 and Fe%,(C[0,00)?), the mapping
(x, W)= Q/(x, w; F) is #,-measurable, where {%,} is the augmentation of the
filtration {B(R?) ® #,(C[0, o))} by the null sets of u(dx)P,(dw).

(Hint: Consider the regular conditional probabilities Qi(x,w;F): R? x
C[0, o) x BAC[0, 0)) - [0,1] for B(C[O0, 0)%), given (x,¢,w). These
enjoy properties analogous to those of Q;(x,w;F); in particular, for every
Fe%,(C[0, o)), the mapping (x,w)— Qix,w; F) is Z(R?) ® #,(C[0, wo))-
measurable, and

(3.25) P(G x F) = J Qi(x, w; F)u(dx)P,(dw)
G

for every Ge B(R*) ® %,(C[0, o). If (3.25) is shown to be valid for every
G e B(RY) ® B(C[0, )", then comparison of (3.25) with (3.22) (iii) shows
that Q;(x, w; F) = Qj(x, w; F) for u x P,-a.e.(x,w), and the conclusion follows.
Establish (3.25), first for sets of the form

(326) G=G, x(¢7'G,n0'Gy); G eBRY), Gy, G3eB(C[0,0)),

where (g,w)(s) £ w(t + s) — w(t); s > 0, and then in the generality required.)

3.22 Problem. In the context of Proposition 3.20, there exists a function
k: R* x C[0, o) — C[0, c0)? such that, for u x P,-a.e. (x,w)eR* x C[0, oY,
we have

327 0,06, w; {k(x,w)}) = Q,(x,w; {k(x,w)}) = L.

This function k is Z(R*) ® #(C[0, o Y)/%8(C [0, c0)*)-measurable and, for each
0 <t < oo, it is also #,/%,(C[0, c0)*)-measurable (see Problem 3.21 for the
definition of 43,). We have, in addition,

(3.28) Plo = (x,w,y,,y2)€Q y; = y, = kix,w)] = L.

3.23 Corollary. Suppose that the stochastic differential equation (2.1) has a weak
solution (X, W), (Q,Z,P), {#,} with initial distribution u, and suppose that
pathwise uniqueness holds for (2.1). Then there exists a B(R%) ® #(C[0, oY)/
Z(C[0, 00)!)-measurable function h: R? x C[0, c0)” — C[0, o), which is also
B,/B,(C[0, ©)%)-measurable for every fixed 0 <t < o0, such that

(3.29) X = h(X,,W), as.P.
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Moreover, given any probability space (&, &, P) rich enough to support an
R-valued random variable & with distribution p and an independent Brownian
motion {W,, ;0 <t < oo}, the process

(3.30) X A hEW)

is a strong solution of equation (2.1) with initial condition ¢.

PRrOOF. Let h(x,w) = x + k(x, w), where k is as in Problem 3.22. From (3.28)
and (3.21) we see that (3.29) holds. For & and W as described, both (X, W)
and (£, W) induce the same measure 4 X P, on R? x #(C[0, o)), and since
(X. = h(X,, W), W) satisfies (2.1), so does (X. = h(¢, W), W). The process Xis
adapted to {#,} given by (2.3), because h is 8,/%,(C[0, w)?)-measurable. []

The functional relations (3.29), (3.30) provide a very satisfactory formulation
of the principle of causality articulated in Remark 2.2.

5.4. The Martingale Problem of Stroock
and Varadhan

We have seen that when the drift and dispersion coefficients of a stochastic
differential equation satisfy the Lipschitz and linear growth conditions of
Theorem 2.9, then the equation possesses a unique strong solution. For more
general coefficients, though, a strong solution to the stochastic differential
equation might not exist (Example 3.5); then the questions of existence and
uniqueness, as well as the properties of a solution, have to be discussed in
a different setting. One possibility is indicated by Definitions 3.1 and 3.4:
one attempts to solve the stochastic differential equation in the “weak” sense
of finding a process with the right law (finite-dimensional distributions), and
to do so uniquely. A variation on this approach, developed by Stroock &
Varadhan (1969), formulates the search for the law of a diffusion process with
given drift and dispersion coefficients in terms of a martingale problem. The
latter is equivalent to solving the related stochastic differential equation in the
weak sense, but does not involve the equation explicitly. This formulation has
the advantage of being particularly well suited for the continuity and weak
convergence arguments which yield existence results (Theorem 4.22) and
“invariance principles”, i.e., the convergence of Markov chains to diffusion
processes (Stroock & Varadhan (1969), Section 10). Furthermore, it casts the
question of uniqueness in terms of the solvability of a certain parabolic
equation (Theorem 4.28), for which sufficient conditions are well known.
This section is organized as follows. First, the martingale problem is for-
mulated and its equivalence with the problem of finding a weak solution to
the corresponding stochastic differential equation is established. Using this
martingale formulation and the optional sampling theorem, we next establish
the strong Markov property for these solution processes. Finally, conditions
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for existence and uniqueness of solutions to the martingale problem are
provided. These conditions are different from, and not comparable to, those
given in the previous section for existence and uniqueness of weak solutions
to stochastic differential equations.

4.1 Remark on Notation. We shall follow the accepted practice of denoting
by C*(E) the collection of all continuous functions f: E - R which have
continuous derivatives of every order up to k; here, E is an open subset of some
Euclidean space R? If f(t,x): [0, T) x E - R is a continuous function, we
write f€ C([0, T) x E), and if the partial derivatives (gf/dt), (0f/0x,), (6f/0x;0x;);
1 < i,j < d, exist and are continuous on (0, T) x E, we write fe C!"2((0, T) x
E). The notation fe C''%([0, T) x E) means that fe C*-%((0, T) x E) and the
indicated partial derivatives have continuous extensions to [0, T) x E. We
shall denote by C¥(E), C5(E), the subsets of C*(E) of bounded functions and
functions having compact support, respectively. In particular, a function in
CE(E) has bounded partial derivatives up to order k; this might not be true for
a function in C¥E).

A. Some Fundamental Martingales

In order to provide motivation for the martingale problem, let us suppose
that (X, W), (Q, %, P), {#,} is a weak solution to the stochastic differential
equation (2.1). For every t > 0, we introduce the second-order differential
operator

0’ f(x)
0x;0x, it

where a,(t, x) are the components of the diffusion matrix (2.2). If, as in the
next proposition, f is a function of t€[0, 0c0) and x € R? then (&7, f)(¢, x), is
obtained by applying &/, to f{(t, -).

f()

(4.1) (M,f)(X)A Z Z aylt, x) ; feCHRY,

4.2 Proposition. For every continuous function f(t,x): [0, ) x R? — R which
belongs to C*:2((0, 00) x R?), the process MY = {M{, #;0 <t < o0} given by

(42) Mtf = f(t5 Xt) - f(05 XO) - J\t <Z—£ + Msf) (S, Xs) ds
0

is a continuous, local martingale; i.e., M' € .M. If g is another member of
C([O; w) X Rd) N CI,Z((O, w) X Rd), then Mge‘//lc,loc and

4.3) (M, M9, = 21 kZ J ag(s, X) f(s X) g(s,X )ds.
Furthermore, if fe Cy([0, 20) x R?) and the coejﬁczents o,

.,,lsisd,ISJSr,
are bounded on the support of f, then M’ e #5.
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ProoF. The It6 rule expresses M/ as a sum of stochastic integrals:

d r t
(44) M/ = MED with MEP 2 | o (s,X) f(s X,)dWY.
e ij

i=1 j=1 1]

Introducing the stopping times
t
S, & inf{t >0 |X,|)|=nor J 63(s,X,) > n for some (i,j)}
0

and recalling that a weak solution must satisfy condition (iii) of Definition 2.1,
we see that lim,_ S, = oo a.s. The processes

r tAS,
@S MimAa M, =¥ ZJ a5 XJ) 5 — f(sX)dW’ n>1,
i=1 j=1 Jo

are continuous martingales, and so M/ e .#%'°°. The cross-variation in 4.3)
follows readily from (4.5). If f has compact support on which each g;; is
bounded, then the integrand in the expression for M .9 in (4.4) is bounded, so
M e ;. O

With the exception of the last assertion, a completely analogous result is
valid for functional stochastic differential equations (Definition 3.14). We
elaborate in the following problem.

4.3 Problem. Let by(t,y) and oy(t,y); 1 <i<d, 1<j<r, be progressively
measurable functionals from [0, o) x C[0, c0)? into R. By analogy with (2. 2),
we define the diffusion matrix a(t, y) with components

(46) aik(t y é Z ij(t5 y)o.kj(t5 Y), 0 <t< o0, ye C[05 w)d'

Suppose that (X, W), (Q,#, P), {#,}, is a weak solution to the functional
stochastic differential equation (3.15), and set

014()’(0)

l

1 0
b m =13 3 aen T2+ $ ey

0<t< oo, ueC3R%, yeC[O0, 00)"
Then, for any functions f, g€ C([0, 0) x R?)n C*2((0, o0) X R?), the process

42y M{! 2 f(t,X)— f0,X,) - J' [6f
0

3 +Mf](sX)ds,9" 0<t<w

is in 4", and
d d t
4.3y (MI M), = ; k; J ails, X) f(S X) 9(3 X;)ds.

Furthermore, if f e Co([0, 0) % R%) and for each 0 < T < oo we have
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4.7) le Il <Kr; 0<t<T, yeC[0, ),

where K is a constant depending on T, then e .#5.

The simplest case in Proposition 4.2 is that of a d-dimensional Brownian
motion, which corresponds to b;(t,x) = 0 and oy(t, x) = 01 <1i,j<d Then
the operator in (4.1) becomes
o%f

ox?

1 14
Af =30 =5 3 25 [eCHR)

4.4 Problem. A continuous, adapted process W = {W,, #;0<t< o0} is a
d-dimensional Brownian motion if and only if

fw) —f(Wo)—%JtAf(Ws)ds, F; 0<t <o,
0

is in .#“"* for every fe C%(R?).

B. Weak Solutions and Martingale Problems

Problem 4.4 provides a novel martingale characterization of Brownian motion.
The basic idea in the theory of Stroock & Varadhan is to employ M7 of (4.2)
in a similar fashion to characterize diffusions with general drift and dispersion
coeflicients.

To explain how this characterization works, we shall find it convenient
to deal temporarily with progressively measurable functionals b(t, y),
0(t,¥): [0, 00) x C[0,0)* > R, 1 <i<d, 1 <j<r We recall the family of
operators {.o; } of (4.1).

4.5 Definition. A probability measure P on (C[0, cc)?, B(C[0, c0)%)), under
which

48) M/ = f(y1) — f(»(0) - J (A f)(y)ds, #; 0<t <o,
0

is a continuous, local martingale for every fe C?(R?), is called a solution to
the local martingale problem associated with {7, }. Here % = %, and {%}
is the augmentation under P of the canonical filtration %, £ %,(C[0, )*) as
in (3.19).

According to Problem 4.3, a weak solution to the functional stochastic
differential equation (3.15) induces on (C[0, c0)%, Z(C[0, c0)%)) a probability
measure P which solves the local martingale problem associated with {27/ }.
The converse of this assertion is also true, as we now show.
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4.6 Proposition. Let P be a probability measure on (C[0, o0)?, B(C[0, 0)*)
under which the process M’ of (4.8) is a continuous, local martingale for the
choices f(x) = x;and f(x) = x;x; 1 < i,k <d. Then there is an r-dimensional
Brownian motion W = {W,, #,;0 <t < oo} defined on an extension &, Z,P)
of (C[0, ao)?, B(C[0, 0)%), P), such that (X, £ y(t), W,), (&, #,P),{£},isaweak
solution to equation (3.15).

ProoF. By assumption,

t
M®D & XD _ X — J bis, X)ds, F; 0<t<oo

0

is a continuous, local martingale under P. In particular,

t

4.9) P[J Ibi(s,X)Ids<oo;05t<oo:|=l; 1<i<d
1]

With f(x) = x;x,, we see that

t
M@0 & XOX® — XOXEP — f [XOb,(s, X) + XPbs, X) + auls, X)1ds

0

is also a continuous, local martingale. But one can express

t
(4.10) MOM® — J ayls, X)ds
1]
as the sum of the continuous local martingale M&© — XOM® — X, ®WM® and
the process
t

t
(4.11) J (X9 — XD)by(s, X)ds + J (X® — X®Yby(s, X)ds
1]

0

+ Jt bis, X)ds J" b(s, X)ds

0 0

t t
= J (MY — M)b(s, X)ds + J (M® — M®)by(s, X)ds

0 0

—Jt [JS b (u, X) du]dMéi) — J‘t [JS b,(u, X) du:| aM®.
olLJo olLJo

The last identity may be verified by applying Itd’s rule to both processes
claimed to be equal. We see then that the process of (4.11) is a continuous,
local martingale of bounded variation; it follows from Exercise 1.5.21 that it
is identically equal to zero. Therefore, the process of (4.10) is in .#“'*°, and

il

t
4.12) (MO M®y, = j ag(s,X)ds; 0<t<oo,as.
1]
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We may now invoke Theorem 3.4.2 to conclude the existence of a d-dimenstonal
Brownian motion {W,, ;0 < t < co} on an extension ((, %, P) of (C[0, c0)?,
A(C[0, 0)?), P) endowed with a filtration {%,} which satisfies the usual condi-
tions, as well as the existence of a matrix p = {p(t), #;0 <t < 0}, <; <4
of measurable, adapted processes with

!
4.13) ﬁ[f p,%-(s)ds<ooi|=1; 1<i,j<d,0<t< o0,
0
such that
d ! -
4.14) MY = Z J p,-j(s)dWs‘f’; 1<i<d0<t<w
=t Jo

holds a.s. P. This last equation can be rewritten as

(4.15) X, =X, +J b(s, X) ds +J p(s)dW,, 0<t< co.

0 0

In order to complete the proof, we need to establish the existence of an
r-dimensional Brownian motion W = {W,, %,;0 < t < oo} on ((}, #, P), such
that

(4.16) J" p(s)dWs=J“ (s, X)dW,; 0<t<w

0 0

holds P-almost surely. From (4.12), (4.14) and with the notation (4.6), 1t will
then be clear that

d
P Y. p(Dpi;(t) = ay(t, X), forae. t > O:I =1, 1<ik<d
=1

and (4.13) will imply

[~
(417) P J aﬁ.(s,X)ds<oo:I:1; 1<i<d1<j<r,0<t <.
LJO

The relations (4.9), (4.15)-(4.17) will then yield (X, W), (0, Z,P), {Z} as a
weak solution to (3.15).

It suffices to construct W satisfying (4.16) under the assumption r =d.
Indeed, if r > d, we may augment X, b, and o by setting X = by(t,y) =
oy(t,y) =0;d +1<i<r 1 <j<r Ths r-dimensional process X satisfies
an approprnately modified version of (4.8), and we may proceed as before
except now we shall obtamn a matrix p which, like o, will be of dimension
(r x r). On the other hand, if r < d, we need only augment ¢ by setting
o;(t,y) =0;1 <i<d,r+1<j<d, and nothing else is affected. Both p and
o are then (d x d) matrices.

According to Problem 4.7 following this proof, there exists a Borel-
measurable, (d x d)-matrix-valued function R(p, o) defined on the set

(418) D £ {(p,0); p and o are (d x d) matrices with ppT = 5™}
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such that ¢ = pR(p,s) and R(p,d)R7(p,6) = I, the (d x d) identity matrix.
We set

t
W, & J R7(p,,0(s,X))dW,; 0<t <0
0

Then WPe #"°;1 <i<d, and
(WO WPy =15, 1<i,j<d0<t<o0

It follows from Lévy’s Theorem 3.3.16 that {W, Z,0<t<ow} is a
d-dimensional Brownian motion. Relation (4.16) is apparent. O

47 Problem. Show that there exists a Borel-measurable, (d x d)-matrix-valued
function R(p, o) defined on the set D of (4.18) and such that

o = pR(p,0), R(p,0)RT(p,0)=1; (p,6)eD.

(Hint: Diagonalize pp” = oo and study the effect of the diagonalization
transformation on p and ¢.)

4.8 Corollary. The existence of a solution P to the local martingale problem
associated with {s4]} is equivalent to the existence of a weak solution (X, W),
(@&, F,P), {Z) to the equation (3.15). The two solutions are related by P =
PX~1:ie. X induces the measure P on (C[0, 0)’, B(C[O0, 00)")).

4.9 Corollary. The uniqueness of the solution P to the local martingale problem
with fixed but arbitrary initial distribution

P[yeC[0,0); y(0)eT] = u(); TeZR’)

is equivalent to uniqueness in the sense of probability law for the equation (3.15).

Because of the difficulty in computing expectations for local martingales, it
is helpful to introduce the following modification of Definition 4.5.

4.10 Definition (Martingale Problem of Stroock & Varadhan (1969)). A
probability measure P on (C[O0, 0)?, B(C[0, 0)*)) under which M7 in (4.8)
is a continuous martingale for every fe C3(R?) is called a solution to the
martingale problem associated with {s/}.

Given progressively measurable functionals bgt,y), 6;(t,¥): [0, ) x
Cl0,0f >R, 1 <i<d, 1<j<r,the associated family of operators {},
and a probability measure p on #(R?), we can consider the following three
conditions:

(A) There exists a weak solution to the functional stochastic differential
equation (3.15) with initial distribution p.

(B) There exists a solution P to the local martingale problem associated with
{#/} with P[y(0)eI'] = u(@); T e B(RY).
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(C) There exists a solution P to the martingale problem associated with {s#,}
with P[y(0)eI'] = w(I"); ' € Z(R?).

4.11 Proposition. Conditions (A) and (B) are equivalent and are implied by (C).
Furthermore, (A) implies (C) under either of the additional assumptions:

(A.1) For each 0 < T < o0, condition (4.7) holds.
(A.2) Each oylt,y) is of the form oyt,y) = 6t y(t)), where the Borel-
measurable functions 6;: [0, 0) x R? - R are bounded on compact sets.

ProOOF. We have already established the equivalence of (A) and (B.) If P is a
solution to the martingale problem and fe C2(R?) does not necessarily have
compact support, we can define for every integer k > 1 the stopping time

(4.19) S, & inf{t > 0: | y())] > k).

Let g€ C3(R?) agree with f on {xeR? ||x|| < k}. Under P, each M? is a
martingale which agrees with M/ for t < S,. It follows that M/ € .#'°; thus
(C) = (B). Under (A.1), Problem 4.3 shows (A) = (C); under (A.2), the argument
for this implication is given in Proposition 4.2.

4.12 Remark. It is not always necessary to verify the martingale property of
M/ under P for every fe C(R%), in order to conclude that P solves the
martingale problem. To wit, consider fi(x) £ x; and fi{(x) £ x;x; for 1 <,
j < d, and choose sequences {g®}i;, {9}z, of functions in CJ(R?) such
that g®(x) = fi(x), g¥(x) = f,(x) for ||x|| < k. If M’ and M* are mar-
tingales for 1 < i, j < d and k > 1, then M’ and M7 are local martingales.
According to Proposition 4.6, there is a weak solution to (3.15), and Corollary
4.8 now implies that P solves the local martingale problem. Under either of
the assumptions (A.1) or (A.2), P must also solve the martingale problem.

It is also instructive to note that in the Definitions 3.1 and 3.14 of weak
solution to a stochastic differential equation, the Brownian motion W appears
only as a “nuisance parameter.” The Stroock & Varadhan formulation elimi-
nates this “parametric” process completely. Indeed, the essence of the implica-
tion (B) = (A) proved in Proposition 4.6 is the construction of this process.

In keeping with our practice of working with filtrations which satisfy the
usual conditions, we have constructed from %, £ %,(C[0, «)%) such a filtra-
tion {#,} for the Definitions 4.5 and 4.10. Later in this section, we shall instead
want to deal with {4,} itself, because this filtration does not depend on the
probability measure under consideration and each 4%, is countably determined.
Toward this end, we need the following result.

4.13 Problem. Assume either

(Aly byl + lloy(t, Wl < Ky; 0<t<T, yeC[0,a0), for every
0 < T < o0, where K is a constant depending on T, or else
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(A2) b(t,y) and oyty) are of the form b(ty) = bi(t, (1)),
6,(t,y) = 6(t, y(1)), Where the Borel-measurable functions [
R? — R are bounded on compact sets.

S
Q

Let P be a probability measure on (C[0, )*, Z(C[0, w0)?)); {#} be as in
Definition 4.5; and f e C2(R%). Show that if {M/, #,;0 <t < oo} isa martin-
gale, then so is {M/, #;0 <t < oo}.

C. Well-Posedness and the Strong Markov Property

We pause here in our development of the martingale problem to discuss the
strong Markov property for solutions of stochastic differential equations.
Consistent with our discussion of Markov families in Chapter 2, we shed
the trappings of time-dependence. Thus, we have time-homogeneous and
Borel-measurable drift and dispersion coefficients b;: R? - R, g;: R? > R;
1 <i<d,1<j < r,and we shall study the time-homogeneous version of (2.1),
written here in integral form as

t t
(4.20) X, =x+ j b(X,)ds + j o(X,)dW,;, 0<t< .

0 0
This model actually does allow for time-dependence because time can be
appended to the state variable; ie., we may take X9 = ¢, byyqy(x) =1,
Gas1,(x) =0; 1 <j <r. We adopt the time-homogeneous assumption pri-
marily for simplicity of exposition. Note, however, that some results (e.g.,
Remark 4.30 and Refinements 4.32) require the nondegeneracy of the diffusion
coefficient, which is not valid in such an augmented model.

4.14 Definition. The stochastic integral equation (4.20) is said to be well posed
if, for every initial condition x € R?, it admits a weak solution which is unique
in the sense of probability law.

We know, for instance, that (4.20) is well posed if b and @ satisfy Lipschitz
and linear growth conditions (Theorems 2.5, 2.9). If ¢ is the (d x d) identity
matrix and b is uniformly bounded, (4.20) is again well posed (Proposition 3.6
and Corollary 3.11). Later in this section, we shall obtain well-posedness under
even less restrictive conditions on ¢ (Theorems 4.22 and 4.28, Corollary 4.29).

If (4.20) is well posed, then the solution X with initial condition X, = x
induces a measure P* on (C[0, )%, Z(C[0, «0)?)). One can then ask whether
the coordinate mapping process on this canonical space, the filtration {4},
and the family of probability measures { P*}, . re constitute a strong Markov
family. We shall see that if b and ¢ are bounded on compact subsets of RY,
the answer to this question is essentially affirmative. Our analysis proceeds
via the martingale problem, which we now specialize to the case at hand. We
denote by
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0*f(x)
0x;0x,

the time-homogeneous version of the operator in (4.1).

ofx)
0x;

d d d
(12 N0 =13 3 a2+ S b
=1 k=1 =1

4.15 Definition. Assume that b R > Rand oz R' > R; 1 <i<d, 1<j<r
are bounded on compact subsets of R%. A probability measure P on (Q, %) £
(CLO, o0)%, B(C[0, o0)*)) under which

@21 E [f (@) — f()) — J (f)(y(u))du

@s] =0, asP

holds for every 0 <s <t < oo, feC2(RY), is called a solution to the time-
homogeneous martingale problem. We denote by P* any solution for which

(4.22) P*[yeC[0, ) y(0) = x] = L.

We say that the time-homogeneous martingale problem is well posed if, for
every x € RY, there is exactly one such measure P~

4.16 Remark. The replacement of &, by %, in (4.21) is justified by Problem
4.13.

4.17 Remark. Under the conditions of Definition 4.15, well-posedness of the
time-homogeneous martingale problem is equivalent to well-posedness of the
stochastic integral equation (4.20) (Corollaries 4.8 and 4.9 and Proposition
4.11).

4.18 Lemma. For every bounded stopping time T of the filtration {#,}, we have
Br=0(y(t A T);0<t < o0).

PrOOF. The #r-measurability of each y(t A T)follows directly from Definition

1.2.12 and Proposition 1.2.18. It remains to show %y S a(y(t A T);0 <t < ).

Let ¢,: C[0, c0)* = C[0, co)? be given by (¢,y)(s) = y(t A 5); 0 < 5 < 0, for

arbitrary ¢t > 0. Problem 1.2.2 shows that T(y) = T(¢r,(»)) holds for every
ye C[0, o) and so, with Ae %, and t £ T(y), we have

yeA<eye[An{T <t}]eoye[An{T <t}]e=qoyeA.

The second of these equivalences is a consequence of the facts A N {T < t} e %,
and y(s) = (¢,(»))(s); 0 < s < t. We conclude that

A = {yeC[0,); ory(y)ed} = {yeC[0,0); y(- A T)EA}. [
For the next lemma, we recall the discussion of regular conditional prob-

abilities in Subsection 3.C, as well as the formula (2.5.15) for the shift operators:
0,3)(t) = y(s +1); 0 <t < oo for s > 0 and ye C[0, 0)’.
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4.19 Lemma. Let T be a bounded stopping time of {%,} and 4 a countably
determined sub-c-field of By such that y(T) is §-measurable. Suppose that b
and o are bounded on compact subsets of R, and that the probability measure
P on(Q, B) = (C[0, )%, Z(C[0, oo)?)) solves the time-homogeneous martingale
problem of Definition 4.15. We denote by Q,(F) = Q(w;F): Q x # — {0,1]
the regular conditional probability for 2 given .

There exists then a P-null event N € 9 such that, for every w ¢ N, the probability
measure

P, % Q007

solves the martingale problem (4.21), (4.22) with x = w(T(w)).

ProOF. We notice first that, thanks to the assumptions imposed on ¥,
Theorem 3.18 (iv) implies the existence of a P-null event N € %, such that

Q(w; {ye; W(T(y) = o(T())}) = 1,
and therefore also
P,[ye; y0) = o(T(@)] = QuLye X (T(y) = o(T(@))] = 1

hold for every w¢ N. Thus (4.22) is satisfied with x = o(T(®)).
In order to establish (4.21), we choose 0 <s<t< o0, Ge¥, Fe 4%,
f e CZ(RY); define

Z(y) 2 fy(®) — fy6s) = J (f)(y(w)du; yeC[O, ),

and observe that

(4.23) j Z(y)lp(y)Pw(dY)=j Z(0ry)) 16(01)y) Ql; )
Q Q

= E[lg;1(Z 0 07)|9](w)
= E[E(Z o 01| ®Br+s) 16;1F|g] (w)
=0, P-ae o

We have used in the last step the martingale property (4.21) for P and the
optional sampling theorem (Problem 1.3.23 ().

Let us observe that, because of our assumptions, the random variable Z
is bounded; relation (4.23) shows that the %-measurable random variable
> [ Z(y)P,(dy) is zero except on a P-null event depending on s, ¢, f,and F.
Consider a countable subcollection & of %, and a P-null event N(s,t, /)€,
such that

JZ(y)Pw(dy)=0; YwéN(s,t, f), VFed.
F
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Then the finite measures v (F) 2 [ Z*(y)P,(dy); F € #, agree on &, and since
%, is countably determined, the subcollection & can be chosen so as to permit
the conclusion

JZ(y)Pw(dy)=0; Vwé¢N(st, f), VFe,
F

We may set now N(f) ={),,co N(s,t,f), and use the boundedness and

0 <s<t<wm

continuity (in s, t) of Z to conclude that

t

M/ 2 f(y(8) — f(y(0)) — J (Af)(y(w)du, #; 0<t< o0
0

is a martingale under P, for every w ¢ N(f). Finally, we see that there exists

a P-null event Ne % under which M/ is a P -martingale for all ¢ N and

countably many fe C3(R?); because of Remark 4.12, P, solves the time-

homogeneous martingale problem for all w ¢ N. O

4.20 Theorem. Suppose that the coefficients b, ¢ are bounded on compact subsets
of R and that the time-homogeneous martingale problem of Definition 4.15
(or equivalently, the stochastic integral equation (4.20)) is well posed. Then for
every stopping time T of {%,}, F € #(C[0, 00)?) and x € R%, we have the strong
Markov property

(4.24) P*[6;'F|#;](w) = P°P[F], P*as.on{T < o).

Proor. If the stopping time T is bounded, we let 4 in Lemma 4.19 be 4, which
is countably determined by Lemma 4.18. Using the notation of Lemma 4.19,
we may write then, for every F e #(C[0, o0 )%):

P*[67'F|#r](w) = Q(w; 07' F) = P,(F) = P*T“P[F],

for P*-a.e. weQ. The last identity is a consequence of the uniqueness of
solution to the time-homogeneous martingale problem with initial condition
x = w(T(w)).

Unbounded stopping times are handled as in Problem 2.6.9 (iii). O

4.21 Remark. The strong Markov property of (4.24) is the same as condition
(e”) of Theorem 2.6.10, except that we have succeeded in proving it only for
stopping (rather than optional) times.

Condition (a) of Definition 2.6.3 is satisfied under the assumptions of
Theorem 4.20. Indeed, well-posedness implies that the mapping x+— P*(F)
is Borel-measurable for every Fe%(C[0, )%), but the proof of this state-
ment requires a rather extensive set-theoretic development (see Stroock &
Varadhan (1979), Exercise 6.7.4, and Parthasarathy (1967), Corollary 3.3,
p- 22). This result is of rather limited interest, however, because when a proof
of well-posedness is given, it typically provides a constructive demonstration
of the measurability of the mapping x+— P*(F).
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D. Questions of Existence

It is time now to use the martingale problem in order to establish the funda-
mental existence result for weak solutions of stochastic differential equations
with bounded, continuous coefficients.

4.22 Theorem (Skorohod (1965), Stroock & Varadhan (1969)). Consider the
stochastic differential equation

(4.25) dX, = b(X,)dt + o(X,)dW,,

where the coefficients b;, 6,;: R® > R are bounded and continuous functions.
Corresponding to every initial distribution pi on B(R®) with

J x| 2™ u(dx) < co, for somem > 1,
Rd

there exists a weak solution of (4.25).

Proor. For integers j > 0, n > 1 we consider the dyadic rationals ¢{ = j27"
and introduce the functions ¥,(t) = &; te[t™, 7). We define the new
coefficients

(4.26) b™(t,y) & b(y(,(1), o™(t,y) 2 a(y(.());
0<t< o0, yeC[0,w),

which are progressively measurable functionals.

Now let us consider on some probability space (, #, P) an r-dimensional
Brownian motion W = {W,, #¥;0 <t < co} and an independent random
vector & with the given initial distribution , and let us construct the filtration
{#} as in (2.3). For each n > 1, we define the continuous process X™ =
(X" #,;0 <t < oo} by setting X{" = ¢ and then recursively:

X = X+ bXG( — 1) + oKW — Wy j2 0,67 <t <t
Then X™ solves the functional stochastic integral equation

t t
427 X"=¢+ J b5, X™)ds + J e™(s, XM dW,; 0<t< 0.
0 0

Fix 0 < T < oo. From Problem 3.15 we obtain

sup E[| X — XP|" < C(1 + EJ¢|2™)@ -9 0<s<t<T,

n>1
where C is a constant depending only on m, T, the dimension d, and the bound
on ||b|2 + |lo||?. Let P™ £ P(X™)7'; n> 1 be the sequence of probability
measures induced on (C[0, )%, B(C[0, c0)*)) by these processes; it follows
from Problem 2.4.11 and Remark 2.4.13 that this sequence is tight. We may
then assert by the Prohorov Theorem 2.4.7, relabeling indices if necessary,
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that the sequence {P™}>_, converges weakly to a probability measure P* on
this canonical space.
According to Proposition 4.11 and Problem 4.13, it suffices to show

(4.28) P*[yeC[0,00)%; y(0)eT]=uI);, TeR(R’),
4.29)  E*[f(y®) — f(y(s) — J (Lf)(yw)du|#,] =0, as.P*,

forevery 0 < s <t < oo, fe C3(R?). For every fe C(R?), the weak convergence
of {P™}*_, to P* gives

E*f(y(0)) = lim E™f(y(0)) = JRdf (x)u(dx),

n—-w

and (4.28) follows. In order to establish (4.29), let us recall from (4.27) and
Proposition 4.11 that for every fe C3(R%) and n > 1,

F®) — f(0) — J (LN (y)du, B; 0<t< o
0

is a martingale under P™, where

w2 3 e nTED L85 5 o ey OO

i=1 Ox 1 k=1 j=1 6xi(3x,‘

Therefore, with 0 < s < t < o and g: C[0, ©)* —» R a bounded, continuous,
% -measurable function, we have

(4.30) ‘"’[{f (y(®) - SEs) — J (")) du} g()’)] =

We shall show that for fixed 0 < s <t < o0, the expression

F(») 2 fly®) — fy() — J ("f) (y) du

converges uniformly on compact subsets of C[0, c0) to
F(y) & f(y(®) — f(¥(s) — J (Lf)(y(u)) du

Then Problem 2.4.12 and Remark 2.4.13 will imply that we may let n — co in
(4.30) to obtain E*[F(y)g(y)] = 0 for any function g as described, and (4.29)
will follow. Let K < C[0, o0)? be compact, so that (Theorem 2.4.9 and (2.4.3)):

M2 sup ||y < oo, lim supm’(y,2™")=0.

yekK n—wx yek
O<u<t

Because b and o are uniformly continuous on {xeR% | x| < M}, we can find
for every ¢ > 0 an integer n(g) such that
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Sup (15™(s, y) — b + llo™(s,y) — a(y)I) < & n = n(e).
y_esf!

The uniform convergence on K of F, to F follows. O

423 Remark. It is not difficult to modify the proof of Theorem 4.22 to allow
b and o to be bounded, continuous functions of (£, x) € [0, c0) x R, or even to
allow them to be bounded, continuous, progressively measurable functionals.

E. Questions of Uniqueness
Finally, we take up the issue of uniqueness in the martingale problem.

424 Definition. A collection @ of Borel-measurable functions ¢: R* — R is

called a determining class on R? if, for any two finite measures x, and u, on
A(RY), the identity

de @(x)p1(dx) = jw e(x)uy(dx), Voe2

implies u; = y,.
4.25 Problem. The collection CP(R?) is a determining class on R

4.26 Lemma. Suppose that for every f€ CZ(R?), the Cauchy problem

9
4.31) a—l: — sfu; in(0,00) x RY,

(4.32) u(0,-)=f; inRY,

has a solution u,e C([0, ) x R?) N C1-2((0, o0) x R?) which is bounded on
each strip of the form [0, T] x RY. Then, if P* and P* are any two solutions of
the time-homogeneous martingale problem with initial condition x € RY, their
one-dimensional marginal distributions agree; i.e., for every 0 <t < 00:

(4.33) P [y(t)el'] = P*[y(t)el]; VI eBRY).

PROOF. For a fixed finite T > 0, the function g(t,x) £ u (T — £, x); 0 <t < T,
xe R is of class C,([0, T] x R*) n C-2((0, T) x R?) and satisfies

2
£+,9/g=0; in (0,T) x RY,

g(T,")=f; inR~.

Under either P* or P, the coordinate mapping process X, = y(t) on C[0, o)?
is a solution to the stochastic integral equation (4.20) (with respect to some
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Brownian motion, on some possibly extended probability space; see Proposi-
tion 4.11). According to Proposition 4.2, the process {g(t, y(t)), ;0 <t < T}
is a local martingale under both P* and P*; being bounded and continuous,
the process is in fact a martingale. Therefore,

EXf(y(T)) = E*g(T, y(T)) = 9(0,x) = E*g(T, (T)) = E*f((T)).

Since f can be any function in the determining class Cg(R?), we conclude that
(4.33) holds. O

We are witnessing here a remarkable duality: the existence of a solution
to the Cauchy problem (4.31), (4.32) implies the uniqueness, at least for one-
dimensional marginal distributions, of solutions to the martingale problem.
In order to proceed beyond the uniqueness of the one-dimensional marginals
to that of all finite-dimensional distributions, we utilize the Markov-like
property obtained in Lemma 4.19. (We cannot, of course, use the Markov
property contained in Theorem 4.20, since uniqueness is assumed in that
result.)

4.27 Proposition. Suppose that for every x € R%, any two solutions P* and P* of
the time-homogeneous martingale problem with initial condition x have the same
one-dimensional marginal distributions; i.e., (4.33) holds. Then, for every x € R®,
the solution to the time-homogeneous martingale problem with initial condition
x is unique.

PROOF. Since a measure on C[0, c0)? is determined by its finite-dimensional
distributions, it suffices to fix 0 <t, <t, <--- < t, < o0 and show that P*
and P* agree on %(t,,...,t,) £ a(y(t,), ..., y(t,)). We proceed by induction on
n. We have assumed the truth of this assertion for n = 1. Suppose now that P*
and P* agree on 9(t,,...,t,_,), and let Q, be a regular conditional probability
for #(C[0, )?) given %(t;,...,t,_,), corresponding to P* According to
Lemma 4.19, there exists a P*-null set Ne %(t,,...,t,_,) such that for y¢ N,
the measure P, £ Q, o 6, solves the time-homogeneous martingale problem
with initial condition y(t,_,). Likewise, there is a regular conditional prob-
ability @, corresponding to P* and a P*-null set Ne4(t,,...,t,,), such that
P,2 (0,00, solves this martingale problem whenever y ¢ N. For y not in the
null (under both P* P*) set N U N, we know that P, and P, have the same
one-dimensional marginals. Thus, with A € Z(R%""V) and B e #(R%), we have

PXL(y(t1),..., y(t,-1))E A, y(t,) € B]

.....

= Px[(y(tl)"”’y(tn—l))EA’ Y(t..)EB],
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where we have used not only the equality of P,{we®Q; w(t, — t,—;)€ B} and
P,{weQ; w(t, — t,-;)€ B}, but also their %(t,,...,t,_;)-measurability. It is
now clear that P* and P* agree on %(t,,...,t,). O

We can now put the various results together.

4.28 Theorem (Stroock & Varadhan (1969)). Suppose that the coefficients
b(x) and o(x) in Definition 4.15 are such that, for every f e CZ(RY), the Cauchy
problem (4.31), (4.32) has a solution u;€ C([0, ) x R*) N C**2((0, 00) x RY)
which is bounded on each strip of the form [0, T] x R Then, for every x € R?,
there exists at most one solution to the time-homogeneous martingale problem.

4.29 Corollary. Let the coefficients b(x), 6(x) be bounded and continuous and
satisfy the assumptions of Theorem 4.28. Then the time-homogeneous martingale
problem is well posed.

430 Remark. A sufficient condition for the solvability of the Cauchy problem
(4.31), (4.32) in the way required by Theorem 4.28 is that the coefficients b;(x),
az(x); 1 <j, k < d be bounded and Hélder-continuous on R4, and the matrix
a(x) be uniformly positive definite; i..,

d d
(4.34) Y Y ap(x)&E = AIEN% VX, £eR? and some 4 > 0.
i=1 k=1

We refer to Friedman (1964), Chapter 1, and Friedman (1975), §6.4, §6.5, or
Stroock & Varadhan (1979), Theorem 3.2.1, for such results; see also Remark
7.8 later in this chapter.

4.31 Remark. If a,, € C2(R%) for 1 < i, k < d, then a(x) has a locally Lipschitz-
continuous square root, ie, a (d x d)-matrix-valued function &(x) =
{64(¥)}1<1.j<a such that ag(x) = Y 4.1 65(x)Gii(x); xeR? (Friedman (1975),
Theorem 6.1.2). We do not necessarily have o(x) = 6(x) (indeed, one interest-
ing case is the one-dimensional problem with o(x) = sgn(x) and 6(x) = 1;
xeR). If, in addition, b;e C*(R?); 1 < i < d, then according to Theorem 2.5,
Remark 3.3, Proposition 3.20, Corollary 4.9, and Proposition 4.11, for every
x € R there exists at most one solution to the time-homogeneous martingale
problem. This result imposes no condition analogous to (4.34) and is thus
especially helpful in the study of degenerate diffusions.

432 Refinements. It can be shown that if the coefficients b(x), 6(x) are bounded
and Borel-measurable, and the matrix a(x) is uniformly positive definite
on compact subsets of R?, then the time-homogeneous martingale problem
admits a solution. In the cases d = 1 and d = 2, this solution is unique. See
Stroock & Varadhan (1979), Exercises 7.3.2-7.3.4, and Krylov (1969), (1974).
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F. Supplementary Exercises

4.33 Exercise. Assume that the coefficients b;: R > R, g; R >R; 1 <i<d,
1 <j < r are measurable and bounded on compact subsets of R?, and let ./
be the associated operator (1.2). Let X = {X,, #; 0 <t < o} be a continuous
process on some probability space (Q, Z, P) and assume that {%,} satisfies
the usual conditions. With fe C?(R?) and o e R, introduce the processes

M, & f(X,) — f(Xo) — J' Af(X)ds, #; 0<t< oo,
0

t

A, 2 e f(X) — f(Xo) + J e (f(X,) — Lf(X,))ds, F; 0<t< o,
0

and show M € #°° < A e #° If {is bounded away from zero on compact
sets and

. * f(X,)
Nt= Xt -
d )exp{ L 1X,)

then these two conditions are also equivalent to: N e #°"°, (Hint: Recall from
Problem 3.3.12 that if M e .#%™° and C is a continuous process of bounded
variation, then C,M, — [y M,dC, = [, C,dM, is in .#*"*°)

ds} —f(Xo) %; 0<t< o,

4.34 Exercise. Let (X, W), (Q, #, P), {#,} be a weak solution to the functional
stochastic differential equation (3.15), where condition (A.1) of Problem 4.13
holds. For any continuous function f: [0, o) x R? = R of class C*2((0, o) x
R%) and any progressively measurable process {k,, #; 0 <t < o0}, show that

A2 [t X, )e ok — £(0, X,) — J <2l + A — ksf> elokut 4s, 7,

0 N
O<t<

is in .#%'°. If, furthermore, f and its indicated derivatives are bounded and
k is bounded from below, then A is a martingale.

4.35 Exercise. Let the coefficients b, o be bounded on compact subsets of R?,
and assume that for each x € R% the time-homogeneous martingale problem
of Definition 4.15 has a solution P~ satisfying (4.22). Suppose that there exists
a function f: R? - [0, o0) of class C2(R?) such that

Af(x)+ M(x)<ec, VxeR?

holds for some A > 0, ¢ > 0. Then

E*f(y(1) < f(x)e ™ + %(1 —eMy 0<t< oo, xeRL
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5.5. A Study of the One-Dimensional Case

This section presents the definitive results of Engelbert and Schmidt con-
cerning weak solutions of the one-dimensional, time-homogeneous stochastic
differential equation

(5.1) dX, = b(X,)dt + o(X,)dW,

with Borel-measurable coefficients b: R » R and 6: R —» R. These authors
provide simple necessary and sufficient conditions for existence and unique-
ness when b = 0, and sharp sufficient conditions in the case of general drift
coefficients. The principal tools required for this analysis are local time, the
generalized Itd rule, the Engelbert-Schmidt zero-one law (see Subsection 3.6.E),
and the notion of time-change.

Solutions of equation (5.1) may not exist globally, but rather only up to
an “explosion time” S; see, for example, Remark 2.8. We formalize the idea of
explosion.

5.1 Definition. A weak solution up to an explosion time of equation (5.1) is a
triple (X, W), (Q, #, P), { #}, where

(i) (Q,#,P)is a probability space, and {£} is a filtration of sub-o-fields of
F satisfying the usual conditions,

(i) X ={X,, #;0<t< oo} is a continuous, adapted, Ru { £oo}-valued
process with | X,| < o0 a.s., and {W,, %#;0 < t < oo} is a standard, one-
dimensional Brownian motion,

(iii) with
(5.2) S, & inf{t > 0; | X,| > n},

we have

0

tAS,
(5.3) PU {|b(Xs)|+02(Xs)}ds<oo:I=l; VO<t< oo

and

(iv)

t
(5.4) P|:X1AS,, =X, + J b(X) <5,y ds
0

t
+J O'(Xs)l{sss"}dVVS;VO <t< w:I =1
0

valid for every n > 1.
We refer to

(5.5) S = lim S,

n—w
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as the explosion time for X. The assumption of continuity of X in the
extended real numbers implies that

(56) S=inf{t>0:X,¢R} and Xs= £ooas. on{S< o}
We stipulate that X, = X; S <t < o0.

The assumption of finiteness of X, gives P[S > 0] = 1. We do not assume
that lim,_,,, X, exists on {S = o}, so X5 may not be defined on this event. If
P[S = ] = 1, then Definition 5.1 reduces to Definition 3.1 for a weak
solution to (5.1).

We begin with a discussion of the time-change which will be employed in
both the existence and uniqueness proofs.

A. The Method of Time-Change

Suppose we have defined on a probability space a standard, one-dimensional
Brownian motion B = {B,, #2;0 <s < v} and an independent random
variable ¢ with distribution u. Let {%,} be a filtration satisfying the usual
conditions, relative to which B is still a Brownian motion, and such that
¢ is 9,-measurable (a filtration with these properties was constructed for
Definition 2.1). We introduce

s+ du
2 .
5.7 Ts_L ¢+ B) 0<s< oo,

a nondecreasing, extended real-valued process which is continuous in the
topology of [0, co] except for a possible jump to infinity at a finite time s.
From Problem 3.6.30 we have

(5.8) T,21mT,= 0 as.

st

We define the “inverse” of T, by
(5.9) AA2iInf(s>0T,>t}; 0<t<o and A4, =2limA,

 Sndee]

Whether or not T, reaches infinity in finite time, we have a.s.
(5100 Ao =0, A,<ox; 0<t<oo and A, =inf{s>0:T, = oo}

Because T, is continuous and strictly increasing on [0, A,,), A4, is also continuous
on [0, co) and strictly increasing on [0, T, _). Note, however, that if T, jumps
to infinity (at s = A_), then

(5.11) A=AVt 2T, _;
if not, then T, _ = T, = oo, and (5.11) is vacuously valid. The identities

(5.12) T,=t 0<t<T,,

t
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(5.13) Ar,=s; 0<s<A,,
hold almost surely. From these considerations we deduce that
(5.14) T,=inf{t >0;4,>s}; 0<s< o, as.

In other words, A4, and T, are related as in Problem 3.4.5.
Let us consider now the closed set

& dy
(5.15) I(a)={xelR; j_sm=oo,\7’s>0},
and define
(5.16) R 2 inf{s > 0; ¢ + B,el(0)}.

5.2 Lemma. We have R = A, a.s. In particular,

R+ du
(517) J‘o m = 00, da.s.

ProoF. Define a sequence of stopping times

1
R, & inf{s > 0;p(¢ + B, I(0)) < ;}; n=l,

where
(5.18) p(x,1(0)) 2 inf{|x — y|; yeI(0)}-

Because (o) is closed, we have lim,, R, = R, a.s. (recall Solution 1.2.7). For
n>1,set

1
a(x), p(x,1(0)) = p

o,(x) = .
1; p(x,I(0)) < -

We have [ g, ?(x)dx < oo for each compact set K < R, and the Engelbert-
Schmidt zero-one law (Proposition 3.6.27 (iii) = Problem 3.6.29 (v)) gives a.s.

R"/\S—L_ R,As du <J‘s du < o 0S8<w
o oXe+B) Jo d+B) Joai¢+B) '

For P-a.e. we Qand s chosen to satisfy s < R(w), we canletn — oo to conclude

r___ﬂ___<w
0 72 + B)

It follows that T, < oo on {s < R}, and thus A, < R as. (see (5.10)).
For the opposite inequality, observe first that I(6) = & implies R = oo,
and in this case there is nothing to prove. If I(6) # & then R < o as. and
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forevery s > 0,

R+s du s du
i 2| ZErrr Twy
o 0%(¢+B) 00+ Br+ W)
where W, £ Bg,, — Bz is a standard Brownian motion, independent of Bg

(Theorem 2.6.16). Because ¢ + B e I(s), Lemma 3.6.26 shows that the latter
integral is infinite. It follows that Ty = oo, so from (5.10), 4, < R as. Od

We take up first the stochastic differential equation (5.1) when the drift is
identically zero. One important feature of the resulting equation

(5.19) dX, = o(X,)dW,

is that solutions cannot explode. We leave the verification of this claim to the
reader.

5.3 Problem. Suppose (X,W), (Q,%,P), {#} is a weak solution of
equation (5.19) up to an explosion time S. Show that S = oo, a.s. (Hint: Recall
Problem 3.4.11)

We also need to introduce the set
(5.20) Z(0) = {xeR; o(x) = 0}.

The fundamental existence result for the stochastic differential equation (5.19)
is the following.

5.4 Theorem (Engelbert & Schmidt (1984)). Eguation (5.19) has a non-
exploding weak solution for every initial distribution p if and only if

(E) I{o) = Z(o);

ie.,if

€ dy
J‘_Em=w, V8>0=0'(x)=0.

5.5 Remark. Every continuous function ¢ satisfies (E), but so do many dis-
continuous functions, €.g., 6(x) = sgn(x). The function 6(x) = 1;4,(x) does not
satisfy (E).

PRrROOF OF THEOREM 5.4. Let us assume first that (E) holds and let {£ + B, ¥,;
0 < 5 < 0} be a Brownian motion with initial distribution 4, as described at
the beginning of this subsection. Using the notation of (5.7)—(5.16), we can
verify from Problem 3.4.5 (v) that each 4, is a stopping time for {¥,}. We set

(5.21) M,=B,, X,=¢+M, F=9,; 0<t<w.

Because A is continuous, {#} inherits the usual conditions from {¥,} (cf.
Problem 1.2.23). From the optional sampling theorem (Problem 1.3.23 (i)) and
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the identity A4, , r, = A, A s(Problem 3.4.5 (ii), (v)), we havefor0 <, <t, <0
andn > I

E[Mtzlx T,J‘g;t,] = E[BArZ/\rJgi{,‘] = BA,‘/\n = Mtl/\T"’ a.s.

Since lim,., T, = o0 as., we conclude that M e .#°"°. Furthermore,
MZ 1 — Ai a1, = Bi nn— (A, A ) isin 4° for eachn > 1, so

(5.22) My =A4; 0<t<w,as.
As the next step, we show that the process of (5.9) is given by
t
(5.23) A, = J o3(X,)dv;, 0<t< o0,as.
0

Toward this end, fix we {R = A4, }. For s < A,(w), (5.7) and (5.10) show that
the function u— T,(w) restricted to ue[0,s] is absolutely continuous. The
change of variable v = T,(w) is equivalent to 4,(w) = u (see (5.12), (5.13)) and
leads to the formula

Ag(w)

(5.24) Afw)= J

0

o*(¢(w) + B (@) dT,(w) = J' o*(X,(w))dv,

0

valid as long as 4,(w) < Ae(®), i.e., t < T(w), where
(5.25) TAT,  =influ>0;4,=A4,}

If 7(w) = o, we are done. If not, letting ¢ T t(w) in (5.24) and using the
continuity of A(w), we obtain (5.23)for 0 < t < t(w). On the interval [t(w), o1,
A (@) = A,,)(0) = Ax(w) = R(w). If R(w) < o, then
X o)) = $(w) + BR(w)(w) e I(o) < Z(0),
and so
(X, (0)) = 0(X (@) = 0; T(w) <t < 0.

Thus, for t > t(w), equation (5.23) holds with both sides equal to A,,)(w).

From (5.22), (5.23), and the finiteness of A4, (see (5.10)), we conclude that
(M) is as. absolutely continuous. Theorem 3.4.2 asserts the existence of
a Brownian motion W = {W,, £, 0<t < oo} and a measurable, adapted

process p = {p,, Z,;0<t< oo} on a possibly extended probability space
(€, #, P), such that

t t
M,=J p,dW,, <M>,=J pidv; 0<t<oo,Pas.
0

0
In particular,

P[p? = 6%(X,) for Lebesgue a.e. t > 0] = L.
We may set

0

t
W, = J sgn(p,a(X,))dW,; 0<t< oo;
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observe that W is itself a Brownian motion (Theorem 3.3.16); and write

t
X,=¢(4+M=¢ +J o(X,)dW,; 0<t< oo, P-as.
0
Thus, (X, W) is a weak solution to (5.19) with initial distribution p.
To prove the necessity of (E), we suppose that for every xe R, (5.19) has
a nonexploding weak solution (X, W) with X, = x as. Here W = {W,, %;
0 <t < oo} is a Brownian motion with W, = 0 a.s. Then

(5.26) M=X—-X,%; 0<t<ow
is in #“'° and
t
(5.27) (M), = J 02(X,)dv < 00; 0<t < o0,as.
0
According to Problem 3.4.7, there is a Brownian motion B = {B,, %,; 0 <
s < o0} on a possibly extended probability space, such that
(5.28) M, =B,p,; 0<t<o,as.

Let T, = inf{t > 0; (M), > s}. Then s A (M), = (M) (Problem 3.4.5 (i1)),
so using the change of variable u = (M), (ibid. (vi)) and the fact that d{M)
assigns zero measure to the set {v > 0; 6%(X,) = 0}, we may write

(529) $AMDw du [ du [T A<M,
' 0 6% (Xo + B)  Jo 6% (X, + B) Jo ¢*(X,)
(T d<{M>,

= Liy2x 1o
o Y g2(X,)

ﬂT’
= Laxy-0ydv < T
0

Let us choose the initial condition X, = x in Z(6)". Then o(x) # 0, so a
solution to (5.19) with such an initial condition cannot be almost surely
constant. Moreover P[{M >, > 0] > 0, and thus for sufficiently small positive
s, P[T, < o0, (M), > 0] > 0. Now apply Lemma 3.6.26 with

s A M) (o) if Ty(w) < oo, {M) (w) >0,
T(w) £ .
s; otherwise.

We conclude from this lemma and (5.29) that xel(o). It follows that
I(c) < Z(0). O
5.6 Remark. The solution (5.21) constructed in the proof of Theorem 5.4 is
nonconstant up until the time

(5.30) T2 inf{t > 0; X,eI(0)}.

(This definition agrees with (5.25).) In particular, if X, = xeI(6)’, then X is
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not identically constant. On the other hand, if xeZ(o), then Y, = x also
solves (5.19). Thus there can be no uniqueness in the sense of probability law if
Z(0) is strictly larger than (o). This is the case in the Girsanov Example 2.15;
if ¢(x) = |x|* and 0 < a < (1/2), then I(¢) = & and Z(0) = {0}.

Engelbert & Schmidt (1985) show thatifo: R — R is any Borel-measurable
function satisfying I(¢) = &, then all solutions of (5.19) can be obtained from
the one constructed in Theorem 5.4 by “delaying” it when it is in Z(¢). An
identically constant solution corresponds to infinite delay, but other, less
drastic, delays are also possible.

5.7 Theorem. (Engelbert & Schmidt (1984)). For every initial distribution p,
the stochastic differential equation (5.19) has a solution which is unique in the
sense of probability law if and only if

(E+U) I(o) = Z(0).

Proor. The inclusion I(¢) S Z(0), i.e., condition (E), is necessary for existence
(Theorem 5.4); in the presence of (E), the reverse inclusion is necessary
for uniqueness (Remark 5.6). Condition (E) is also sufficient for existence
(Theorem 5.4), so it remains only to show that the equality I(c) = Z(0) is
sufficient for uniqueness. We shall show, in fact, that the inclusion I(g) 2 Z(0)
is sufficient for uniqueness.

Assume I(¢) = Z(0) and let (X, W), (Q,#,P), {#} be a weak solution
of (5.19) with initial distribution . We define M as in (5.26) and obtain
(5.27)—(5.29), where B is a standard Brownian motion. We also introduce ©
via (5.30). By assumption,

(5.3 62(X,)>0;, 0<t<rtas,

so (M) is strictly increasing on [0, 7]. In particular,

(5.32) R 2 inf{s > 0; X, + Biel(0)} = <{M),, as.
We set

(5.33) T, 2 inf{t > 0; M), > s},

so T is nondecreasing, right-continuous, and
(534) (T, <t} ={s <<{MD,}.
We claim that

s du
. —_—=T; < M>, ., as.
(5.39) JGZ(X0+Bu) o 0<s< (M),,as

0

In light of (5.29), (5.31), to verify this claim it suffices to show
(5.36) R><{M>,, as.

Indeed, on the set {R < (M)} we have by the definition (5.33) that T; < o0;
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letting s | R in (5.29), we obtain then

R+ du
- < T, R M>. }.
L X, + By = R P OMR <MD
Comparing this with (5.17), we see that P[R < {M>,]1=0, and (5.35) is
established.

We next argue that

s+ du
(5.37) T.= J S 0<s<o0,as.

o 6°(Xo+B,)
Fors < (M}, wehave T, < oo and so (5.37) follows immediately from (5.35).
Fors = (M), = R,itisclear from (5.33) that T, = oo, and (5.37) follows from
(5.17). Tt is then apparent that (5.37) also holds for s > (M} with both sides
equal to infinity.

Comparing (5.37) and (5.7), we conclude that the discussion preceding
Lemma 5.2 can be brought to bear. The process A defined in (5.9) coincides
then with (M), which is thus seen to be continuous and real-valued and to
satisfy

(5.38) <M>,=inf{szo;r+ du

o>t 0<t<oo.
o 6°(Xo+B)

We now prove uniqueness in the sense of probability law by showing that
the distribution induced by the solution process X on the canonical space
(CL0, 0), Z(C[0, o0))) is completely determined by the distribution u of X,,.
The distribution induced on this space by the process X, + B is completely
determined by p because B is a standard Brownian motion independent of X,
(Remark 3.4.10). For we C[0, o), define ¢ (w) to be the right-continuous
process

s+

¢,(w) £ inf {s >0, J

o 0*(o()

with values in [0,00]. Because of its right-continuity, ¢ is %([0, )) ®
%(C[0, cv))-measurable (Remark 1.1.14). Let n: [0, o0) x C[0, o0) — R be the
measurable projection mapping x,(w) = w(t). Consider the %([0,x))®
9(C[0, cv))-measurable process ¥, (w) £ w(0) + T (@) We have

(539) Xt = Xo + B<M>; = l//,(Xo + B), 0 <t < oo,

>t}; 0<t<w

and so the law of X is completely determined by that of X, + B.. O

5.8 Remark. It is apparent from the proof of Theorem 5.7 that under the
assumption I(c) 2 Z(0), any solution to (5.19) remains constant after arriving
in I(0). See, in particular, the representation (5.39) and recall that (M), is
constant for t <t < 0.
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Using local time for continuous semimartingales, it is possible to give a
simple but powerful sufficient condition for pathwise uniqueness of the solution
to equation (5.19).

5.9 Theorem. Suppose that there exist functions f: R — [0, o) and h: [0, c0) —»
[0, 00) such that:

(i) at every x e I(a), the quotient ( f/6)* is locally integrable; i.e., there exists
& > 0 (depending on x) such that

x+e 2
[ (e
x—e \0(Y)
(ii) the function h is strictly increasing and satisfies h(0) = 0 and (2.25);
(iii) there exists a constant a > 0 such that
lo(x + y) — o(x)| < f(Oh(lyl;; VxeR, ye[—aa]
Then pathwise uniqueness holds for the equation (5.19).

ProoF. Observe first of all that if 6(x) = 0, then (ii) and (iii) imply that

£ dy ~ £ ~ 3
J_sm22f Z(X)Lh 2(y)dy = 0, Ve>0.

Thus, Z(6) & I(6).

Suppose now that X® = {X?, #;0 <t < c0}; i = 1, 2, are solutions to
(5.19) relative to the same Brownian motion W = {W,, #;0 <t < o} on
some probability space (@, %, P), with P[X§ = X{?] = 1. Defining ¥ =
inf{t > 0; X{? € I(0)}, we recall from Remark 5.8 that X = X{2 ;0 <t < o0,
a.s., so it suffices to prove that

(5.40) XM= x®; 0<t <™ as.

We set A, = X» — X, For each integer k > (1/a), there exists ¢ >0
for which [Y*h~%(y)dy = k. Using the continuity of the local time for A
(Remark 3.7.8), (3.7.3), and assumption (iii), we may write for every random
time t:

1 1/k
(541)  A%0) = lim X h™2(x) A% (x) dx
k=0 o &
1(r
= lim 2 h 2B e, (AN (0(XP) — o (X)) ds
k= JO
N
<lim—- | f2(XM)ds, as.P.
k= 0

LY

Now M, 2 X — X! is in .#*', and so M admits the representation
M, = B¢y, where B is a Brownian motion (Problem 3.4.7). Furthermore,
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(M), = f' o(X{) dv,

0

and 62(X!") > 0for 0 < v < '), so a change of variable results in the relation
v g

t {M>,
FHXDYydy = FAXY + Byo 2(X + B)du; 0<t <t
v 4] 4]
1] 1]

We take

1
7, £ inf {t > 0; p(X{V,1(0)) < ;},
1
R, & (M), = inf{s > 0; p(Xy + B,, I(0)) < ;},
where p is given by (5.18). We alter f and o near I(o) by setting

Ja(x) = o(x) = L; if p(x,1(0)) <

E

Q|-

S |-

JalX) = f(x), 6,(x) = a(x); if p(x,I(0)) =
so f;26,? is locally integrable at every point in R. From the implication
(iii) = (v) in Proposition 3.6.27 and Problem 3.6.29, it follows that

T R,,
J fAXP)dv = J SAXE + B)o 72X + B,)du
0 0

R,
= J FHXE + B)o, 2(XY + B)du < oo, as.
1]

From (5.41) we see now that A2 (0) = 0;n > 1, as. Since 7, Tt as n — o0, we
conclude from the continuity of A2(0) that A%,(0) = 0, a.s. P. Remark 3.7.8
shows that E| X2, — X{0.w| = 0;0 < t < oo, and (5.40) follows. |

We recall from Corollary 3.23 that the existence of a weak solution and
pathwise uniqueness imply strong existence. This leads to the following result.

5.10 Corollary. Under condition (E) of Theorem 5.4 and conditions (i)—(iii) of
Theorem 5.9, the equation (5.19) possesses a unique strong solution for every
initial distribution p.

5.11 Remark.If the function f is locally bounded, condition (i) of Theorem 5.9
follows directly from the definition of I(¢). We may take h(y) = y*; « > (1/2),
and (iii) becomes the condition that ¢ be locally Hélder-continuous with
exponent at least (1/2); see Examples 2.14 and 2.15.
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B. The Method of Removal of Drift

It is time to return to the stochastic differential equation (5.1), in which a drift
term appears. We transform this equation so as to remove the drift and thereby
reduce it to the case already studied. This reduction requires assumptions of
nondegeneracy and local integrability:

(ND) 62(x) > 0; VxelR,
x+e b d
(LD VxeR,Hs>OsuchthatJ | (ZN y<oo
x—e ()
Under these assumptions, we fix a number ¢ € R and define the scale function
* Sh(()d
(5.42) p(x) & J exp{—Z J (E) C}d{; xeR.
¢ ¢ %)

The function p has a continuous, strictly positive derivative, and p” exists
almost everywhere and satisfies

2b(x) |,

(5.43) p"(x) = 20" ().

Henceforth, whenever we write p”, we shall mean the (locally integrable)
function defined by (5.43) on the entire of R; this definition is possible because
of (ND).

The function p maps R onto {p(—o0), p(c0)) and has a continuously differ-
entiable inverse g: (p(—o0), p(o0)) — R. This latter function has derivative
q'(y) = (1/p'(q(»))), which is actually absolutely continuous, with

_p"q(y)
p'(a(y)

_ 2b(g(y)) 1

= 52q(y) P @)

We extend p to [—o0,0] and g to [p(—o0),p(0)] so that the resulting
functions are continuous in the topology on the extended real number system.

(5.44) q"(y) = (@'(y)?

a.e. in (p(—o0), p(e0)).

5.12 Problem. Although not explicitly indicated by the notation, p(x) defined
by (5.42) depends on the number ce R. Let us for the moment display this
dependence by writing p.(x). Show that

(5.49) Pa(X) = palc) + Pa(c)Pc(x).

In particular, the finiteness (or nonfiniteness) of p.(+o0) does not depend on
the choice of c.

5.13 Proposition. Assume (ND) and (LI). A process X = {X,, #;0 <t < oo}
is a weak (or strong) solution of equation (5.1) if and only if the process
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Y = {Y; £ p(X,), #; 0 < t < o0} is a weak (or strong) solution of

(5.46) Y=Y + J'(?(Ys)dWs; 0<t< oo,
1]
where
(5.47) p(—®) < Yy < p(e0) a.s.,
~ o Jp'@(e(g(y);  p(—0) <y < p(o),
(48) = {0; otherwise.

The process X may explode in finite time, but the process Y does not.

PRrROOF. Let X satisfy (5.1) up to the explosion time S, define Y, = p(X,), and
recall S, from (5.2); we obtain from the generalized 1td rule (Problem 3.7.3)
and (5.43):

tAS,
(5.49) Y .5, = P(Xo) + J #Y)dW,, 0<t<oo,n>1,

1]
Because X is a continuous, extended-real-valued process defined for all 0 <
t < oo (Definition 5.1) and p: [ — o0, 0] = [p(—o0), p(o0)] is continuous, Y is
also continuous for all 0 <t < ov. Hence, as n — oo, the left-hand side of
(5.49) converges to Y, s, and the right-hand side must also have a limit. In
light of Problem 3.4.11, this means that [;"56%(Y,)ds < o0; 0 <t < o0, as.
Because X, and hence Y, is constant for S < s < o0, we must in fact have
fo6%(Y)ds < 00; 0 < t < 0, as. It follows that [4 G(Y,)dW, is defined for all
0 <t < o0 and is a continuous process. From (5.49) we see that (5.46) holds
for 0 <t < S. This equality must also hold for 0 < t < S on the set {S < w0},
because of continuity. The integrand 6(Y,) vanishes for S < s < o0, and so
(5.46) in fact holds for all 0 < t < . The solution of this equation cannot
explode in finite time; see Problem 5.3.

For the converse, let us begin with a process Y satisfying (5.46), (5.47) which
takes values in [ p(—o0), p(c0)]. We can always arrange for Y to be constant
after reaching one of the endpoints of this interval, because the integrand in
(5.46) vanishes when Y, ¢ (p(—0), p(c0)). Define X, £ q(Y,);0 < t < o0, and let
S, be given by (5.2). Then the generalized 1td rule of Problem 3.7.3 gives, in
conjunction with the properties of the function ¢ (in particular, (5.44)) and
(5.48),

ftAS, 1 tAS,
Xins, = Xo + 4’(Ys)dYs+5J q"(Y)d<{Y ),

JO 0
ftAS, 1 tAS, b(X) 1

=X, + ——&(Y,)dW, +J e 5%(Y,)ds

ol P o ) py”

fEAS, tAS,

=X, + b(X,)ds + J o(X)dW,;, 0<t<
JO 0

almost surely, for every n > 1. O
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5.14 Exercise. Show by example that if (LI) holds but (ND) fails, then (5.46)
can have a solution Y which is not of the form p(X), for some solution X of
(5.1).

5,15 Theorem. Assume that 6™ 2 is locally integrable at every point in R, and
conditions (ND) and (LI) hold. Then for every initial distribution y, the equation
(5.1) has a weak solution up to an explosion time, and this solution is unique in
the sense of probability law.

PROOF. Let & be defined by (5.48). According to Theorem 5.7 and Proposition
5.13, it suffices to prove that I(§) = Z(¢). Now Z(6) = (p(—oc), p(+00))’, and
I(8) contains this set. We must show that 672 is locally integrable at every
point y, e (p(—o0), p(o0)). At such a point, choose ¢ > 0 so that

p(—®) < yo — & < yo + & < p(o0),

J‘yu+s dy J‘q(yu+s) dx

yome 520 Japema P07 ()

The second integral is finite, because p’ is bounded away from zero on finite
intervals and ¢~ 2 is locally integrable. O

and write

5.16 Corollary. Assume that 6”2 is locally integrable at every point in R, and
that conditions (ND), (LI), and

Ib(x) — b(y)| < Kl|x —yl; (x,y)eR?
lo(x) — a(p)| < h(lx — yI); (x,»)eR?

hold, where K is a positive constant and h: [0, c0) — [0, c0) is a strictly increasing
function for which h(0) = 0 and (2.25) hold. Then, for every initial condition
¢ independent of the driving Brownian motion W = {W,, #;0 <t < oo}, the
equation (5.1) has a unique strong solution (possibly up to an explosion time).

(5.50)

PROOF. Weak existence (Theorem 5.15) and pathwise unigueness (Proposition
2.13 and Remark 3.3) imply strong existence (Corollary 3.23). These results
can easily be localized to deal with the case of possible explosion of the
solution. O

5.17 Proposition. Assume that b: R > R is bounded and o: R — R is Lipschitz-
continuous with ¢* bounded away from zero on every compact subset of R.
Then, for every initial condition & independent of the driving Brownian motion
W = {W, %;0 <t < o}, equation (5.1) has a nonexploding, unique strong
solution.

PROOF. We show first that the boundedness of b prevents the explosion of any
solution X t0(5.1). We fix t € (0, c0) and let n — oo in (5.4); the Lebesgue integral
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Job(X,) <5,y ds converges to ji,"sb(Xs)ds, a finite expression because b
is bounded. On the other hand, the stochastic integral {5 o(Xy) lis<s, AW,
converges to {55 6(X,)dW, on the event 4 £ {[{"5 62(X,)ds < o0}, and does
not have a limit on A¢; cf. Problem 3.4.11. It develops that the limit of the
right-hand side of (5.4) exists and is finite a.s. on 4, and does not exist on A°.
On the left-hand side of (5.4) we have lim,_,, X, .5, = X, .5, which is defined
a.s. and is equal to 400 on {S < t}. It follows that P[S < t] = 0 holds for
everyt > 0,s0 P[S= o] =1

We turn now to the questions of existence of a weak solution, and of
pathwise uniqueness, for equation (5.1). The assumptions on b and ¢ imply
(ND), (LI), and the local integrability of 672, so weak existence follows from
Theorem 5.15. According to Proposition 5.13, the pathwise uniqueness of (5.1)
is equivalent to that of (5.46). Because p” & —(2b/6?)p’ is locally bounded,
p’ is locally Lipschitz. It follows that G(y) defined by (5.48) is locally Lipschitz
at every point y e(p(—0o0), p(00)). We have shown that any solution X to (5.1)
does not explode, so any solution Y to (5.46), (5.47) must remain in the interval
(p(—0), p(o0)). Under these conditions, the proof given for Theorem 2.5 shows
that pathwise uniqueness holds for (5.46). We appeal to Corollary 3.23 in order
to conclude the argument. O

Proposition 5.13 raises the interesting issue of determining necessary and
sufficient conditions for explosion of the solution X to (5.1). Since Y given
by (5.46) does not explode, and Y, = p(X,), it is clear that the condition
p(+00) = +oo guarantees that X is also nonexploding; however, this sufficient
condition is unfortunately not necessary (sce Remark 5.18). We develop the
necessary and sufficient condition known as Feller’s test for explosions in
Theorem 5.29.

5.18 Remark. Consider the case of b(x) = sgn(x), 6(x) = ¢ > 0. The scale
function p of (5.42) is bounded, and according to Proposition 5.17 the equation
(5.1) has a nonexploding, unique strong solution for any initial distribution.
5.19 Remark. The linear growth condition

|b(x)} + |lo(x)| < K(1 +|x]); VxeR
is sufficient for P[S = o] = 1; ¢f. Problem 3.15.

C. Feller’s Test for Explosions

We begin here a systematic discussion of explosions. Rather than working
exclusively with processes taking values on the entire real line, we start with
an interval

I=({(¢r);, —wo<f{<r<ow
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and assume that the coefficients ¢: I - R, b: [ » R satisfy
(ND) *(x)> 0 Vxel,
x+e 1 + b
(LIy Vxel,3¢>0 suchthat j ’J_(yﬂ
s 0°())

We define the scale function p by (5.42), where now the number ¢ must be
in I. We also introduce the speed measure

dy < 0.

2dx
(5.51) m(dx)ém; xel
and the Green’s function
ﬁﬂ)@A&wéquw—mmwm—Mxvm;&yd%ﬂgL
p(b) — p(a)
In terms of these two objects, a solution to the equation
(5.53) b(x)M'(x) + 362 (x)M"(x) = —1; a<x<b,
(5.54) M(a)=M(pb)=0

is given by
b

(5.55) M,,p(x) £ j Gg,p(x, y)m(dy)

a

¥ p(x) — pla) [°
= d
J; (p(x) — p(y))m(dy) + ) @ J

As was the case with p”, the second derivative M, exists except possibly on
a set of Lebesgue measure zero; we define M7 , at every point in (a, b) by using
(5.53). Note that G, ,(-, -), and hence M, ,(*), is nonnegative.

(p(b) — p(y))m(dy).

a

520 Definition. A weak solution in the interval I = (¢,r) of equation (5.1) is

a triple (X, W), (Q, #, P), {#,}, where

(i condition (i) of Definition 5.1 holds,

{iiy X ={X,, #;0<t< oo} isa continuous, adapted, [¢, r]-valued process
with X,el ass.,and {W,, ;0 <t < oo} is a standard, one-dimensional
Brownian motion,

(itiy with {¢,}7, and {r,};~, strictly monotone sequences satisfying£ < £, <
r, < rlim, ¢, = ¢, lim,.,r, = r, and
(5.56) S, 2 inf{t > 0: X, ¢ (/. 1)} n=1,
the equations (5.3) and (5.4) hold.

We refer to
(5.57) S = inf{t > 0: X,¢(¢,r)} = lim S,

n—w
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as the exit time from I. The assumption X, eI as. guarantees that P[S > 0] = 1.
If £ = —o0 and r = 400, Definition 5.20 reduces to Definition 5.1, once we
stipulate that X, = X; S <t < 0.

Let (X, W) be a weak solution in I of equation (5.1) with X, =x€e(a,b)c 1,
and set

t
T, =inf{t2 O:J o2(X,)ds > n}; n=12...,
1]

T,,=inf{t > 0; X,¢(a,b)}; £ <a<b<r
We may apply the generalized 1t rule (Problem 3.7.3) to M, ,(X,) and obtain

tAT, AT,y
M, o(Xinepn,,) =Map(X) = AT, AT, ) + J M, (X,)o(X,)dW,.
0

Taking expectations and then letting n — oo, we see that
(538)  E(t A T,p) = My p(x) — EM, 4(X, . 7,,) < M, (x) < o0,

and then letting t - oo we obtain ET,, , < M, ,(x) < o0.

In other words, X exits from every compact subinterval of (£,r) in finite
expected time. Armed with this observation, we may return to (5.58), observe
from (5.54) that lim,_, , EM, (X, . 1.,) = 0, and conclude

(559) ET,,=M,,(x; a<x<b.

On the other hand, the generalized Ité rule applied in the same way to p(X,)
gives p(x) = Ep(X, , 1..,)» Whence

(560)  p(x) = Ep(Xy,,) = p(a)P[Xy,, = a] + p(B)P[ X, , = b],
upon letting t — co. The two probabilities in (5.60) add up to one, and thus

_ p(b) — p(x) _ p(x) — p(a)
p(b) — p(a)’ p(b) — pla)

These expressions will help us obtain information about the behavior of X
near the endpoints of the interval (£,r) from the corresponding behavior of
the scale function. Problem 5.12 shows that the expressions on the right-hand
sides of the relations in (5.61) do not depend on the choice of ¢ in the definition
of p.

(561) P[X; , =ad] P[X;,, = b]

5.21 Remark. For Brownian motion W on I = (—0, o0), we have (with ¢ = 0
in (5.42)) p(x) = x, m(dx) = 2dx. For a process Y satisfying

t
=X+ J 6(Y,)dW,,
1]
we again have p(X) = X, but m(dx) = (2d%/6%(X)). Now Y is a Brownian

motion run “according to a different clock” (Theorem 3.4.6), and the speed
measure simply records how this change of clock affects the expected value of
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exit times: i

F(E A ) - a6 — & v ) 24
(5.62) ET; 5(9) =J Enp-ab-Gvi) 24

i b—a (9

Once drift is introduced, the formulas become a bit more complicated, but the
idea remains the same. Indeed, suppose that we begin with X satisfying (5.1),
compute the scale function p and speed measure m for X by (5.42) and (5.51),
and adopt the notation & = p(x), § = p(),d = p(a), b = p(b); then (5.55),(5.59)
show that ET, ,(x) is still given by the right-hand side of (5.62), where now &
is the dispersion coefficient (5.48) of the process Y, £ p(X,). We say Y, = p(X,)
is in the natural scale because it satisfies a stochastic differential equation
without drift and thus has the identity as its scale function.

5.22 Proposition. Assume that (NDY, (L1) hold, and let X be a weak solution
of (5.1) in I, with nonrandom initial condition X, = x€l. Let p be given by (5.42)
and S by (5.57). We distinguish four cases:

(@) p(£+)= —o0, p(r—) = 0. Then

P[S=oo]=P|: sup X,=r]=P|: inf X,=/:|= L.
0<t<wo 0 <t<o

In particular, the process X is recurrent: for every y€ I, we have
P[X,=y;some0 <t < o] =1
(b) p(f+) > —o0, p(r—) = c0. Then

P limX,=/T=P sup X, <r|[=1
LtTS | | 0<t<S _
(©) p(£+)= —o0, p(r—) < . Then
PlimX,=rT=P inf X,>/|=1.
| 1S | 0<t<S n
(d) p(¢+) > —oo, p(r—) < co. Then
[ . p(r—) — p(x)
PllimX,=¢/|=1—PllimX,=r|=—"—"—.
[ 15 " ] [ns ' ] p(r—) — p(£ +)

5.23 Remark. In cases (b), (c), and (d), we make no claim concerning the
finiteness of S. Even in case (d), we may have P[S = o0] = 1, as demonstrated
in Remark 5.18.

PrOOF OF PrROPOSITION 5.22. For case (a), we have from (5.61) for £ < a <
x<b<r:

_ 1 —(p(x)/p(b))

(5.63) 1= (pla)/pb))’

P|: inf X, < a] > P[Xy,, = a]
0<t<S ’
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Letting b T r, we obtain P[inf, .,.5 X, < a] = 1foreveryael. Nowweleta |7/
to get Plinfy . .5 X, = £] = 1. A dual argument shows that P[supg < s X; =
r] = 1. Suppose now that P[S < o] > 0; then the event {lim,+ X, exists and
is equal to ¢ or r} has positive probability, and so {supy.,.s X, =r} and
{infy <,<5 X, = £} cannot both have probability one. This contradiction shows
that P[S < o] = 0.

For case (b), we first observe that (5.63) still implies P[infy.,.s X, =7] = 1.
If, however, we recall P[Xy, , = b] = (p(x) — p(a))/(p(b) — p(a)) from (5.61)
and let a | /£, we see that

p(x) — p(£+)
P[X,=b;some 0 <t<S]=""—"—"—"-—".
' p(b) — p(£ +)
Letting now b 1r, we conclude that P[supg.,.s X, = r] = 0. We have thus
shown

P|: inf X,=/]=P|: sup X,<r]= 1.
0<t<S 0<t<S
It remains only to show that lim,; ¢ X, = infy .5 X,, and for this it suffices to
establish that the limit exists, almost surely. With S, as in (5.56), the process
Y™ £ p(X,,5,)— P(£+); 0 <t < oo is for each n > 1 a nonnegative local
martingale (see (5.49)); letting n — oo and using Fatou’s lemma, we see that
Y, 2 p(X,,s) — p(£ +);0 < t < o0 is a nonnegative supermartingale. As such,
it converges almost surely as t - oo (Problem 1.3.16). Because p: [£,r) > R
has a continuous inverse, lim,_,, X, , s must exist.

Case (c) is dual to (b), and case (d) is obtained easily, by taking limits in
(5.61). l

5.24 Example. For the Brownian motion X, = ut + oW, on I = (—00, 00) with
drift u > 0 and variance ¢ > 0, we have (setting ¢ = 0 in (5.42)) that p(x) =
(1 — e #)/B and m(dx) = (2e#*/6?)dx, where B = 2u/c*. We are in case (c).
Compare this result with Exercise 3.5.9.

5.25 Example. For the Bessel process with dimension d > 2 (Proposition
3.3.21), we have I = (0, ), b(x) = (d — 1)/2x, and 6%(x) = 1. With ¢ = 1, we
obtain

(1) for d = 2: p(x) = log x, m(dx) = 2x dx (case (a)),
(i) ford > 3: p(x) = (1 — x2"N/(d — 2), m(dx) = 2x?~! dx (case (c)).

Compare these results with Problem 3.3.23.

Proposition 5.17, Remark 5.19, and part (a) of Proposition 5.22 provide
sufficient conditions for nonexplosion of the process X in (5.1), ie., for
P[S = o] = 1. In our search for conditions which are both necessary and
sufficient, we shall need the following result about an ordinary differential
equation.
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We define, by recursion, the sequence {u, } 2, of real-valued functions on I,
by setting u, = 1 and

(5.64) u,(x) = J‘x P’y J‘y u,_(zym(dz)dy; xel,n>1

c c

where, as before, ¢ is a fixed number in I. In particular we set for xe I
5.65 vxéux=fx J J‘x( x) — p(y))m(dy).
(5.65) o(x) = uy(x) p'(y) ()0 2() c p(x) — p(y))m(dy)

526 Lemma. Assume that (NDY and (LIy hold. The series

(5.66) u(x) =Y u,(x) xel

n=0
converges uniformly on compact subsets of I and defines a differentiable function
with absolutely continuous derivative on 1. F urthermore, u is strictly increasing
(decreasing) in the interval (c,r) (respectively, (¢, ¢)) and satisfies

(5.67) 162(x)u"(x) + b(x)u'(x) = u(x); ae xel,
(5.68) uc)=1, u'c)=

as well as

(5.69) 1+ v(x) <u(x) <e’™; xel.

PROOF. It is verified easily that the functions {u, };, in (5.64) are nonnegative,
are strictly increasing (decreasing) on (c,r) (respectlvely, (£, ¢)), and satisfy

(5.70) Lo2(x)uy(x) + b(x)u,(x) = u,_,(x), ae. xel
We show by induction that

(5.71) < ”"n('x);

n=0,12....

Indeed, (5.71) is valid for n = 0; assuming it is true for n = k — 1 and noting
that

X

(5.72) uL(x)=p’(x)J Uy (2)mdz); xel,

c

we obtainfore < x < r:

x , y Uk-—l() 1 -1
uk(x)sf p'(y) &= m(dz)d ST p(y)v (y)m((c,y])dy

1 "()

T k= 1!

J l(y)du(y) =

A similar inequality holds for # < x < ¢. This proves (5.71), and from (5.72)
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we have also
" (x)
(n—1v

It follows that the series in (5.66), as well as Y =, u,(x), converges absolutely
on I, uniformly on compact subsets. Solving (5.70) for u,(x), we see that
i U, (x) also converges absolutely, at each point xel, to an integrable
function. Term-by-term integration of this sum shows that ) 2, u,(x) is
almost everywhere the second derivative of u in (5.66), and that u'(x) =
w0 Un(x) holds for every x € I. The other claims follow readily. 0O

|lun ()] < [0 ()]

n=12....

5.27 Problem. Prove the implications
(5.73) pir—)= o=v(F—)= o0,
(5.74) pf+)= —0o=>v(f+)=

5.28 Problem. In the spirit of Problem 5.12, we could display the dependence
of v(x) on ¢ by writing

AlT Yo 2dz
(5.75) v(x) = J‘c pe(y) J‘c md}’-
Show that for a, celI:
(5.76) va(X) = v4(c) + va(c)p(x) + v (x); x€el

In particular, the finiteness or nonfiniteness of v.(r —), v.(£ +) does not depend
on c.

5.29 Theorem (Feller’s (1952) Test for Explosions). Assume that (ND) and
(LI) hold, and let (X, W), (Q, F,P), {&,} be a weak solution in I = (¢,r) of
(5.1) with nonrandom initial condition X, = xel. Then P[S= ] =1 or
P[S = ] < 1, according to whether

(5.77) ol +)=o(r—) = 0
or not.
PROOF. Set 1, £ inf{t > 0: {{, 6*(X,)ds > n} and Z{" £ u(X, ,s_,. ). According

to the generalized It6 rule (Problem 3.7.3) and relation (5.67), Z™ has the
representation

tAS, AT, tAS, AT,

Zm =z +J u(X,)ds +J W(X,)o(X,) dW,.
1] 1]

Consequently, M{" & ¢7*~5.7% 7" hag the representation

tAS, AT,

M™ = M + f e”*u'(X,)o(X,)dW,
0
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as a nonnegative local martingale. Fatou’s lemma shows that any nonnegative
local martingale is a supermartingale, and that this property is also enjoyed
by the process M, 2 lim, ., M{™ = ™" *5u(X, ,5): 0 < t < oc. Therefore,
(5.78) M_ =lim e ""Su(X, .s)

exists and is finite, almost surely (Problem 1.3.16).

Let us now suppose that (5.77) holds. From (5.69) we see that u(+) =
u(r—) = o, and (5.78) shows that M, = o« as. on the event {S < o} It
follows that P[S < o] =0.

For the converse, assume that (5.77) fails; for instance, suppose thato(r—) <
o0. Then (5.69) yields u(r—) < co. In light of Problem 5.28, we may assume
without loss of generality that ¢ < x <r, and set T, = inf{r > 0; X, = c}. The
continuous process

— ,~(ASAT, .
M!/\Tc_e « )u(XI/\S/\TC)’ 0SI<OO

is a bounded local martingale, hence a bounded martingale, which therefore
converges almost surely (and in L')as t - oo; cf. Problem 1.3.20. It develops
that

u(x) = Ee 3" Teu(Xg, 1) = u(r—)Ee >lisery + u(c)Ee Telyr cg).

If P[S = oo] = 1, the preceding identity gives u(x) = u(c)Ee Te < ul(c), con-
tradicting the fact that u is strictly increasing on [c,x]. It follows that
P[S=o0] <. O

5.30 Example. For Brownian motion W on I = (—o0, oc), we have already
computed p(x) = x, m(dx) = 2dx (with ¢ = 0). Consequently, v(x) = x> and
v(+o00) = 0.

524 Example (continued). For Brownian motion with drift ¢ > 0 and vari-
ance 62 > 0, it turns out that o(x) = 2(fx — 1 + e #*)/p*a* with B = (2u/s?)
and ¢ = 0. Again, v(+o0) = .

5.25 Example (continued). For the Bessel process with dimension d > 2
and ¢ =1, we have v(x) = [x* — 1 —2p(x)]/d; 0 < x < o0, and v(0+) =
v(o0) = .

531 Exercise. Consider the geometric Brownian motion X, which satisfies the
stochastic integral equation

(5.79) X,=x+/1J~ Xsds+vJ~ X, dw,,

0 0
where x > 0. Use Theorem 5.29 and Proposition 5.22 to show that X, (0, o¢)
for all ¢, and

(i) if p < v?/2, then lim,_., X, = 0, SUPg < ;<o X, < 00,28,
(i) if g > v2/2, then info ¢, <o X, > 0, lim, . X, = 0, as;
(iti) if p= v?/2, then info << X; = 0, 8UPg <o X; = 0, AS.
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(The solution to (5.79) is given by
X, = xexp{(n — 3v})t + vW},

and so (i)—(iii) can also be deduced from the properties of Brownian motion
with drift (see, e.g., Problem 2.9.3 and Proposition 2.9.23).)

Let us suppose now that (5.77) is violated, so that P[S < o] is positive.
Under what additional conditions can we guarantee that this probability is
actually equal to one, i.e., that explosion occurs almost surely?

5.32 Proposition. Assume that (ND) and (L1) hold. We have P[S < 0] =1
if and only if one of the following conditions holds:
(i) v(r—) < o and v(£ +) < o0,
(i) v(r—)< o and p( +) = —o0, or
(iii) v(£+) < oo and p(r—) = 0.

In the first case, we actually have ES < 0.

5.33 Remark. If (i) prevails, then we also have finiteness of p(r—) and p(£ +)
{Problem 5.27), and we can define by analogy with (5.52) the Green’s function

— p(/ —)—
Glx.y) = Lp(x A ) 5((r j))]—[ig’ +)) PEVIT o er

for the entire interval I = (£, r). We also define the counterpart of (5.55):

M(x) = f Glx,y)m(dy) xe(t.r).
¢

This function satisfies M(£ +) = M(r—) = 0, has an absolutely continuous
derivative on I, and satisfies the equation (5.53) there. The same procedure
that led to (5.59) now gives ES = M(x) < oo, justifying the last claim in
Proposition 5.32.

PROOF OF SUFFICIENCY IN PROPOSITION 5.32. We just dealt with (i). Suppose
that (ii) holds; then with {¢,}; and {r,}; as in Definition 5.20 (iii)’, we
introduce the stopping times

R, 2inf{t>0,X,=¢,}; n>1,
T2inf{t>0,X,=r}, T,2inf{t >0;X,=¢} =1limR,.

Because v(r—) < o0, v(£,) < oo, we obtain asin Remark 5.33 that E(R, A T,) <
oo; n = 1. On the other hand, (5.73) gives p(r —) < o0, so we are in the case (c)
of Proposition 5.22. Therefore, for P-ae. weQ, R,(w) = o for sufficiently
large n (depending on w), and thus S(w) = T(w) < co.

Condition (iii) is dual to (ii). O
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PROOF OF NECESSITY IN PROPOSITION 5.32. Assume that P[S < oo] = 1; from
Theorem 5.29 we conclude that either v(/+) < o© or v{r—) < co. Let us
suppose v(£+) < oo, and that none of (i), (i), (iii) holds. Then necessarily
p(r—) < oo = v(r—) and p(/+) > —oo (remember (5.74)), so we are in case
(d) of Proposition 5.22, and thus 4, £ {lim,45 X, = r} has positive probability.
But now we recall from the proof of Theorem 5.29 that M, = e~ "*u(X, ,5)
is a nonnegative supermartingale with M,, of (5.78) an almost surely finite
random variable. According to (5.69), u(r—) = <o, and so S = oo on 4,. This
shows that P[S < o] < 1, contradicting our initial assumption. It follows
that at least one of (i), (ii), (iii) must hold, if P[S < co] = 1 does. O

D. Supplementary Exercises

534 Exercise. Take o(x) = 1 and I = (—o0, ).

(@) If b(x) = 3x2, show that P[S < 0] = 1.
(b) If b(x) = 2x3, show that ES < co.

5.35 Exercise. Take I = (0, o0) and b(x) = k, a(x) = £/ x, where k and £ are
positive constants.

(i) Show that we are in case (a), (b), or (c) of Proposition 5.22 according as

1 2 (2k/¢?) is equal to, less than, or greater than one, respectively.

(ii) In the first and third cases, the solution is nonexploding; in the second
case the origin is reached in finite time with probability one.

(iii) Thecases? = 2,k = 2,3,...should be familiar; can you relate the solution
to a known process?

(iv) Solve the stochastic differential equation explicitly in the case £ 2 = 4k.
(Hint: Recall Proposition 2.21))

5.36 Exercise. Show that the solution of the equation

dX, = (1 + X)(1 + X2)dt + (1 + X2)dW,; Xoe<—g, g)
explodes (to +00) in finite expected time.

537 Exercise. Discuss the possibility of explosion in the cases:

(i) b(x)= —x, o(x)=/2(1+x%), I=R
(ii) b(x) = ux, o(x)=0x,I=(0,00),and peR,d >0;
(iii) b(x) =1 + dux, o(x)=0x, I=(0,00),and ueR,é>0.

(Hint for (iii ): Recall Exercise 3.3.33.)

538 Exercise. Let the function b: R - R be locally square-integrable, ie.,
VxeR, 3¢ > 0 such that [¥*¢b*(y)dy < oo.
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(i) Show that, corresponding to every initial distribution x on (R, Z(R)), the
equation

dX, = b(X,)dt + dW,

has a weak solution up to an explosion time S, and this solution is unique
in the sense of probability law.

(i) Prove that for every finite T > 0, this solution obeys the generalized
Girsanov formula:

P[Xel,S>T]= E[exp(f

0

T T

1
b(W,) W, — EJ

0

bz(Ws)dS>' 1{W,er}:|
for every I € Z,(C[0, o0)), the o-field of (3.19) with m = 1. Here, W is a
one-dimensional Brownian motion with P(W, € B) = u(B); BeZ(R).
(Hint: Try to emulate the proof of Proposition 3.10, and recall the
Engelbert-Schmidt zero-one law of Section 3.6.)

(iii) In particular, conclude that with W as in (ii), the nonnegative super-
martingale

0 0

t l t
Z = exp{f b(W)dWwW, — EJ bz(Ws)ds}; 0<t< o0,

is a martingale if and only if P[S = oo] = 1; this is equivalent to
@(+o0) = oo, where

o(x) = J‘x J‘y exp {—2 Jy b(u) du} dzdy.
0JO z

5.39 Exercise. In the setting of Subsection C, show that for every bounded,
piecewise continuous function h: I — [0, o0) and xe€(a, b) & I, we have

Tap b
E* J h(X,)dt = J Gy, b(x, y)h(y)m(dy).
0 a

Here and in the following exercises we denote by a superscript x on probabilities
and/or expectations the initial condition X, = x. (Hint: Proceed by analogy
with (5.55), (5.59).)

5.40 Exercise (Pollack & Siegmund (1985)). In the setting of Subsection C
with b and ¢ bounded on compact subintervals of I and with the scale function
p(x) and the speed measure m(dx) satisfying

pi£+)= —o0, p(r—)= o, m(l)< o,

the solution X to (5.1) starting at xeI never exits I (Proposition 5.22). We
assume that

(5.80) PX,=2)=0;, Vx,zel,t>0.

Show in the following steps that the normalized speed measure (m{dx)/m(I))
is the limiting distribution of X:
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(5.81) lim P(X, < 7)= "EA L er
1= m(I)

(i) Introduce the stopping times T, = inf{t > 0; X, = a}, S,;, = inf{t > T;;
X, = b} for a, bel. Deduce from the assumptions and (5.59) the positive
recurrence properties, with / <a<x<u<b<r:

E*T, = —J (p(x) — p(y))m(dy) + (p(x) — p(a)) m((a, 1)) < O,

b
E*T, = — | (p(y) — p(x))m(dy) + (p(b) — p(x))-m((¢,b)) < o0,
E*S, . = E*T, + E'T, = (p(4) — p(x))-m(I) < 0.

(i) Show that the same methodology as in (i) allows us to conclude, with the
help of Exercise 5.39:

Suix

E* J 1y, (X)dt = (p(u) — p(x))-m((£,2)); Vzel.

0

(iii) With the aid of assumption (5.80), show that for/ <x <u <r and zel,
z # x, the function

alt) 2 P(X, <z S,,>1;, 0<t<oo,

is continuous and ) =, Max,_; <, <. a(t) < 0. This last condition implies
direct Riemann integrability of a(-) (see Feller (1971), Chapter XI,
Section 1).

(iv) Establish a renewal-type equation

F(t) = a(t) + J F(t — spv(ds), 0<t< o
1]

for the function F(t) £ P*(X, < z), with appropriate measure v(dt) on
[0, o0). Show that the renewal theorem (Feller (1971), Chapter XTI) implies
(5.81).

5.41 Exercise (Le Gall (1983)). Provide a proof of Proposition 2.13 based on
semimartingale local time.

(Hint: Apply the Tanaka-Meyer formula (3.7.9) to the difference X & xM
X between two solutions XV, X of (2.1). Use Exercise 3.7.12 to show that
the local time at the origin for X is identically zero, almost surely.)

5.42 Exercise (Le Gall (1983)). Suppose that uniqueness in the sense of
probability law holds for (2.1), and that for any two solutions X O X2 on the
same probability space and with respect to the same Brownian motion and
initial condition, the local time of X = X — X' at the origin is identically
equal to zero, almost surely. Then pathwise uniqueness holds for ..

(Hint: Use a Tanaka-Meyer formula to show that X" v X® also solves

(2.1))
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5.6. Linear Equations

In this section we consider d-dimensional stochastic differential equations in
which the solution process enters linearly. Such processes arise in estimation
and control of linear systems, in economics (see Section 5.8), and in various
other fields. As we shall see, one can provide a fairly explicit representation
for the solution of a linear stochastic differential equation.

For most of this section, we study the equation

6.1) dX, =[A@®)X, + a(t)]dt + o(t)dW,, 0<t < o0,
onéa

where W is an r-dimensional Brownian motion independent of the d-
dimensional initial vector &, and the (d x d),(d x 1) and (d x r) matrices A(?),
a(t), and o(t) are nonrandom, measurable, and locally bounded. In Problem
6.15 we generalize (6.1) for one-dimensional equations by allowing the solution
X also to appear in the dispersion coefficient.

The deterministic equation corresponding to (6.1) is

(6.2) &(r) = AEW) + a(ey; SO =¢.

Standard existence and uniqueness results (Hale (1969), Section 1.5) imply that
for every initial condition & € R?, (6.2) has an absolutely continuous solution
E(t) defined for 0 < t < co. Likewise, the matrix differential equation

(6.3) (1) = ADO(), DO)=1I

has a unique (absolutely continuous) solution defined for 0 < ¢t < co. (Here 1
is the (d x d)identity matrix.) This matrix function @ is called the fundamental
solution to the homogeneous equation

(6.4) &1 = A(DEW).

For each t > 0, the matrix ®(t) is nonsingular, for otherwise there would be
a to >0 and a nonzero vector Ae R? such that ®(ty)A = 0. But ®(1)1 is a
solution to (6.4), and since the identically zero function is the unique solution
which vanishes at t,,, we must have ®(t)A = 0 for all t. This would contradict
the initial condition ®(0) = I.

In terms of @, the solution of the deterministic equation (6.2) is simply

t
(6.5) @) = (1) [<(0) + j 07 (s)a(s)ds].
0
(See Hale (1969), Chapter 3, for additional information.)
A pleasant fact is that the solution of (6.1) has a representation similar to
(6.5). Indeed, it is easily verified by It0’s rule that 7

t t

0

6.6) X, é(p(t)[xo + j @ 1(s)a(s)ds + j

0

d)‘(s)a(s)dmjl; O0<t<

solves (6.1). Pathwise uniqueness for equation (6.1) follows from Theorem 2.5.
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6.1 Problem. Suppose that E||X,||? < oo, and introduce the mean vector and
covariance matrix functions

6.7 m(t) £ EX,,

(6.8) p(s,1) & E[(X, — m(9))(X, — m(t)T],
6.9) V(t) £ p(t,0).

Show that

t

(6.10)  m(t) = D(t) |:m(0) + J

0

O 1(s)a(s) ds] ,

6.11) p(s,t) = ®(s)[V(0) + f CD'I(u)a(u)(CD_l(u)a(u))Tdu] ®T(1),
| v

hold for every 0 < s, t < co0. In particular, m(t) and V(t) solve the linear

equations

6.12) m(t) = A(t)m(t) + af(t),
(6.13) V(t) = AV + V(AT + a(t)oT(0).

6.2 Problem. Show that if X, has a d-variate normal distribution, then X is
a Gaussian process (Definition 2.9.1).

A. Gauss-Markov Processes

If X, is normally distributed, then the finite-dimensional distributions of the
Gaussian process X in (6.6) are completely determined by the mean and
covariance functions. In this case, we would like to know under what addi-
tional conditions we can guarantee the nondegeneracy of the distribution of
X,, i.e., the positive definiteness of the matrix

t

6.14) V(t) = @) |:V(0) + J

0

¢_l(u)6(u)(®_l(u)6(u))T du] (1),

for every t > 0. In order to settle this question, we shall introduce the concept
of controllability from linear system theory.

6.3 Definition. The pair of matrix-valued, measurable, locally bounded func-
tions (A, o) is called controllable on [0, T if for every pair x, y € R, there exists
a measurable, bounded function v: [0, T] — R’, such that
(6.15) Y)=x+ J A(s)Y(s)ds + J o(s)v(s)ds; 0<t<T,

1] 1]
satisfies Y(T) = y. In other words, for every pair x, y € R%, there exists a control
Sfunction v(-) which steers the linear system (6.15) from Y{(0) = x to Y(T) = y.
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6.4 Proposition. The pair of functions (A, 6) is controllable on [0, T] if and only
if the matrix

(6.16) M(T) 2 JT O (H)a(t) (D (t)o(t))T dt

0

is nonsingular.

PRrOOF. Let G(1) = ®~1(t)a(t). From (6.5), the solution to (6.15) is

Y(t) = ®(1) I:x + JI G(s)v(s) ds],
0

and because of the nonsingularity of ®(T), controllability is equivalent to the
condition that {§ G(s)v(s)ds range over all of R? as v ranges over the bounded,
measurable functions from [0, T] to R".

Choose an arbitrary zeR?. Under the assumption of nonsingularity of
M(T), we may set v(s) = GT(s)M ~*(T)z, and then we have z = |§ G(s)v(s)ds.
On the other hand, if M(T) is singular, then there exists a nonzero ze R? such
that zTM(T)z = 0, ie., {§ 27G(s)G"(s)z ds = 0, which shows that z7G(s) =
for Lebesgue-almost every se [0, T]. Consequently, z7 {§ G(s)v(s)ds = 0 for
any bounded, measurable v, which contradicts controllability. O

We see from its definition that V(0) is positive semidefinite, so the non-
singularity (and hence the positive-definiteness) of M(T) implies the same
property for V(T). We obtain thereby the following result: if the pair (A4,0) is
controllable on [0, T, then the matrix V(T) of (6.14) is nonsingular. A bit of
reflection shows that the two conditions are actually equivalent, provided
V() =0,ie, X, in (6.1) is nonrandom.

When the matrices A and ¢ appearing in (6.1) are constant, this result takes
a more explicit form. In this case, the fundamental solution to (6.4) is

© "
(6.17) O(t)=e4 2 Z —
n=o n!
and controllability reduces to the following rank condition.

6.5 Proposition. The pair of constant matrices (A,0) is controllable (on any
interval [0, T]) if and only if the (d x d) controllability matrix C £ [o, Ao,
A?c,..., A% 6] has rank d.

ProoF. Let us first assume that rank(C) < d, and show that M(T) given
by (6.16) is singular for every 0 < T < co. The assumption rank(C) < d is
equivalent to the existence of a nonzero vector z e R? for which

(6.18) 276 =2TA6 = zTA%c =+ = 2T4Q% g = (.

By the Hamilton-Cayley theorem, A satisfies its characteristic equation; thus,
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every positive, integral power of 4 can be written as a linear combination of
I, A, A%, ..., A%"1 It follows from (6.18) that z74"¢ = 0; n > 0, and thereby

(="

z2TA"¢ =0; t=>0.
0 n!

18

zT® 7 (t)o = zTe g =

The singularity of M(T) follows from zTM(T)z = 0.

Let us now assume that for some T > 0, M(T) is singular and show that
rank(C) < d. The singularity of M(T)enables us to find a nonzero vector ze R?
such that

T
0=:TM(T)z = J zTe 4| dt.
(4]
From this we see that f(t) £ zTe ¢ is identically zero on [0,T], and
evaluating f(0), f'(0),..., f“"1(0) we obtain (6.18). O

When A and o are constant, equations (6.13) and (6.14) take the simplified
form

(6.13y V(t)= AV(t) + V() AT + a0,

t

0

(6.14y V(t) = e |:V(0) + J e"s‘aaTe_s‘Tds] e,
One could hope that by proper choice of ¥(0), it would be possible to obtain
a constant solution to these equations. Under the assumption that all the
eigenvalues of A4 have negative real parts, so that the integral

(6.19) Vi J etaaTes ds

0

converges, one can verify that ¥(¢) = V does indeed solve (6.13), (6.14). We
leave this verification as a problem for the reader.

6.6 Problem. Show that if ¥(0) in (6.14)' is given by (6.19), then V(t) = V(0).
In particular, V of (6.19) satisfies the algebraic matrix equation

(6.20) AV + VAT = —aco™.

We have established the following result.

6.7 Theorem. Suppose in the stochastic differential equation (6.1) that oft) = o,
a(t) = 0, all the eigenvalues of A(t) = A have negative real parts, and the initial
random vector &£ = X, has a d-variate normal distribution with mean m(0) = 0
and covariance V = E(X,XT) as in (6.19). Then the solution X is a stationary,
zero-mean Gaussian process, with covariance function

MY 0<t<s< o
Vet 947, 0 <s<t < 0.

(6.21) p(s,t) = {
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Proor. We have already seen that V(t) = V; (6.21) follows from (6.14) and
6.11). O

6.8 Example (The Ornstein-Uhlenbeck Process). Inthe cased = r = 1, a(t) =
0, A(t) = —a < 0,and a(t) = 6 > 0, (6.1) gives the oldest example

6.22) dX, = —aX,dt + ¢ dW,

of a stochastic differential equation (Uhlenbeck & Ornstein (1930), Doob
(1942), Wang & Uhlenbeck (1945)). This corresponds to the Langevin (1908)
equation for the Brownian motion of a particle with friction. According to
(6.6), the solution of this equation is

t
X, =Xpe " +0 J eI dW; 0<t< .
0

If EX? < o0, the expectation, variance, and covariance functions in (6.7)—(6.9)
become

m(t) & EX, = m(0)e™®,
o? o?
Vie) & Var(X,) = — + [ v(0) = Z ) e~ 2=,
2 2
2

p(s,t) 2 Cov(X,, X,) = [V(0) + (ela(MS) 1)Je e+,

If the initial random variable X, has a normal distribution with mean zero
and variance (62/2a), then X is a stationary, zero-mean Gaussian process with
covariance function p(s, t) = (62/20)e .

B. Brownian Bridge

Let us consider now the one-dimensional equation

b —
T—1t

(6.23) dX, = dt +dW,; 0<t<T, and X,=aq,

for given real numbers a, b and T > 0. This is of the form (6.1) with A(f) =
—1/(T — t), a(t) = bAT — t)and 6(t) = 1, whence ®(t) = 1 — (t/T). From (6.6)
we have

t t tdw,
= 1—4 J— — S . < .
X, a( T>+bT+(T t)LT ; 0<t<T

6.9 Lemma. The process

(6.24) Y — (T—t)f s; 0<t<T,
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is continuous, zero-mean, and Gaussian, with covariance function

(6.25) p(s,8) = (s A t)—fo; 0<st<T

ProOF. The process M, £ 4, (T — s)™ dW,;0 < t < T'is a continuous, square-
integrable martingale with quadratic variation

tods 1 1

4 = S
M2 2 L(T—S)Z T T-t T

According to Theorem 3.4.6, there exists a standard, one-dimensional
Brownian motion B such that M, = By; 0 <t < T. It follows from the
strong law of large numbers for Brownian motion (Problem 2.9.3) that ¥, £
By, (KM, + T71) converges almost surely to zero as t T T. The process Y
of (6.24) is thus seen to be almost surely continuous on [0, T], and to be a
zero-mean Gaussian process with

s du st

E(Y,Y)=(T - t)(T — —— =G Al)—=,

(YY) =( )( S)L T —u? (s~ T
provided 0 <s,t < T.If s v t = T, the preceding expectation is trivially zero,
in agreement with (6.25). O

6.10 Corollary. The process

t t tdw,
6.26 1 —= — +(T - ', 0<t<T,
(6.26) X, a< >+bT+( t)JT : 0 <

T oT —
b; t="T,
is Gaussian with a.s. continuous paths, expectation function
t t
6.27) m(t) £ E(X,) = a<l — ?> + b?; 0<t<T,

and covariance function p(s, t) given by (6.25). This process is the pathwise unique
solution of equation (6.23) on [0, T).

6.11 Problem. Show that the finite-dimensional distributions for the process
X in (6.26) are given by

(628)  PLX, edx,,..., X, €dx,]
p(T - tn’ Xps b)
p(T; a,b)

where 0 =ty <t; < - <t,<T, xo =a,(xy,...,x,)€R", and p(¢; x, y) is the
Gaussian kernel (2.2.6). (Hint: The normal random variables Z; £ X, /
(T—t)— X, AT —t;y);i=1,...,n, are independent.)

dx,...dx

. ns

n
=[] pt; — ti-y; ximi %))
i=1
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6.12 Definition. A Brownian bridge from a to b on [0, T] is any almost surely
continuous process defined on [0, T], with finite dimensional distributions
specified by (6.28).

It is apparent that any continuous, Gaussian process on [0, 7] with mean
and covariance functions specified by (6.27) and (6.25), respectively, is a
Brownian bridge from a to b. Besides the representation of Brownian bridge
as the solution to (6.23), there are two other ways of thinking about this
process; they appear in the next two problems.

6.13 Problem. Let {W,,%,;0 <t < w0}, (Q, %), {P*},.r be a one-dimensional
Brownian family. Show that for 0 =t,<t, < <t,< T, xo =a, and
(x15-.-,x,)€R", the conditional finite-dimensional distributions P[W, e
dxy,..., W, €dx,|Wr =b] are given by the right-hand side of (6.28), for
Lebesgue-almost every be R. In other words, Brownian bridge from a to b on
[0, T] is Brownian motion started at a and conditioned to arrive at b at time T.

6.14 Problem. Let W be a standard, one-dimensional Brownian motion and
define

t t t
(6.29) B;"”’éa<l——?>+b?+<W,—?WT>; 0<t<T

Then B*"* is a Brownian bridge from a to b on [0, T].

C. The General, One-Dimensional Linear Equation

Let us consider the one-dimensional (d = 1,r > 1) stochastic differential
equation

(6.30) dX, = [ADX, + a(t)] dt + Z [S{0)X, + o;()]dW,,

where W= {W,=W",... ., W), £, 0<t<oo} is an r-dimensional
Brownian motion, and the coefficients 4, a, S;, o; are measurable, {#}-
adapted, almost surely locally bounded processes. We set

g e i J’SJ( WU)__Zr:J

=

Z 4 exp[ft A(u)du + C,}.
0

6.15 Problem. Show that the unique solution of equation (6.30) is

(6.31)
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t

632) X, =2, [Xo + J

0

Ziu{a(u) — Z': S;(u)oy(u)} du + ]Zl L' iz(:‘lqu”’].

j=

In particular, the solution of the equation
(6.33) dX, = AW X, dt + Y S()X,dW?
j=1

is given by

' 1 ¢ . .
(634) X, = xoepr (Aw) = 3 Y. SH)}du+ Y. J Sj(u)dW,,U)].

0 = /1 Jo
In the case of constant coefficients A(f) = A4, S;(t) = S; with 24 < } -, 5} in
(6.34), show that lim,_, , X, = 0 a.s., for arbitrary initial condition X,. O

D. Supplementary Exercises

6.16 Exercise. Write down the stochastic differential equation satisfied by
Y, = X% 0 <t < oo, with k > 1 arbitrary but fixed and X the solution of
equation (5.79). Use your equation to compute E(XD).

6.17 Exercise. Define the d-dimensional Brownian bridge from a to b on [0, T]
(a,beR%) to be any almost surely continuous process defined on {0, T'], with
finite dimensional distributions specified by (6.28), where now

llx — yII?

p(t; x,y) = 2nt)"“Pexp {— 5

}; x,yeR% 1> 0.

(i) Prove that the processes X given by (6.26) and B*”? given by (6.29),
where W is a d-dimensional Brownian motion with W, =0 as., are
d-dimensional Brownian bridges from a to b on [0, T'].

(ii) Prove that the d-dimensional processes {Bf”*;0 <t < T} and {B}’};
0 <t < T} have the same law.

(iii) Show that for any bounded, measurable function F: C [0, T]°—> R, we
have

(6.35) EFa+ W)= J EF(B*")p(T; a,b)db.
Rd

6.18 Exercise. Let ®: R? > R be of class C*> with bounded second partial
derivatives and bounded gradient V®, and consider the Smoluchowski equa-
tion

(6.36) dX,=VO(X,)dt + dW; 0<t < 0,
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where W is a standard, R?-valued Brownian motion. According to Theorems
2.5,2.9 and Problem 2.12, this equation admits a unique strong solution for
every initial distribution on X,,. Show that the measure

(6.37) pu(dx) = e2®9dx  on B(R%)
is invariant for (6.36); i.e., if X is the unique strong solution of (6.36) with
initial condition X§’ = aeR?, then

(6.38) w(A) = f P(X®eA)u(da), V AeB(RY
Rd

holds forevery 0 < t < 0.
(Hint: From Corollary 3.11 and the 1t6 rule, we have

(6.39) Ef(X/®) = E[f(a + Wexp {‘D(a + W) — @)

1 t
_Ef (AD + |VD|?)(a + Ws)ds}:|
1]
for every fe C§°(R?). Now use Exercise 6.17 (ii), (iii) and Problem 4.25.)

6.19 Remark. If d = 1 in Exercise 6.18, the speed measure of the process X is
given by m(dx) = 2 exp{—2®(c)}u(dx) and is therefore invariant. Recall
Exercise 5.40.

6.20 Exercise (The Brownian Oscillator). Consider the Langevin system
dX,=Y,dt
dY, = —BX,dt — oY, dt + o dW,,

where W is a standard, one-dimensional Brownian motion and 8, ¢, and « are
positive constants.

(i) Solve this system explicitly.
(i) Show that if (X, Yy) has an appropriate Gaussian distribution, then
(X,, Y,) is a stationary Gaussian process.
(iii) Compute the covariance function of this stationary Gaussian process.

6.21 Exercise. Consider the one-dimensional equation (6.1) with a(t) = 0,
6)=0>0,A1) < —«<0,V0 <t < c0,and ¢ = xeR. Show that
¢? a?
EX? < — 2 e V>0,
,_2a+<x 2a>e ; V>0
6.22 Exercise. Let W= {W,=W",.. W), #;0<t<o} be an r-

dimensional Brownian motion, and let A(¢), S®(t); p = 1,...,r, be adapted,
bounded, (d x d) matrix-valued processes on [0, T']. Then the matrix stochas-
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tic integral equation

(640)  X@) =1+ J' ©X)ds+ 3 J SO(s)X (5) AW

0 p=1

has a unique, strong solution (Theorems 2.5, 2.9). The componentwise for-
mulation of (6.40) is

Xis(t) = 6 + Z J A ()X y(s)ds + i i J" /(5) X 4(s) AWP.

Show that X(t) has an inverse, which satisfies

(6.41) X1t = Jx [); (SP(s))? — (s):|ds

i J S)S(”) s) dw(p)

p=1

5.7. Connections with Partial Differential Equations

The connections between Brownian motion on one hand, and the Dirichlet
and Cauchy problems (for the Poisson and heat equations, respectively) on
the other, were explored at some length in Chapter 4. In this section we
document analogous connections between solutions of stochastic differential
equations, and the Dirichlet and Cauchy problems for the associated, more
general elliptic and parabolic equations. Such connections have already been
presaged in Section 4 of this chapter, in the prominent role played there by
the differential operators 7, and (9/dt) + =/, as well as in the relevance of
the Cauchy problem to the question of uniqueness in the martingale problem
(Theorem 4.28).

In Chapter 4 we employed probabilistic arguments to establish the exis-
tence and uniqueness of solutions to the Dirichlet and Cauchy problems
considered there. The stochastic representations of solutions, which were so
useful for uniqueness, will carry over to the generality of this section. As far
as existence is concerned, however, the mean-value property for harmonic
functions and the explicit form of the fundamental solution for the heat
equation will no longer be available to us. We shall content ourselves, there-
fore, with representation and uniqueness results, and fall back on standard
references in the theory of partial differential equations when an existence
result is needed. The reader is referred to the notes for a brief discussion of
probabilistic methods for proving existence.

Throughout this section, we shall be considering a solution to the stochastic
integral equation
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s s

mwm%w+fqammwmt5s<m

t

(7.1) ﬂw=x+J

t

under the standing assumptions that
(712 the coefficients b(t, x), a;(t, x): [0, 0) x R? > R are
' continuous and satisfy the linear growth condition (2.13);
(1.3) the equation (7.1) has a weak solution (X, W),
’ (Q, &, P), {#} for every pair (t, x); and
(7.4) this solution is unique in the sense of probability law.

We frequently suppress the superscripts (¢, x)in X®*) and write E** to indicate
the expectation computed under these initial conditions. Associated with (7.1)
is the second-order differential operator .2/, of (4.1). When b and ¢ do not
depend on t, we write 7 (as in (1.2)) instead of .o, and E* instead of E"*,

A. The Dirichlet Problem
Let D be an open subset of R?, and assume that b and ¢ do not depend on t.

7.1 Definition. The operator o of (1.2) is called elliptic at the point x € R? if
d d
Z Z ag(x)¢;&, > 0; VEeRN\{0}.
i=1 k=1

If o7 is elliptic at every point of D, we say that .« is elliptic in D; if there exists
a number é > 0 such that

4 d
Z kZl ag(x)&,&, = SI|EN1%; VxeD, EeRY,

i=1

we say that & is uniformly elliptic in D.

Let o7 be elliptic in the open, bounded domain D, and consider the con-
tinuous functions k: D — [0, ), g: D —» R, and f:3D —» R. The Dirichlet
problem is to find a continuous function u: D — R such that u is of class C%(D)
and satisfies the elliptic equation

(7.5) Su—ku=—g;, inD
as well as the boundary condition
(7.6) u=f; ondD.

7.2 Proposition. Let u be a solution of the Dirichlet problem (7.5), (1.6) in the
open, bounded domain D, and let t, 2 inf{t > 0; X,¢ D). If

7.7 E*t, < o0; VxeD,
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then under the assumptions (71.2)—(7.4) we have

(7.8)

u(x) = E[ f(X,)exp {_ j * k(x,) ds} + j " g(X)exp {— j t k(Xs)ds} dt:l
0 0 0

for every xe D.
7.3 Problem. Prove Proposition 7.2.

When should the condition (7.7) be expected to hold? Intuitively speaking, if
there is enough “diffusion” to guarantee that, in at least one component, X
behaves like a Brownian motion, then (7.7)is valid. We render this idea precise
in the following lemma.

7.4 Lemma. Suppose that for the open, bounded domain D, we have for some
1</ <d:

(79) m11_1 a,,(x) > 0.

xeD

Then (7.7) holds.

ProoF (Friedman (1975), p. 145). With b 2 max, . 5|b(x)|, a £ min, . 5 as.(x),
g 2 min, 5x,, and v > (2b/a), we consider the function h(x) = —uexp(vx,);
x = (X4,...,%4) € D, where the constant y > 0 will be determined later. This
function is of class C*(D) and satisfies

1 2
—(ALh)(x) = pe”*{3v?as(x) + vby(x)} = Shva e <v — ;b>; xeD.

Choosing u sufficiently large, we can guarantee that o/h < —1 holds in D.
Now the function h and its derivatives are bounded on D, so by It&’s rule we
have for every xe D, t = O:

E*(t A 1p) < h(x) — E*h(X, A.,) <2 max |h(y)| < .

yeD

Let t > oo to obtain (7.7). O

7.5 Remark. Condition (7.9) is stronger than ellipticity but weaker than
uniform ellipticity in D. Now suppose that in the open bounded domain D,
we have that

() . is uniformly elliptic,
(ii) the coefficients ay, b;, k, g are Holder-continuous, and

(iii) every point a € dD has the exterior sphere property; i.e., there exists a ball
B(a) such that B(a)n D = &, B(a)~dD = {a}.

We also retain the assumption that f is continuous on 0D. Then there exists
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a function u of class C(D)~ C%(D) (in fact, with Holder-continuous second
partial derivatives in D), which solves the Dirichlet problem (7.5), (7.6); see
Gilbarg & Trudinger (1977), p. 101, Friedman (1964), p. 87, or Friedman
(1975), p. 134. By virtue of Proposition 7.2, such a function is unique and is
given by (7.8).

B. The Cauchy Problem and a Feynman-Kac Representation

With an arbitrary but fixed T > 0 and appropriate constants L > 0, 1 > 1,
we consider functions f(x):R?—> R, g(t,x):[0,T] x R! > R and k{t,x):
[0, T] x R? - [0, co) which are continuous and satisfy

(7.10) () If)l < L(L + [x|**)  or (i) f(x) >0, VxeR¢

as well as

(711 (@) g6, %) < LA + |x]*?Y or (i) gt,x)=0; VO<t< T, xeR

We recall also the operator &, of (4.1), and formulate the analogue of the
Feynman-Kac Theorem 4.4.2:

7.6 Theorem. Under the preceding assumptions and (1.2)—(7.4), suppose that
o(t, x): [0, T] x R —» R? is continuous, is of class C'*([0, T) x R?) (Remark
4.1), and satisfies the Cauchy problem

ov

(7.12) % +kv=slv+g, in[0,T) x R%,

(7.13) (T, x) = f(x); xeR’,
as well as the polynomial growth condition

(7.14) max |v(t,x)| < M(1 + ||x]|?*); xeRY,
0<t<«T

Sfor some M > 0, u > 1. Then v(t, x) admits the stochastic representation

T

(7.15) v(t, x) = E"x[f(XT)exp{—J

t

T s
+J g(S,Xs)eXP{—J k(g,Xa)dg}dS]

on [0, T] x R in particular, such a solution is unique.

k(0, X,) de}

PRrOOF. Proceeding as in the proof of Theorem 4.4.2, we apply the Itd rule to
the process v(s, X;)exp{— [; k(6, X,)d0}; se[t, T], and obtain, with 1, 2
inf{s > t; | X, = n},
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(7.16)  o(t,x) = E** UT " 406, X, exp {— J k(6, X,) de} ds]

+ Et'x [U(Tm Xt") CXP{—J " k(97 XO) de} l{tnST}:I
t

T
+ E""[f(XT) exp {—J k(0, X) df’} 1{rn>r}]

Let us recall from (3.17) the estimate
(7.17) E“"[max ||Xo“2m:I <C(+ [|x[|*™)e“t™; t<s<T,
1<0<s

valid for every m > 1 and some C = C(m, K, T,d) > 0. Now the first term on
the right-hand side of (7.16) converges as n — o to

T s
E""J g(s,Xs)CXp{—J k(H,Xo)dH}ds,
t t

by either the dominated convergence theorem (thanks to (7.11) (i) and (7.17))
or the monotone convergence theorem (if (7.11) (ii) prevails). The second term
is bounded in absolute value by

(7.18) EX*[o(t,, X, ) 1 <] S M(1 + n*)p-*[r, < T].
However, this last probability can be written as

P, <T)= P""|: max || X, = n] <np E""[ max ||X9||2’“]

1<0<T 1<8<T
< Cn~ (1 + ||1x]|*™)e’T,

by virtue of (7.17) and the Cebysev inequality. Simply selecting m > p, we see
that the right-hand side of (7.18) converges to zero as n — co. Finally, the last
term in (7.16) converges to

Ees [f(xr) exp {—J k{6, X,) deﬂ,

either by the dominated or by the monotone convergence theorem. O

7.7 Problem. In the case of bounded coefficients, i.c.,
(719) |bt,x)| + Y s¥t,x)<p; 0<t<oo, xeR’ 1<i<d,
j=1

the polynomial growth condition (7.14) in Theorem 7.6 may be replaced by
(7.20) max |v(t, x)| < Me*I¥I*;  xeR?

0<t<T

for some M > 0 and 0 < u < (1/18pTd). (Hint: Use Problem 3.4.12)
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7.8 Remark. For conditions under which the Cauchy problem (7.12), (7.13)
has a solution satisfying the exponential growth condition (7.20), one should
consult Friedman (1964), Chapter I. A set of conditions sufficient for the
existence of a solution v satisfying the polynomial growth condition (7.14) is:

(i) Uniform ellipticity: There exists a positive constant & such that

d
Y ¥ bbb 2 01l

holds for every &€ R" and (t,x)e [0, 0) x R?;

(il) Boundedness: The functions agf(t,x), b{t,x), k(t,x) are bounded in
[0, T] x R

(i) Holder continuity: The functions ag(t,x), b(t,x), k(t,x), and g(t, x) are
uniformly Holder-continuous in [0, T] x R?;

(iv) Polynomial growth: The functions f(x)and g{t, x) satisfy (7.10) (i) and (7.11)
(i), respectively.

n[\/]a.

Conditions (i), (i), and (iii) can be relaxed somewhat by making them local
requirements. We refer the reader to Friedman (1975), p. 147, for precise
formulations.

7.9 Definition. A fundamental solution of the second-order partial differential
equation

0
(7.21) —a—" +ku= sAu
is a nonnegative function G(t, x; 7, &) defined for 0 <t < 1 < T, xeR?, £ RY,
with the property that for every fe C,(R?), 1€(0, T], the function

(71.22) u(t,x) & J G(t,x; 1,5)f()dE;, 0<t<1t,xeR?
Ré

is bounded, of class C1'2, satisfies (7.21), and

(7.23) lign ult,x) = f(x); xeR?

Under conditions (i)—(iii) of Remark 7.8 imposed on the coefficients by(t, x),
ay(t, x), and k(t, x), a fundamental solution of (7.21) exists (see Friedman (1975),
pp. 141, 148 and Friedman (1964), Chapter I). For fixed (7, £)€(0, T] x RY, the
function

o(t,x) £ G(t, x; 1, )

is of class C1%([0,7) x R?) and satisfies the backward Kolmogorov equation
(7.21) in the backward variables (t, x). If, in addition, the functions (8/8x,)by(t, x),
(0/0x;)ay(t, x), (8%/0x; Ox;)ax(t, x) are bounded and Holder-continuous, then
for fixed (¢, x)€ [0, T) x R? the function

¥(1,9) £ G(t,x; 7, ¢)
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is of class C1-2((t, T] x RY) and satisfies the forward Kolmogorov equation

333

i=1 k=1 0&; 08,

2

[au(z, )Y (x. O]

Nl'—‘

¢
(7.24) pdYY)

4 0
Z a— [bilz, OY (. &)1 — k(z, )Y (x, )

in the forward variables (z, ).
Returning to the Cauchy problem (7.21), (7.23) with k = 0, we recall from
Theorem 7.6 that its solution is given by

(7.25) u(t, x) = Ef(X?);  feCo(RY).

A comparison of (7.22), (7.25), in conjunction with Problem 4.25, leads to the
conclusion that any fundamental solution G(t,x; t,&) is also the transition
probability density for the process X** determined by (7.1); 1.¢.,

(7.26) P[X%YeA]l= J G(t,x; 7,6)dé; AeBRY), 0<t<t<T

A

In particular, under the conditions (7.2)—(7.4), this fundamental solution 1s
unique, and the representation (7.15) of the solution to the Cauchy problem

9
(7.27) —a—'t’ —Av+g in[0,T)x R

(7.28) o(T,x) = f(x); xeR?,
now takes the form

(7.29) olt,x) = J G(t,x; T, §)f(8)dS + J
Rd

t

T
J G(t,x; 7,8)g(z, §)dE d.
R4

C. Supplementary Exercises

7.10 Exercise. The Cauchy problem (7.27),(7.28) does not include the potential
term kv appearing in (7.12). The case of nonzero k corresponds to a diffusion
with killing. In particular, let X®* be the solution to (7.1); let Y be an
independent, exponentially distributed random variable with mean 1; and
define the lifetime

pt®) & inf{s > f k(0, X§-)d0 > Y}.
t

The killed diffusion process is

(t.x). (t.
(Y X5 X)9 t<s<p X)9
AR V.Y > p*®
5 s=2p77,
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where A is a cemetery state isolated from R? Assume the conditions of
Theorem 7.6 and let G(t, x; 7, £) be a fundamental solution of (7.21). Then we
have

(7.30) P[X®®eA] = J G(t,x;7,8)dé;, AcB(RY), 0<t<t<T,
A

and the solution (7.15) of the Cauchy problem (7.12), (7.13) takes the form
(7.29).

7.11 Exercise. Suppose that b(t,x); 1 <i < d, are uniformly bounded on
[0, T] x R? and that f(x) and g(t, x) satisfy (7.10) and (7.11), respectively. If
v(t, x) is a solution to the Cauchy problem

1
—6—0 =-Av+(b,Vo)+¢g; in[0,T)x R?
o 2
o(Tx) = [0 xeR!
and (7.20) holds, then

T-t

v(t,x) = E* [f(Wr—t)CXPU (b(t + 0, Wy),dWy)

0

1 T-t
_EJ bt + 6, W,,)MZdH}

0

T—1t s
+ J gt +s, WS)CXPU (bt + 6, W), dWy)

0 0

! J ib(e + 6, Wa)||2d9} ds],
2Jo

where {W,,#;0<t< T}, (QF), {P*},crs is a d-dimensional Brownian
family.

7.12 Exercise. Write down the Kolmogorov forward and backward equations
with k = O for one-dimensional Brownian motion with constant drift u, and
verify that the transition probability density of this process satisfies these
equations in the appropriate variables.

7.13 Exercise. Let the coefficients b, o in (7.1) be independent of t, and assume
that condition (7.9) holds for every open, bounded domain D < R’ Suppose
also that there exists a function f: R"\{0} —» R of class C2, which satisfies

(7.31) Af(x) <0 on R)\{0}

and is such that F(r) £ min, f(x) is strictly increasing with lim,_, , F(r) = 0.

r—w

(i) Show that we have the recurrence property
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(7.32) PX1,<o0)=1; YxeRNB,

for every r > 0, where B, = {xeR?; |x|| <r}and 1, = inf{t > 0; X, e B,}.
(i) Verify that (7.32) holds in the case
l d
(1.33) (x,b(x)) + > Y au(x) < (_x,]Tc;(”xz)_x); v xe RN\{0}.
i=1
(iii) If (7.31) is strengthened to #f(x) < —1; ¥V xeR?\{0}, then we have the
positive recurrence property

(7.34) Er, < o0 VxeR\B,

5.8. Applications to Economics

In this section we apply the theory of stochastic calculus and differential
equations to two related problems in financial economics. The first of these
is option pricing, where we derive the celebrated Black & Scholes (1973) option
pricing formula. The second application is the optimal consumption/investment
problem formulated by Merton (1971). These problems are unified by their
reliance on the theory of stochastic differential equations to model the trading
of risky securities in continuous time. In the second problem, this theory
allows us to characterize the value function and optimal consumption process
in a context more general than considered heretofore. We subsequently spe-
cialize the model to the case of constant coefficients, so as to illustrate the use
of the Hamilton-Jacobi-Bellman equation in stochastic control.

A. Portfolio and Consumption Processes

Let us consider a market in which d + 1 assets (or “securities”) are traded
continuously. We assume throughout this section that there is a fixed time
horizon 0 < T < 0. One of the assets, called the bond, has a price P,(t) which
evolves according to the differential equation

(8.1) dPo(t) = r(t)Po(t)dt, Po(0)=po; 0<t<T
The remaining d assets, called stocks, are “risky”; their prices are modeled by
the linear stochastic differential equation fori =1,...,d:

(8.2) dPy(t) = b{t)P()dt + P(1) i ot)ydw?, PO)=p; 0<t<T
j=t

The process W = {W, = (W, . W, #;0<t<T}isa d-dimensional
Brownian motion on a probability space (Q, #, P), and the filtration {#} is
the augmentation under P of the filtration {#" } generated by W. The interest
rate process {r(t), #; 0 <t < T}, as well as the vector of mean rates of return
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{b(t) = (by(t),....,bs(t)", F:0 <t < T} and the dispersion matrix {o(f) =
(01 <1.j<a»F; 0 <t < T}, are assumed to be measurable, adapted, and
bounded uniformly in (t,w)e [0, T] x Q. We set a(t) £ a(t)oT(t) and assume
that for some number ¢ > 0,

8.3) ETa(t)E > &) &%, VEeRY, 0<t<Tas.
8.1 Problem. Under assumption (8.3), ¢ 7(¢) has an inverse and
1
(8.4 TN el < 7 IEl; VEeRL0<t<T, as.
£

Moreover, with d(t) £ oT(t)o(t), we have
(8.5) ETa@)é = €| )%, VEERY 0<t<T, as.
so o(t) also has an inverse and

(8.6) lteten™<l Sillill; VEeRY 0<t<T, as.
&

We imagine now an investor who starts with some initial endowment x > 0
and invests it in the d + 1 assets described previously. Let Ni(t) denote the
number of shares of asset i owned by the investor at time t. Then X, = x =

4_o Ni{0)p;, and the investor’s wealth at time ¢ is

d
8.7 X, = ;) N{t)F(¢).

If trading of shares takes place at discrete time points, say at t and ¢ + h, and
there is no infusion or withdrawal of funds, then

d
(8.8) Xon — Xo = ;) NPt + h) — F(0)].

If, on the other hand, the investor chooses at time t + hto consume an amount
hC,,, and reduce the wealth accordingly, then (8.8) should be replaced by

d
(8.9) Xw— Xo =Y, NOLP(t + h) — P()] — hCpy.
i=0
The continuous-time analogue of (8.9) is
d
dX, =Y N{t)dPf) — C,dt.
i=0

Taking (8.1), (8.2), (8.7) into account and denoting by =,(t) £ N(t)Pi(t) the
amount invested in the i-th stock, 1 < i < d, we may write this as

(8.10)

dX, = (r( X, — C)dt + i (b(t) — r@O)m () dt + i i T(t)o,(t) dW,9.
i=1 1 j=1

i=1 j=
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8.2 Definition. A portfolio process n = {n(t) = (n,(1),..., m(), F#; 0 <t < T}
is a measurable, adapted process for which

d T
8.11) Y J n2(t)dt < oo, as.

i=1 Jo

A consumption process C = {C,,%#,;0<t< T} is a measurable, adapted
process with values in [0, c0) and

T
(8.12) J C,dt < o0, as.
0

8.3 Remark. We note that any component of 7(f) may become negative, which
is to be interpreted as short-selling a stock. The amount invested in the bond,

d
mo() & X, — ; mi(t),

may also be negative, and this amounts to borrowing at the interest rate r(t).

8.4 Remark. Conditions (8.11), (8.12) ensure that the stochastic differential
equation (8.10) has a unique strong solution. Indeed, formal application of
Problem 6.15 leads to the formula

(8.13) X, = elords {x + J' e~ forw ()T (h(s) — r(s)1) — C,]ds

0

t
+ J e'ﬁ""“"nf(s)a(s)dvvs}; 0<t<T
0

where ] is the d-dimensional vector with every component equal to 1. All
vectors are column vectors, and transposition is denoted by the superscript
T. The verification that under (8.11), (8.12), the process X given by (8.13) solves
(8.10) is straightforward.

8.5 Definition. A pair (n, C) of portfolio and consumption processes is said to
be admissible for the initial endowment x > 0 if the wealth process (8.13)
satisfies

(8.14) X, 20, 0<t<T, as

If b(t) = r(¢)1 for 0 < t < T, then the discount factor e~for@ds exactly offsets
the rate of growth of all assets and (8.13) shows that

t
(8.15) M, 2 Xehorods x4 J e~forwan C gs
0
is a stochastic integral. In other words, the process consisting of current wealth
plus cumulative consumption, both properly discounted, is a local martingale.
When b(t) # r(t)1, (8.15) is no longer a local martingale under P, but becomes
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one under a new measure P which removes the drift term ()T (b(t) — r@®D
in (8.10). More specifically, recall from Problem 8.1 that the process

(8.16) 0(t) £ (a(0) ' (b(8) — r(®)1)

is bounded, and set

d [t 1
(8.17 = exp{ Z J (s)dW,) — —J 116(s)||? ds}
Then Z ={Z,,%;0 <t < T} is a martingale (Corollary 3.5.13); the new
probability measure
(8.18) P(A) 2 E[Z;1,], Aedy

is such that P and P are mutually absolutely continuous on Fr, and the

process
t

(8.19) v"V,éW,+J O(s)ds; 0<t<T,
1]

is a d-dimensional Brownian motion under P (Theorem 3.5.1). In terms of W,
(8.13) may be rewritten as

t t
(8.20) X,e Jorwas 4 J e forwanc gs = x 4 J e~ Sorwau n T(y5(s) dW;
0 0

0<t<T,as.

For an admissible pair (m, C) the left-hand side of (8.20) is nonnegative and
the right-hand side is a P-local martingale. It follows that the left-hand side,
and hence also X,e~J"®% is a nonnegative supermartingale under P (Problem
1.5.19). Let

(8.21) 7o =T A inf{te[0, T]; X, = 0}.
According to Problem 1.3.29,
X, =070 <t<T holdsas.on{r, < T}.
If 1y < T, we say that bankruptcy occurs at time 1.
From the supermartingale property in (8.20) we obtain

T

(8.22) E[Xre‘ﬂ"""‘ + J C,e~foreras dt] < x,
0

whence the following necessary condition for admissibility:

T
(8.23) E J e JoroasC gy < x.
1]

This condition is also sufficient for admissibility, in the sense of the following
proposition.
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8.6 Proposition. Suppose x > 0 and a consumption process C are given so that
(8.23) is satisfied. Then there exists a portfolio process m such that the pair (r, C)
is admissible for the initial endowment x.

ProoF. Let D & 7 C,e1or®4s 4t and define the nonnegative process

T
£ & E[J C e firwau 4g
t

9",:| + (x — ED) efor@ds,

so that
t
(8.24) &, = elorwas {x +m,— J C e forwau ds},
0
where
- -~ E[DZ.%
m, 2 E[D|#] - ED = % — E(DZy)

t

from the Bayes rule of Lemma 3.5.3. Thanks to Theorem 1.3.13, we may
assume that P-a.e. path of the martingale

N, 2 EDZ| %), F; 0<t<T,

is RCLL, and so, by Problem 3.4.16, there exists a measurable, {% }-adapted,
R?-valued process Y with

T
(8.25) J |Y(@®)|?dt < o and
0
d t
(8.26) N,=E(DZ;) + Y J Y()dW, 0<t<T,
=t Jo

valida.s. P. Nowm, = u(N,, Z,) — E(DZ;), where u(x, y) = (x/y), and from It&’s
rule we obtain with o(t) 2 (Y(t) + N,6(1))/Z,:

d t
(827) m=y f o()dWD; 0<t<T

=t Jo
We have used the relations dZ, = — Z,07(t)dW, and (8.19). Now define
(828) n(t) £ efors(eT(1) (1),

so that (8.24) becomes (8.20) when we make the identification £ = X. Condi-
tion (8.11) follows from (8.4), (8.25), the boundedness of 8, and the path
continuity of Z and N (the latter being a consequence of (8.26)). Od

Remark. The representation (8.27) cannot be obtained from a direct applica-
tion of Problem 3.4.16 to the P-martingale {m,, #; 0 < t < T}. The reason is
that the filtration {} is the augmentation (under P or P) of {#"}, not of
EAS
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B. Option Pricing

In the context of the previous subsection, suppose that at time t = 0 we sign
a contract which gives us the option to buy, at a specified time T (called
maturity or expiration date), one share of stock 1 at a specified price g, called
the exercise price. At maturity, if the price P{* of stock 1 is below the exercise
price, the contract is worthless to us; on the other hand, if PM® > g, we can
exercise our option (i.e., buy one share at the preassigned price q) and then
sell the share immediately in the market for P{"). This contract, which is called
an option, is thus equivalent to a payment of (P{) — q)* dollars at maturity.
Sometimes the term European option is used to describe this financial instru-
ment, in contrast to an American option, which can be exercised at any time
between t = 0 and maturity.

The following definition provides a generalization of the concept of option.

8.7 Definition. A contingent claim is a financial instrument consisting of:

(i) a payoffrateg = {g,,#;0 <t < T}, and
(ii) a terminal payoff fr at maturity.

Here g is a nonnegative, measurable, and adapted process, f is a nonnegative,
Fr-measurable random variable, and for some ;> 1 we have

(8.29) E|:fT + JT g, dt:|u < 0.

0

8.8 Remark. An option is a special case of a contingent claim with g = 0 and
fr= (B = g)".

8.9 Definition. Let x > 0 be given, and let (n, C) be a portfolio/consumption
process pair which is admissible for the initial endowment x. The pair (r, C)
is called a hedging strategy against the contingent claim (g, f), provided

() C,=9g;0<t<Tand
(ii) XT =fT

hold as, where X is the wealth process associated with the pair (m,C) and
with the initial condition X, = x.

The concept of hedging strategy is introduced in order to allow the solution
of the contingent claim valuation problem: What is a fair price to pay at time
t =0 for a contingent claim? If there exists a hedging strategy which is
admissible for an initial endowment X, = x, then an agent who buys at time
t = 0 the contingent claim (g, f7) for the price x could instead have invested
the wealth in such a way as to duplicate the payoff of the contingent claim.
Consequently, the price of the claim should not be greater than x. Could one
begin with an initial wealth strictly smaller than x and again duplicate the
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payoff of the contingent claim? The answer to this question may be affirmative,
as shown by the following exercise.

8.10 Exercise. Consider the case r=0,d=1, b; =0 and o = 1. Let the
contingent claim g = Oand f; = 0 be given, so obviously there exists a hedging
strategy with x = 0, C =0, and = = 0. Show that for each x > 0, there is a
hedging strategy with X, = x.

The fair price for a contingent claim is the smallest number x > 0 which
allows the construction of a hedging strategy with initial wealth x. We shall
show that under the condition (8.3) and the assumptions preceding it, every
contingent claim has a fair price; we shall also derive the explicit Black &
Scholes (1973) formula for the fair price of an option.

8.11 Lemma. Let the contingent claim (g, f;) be given and define

T
(8.30) Q=elormang o J e Jorwrauny gs.

0

Then EQ is finite and is a lower bound on the fair price of (g, fr).

ProoF. Recalling that r is uniformly bounded in ¢ and w, we may write
Q<L(fr+ jg gsds), where L is some nonrandom constant. From (8.17) we
have for every v > 1:

d [T 1 [T
z;=exp{_z J v@-(s)d%m—if ||v9(s)||2ds}
i=1

0 0

X exp {V(V—;l—) J 16(s)]2 ds},
0

and because || 8| is bounded by some constant K, it follows that

viv—1)
2

EZ}y < exp{ KZT} < ®

With ¢ as in (8.29) and v given by (1/v) + (1/p) = 1, the Holder inequality

implies
T
EQ<LE [z, ( fr+ J gsdsﬂ
0
T p e
< L(EZ})' |:E <fT + J gsds> :| < o0.
0

Now suppose that (7, C) is a hedging strategy against the contingent claim
(9. f7), and the corresponding wealth process is X with initial condition
X, = x. Recalling the Definition 8.9 and (8.30), we rewrite (8.22) as EQ < x.

O
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8.12 Theorem. Under condition (8.3) and the assumptions preceding it, the fair
price of a contingent claim (g, f7) is EQ. Moreover, there exists a hedging
strategy with initial wealth x = EQ.

PRrROOF. Define

t

(8.31) g A elorwas [EQ +m, — J

0

e forwaug ds:l’

where m, = E[Q|#] — EQ. Proceeding exactly as in the proof of Proposition
8.6 with D replaced by Q, we define = by (8.28) and C = g, so that (8.31)
becomes (8.20) with the identifications X = &, x = EQ. But then (8.31) can also
be cast as

T
832 X, =E [e-f-’ rdig J e firwauy gg

t

9’}]; 0<t<T,
whence X, > 0;0 <t < T and X; = f; are seen to hold almost surely. [

8.13 Exercise. Show that the hedging strategy constructed in the proof of
Theorem 8.12 is essentially (in the sense of meas x P-a.e. equivalence) the only
hedging strategy corresponding to initial wealth x = EQ. In particular, the
process X of (8.32) gives the unique wealth process corresponding to the fair
price; it is called the valuation process of the contingent claim.

8.14 Example (Black & Scholes (1973) option valuation formula). In the
setting of Remark 8.8 with d =1 and constant coefficients ry=r>0,
61,(t) = 6 > 0, the price of the bond is

Po(t) = poe™; 0<t<T,
and the price of the stock obeys
dPy(t) = by(t) P,(t)dt + oP,(t)dW, = rP,(t)dt + o P,(t)dW,.

For the option to buy one share of the stock at time T at the price g, we have
from (8.32) the valuation process

(8.33) X, =E[e" (P (T)- 9" |F], 0<t<T
In order to write (8.33) in a more explicit form, let us observe that the function

(8.34)
o(t, x) & {x‘D(P+(T ~ X)) —qe”" T D(p_(T —t,x)); 0<t<T, x>0,

(x—q%; t=T, x>0
with .
1 X o2 1 x
p+(t,x)= |:10 —+t<ri—>], O(x =_J e #1 g,
: G\/E gq 2 ( ) \/27[ ~o0
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satisfies the Cauchy problem

(8.35) ot 2 0x 8_x
uTx)=(x~¢q% x=0,

as well as the conditions of Theorem 7.6. We conclude from that theorem and
the Markov property applied to (8.33) that

(8.36) X, =v(t,P,()); 0<t<T, as.

We thus have an explicit formula for the value of the option at time t in terms
of the current stock price P,(t), the time-to-maturity T — t, and the exercise
price q.

8.15 Exercise. In the setting of Example 8.14 but with f; = h(P,(T)), where
h: [0, 0) = [0, o0) is a convex, piecewise C? function with h(0) = h'(0) =0,
show that the valuation process for the contingent claim (0, f7) is given by

837 X, = E[eThP(T))IF] = J h"(q)vy, r(t, P, (1)) dq.

0

We denote here by v, (t, x) the function of (8.34).

C. Optimal Consumption and Investment (General Theory)

In this subsection we pose and solve a stochastic optimal control problem for
the economics model of Subsection 4. Suppose that, in addition to the data
given there, we have a measurable, adapted, uniformly bounded discount
process B = {B(s), %, 0 < s < T} and a strictly increasing, strictly concave,
continuously differentiable utility function U: [0, o) — [0, 00) for which
U@©) =0 and U'(w) £ lim,,_ U'(c) =0. We allow the possibility that
U’(0) & lim,y o, U'(c) = cv. Given an initial endowment x > 0, an investor
wishes to choose an admissible pair (r, C) of portfolio and consumption
processes, so as to maximize

T
Vec(x) 2 E J e Jobwa (C) ds.

0

We define the value function for this problem to be

(8.38) V(x) = sup V, ¢(x),
(n,0)

where the supremum is over all pairs (n,C) admissible for x. From the
admissibility condition (8.23) it is clear that V(0) = 0.

Recall from Proposition 8.6 that for a given consumption process C, (8.23)
is satisfied if and only if there exists a portfolio = such that (z, C) is admissible
for x. Let us define Z(x) to be the class of consumption processes C for which
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T
(8.39) E J e foras C gy — x.
0

It turns out that in the maximization indicated in (8.38) we may ignore the
portfolio process n and we need only consider C € (x).

8.16 Proposition. For every x > 0 we have

T
V(x)= sup E J e S ds 7(C) dt.

Ce Z(x) 0

PROOF. Suppose (r, C) is admissible for x > 0, and set

T

y2E f e €, gt < .
0

If y >0, we may define C, = (x/y)C, so that Ce P(x). There exists then a

portfolio process # such that (#, ) is admissible for x, and

(8.40) Ve, cl¥) < V; elx).

If y =0, then: C, = 0; a.e. t € [0, T], almost surely, and we can find a constant
¢ > 0 such that C, = ¢ satisfies (8.39). Again, (8.40) holds for some # chosen
so that (#, C) is admissible for x. O

Because U’: [0, 0] 222 [0, U’(0)] is strictly decreasing, it has a strictly
decreasing inverse function I: [0, U’(0)] 22 [0, oc]. We extend I by setting
I(y) = 0 for y > U’(0). Note that I(0) = oo and I(oc) = 0. It is easily verified

that

(8.41) UUy) —yIp) =2 Ue)—ye; 0<c<o0, 0<y< 0.
Define a function Z: [0, 00] - [0, 0] by

T

(8.42) X(y) = EJ e forwaun(y7 efs BuI—raydu) go
0

and assume that

(8.43) Z(y) < o0; 0<y< o0,

We shall have more to say about this assumption in the next subsection, where
we specialize the model to the case of constant coefficients. Let us define
y £ sup{y > 0; 4 is strictly decreasing on [0, v1}.

8.17 Problem. Under condition (8.43), Z is continuous and strictly decreasing
on [0,y] with 2(0) = cc and Z(y) = 0.

Let #: [0, 0] 2% [0, 7] be the inverse of . For a given initial endow-
ment x > 0, define the processes
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(8.44) n* & %Y(x)Z el Buw-run
(84 CF 2 I(n}).

The definition of % implies C* € 2(x). We show now that C* is an optimal
consumption process.

8.18 Theorem. Let x > 0 be given and assume that (8.43) holds. Then the
consumption process given by (8.45) is optimal:

T
(8.46) Vix)=E J e o801 Uy (CH) dt.
0

Proor. It suffices to compare C* to an arbitrary C e 2(x). For such a C, we
have

T
EJ e by (CH) — U(C))dt
0

T
=E J e RPN LU (I(nF) — nFI(n¥) — (U(C) — n¥C)1dt
0

T

+ H(x)E J e~ Joras(cx _ C)dr.
0

The first expectation on the right-hand side is nonnegative because of (8.41);

the second vanishes because both C* and C are in 2(x). O

Having thus determined the value function and the optimal consumption
process, we appeal to the construction in the proof of Proposition 8.6 for the
determination of a corresponding optimal portfolio process n*. This does not
provide us with a very useful representation for 7*, but one can specialize the
model tn various ways so as to obtain V, C* and n* more explicitly. We do
this in the next subsection.

D. Optimal Consumption and Investment
(Constant Coefficients)

We consider here a case somewhat more general than that originally studied
by Merton (1971) and reported succinctly by Fleming & Rishel (1975),
pp. 160-161. In particular, we shall assume that U is three times continuously
differentiable and that the model data are constant:

(8.47) py=p, rty=r, b(t)=b, o(t)=o,

where beR? and o is a nonsingular, (d x d) matrix. We introduce the linear,
second-order partial differential operator given by
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Lo(t,y) & —ot,y) + Bo(t,y) — (B — Nye,(t,y) — 3101292 0, (1, ),

where 8 = ¢7'(b — rl) in accordance with (8.16). Our standing assumption
throughout this subsection is that § is different from zero and there exist C**3
functions G: [0, T] x (0, c0) — [0, ov)and S: [0, T] x (0, 0) — [0, oo) such that

(8.48) LG(t,y)=U(l();, 0<t<T,y>0
(8.49) G(Ty) =0, y>0

and

(8.50) LS(t,y)=yI(y); 0<t<T,y>0
(8.51) S(T,y) =0; y > 0.

Here we mean that G,(t, y), G,,(t, y), G,(t, y), G,,(t, y), and G, (t, ) exist for all

0 <t < T,y > 0, and these functions are jointly continuous in (t, y). The same
is true for S. We assume, furthermore, that G, G,, S, and S, all satisfy poly-
nomial growth conditions of the form

(8.52) max H(tL,y) <M +y 4y} y>0
0<t<T

forsome M >0and A > 0.

8.19 Problem. Let H: [0, T] x (0, o0) — [0, ) be of class C*'? on its domain
and satisfy (8.52). Let g: [0, T] x (0, c0) — [0, o) be continuous, and assume
that H solves the Cauchy problem

LH(t,y)=g¢g(t,y); 0<t<T,y>0
H(T,y) =0, y>0.

Then H admits the stochastic representation

T

Ht,y)=E J e PET0g(s, Y ds,

t

where, witht <s < T:

(8.53) Ys(t,y) A ye(ﬂ_"‘s_‘)Z;,

(8.54) Zy & exp{—0T(W, — W) — ]16]%(s — 1)}
(Hint: Consider the change of variable £ = log y.)

From Problem 8.19 we derive the stochastic representation formulas

T

(8.55) G(t,y) = E f e BEIY (1Y) ds,

t

T

(8.56) S(t,y) = yE f e ZE [(Y ) ds,

t
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It is useful to consider the consumption/investment problem with initial
times other than zero. Thus, for 0 < t < T fixed and x > 0, we define the value
function

T
(8.57) V(t,x) = sup E J e BU(C,)ds,
t

®,C)
where (r, C) must be admissible for (t, x), which means that the wealth process

determined by the equation

(8.58) X,=x + J (rX,— Cdu+ Y J (b, — Pymi{w) du
t i=1 J¢
+ .

i

M=

d s
> J n(WoydW;, t<s<T,
1i=1 J:

remains nonnegative. Corresponding to a consumption process C, a portfo-
lio process 7 for which (r,C) is admissible for (z,x) exists if and only if
(cf. Proposition 8.6)

T
(8.59) E J e "TIZIC ds < x.
t
For 0 < t < T, define a function Z{t,-): [0, 0] — [0, co] by
T
(8.60) Z(t, )2 E J e TETIZLI(Y, V) ds.
t

Comparison of (8.56) and (8.60) shows that
(8.61) y&(t,y)=S(t,y) < o; 0<y< 0.

Now y(t) £ sup{t > 0; Z{(¢t, ) is strictly decreasing on [0, y]} = oo, and we
have just as in Problem 8.17 that for 0 < t < T, Z1(¢, -) is strictly decreasing
on [0, oo] with Z(¢,0) = oo and Z{(t, o) = 0. We denote by #(t, -): [0, 0] ==
[0, oo] the inverse of (¢, *):

(8.62) Y, Xt y))=y, 0<y<ow, 0<t<T
If we now definefort <s < T:
(8.63) 7o L #(t,x)Z: ef )
(8.64) Cr 2 I(n¥™),
then
T
(8.65) Vit,x)=E J e P U(C¥)ds.
t

This claim is proved as in Theorem 8.18; the new feature here is that for
y = ¥(t,x), one has n* = Y, and consequently
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(8.66) V(t,x) = e *Gt, (X)), 0<t<T, x>0.

Thus, if we can solve the Cauchy problems (8.48), (8.49) and (8.50), (8.51), then
we can express V(t, x) in closed form.

8.20 Exercise. Let U(c) = ¢®, where 0 < 4 < 1. Show that if

1

1 0
A . _ 2
k—fjxﬁ rs ZWMTTQ

is nonzero, then

B 1 KT y 6/(6—1)
G(t,y) = (1 — ™M) (5
S(t,y) = 0G(, ),

1 — g MT-D\1-4
V(t,x) =e * <f x°.

If k=0 then Gy =(T—-9F"", Sty =0Gty, and
V(t,x) = e (T — 1) ~%x°.

Although we have the representation (8.66) for the value function in our
consumption/investment problem, we have not as yet derived representations
for the optimal consumption and portfolio processes in feedback form, i.e., as
functions of the optimal wealth process. In order to obtain such representa-
tions, we introduce the Hamilton-Jacobi-Bellman (HJB) equation for this
model. This nonlinear, second-order, partial differential equation offers a
characterization of the value function and is the usual technique by which
stochastic control problems are attacked. Because of its nonlinear nature, this
equation is typically quite difficult to solve. In the present problem, we have
already seen how to circumvent the HJB equation by solving instead the two
linear equations (8.48) and (8.50).

8.21 Lemma (Verification Result for the HYB Equation). Suppose Q: [0, T] x
[0, 00) > [0, ) is continuous, is of class C*'2([0, T) x (0, o)), and solves the
HJB equation

(8.67)

Q,(t, x) + max {[rx —c+(b—r))'n]Q.(tx) + % o7 7ell% Q. x(t, X)
c>0
neRd

+e"‘9‘U(c)}=O; O0<t<T, 0<x< .

Then
(8.68) Vit,x) <0t x), 0<t<T, 0<x < o0.
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ProoF. For any initial condition (t, x)e [0, T) x (0, c0) and pair (z, C) admis-
sible at (t,x), let {X;t <s < T} denote the wealth process determined by
(8.58). With

s

1\t 1
t,,é<T——> Ainf{se[t,T];XSZnorX s;orf
n

0

@)l du = n},

we have E [ Q. (s, X,)n"(s)o dW, = 0. Therefore, It&’s rule implies, in con-
junction with (8.58) and (8.67),

0 < EQ(1,, X, )

= Q(t’ x) +E an {Qt(s’ Xs) + [rXs - Cs + (b - rl)Tn(s)]Qx(s, Xs)

t

T,

+ % lo T (s)I1? Qusls, X))} ds < Q(t, x) — E J "ePU(C)ds.

t

Letting n — oo and using the monotone convergence theorem, we obtain
E [T e #U(C,)ds < Q(t, x). Maximization of the left-hand side over admissible
pairs (n, C) gives the desired result. O

A solution to the HJ B equation may not be unique, even if we specify the
boundary conditions

869 0(t0)=0 0<t<T and Q(T,x)=0; 0<x< 0.

This is because different rates of growth of Q(t, x) are possible as x approaches
infinity. One expects the value function to satisfy the HJB equation, and, in
light of (8.68), to be distinguished by being the smallest nonnegative solution
of this equation.

8.22 Proposition. Under the conditions set forth at the beginning of this sub-
section, the value function V: [0, T] x [0, c0) — [0, ©) is continuous, is of class
CH2([0, T) x (0, o)), and satisfies the HIB equation (8.67) as well as the
boundary conditions (8.69).

ProoF. If 0 < y < U'(0), then

d
(8.70) & UI(y)) = U'dI'(y) = yI'(y);

if y > U’(0), then I(y) = I'(y) = 0 and (8.70) still holds. Because of our as-
sumption that G and S are of class C 1.3 we may differentiate (8.48), (8.50)
with respect to y and observe that ¢(t,y) 2 —yG,(t,y) and @,(t,y) £
—y2(8/8y)(S(t, y)/y) both satisfy

Loft,y)= —y*I'(y); 0<t<Ty>0,
o(T,y) = 0; y>0.
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In particular, I’ is continuous at y = U’(0), i.e., a necessary condition for our
assumptions is U”(0) = co. Problem 8.19 implies ¢, = ¢,, because both func-
tions have the same stochastic representation. It follows that

(8.71) Gyt y) = y%(—; S, y)) = yZ,(L.y)
and from (8.66), (8.62) we have

(8.72) Vi(t, x) = e P (t, x),

(8.73) Y. Z(t,y) = —¥.(, X1, ) L1, y).
Finally, (8.50) and (8.61) imply that

(8.74)

1
—Z(6,y) + rZ(t,y) — (B —r + [012)yZ,(t, y) — 2 1612 y2Z,,(t, y) = I(y);

O<y<oo, 0<t<T

We want to check now that the function V(t, x) of (8.66) satisfies the HJB
equation (8.67). With Q = V, the left-hand side of this equation becomes e~ #
times

(8.75) G(t,#(t,x)) — BG(t, H(t, x)) + G,(t, H(t, x)) ¥(t, x)

c>0
ne R4

1
+ max |:((rx —co)+ (b —r)Tm#(t, x) + 3 loTr|2%.(t, x) + U(c):|.
The maximization over ¢ is accomplished by setting
(8.76) c = I(#(t, x)).

Because of the negativity of #,, the maximization over = is accomplished by
setting

#(t, x)
@ (t,x)

Upon substitution of (8.76), (8.77) into (8.75), the latter becomes
(8.78) G,(t,%(t,x)) — BG(t, #(t, x)) + Gy(t, H(t, x)) ¥ (t, x)

W2t x)
%.(t,x)

We may change variables in (8.78), taking y = #(t, x) and using (8.71), (8.73),
(8.48) to write this expression as

Gt y) — BG(t, y) — yZ(t,y) + ryZ (L, y) — yI(y) — 51017 y* Z,(t, y) + U(I(y))
= y[_%‘t(t’ Y) + r'%a(t’ y) - (ﬁ —r+ |l9”2)y%‘y(t’y)
- %Hgnzyzgyy(t’ Y) - I(y)]a

8.77) = —(6a") (b —rl)

+ rxd(t,x) — H(t,x)I (¥, x)) — % 161> + UI(#(t, x))).
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which vanishes because of (8.74). This completes the proof that V satisfies the
HJB equation (8.67). The boundary conditions (8.69) are satisfied by V by
virtue of its definition (8.57) and the admissibility condition (8.59) applied
when x = 0. O

In conclusion, we have already shown that for fixed but arbitrary (¢, x)e
[0, T) x (0, ), there is an optimal pair (n*, C*) of portfolio/consumption
processes. Let {X¥;t < s < T} denote the corresponding wealth process. If
we now repeat the proof of Lemma 8.21, replacing (r, C) by (n*, C*) and Q by
V, we can derive the inequality

(8.79)
0< V(t,x)+ E J

t

T
{VZ(S, X¥) + [rXF — CF + (b — r)'n*(9)]Vi(s, XJ)

1 T
+ 5 lo TR*(S))|2 VxS, Xs*)} ds < V(t,x)— E J e BU(CHds.

t

We have used the monotone convergence theorem and the inequality
(8.80) Vs, X}) + [rX} — CF + (b — r)Tm*(s)1Vil(s, X7)
+ 3o TR*E) P V(s X < —ePUCH <0, t<s<T,

which follows from the HIB equation for V. But (8.65) holds, so equality
prevails in (8.79) and hence also in the first inequality of (8.80), at least for
meas x P-almost every (s,w) in [t, T] x Q. Equality in (8.80) occurs if and
only if 7* and C¥ maximize the expression

[rX* —c+ (b — r)TalVils, X¥) + lloTnl|? Viuls, X,) + €7 U c);
ie. (cf. (8.76), (8.77)),
(8.81) CF =1#(s, X)),
(s, XF)

(8.82) n¥ = —(os")'(b—r) V(s X’

where again both identities hold for meas x P-almost every (s, w)e[t, T] x Q.
The expressions (8.81), (8.82) provide the optimal consumption and portfolio
processes in feedback form.

8.23 Exercise. Show that in the context of Exercise 8.20, the optimal con-
sumption and portfolio processes are linear functions of the wealth process
X*. Solve for the latter and show that X¥ =0 a.s.

5.9. Solutions to Selected Problems

2.7. We have from (2.10)

i(e"" Jt g(s) d8> = (g(t) -8B J' g(s) ds) e <a(e ™,
dt 0 0
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2.12.
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whence {;, g(s)ds < e” [, a(s)e™#" ds. Substituting this estimate back into (2.10),
we obtain (2.11).

We first check that each X* is defined for all t > 0. In particular, we must show
that for k > 0,

t
f (I1b(s, XS + la(s, X¥)[|2)ds < c0; 0 <1< o0,as.
0

In light of (2.13), this will follow from
9.1 sup E|X®|2<o0; 0<T< oo,

0<t<T

a fact which we prove by induction. For k = 0, (9.1) is obvious. Assume (9.1) for
some value of k. Proceeding similarly to the proof of Theorem 2.5, we obtain the
boundfor0 <t < T:

t
©.2) E X}V < 9EIENI? + 9T + DK? f (L + ENXO1?)ds,
0

which gives us (9.1) for k + 1. From (9.2) we also have

t

EjX* V)2 < Ct + ENEI?) + Cf E|X{®|*ds; 0<t<T,

0

where C depends only on K and T. Tteration of this inequality gives

2 k+1
(S ) }

k+1))12 2

and (2.17) follows.

We will obtain (2.4) by letting k — oo in(2.16), once we show that the two integrals
on the right-hand side of (2.16) converge to the proper quantities. With T > 0,
(2.21) gives maxg ., . 1 | X, (@) — XP(w)]| < 27% Vk > N(w). Consequently,

converges to zero as.for0 < t < T,as k — co. In order to deal with the stochastic
integral, we observe from (2.19) that for fixed 0 < t < T, the sequence of random
variables { X} }2, is Cauchy in L2(Q, #, P), and since X® — X, a.s., we must have
E| X — X,|* - 0 as k - co. Moreover, (2.17) shows that E|| X*||2 is uniformly
bounded for 0 <t < T and k > 0, and from Fatou’s lemma we conclude that
E|IX,||* < lim,__ E|| X®|? is uniformly bounded as well. From (2.12) and the
bounded convergence theorem, we have

fb(s,X}’")ds—f b(s, X,)ds

0 0

2 T
< Ksz | X® — X2 ds

0

E ‘

J‘ U(S’X.(:k))dVVs _f U(S’Xs)dVVs
1]

0

2 t
= Ef lla(s, X®) — a(s, X,)|I* ds
0

t
SKZJEIIXS"—Xsilzds—»O as k—oo; 0<t<T

1]
For each positive integer k, define the stopping time for {#}:

n={° if ¢l > &
o i) <k
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and set & = {1y, <1y We consider the unique (continuous, square-integrable)
strong solution X™ of the equation

t t
X® = crk+f b(s, X ds + f ols, XP)dW,: 0 <1< .
[¢] [¢]

For ¢ > k, we have that (X{* — X{?)1,,,  isequal to

tA Ty tA T
j {b(s, X) — b(s, X)) ds + j {o(5, XO) — o(s, X)) AW,

0 0

t t
= j {b(s, X&) — b(s, X} Lo gy ds + j {o(s, X®) — (s, XN} s < 1,y AW
0 0
By repeating the argument which led to (2.18), we obtainfor0 <t < T:
t
El:max I X© — X:"’l!zl{‘g\sk}] <L j El:max I1X© — X}")Hzl{éq}]dt,
0<s<t 0 0<s<t

and Gronwall’s inequality (Problem 2.7) now yields

max | X9 — X®| =0, as.on{|&| <k}

0<s<T

We may thus define a process {X,; 0 < t < oo} by setting X,(w) = X{*(w), where
k is chosen larger that [|¢(w)||. Then :

Xl < = X lga<i

tATy tA T
=&+ j b(s, X¥)ds + j a(s, X0 dw,

0 0

tA Ty AT
=&+ j b(s, X,)ds + j (s, X,;) dW,

0 0

= |:§ + j b(s, X,)ds + j ‘T(S,Xs)dws]l{;sk}~

0 0

Since P[{ 2, {lI€]l < k}] = 1, we see that X satisfies (2.4) almost surely.
3.15. We use the inequality for p > O;
©.3) laylP + -+ la P < n(lay] + - +1a,)P < nP(lay P+ + |agl?).

We shall denote by C(m,d) a positive constant depending on m and d, not
necessarily the same throughout the solution. From (iv) and (9.3) we have, almost

surely:
2m:|
and the Holder inequality provides the bound

2m d t 27 |m t m
' = I:Z (j bi(u, X)du) :| < t"‘l:J~ Hb(u,X)szu]
i=1 0 0

< ¢2mt j |1 b(u, X)|I*™ du.
[¢]

2m

X127 < C(m,d)[IIXon"‘+ j bu, X)du) +

0

j o(u, X)dWw,

0

jl b(u, X)du

0
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The stopping times S, £ inf{t > 0; | X,|| > k} tend almost surely to infinity as
k — oo, and truncating at them yields

tA S,

max [ X,}*" < C(m,d)|:11X0||2"' + et f (1b(u, X)1*™ du

0<s<tAS, 0
2m
, as.

Remark 3.3.30 and Holder’s inequality provide a bound for the last term, to wit,

2m tA S, m
EI:max :I < C(m,d) El:f ||a(u,X)||2du:|
0<s<t 0

tA S,
< C(m,d)t”'“Ef llo(u, X)|| > du.

0

+ max
0<s<t

SA Sy
f o(u, X)dW,

0

SAS,
f o(u, X)dW,

0

Therefore, upon taking expectations, we obtain

E( max IIXSIIZ”'>
O0<s<tAS,

< C(m,d)I:E||X0||2”‘ + C(T) Ef

0

tA S,

(b, X)I*™ + llo(u, X)Ilz’")du:I

forevery0 < t < T, where C(T) is a constant depending on 7, m, and d. But now
we employ the linear growth condition (3.16) to obtain finally,

AOES E( max NXSIIZ"'> < C[1 + E| X[ +f i(u) du];
0

O0<s<tAS,

0<t<T
and from the Gronwall inequality (Problem 2.7):
V() < C(1 + E|[X,12™e;, 0<t<T

Now (3.17) follows from Fatou’s lemma. On the other hand, if we fix s <t in
[0, T] and start from the inequality | X, — X,||*™ < C(m,d) (% b(u, X) du|*™ +
Hj;a(u, X)dW,||*™), we may proceed much as before, to obtain

EllX, - X,|*" < Ct — sy f {1 + E( max ||Xe||2m>]du

s 0<0<u
< C(1 + CeTY(1 + E[ X,|>™)(t — s)™

We fix F e #,(C[0, c0)?). The class of sets G satisfying (3.25) is a Dynkin system.
The collection of sets of the form (3.26) is closed under pairwise intersection and
generates the o-field B(R?Y) ® B(C[0, co)). By the Dynkin System Theorem, it
suffices to prove (3.25) for G of the form (3.26). For such a G, we have

f Qj(x, w; F)u(dx) P, (dw)
G

= E, I:J Qj(x,"; F)u(dx) 1, 16," Py{o, ' G5 B(C[O, 00)’)}]
Gy
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=E, [J Qj(x, 5 F)uldx): 1(;:;162] “P,[0,'Gs]
Gy

= B[G, x G, x F]-P,[6,'G,].

The crucial observation here is that, under Wiener measure P,, 6, 'G, is inde-
pendent of £,(C[0, «)"). From (3.21), we have

P,[6,'G3] = P(x,w,»)€©; 5,we G,] = y[6, WP eG,],
P[G, x ¢]'G, x F]1 = 4[X{ e G, WPeG,, YPeF].

Therefore,

J‘ Q;(x, " F)”(dx)P*(dw) = vi[X(()j) € G1 s @y Wie Gz, YWe F] ' Vj[O'gW(j) € Ga]
G

= y[XPeG,,p,WP€G,,6,WPeG,, YPeF]

= y[(X§, W) eG, YO e F] = BIG x F],

because {X§eG,,o,WPeG,, YPeF} belongs to the o-field %Y, and
{6,WY¥ e G,} is independent of it.

3.22. The essential assertion here is that Q,(x, w; -) assigns full measure to a singleton,
which is the same for j =1, 2. To see this, fix (x,w)eR? x C[0,0)" and
define the measure Q(x,w;dy,,dy,) 2 Q,(x,w; dy,)Q,(x,w;dy,) on (§,%) &
(C[0, ©)* x C[0, ), Z(C[0, x0)*) ® B(C[0, c0)). We have from (3.23)

94) P(Gx B)= j Q(x, w; Byu(dx)P,(dw), Be¥,GeRB(R*)® B(C[0, 0)).
G

With the choice B = {(y,,y,)€S; y; = y,} and G = R? x C[0, o, relations
(3.24) and (9.4) yield the existence of aset Ne BRY ® B(C[0, o)) with (u x P,)
(N) = 0, such that Q(x, w; B) = 1 for all (x,w)¢ N. But then from Fubini,

1 = Q(an; B) = J‘ Ql(an; {y}) QZ(XaW; dJ’), (X,W)éN,
C[0, )4

which can occur only if for some y, call it k(x, w), we have Q;(x, w; {k(x,w)}) = 1;
j =1, 2. This gives us (3.27). For (x,w)¢ N, and any Be #(C[0, o)), we have
k(x,w)e B<>Qx,w; B) = 1. The B(RY ® B(C[0, ©))/%([0, 1])-measurability
of (x, w)— Q/(x,w; B) implies the B(RY) ® B(C[0, c0))/B(C[0, o0)*)-measurability
of k. The %,/%,(C[0, o)%)-measurability of k follows from a similar argument,
which makes use of Problem 3.21. Equation (3.28) is a direct consequence of
(3.27) and the definition (3.23) of P.

47. For(p,0)eD,let A = pp™ = 66" Since A is symmetric and positive semidefinite,
. AlO .
there is an orthogonal matrix Q such that Q40T = [—6 1 —0—], where Aisa(k x k)
1
diagonal matrix whose diagonal elements are the nonzero eigenvalues of A. Since

QAQ" = (Qp)(Qp)" = (Q0)(Q0)",

Y, z
Qp must have the form Qp = IEE;—], where Y; YT = A. Likewise, Qo = I:—(—)l—],
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4.13.

4.25.

53.

5.27.
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where Z,Z] = A. We can compute an orthonormal basis for the d — k)-
dimensional subspace orthogonal to the span of the k rows of Y,. Let Y, be the
(d — k) x d matrix consisting of the orthonormal row vectors of this basis, and

Y, A A0
setY= [—);IZI.Then(Qp)YT = |:-0-+-—j|,YYT = [—-%—I{I,wherelisthe(d — k) x
i

2

z
(d — k) identity matrix. In the same way, define Z = [—Z—l—jl so that (Qo)ZT =
2
QP YT,ZZT = YYT. Theno = pYT(ZT)"',soweset R = YT(ZT) ™\ Ttis easily
verified that RRT = I. All of the steps necessary to compute R from p and o can
be accomplished by Borel-measurable transformations.

Letus fix 0 < s < t < 0. For any integer n > (t — 5)™! and every A€ %, ym» We
can find Be &, ., such that P(A AB) =0 (Problem 2.7.3). The martingale
property for {MJ, #,; 0 < u < oo} implies that

05 E [{f(y(t)) - f<y < n %)) - f (L)) du} u]
s+(1/m)
- E[{f(y(t)) - f<y < n 5)) - f (1)) du} 13] —o.
s+(1/n)

If follows that the expectation in (9.5) is equal to zero for every AeF,=9,.
We can then let n —» o and obtain the martingale property E[(M/ — M/)1,] =
0 from the bounded convergence theorem.

Suppose [pa @(x)pt; (dx) = [pa P(x)1t5(dx) for every peCP(R?), and take Ve
Co(R?). Let pe C(RY) satisfy p > 0, [gap(x)dx = 1, and set ¢,(x) & [rat(x +
(y/m)p(y)dy = n [ga(z)p(nz — nx)dz. Then @,e CP(RY) and @,(x) » ¥(x) for
every xeR% It follows from the bounded convergence theorem that
Fra ()i, (dx) = [patb(x)ps,(dx), for every i e Co(RY). Now suppose G < R? is
open and bounded. Let ,(x) = 1 A inf,,gnlly — x|. Then ¢, e Cy(R?) for all n,
and ¥, T L. It follows from the monotone convergence theorem that 1(G) =
#2(G) for every bounded open set G. The collection of sets € = {Be B(R%);
#1(B) = p,(B)} form a Dynkin system, and since every bounded, open set 1s in
%, the Dynkin System Theorem 2.1.3 shows that € = #(R*).

Fort >0, let E, = {[{"® 6(X,)ds = o0}. Using the method of Solution 3.4.11,
we can show that

tAS,
lim X,,s = X, + lim f 6(X,)dW, = o0, as.onE,,

n-o n-w JO

tAS,
lim X,,5 = X, + lim f 6(X,)dW, = —o0, as.onkE,

n-w r—w Jo

But X, is continuous in the topology of the extended real numbers, so P(E,))=0.
Consequently, X, ,s = X, + {55 6(X,)dW, is real-valued as., for every t > 0,
s0 S = o0 as.

Fore>0and ¢ + ¢ < x < r, we have

_ x , y 2dZ d c+te
v(x) = ) P’ Ry y = [p(x) — plc + &)] c

and (5.73) follows. A similar argument works for (5.74).

2dz
p'(2)6%(2)’
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6.2.

6.11.

6.15.

7.3.

8.1.

It suffices to show that if Q(t) is a locally bounded, measurable, (d x r)-matrix-
valued function of ¢, then Y, = {,Q(s)dW, is a Gaussian process. This is
certainly true if the components of Q are simple, and the general Q can be
approximated by simple matrix functions Q™ so that for each fixed t, we have
lim, . E|[5 [Q™(s) — Q(s)] dW,|? = 0. Because the L? limit of normal random
vectors must be normal, we have the desired result.

The jointly normal random variables Z,, Z, ..., Z, are uncorrelated, as one can
see from (6.25) or by observing from (6.26) that

b(t; — ti-) wodW, .
Zi=—————— + — i=1,...,n
(T — (T = t;y) w, L —s
It is also apparent that
b(t; —t;_ t—ti
EZ, =__(‘__‘i_, Var(Zi)=——"ll——.
(T —t)(T — t;-y) (T — (T —t;-y)
Now write down the joint density of (Z,, ..., Z,) and make the change of variables

z;=x /T —t;) — x, (T —t1) to obtain the desired result.

Observe that

dz, = Z, l:A(t) e+ Y Sj(t)dW,U’],
i=1
and apply 1t’s rule to the right-hand side of (6.32) to see that X defined by this
formula satisfies (6.30). Uniqueness follows from Theorem 2.5.

In the case of constant coefficients for (6.33), the solution becomes X, =
X,exp(Y), where Y, 2 put+0B, 02 /Y S}, p=A—¢*2 and B A&
(1/0) Y= ;WY is Brownian motion (by the P. Lévy characterization, Theo-
rem 3.3.16). The strong law of large numbers (Problem 2.9.3) shows that
lim,,, (¥,/t) = g, and hence also lim,_ . X, =0, as.

Proceeding as in Solution 4.2.25, we show that

Ml & u(Xl/\tD)exp{_J

(¢}

+J DQ(XS)CXP{—J k(Xe)dH}ds; 0<t<w

4] 4]

tATy

k(Xs)ds}

is a uniformly integrable martingale under P*. The identity EXM, = E*M,, is
(7.8).

For a (d x d) matrix I, define the operator norm T = supg o (ITEN/IEN). We
show that |T'|| = |TT}|. According to the Cauchy-Schwarz inequality,

InTTTEN = (7Tl < IENITAI < ITHHEN i

Now set 7 = I'T¢ to obtain [[T7¢| < [T} €], and thus by definition ||I'T| < |ITl.
We obtain the opposite inequality by reversing the roles ofTand I'".

Now (8.3) implies that a7 (t) is nonsingular, for otherwise we could find a
nonzero vector ¢ which makes ¢7a(t)é = |la7(1)¢|? = 0. Letting £ = T ',
we may rewrite (8.3) as
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1
He™ ) nl < —=lnl; VneRL0<t<T,
&

a.s., which is equivalent to |i(6”(1) || < (1/,/2). Because (a(t) ]| = (aT(®) !},
we have the equivalence of (8.3) and (8.5). We have already proved (8.4), and (8.6)
is established similarly.

8.17. Because I is strictly decreasing on [0, U’'(0)] and identically zero on [U’(0), o),
we see that & is nondecreasing and for 0 < y, < y, < oo:

. U'(©
Z(y) = 2( yz)ép[ min (Z,efo#O-rhdsy o vo )] =0,
O0<t<T yl

in which case Z(y,) = Z(y,) = 0. The equality Z'(¥) = O follows. The equality
Z(0) = lim, 4, Z'(y) = o is a consequence of the monotone convergence theorem,
Continuity of ' on (0, 7], and hence its surjectivity, follows from (8.43) and the
dominated convergence theorem.

8.19. Let #(1,¢) = H(t,e%), so # is defined and of class C¥2 on [0, T] x R. A bit of
computation shows that »# solves the Cauchy problem

1 1
—«”i+ﬂ«”—(ﬂ-r—5||9||2>«9fz—5||9||2«””=g(t,el); 0<t<T (eR

H(T,0) =0, CeR.

Condition (8.52) on H implies that J# satisfies (7.20) for every u > 0 and M > 0
depending on . It follows from Problem 7.7 that
L= z],

where dL; = (B —r — ||0]?/2)ds — T dW,. This is the stochastic differential
equation satisfied by log Y“¥, and thus

T
H(,¢) = E[f e P g(s el ds

T

H(t,y) = #(t,logy) = E[f

t

e"“‘_')g(s, Ys""’)ds].

5.10. Notes

Section 5.1: The term stochastic differential equation was actually introduced
by S. Bernstein (1934, 1938) in the limiting study of a sequence of Markov
chains arising in a stochastic difference scheme. He was only interested in the
distribution of the limiting process and showed that the latter had a density
satisfying the Kolmogorov equations. However, according to Gihman &
Skorohod (1972), it would be an exaggeration to consider Bernitein the
founder of this theory. -

Independently of 1td’s work, I. I. Gihman (1947, 1950) developed a theo-
ry of stochastic differential equations, complete with results on existence,
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uniqueness, smooth dependence on the initial conditions, and Kolmogorov’s
equations for the transition density.

Since the early work of Itd and Gihman, the interest in the methodology
and the mathematical theory of stochastic differential equations has enjoyed
remarkable successes. The constructive and intuitive nature of the concept, as
well as its strong physical appeal, have been responsible for its popularity
among applied scientists; for instance, the “dW” term on the right-hand side
of (1.9) has an important interpretation as white noise in statistical com-
munication theory. Apart from its original and continued relevance to physics
(see the notes to Section 6, as well as Nelson (1967), Freidlin (1985)), the new
methodology became gradually indispensable in fields such as stochastic
systems (Arnold & Kliemann (1983)) and stability theory (Friedman (1976),
Khas’minskii (1980)), stochastic control and game theory (Fleming & Rishel
(1975), Friedman (1976), Krylov (1980)), filtering (Liptser & Shiryaev (1977),
Kallianpur (1980)), communication and dynamical systems (Wong & Hajek
(1985)), mathematical economics (cf. Section 5.8), mathematical biology and
population genetics (cf. examples in Chapter XV of Karlin & Taylor (1981)).
Stochastic partial differential equations arise in filtering (Pardoux (1979)) and
neurophysiology (Walsh (1984, 1986)).

On the other hand, the analytical approach to diffusions and, more gener-
ally, Markov processes, has been further developed in conjunction with the
Hille-Yosida theory of semigroups; see, for instance, the lecture notes of Itd
(1961a) and Chapter I of Ethier & Kurtz (1986).

Section 5.2: Theorems 2.5, 2.9 are standard; they are due to It6 (1942a, 1946,
1951) and can be found in several monographs such as those by Skorohod
(1965), Mc Kean (1969), Gihman & Skorohod (1972, 1979), Arnold (1973),
Friedman (1975), Liptser & Shiryaev (1977), Stroock & Varadhan (1979),
Kallianpur (1980), Ikeda & Watanabe (1981). These sources, as well as Fried-
man (1976), should be consulted for further reading on the subject matter of
this chapter and some of its applications.

The study of comparison results for stochastic differential equations started
with Skorohod (1965). The article by Ikeda & Watanabe (1977) contains
important refinements of Proposition 2.18 and Exercise 2.19, with applica-
tions to stochastic control and to tests for explosions; see also Chapter VI in
Ikeda & Watanabe (1981), Yamada & Ogura (1981), Hajek (1985).

Doss (1977) and Sussmann (1978) were the first authors who studied the
possibility of pathwise solutions to stochastic differential equations, via an
appropriate reduction to an ordinary differential equation in the spirit of
Proposition 2.21. Extension of the latter to several dimensions has Lie-
algebraic ramifications; see Ikeda & Watanabe (1981), pp. 107-110. The
modeling issue of Subsection 5.2.D was first raised by Wong & Zakai (1965a),
who obtained Proposition 2.24 under more restrictive conditions. The one-
dimensional equation (2.34) was studied in detail by Chitasvili & Toronjadze
(1981).
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Stochastic differential equations driven by general semimartingales, instead
of just Brownian motion, have been studied by Doléans-Dade (1976) and
Protter (1977, 1984) among others; see also Elliott (1982), Chapter XIV.
Stochastic integral equations of the Volterra type have also been considered;
see, for instance, Kleptsyna & Veretennikov (1984) and Protter (1985).

Section 5.3: The methodology that leads to Proposition 3.20 and Corollary
3.23 was developed by Yamada & Watanabe (1971); we follow Tkeda &
Watanabe (1981) in our exposition.

Further instances of one-dimensional equations dX, = ¢(X,)dW, admitting
no strong solution, in the spirit of Example 3.5 but with continuous dispersion
coefficients ¢(-), have been discovered by Barlow (1982).

Section 5.4: The book by Stroock & Varadhan (1979) should be consulted
for further reading on martingale problems and multidimensional diffusions.
For the martingale approach to more specialized questions on diffusions, such
as the support theorem, boundary behavior, degeneracy, and the construction
of diffusion processes on manifolds, the reader is referred to the articles by
Stroock & Varadhan (1970, 1971, 1972) and the lecture notes of Priouret
(1974), respectively.

The “martingale problem” approach of this section can also be employed
to characterize more general Markov processes in terms of their correspond-
ing infinitesimal operators; a good part of Chapter TV in Ethier & Kurtz (1986)
is devoted to this subject.

Section 5.5: Material for the first two subsections was drawn primarily from
the papers of Engelbert & Schmidt (1981, 1984, 1985). The use of local time
to prove pathwise uniqueness in Theorem 5.9 is due to Perkins (1982c),
although Perkins’s result has been sharpened by the use of the Engelbert and
Schmidt zero-one law. Proposition 5.17 is a time-homogeneous version of a
more general result due to Zvonkin (1974); according to the latter, the equa-
tion (2.1) with d = 1 has a unique strong solution, provided that

(i) the drift b(t, x) is bounded and Borel-measurable,
(ii) the dispersion o(t,x) is bounded (both above and away from the

origin), is continuous in (¢, x), and satisfies a H6lder condition of the type
(2.24) with h(u) = Ku®; o > (1/2).

Zvonkin’s results were extended to the multidimensional case by Vereten-
nikov (1979, 1981, 1982), who showed in particular that the equation (3.2) with
d = 1 has a unique strong solution for any bounded, Borel-measurable drift
b(t, x).

In another important development, Nakao (1972) showed that pathwise
uniqueness holds for the equation (5.1), provided that the coefficients b, ¢
are bounded and Borel-measurable, and ¢ is bounded below by a positive
constant and is of bounded variation on any compact interval. For further
extensions of this result (to time-dependent coefficients), see Veretenmkov
(1979), Nakao (1983), and Le Gall (1983).

The material of Subsection C is fairly standard; we relied on sources such
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as McKean (1969), Kallianpur (1980), and Ikeda & Watanabe (1981), partic-
ularly the latter. A generalization of the Feller test to the multi-dimensional
case is due to Khas’minskii (1960) and can be found in Chapter X of Stroock
& Varadhan (1979), together with more information about explosions.

A complete characterization of strong Markov processes with continuous
sample paths, including the classification of their boundary behavior, is
possible in one dimension; it was carried out by Feller (1952-1957) and
appears in It6 & Mc Kean (1974) and Dynkin (1965), Chapters XV-XVIL See
also Meleard (1986) for an approach based on stochastic calculus. The recur-
rence and ergodic properties of such processes were investigated by Maruyama
& Tanaka (1957); see also §18 in Gihman & Skorohod (1972), as well as
Khas’minskii (1960) and Bhattacharya (1978) for the multi-dimensional case.

Section 5.6: Langevin (1908) pioneered an approach to the Brownian
movement that centered around the “dynamical” equation (6.22), instead of
relying on the parabolic (Fokker-Planck-Kolmogorov) equation for the tran-
sition probability density. In (6.22), X, represents the velocity of a free particle
with mass m in a field consisting of a frictional and a fluctuating force, a is the
coefficient of friction, and ¢? = 2akT/m, where T denotes (absolute) tem-
perature and k the Boltzmann constant. Langevin’s ideas culminated in the
Ornstein-Uhlenbeck theory for Brownian motion; long considered a purely
heuristic tool, unsuitable for rigorous work, this theory was placed on firm
mathematical ground by Doob (1942). Chapters IX and X of Nelson (1967)
contain a nice exposition of these matters, including the Smoluchowski equa-
tion for Brownian movement in a force field.

Section 5.7: The monograph by Freidlin (1985) offers excellent follow-up
reading on the subject matter of this section, as well as on degenerate and
quasi-linear partial differential equations and their probabilistic treatment.

In the setting of Theorem 7.6 with k = 0, g = Qit is possible to verify directly,
under appropriate conditions, that the function

(10.1) ut, x) = Ef(X%")

on the right-hand side of (7.15) possesses the requisite smoothness and solves
the Cauchy problem (7.12), (7.13). We followed such an approach in Chapter
4 for the one-dimensional heat equation. Here, the key is to establish
“smoothness” of the solution X®* to (7.1) in the initial conditions (t, x) so as
to allow taking first and second partial derivatives in (10.1) under the expec-
tation sign; see Friedman (1975), p. 124, for details.

Questions of dependence on the initial conditions have been investigated
extensively. The most celebrated of such results is the diffeomorphism theorem
(Kunita (1981), Stroock (1982)), which we now outline in the context of the
stochastic integral equation (4.20). Under Lipschitz and linear growth condi-
tions as in Theorem 2.9, this equation has, for every initial position xe R,
a unique strong solution {X,(x);0 <t < co}. Consider now the (d + 1)-
dimensional random field Z° = {X,(x, w); (¢, x)€ [0, 00) x R, weQ}. It can be
shown, using the Kolmogorov-Centsov theorem (Problem 2.2.9) in conjunc-
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tion with Problems 3.3.29 and 3.15, that there exists a modification 7 of #
such that:

(i) (t,x)— X,(x, ) is continuous, for a.e. w e Q;
(i) Forfixed t > 0, x> X,(x, ) is a homeomorphism of R? into itself for a.e.
wel

Furthermore, if the coefficients b, ¢ have bounded and continuous deriva-
tives of all orders up to k > 1, then for every 7 > 0,

(i) x> X,(x,w) is a C* '-diffeomorphism for a.e. we Q.

For an application of these ideas to the modeling issue of Subsection 5.2.D,
see Kunita (1986).

Malliavin (1976, 1978) pioneered a probabilistic approach to the questions
of existence and smoothness for the probability densities of Brownian func-
tionals, such as strong solutions of stochastic differential equations. The
resulting “functional” stochastic calculus has become known as the stochastic
calculus of variations, or the Malliavin calculus; it has found several exegeses
and applications beyond its original conception. See, for instance, Watanabe
(1984), Chapter V in Ikeda & Watanabe (1981), and the review articles of Ikeda
& Watanabe (1983), Zakai (1985) and Nualart & Zakai (1986). For applica-
tions of the Malliavin calculus to partial differential equations, see Stroock
(1981, 1983) and Kusuoka & Stroock (1983, 1985).

Section 5.8: The methodology of Subsection A is new, as is the resulting
treatment of the option pricing and consumption/investment problems in
Subsections B and C, respectively. Similar results have been obtained indepen-
dently by Cox & Huang in a series of papers (e.g., (1986, 1987)). For Subsection
B, the inspiration comes in part from Harrison & Pliska (1981) and Bensoussan
(1984); this latter paper, as well as Karatzas (1988), should be consulted for
the pricing of American options. Material for Subsection C was drawn from
more general results in Karatzas, Lehoczky & Shreve (1987). The problem of
Subsection D was introduced by Samuelson (1969) and Merton (1971); it has
been discussed in Karatzas et al. (1986) on an infinite horizon and with very
general utility functions. An application of these ideas to equilibrium analysis
is presented in Lehoczky & Shreve (1986). See also Duffie (1986) and Huang
(1987).



CHAPTER 6

P. Lévy’s Theory of Brownian
Local Time

6.1. Introduction

This chapter is an in-depth study of the Brownian local time first encountered
in Section 3.6. Our approach to this subject is motivated by the desire to
perform computations. This is manifested by the inclusion of the conditional
Laplace transform formulas of D. Williams (Subsections 6.3.B, 6.4.C), the
derivation of the joint density of Brownian motion, its local time at the origin
and its occupation time of the positive half-line (Subsection 6.3.C), and the
computation of the transition density for Brownian motion with two-valued
drift (Section 6.5). This last computation arises in the problem of controlling
the drift of a Brownian motion, within prescribed bounds, so as to keep the
controlled process near the origin.

Underlying these computations is a beautiful theory whose origins can be
traced back to Paul Lévy. Lévy’s idea was to use Theorem 3.6.17 to replace
the study of Brownian local time by the study of the running maximum (2.8.1)
of a Brownian motion, whose inverse coincides with the process of first passage
times (Proposition 2.8.5). This latter process is strictly increasing, but increases
by jumps only, and these jumps have a Poisson distribution. A precise state-
ment of this result requires the introduction of the concept of Poisson random
measure, a notion which has wide application in the study of jump processes.
Here we use it to provide characterizations of Brownian local time in terms
of excursions and downcrossings (Theorems 2.21, 2.23).

In Section 6.3 we take up the study of the independent, reflected Brownian
motions obtained by looking separately at the positive (negative) parts of a
standard Brownian motion. These independent Brownian motions are tied
together by their local times at the origin, a fact which does not violate their
independence. Exactly this situation was encountered in the Discussion of
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F. Knight’s Theorem 3.4.13, where we observed that intricately connected
processes could become independent if we time-change them separately and
then forget the time changes. The first formula of D. Willtams (Theorem 3.6)
1s a precise statement of what can be mferred about the time change from
observing one of these reflected Brownian motions.

Section 6.4 1s highly computational, first developing Feynman-Kac for-
mulas involving Brownian local time at several points, and then using these
formulas to perform computations. In particular, the distribution of local time
at several spatial points, when the temporal parameter is equal to a passage
time, 1s computed and found to agree with the finite-dimenstonal distribution
of one-half the square of a two-dimenstonal Bessel process. This is the Ray-
Knight description of local time; it allows us finally to prove the Dvoretzky-
Erdos-Kakutant Theorem 2.9.13.

6.2. Alternate Representations of
Brownian Local Time

In Section 3.6 we developed the concept of Brownian local time as the density
of occupation time. This is but one of several equivalent representations of
Brownian local time, and in this sectton we present two others. We begin with
a Browntan motion W = {W,, #; 0 < t < oo} where P[W, = 0] = 1 and {#,}
satisfies the usual conditions, and we recall from Theorem 3.6.17 (see, in
particular, (3.6.34), (3.6.35)) that

2.1) P[IW|=M,— B, 2L(0)=M,;V0<t<o]=1,
where B, = — [ sgn(W;) dW, is itself a Brownian motion,
(2.2) M,= max B;; 0<t< o,

0<s<t

and L,(0) is the local time of W at the origin:

1

(3.6.2) L,(0)=lm—meas{0 <s<t;|W,| <e}.
sdo de

Thus, a study of the local time of W at the origin can be reduced to a study

of the more easily conceived process M. The tdea of this reduction and much

of what follows originated with P. Lévy (1939, 1948).

A. The Process of Passage Times

The process M of (2.2) is continuous, nondecreasing, and “flat” (constant)
during excursions of the reflected Brownian motion | W| away from the origin.
Because the Lebesgue measure of the set {0 <t < oo; |W| = 0} is zero, P-ass.
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(Theorem 2.9.6), the process M has time derivative almost everywhere equal
to zero; it is very much like the Cantor function.

We may regard M as a new clock, which stops when | W] is away from the
origin and runs at an accelerated rate when |W| is at the origin. In order to
pass from this new clock to the original one, we introduce the right-continuous
inverse of M, defined as in Problem 3.4.5:

(2.3) S,2inf{t >0; M, > b} =inf{t > 0;B,>b}; 0<b< 0.

Each S, is an optional (and hence also a stopping) time of the right-continuous
filtration {#,}. The left-continuous inverse of the process M is simply the
family of passage times

(2.9) T,2inf{tr>0;M,=b} =inf{t >0, B,=b}; 0<b< 0.
b

Regarded as processes parametrized by the spatial variable b, T = {T;;
0<b< o} and S={S,;0<b< oo} are modifications of one another
(Problem 2.7.19). The existence of two inverses for M reflects the fact that M
identifies the starting and ending points of the excursions of |W| away from
the origin. These excursions correspond to jumps of the process T, as we now
elaborate.

Recall from Remark 2.8.16 that for each ¢t > 0, the time in s € [0, t] for which
B, = M, is almost surely unique. Thus, for each @ in an event Q* of probability
one, this assertion holds for every rational t. Fix o€ Q*, a positive number ¢
(not necessarily rational), and define

(2.5) 7,(w) 2 sup{se[0,t]; W(w) = 0} = sup{se[0,t]; B|(w) = M,(w)},
(26) B(w)2 inf{se[t, o) W(w) = 0} = inf{se [t, 00); B(w) = M,()}.

If W,(w) = 0, then B (w) = t = ,(w). We are interested in the case W,(w) # 0,
which implies

(2.7) ilw) <t < fi(w)

In this case, the maximum of Bj(w) over 0 < s <t is attained uniquely at
s = 3,(w), hence Ty (@) = y,(w). Similarly Ty, w)+ (@) = Sy w@) = B,(w), for
otherwise there would be a rational ¢ > f,(w) such that By (,)(®) = B,,)(@) =
M, (w), a contradiction to the choice of we Q*. We sce then that for w e Q*
and ¢ chosen so that W,(w) # 0, the size of the jump in T(w) at b = M, (w) is
the length of the excursion interval (y,(w), B(w)) straddling t:

(2.8) Tityor+(@) = Tigen(@) = B(@) — ().

It is clear from (2.4) that T, is strictly increasing in b, and T, = 0. It is less
clear that T grows only by jumps. To see this, consider the zero set of W (w),
namely

Z, 210 <t < oo; Ww) =0},

which is almost surely closed, unbounded, and of Lebesgue measure zero
(Theorem 2.9.6). As with any open set, 2, N (0, c0) can be written as a countable
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union of disjoint open intervals

Z50(0,00) = | L),

aeAd

and each of these intervals contains a number t (). In the notation of 2.9),
(2.6), we have

I, = ('Yt,’ ﬁt,); aeA.

Because meas(Z,,) = 0 for P-a.e. weQ, we have

Y= ZA (ﬁt, - '}’t,) = ZA (TM,H+ - TM:,) < Z (T.e — T); 0<t< oo,

x<M,
ﬂ:“S' ﬂ:aSl

almost surely. Now set t = T, to obtain

I, < Z (Tee = T), 0<a< oo
x<a
letting a T b and using the left-continuity of 7, we see finally that, except on a
P-null set,
L<Y (ha—T) 0<b<o.
x<b
The reverse inequality is obvious.
We summarize our observations thus far.

2.1 Theorem. The processes S={S;0<b< 0} of (2.3) and T ={T;;
0<b< o} of (24) are modifications of one another. Being the right-
(respectively, left-) continuous inverses of the process M in (2.2), they are
strictly increasing. Moreover, they increase by jumps only:
29  S=Y (-5 T=Y (T.-T) 0<b<o,

x<b

x<b

as., where So_ 2 0. These processes have Stationary and independent incre-
ments, with distribution

b —
(2.10) PLS, — S,edt] = P[S,_,edt] = -2 g0~ gy,
< 2nt?
O<a<b, >0,
211 Ee ™5 = e“’ﬁ;; 0<uab< .

PRrROOF. The only new assertions are those contained in the last sentence; these
follow from Proposition 2.8.5. Od

It is apparent from Theorem 2.1 that T must have infinitely many jumps
on any interval [0,b], b > 0, but T can have only finitely many jumps whose’
size exceeds a given number ¢ > 0. We want to know the distribution of the
(random) number of such jumps. To develop a conjecture about the answer
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to this question, we ask another. How large must b be in order for T to have a
jump on [0,b] whose size exceeds ¢? We designate by 7, the minimal such
b, and think of it as a “waiting time” (although b is a spatial, rather than
temporal, parameter for the underlying Brownian motion W). Suppose we
have “waited” up to “time” ¢ and not seen a jump exceeding size £; 1., 7 > ¢.
Conditioned on this, what is the distribution of t,? After waiting up to “time”
¢, we are now waiting on the reflected Brownian motion |W. ¢ | = |W..r, —
Wr. | to undergo an excursion of length exceeding ¢; thus, the conditional dis-
tribution of the remaining wait is the same as the unconditional distribution
of 7;:

(2.12) P[t, > ¢ + bjt; > ] = P[7, > b].

This “memoryless” property identifies the distribution of 7, as exponential
(Problem 2.2).

2.2 Problem. Let I = [0, o) or I = R. Show that if G: I — (0, c0) is monotone
and

(2.13) G(b + ¢) = G(b)G(c); b,cel,

then G is of the form G(b) = e™**; be, for some constant A€ R. In particular,
(2.12) implies that for some 4 > 0,

Pty >b]l=e¢?*, 0<b<w.

After 1,, we may begin the wait for the next jump of T whose size exceeds
¢, ie., the wait for |W 1 | = |W+T - Wr, | to have another excursion of

duration exceeding ¢. It 1s not dlfﬁcult to show using the strong Markov
property, that the additional wait 7, is independent of 7. Indeed, the * ‘inter-
arrival times” 1,, 7,, T3, ... are independent random variables with the same
(exponential) distribution. Recalling the construction in Problem 1.3.2 of the
Poisson process, we now see that for fixed b > 0, the number of jumps of the
process T on [0, b], whose size exceeds ¢, is a Poisson random variable. To
formalize this argument and obtain the exact distributions of the random
variables involved, we introduce the concept of a Poisson random measure.

B. Poisson Random Measures

A Poisson random variable takes values in Ny 2 {0,1,2,...} and can be
thought of as the number of occurrences of a particular incident of interest.
Such a concept is inadequate, however, if we are interested in recording the
occurrences of several different types of incidents. It is meaningless, for example,
to keep track of the number of jumps in (0, b] for the process S of (2.3), because
there are infinitely many of those. It is meaningful, though, to record the
number of jumps whose size exceeds a positive threshold ¢, but we would like
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to do this for all positive ¢ simultaneously, and this requires that we not only
count the jumps but somehow also classify them. We can do this by letting
v((0, 5] x A) be the number of jumps of S in (0, b] whose size isin A € A((0, 00)),
and then extending this counting measure from sets of the form (0,b] x A to
the collection %((0, 0)*). The resulting measure v on ((0, c0)?, %((0, 00)2)) will
of course be random, because the number of jumps of {S,; 0 < a < b} with
sizes in 4 is a random variable. This random measure v will be shown to be
a special case of the following definition.

2.3 Definition. Let (Q,.%#, P) be a probability space, (H, ) a measurable
space, and v a mapping from Q to the set of nonnegative counting measures
on (H,#), ie, v,(C)eNy U {00} for every weQ and Ce #. We assume
that the mapping w+— v,(C) is Z/B(N, U {o0})-measurable; i.c., v(C) is an
No  {00}-valued random variable, for each fixed Ce #. We say that v is a
Poisson random measure if:

(i) For every Ce #, either P[v(C) = o] = 1, or else
A(C) & Ev(C) < o
and v(C) is a Poisson random variable;
o))
PIV(C) = n] = e_l(C)Q; neN,.
n!

(i) For any pairwise disjoint sets Cy, ..., C, in #, the random variables

v(Cy), ..., v(C,) are independent.
The measure 4(C) = Ev(C); C e #, is called the intensity measure of v.

2.4 Theorem (Kingman (1967)). Given a o-finite measure i on (H, #), there
exists a Poisson random measure v whose intensity measure is ).

PRrOOF. The case A(H) < oo deserves to be singled out for its simplicity. When
it prevails, we can construct a sequence of independent random variables ¢4,
&2, ... with common distribution P[¢,eC] = AC)/A(H); Ce #, as well as an
independent Poisson random variable N with P[N = n] = ¢~ *® (A(H)Y/n!;
neNg. We can then define the counting measure

N
v(C) & Zl lC(éj); Ces.

It remains to show that v is a Poisson random measure with intensity 4. Given
a collection Cy, ..., C, of pairwise disjoint sets in #, set C, = M\, G,
s0 ) #.o¥(Cy) = N. Let ng, n,, ..., n,, be nonnegative integers with n = n, +
ny + -+ n,. We have

P[V(Co) = Ny, V(Cl) =Nys..e, V(Cm) = nm]
= PIN =n]-P[V(Co) = no, v(Cy) = ny, ..., v(C,)) = n,|N = n]
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— o= M) U“(H))n, n! (MCO)>"° (MQ))"' . <)~(Cm)>"'"
B nl nglng!...n,! \ A(H) A(H) A(H)
AMGC))™

& (
— I_I e_l(ck)
' b
k=0 n,.

and the claim follows upon summation over nye Ng.

2.5 Problem. Modify the preceding argument in order to handle the case of
o-finite A.

C. Subordinators

2.6 Definition. A real-valued process N = {N,; 0 <t < o} on a probability
space (Q, #, P) is called a subordinator if it has stationary, independent incre-
ments, and if almost every path of N is nondecreasing, is right-continuous,
and satisfies N, = 0.

A prime example of a subordinator is a Poisson process or a positive linear
combination of Poisson processes. A more complex example is the process
S = {S,; 0 < b < oo} described in Theorem 2.1. P. Lévy (1937) discovered that
S, and indeed any subordinator, can be thought of as a superposition of
Poisson processes.

2.7 Theorem (Lévy (1937), Hinin (1937), 1t6 (1942b)). The moment gen-
erating function of a subordinator N = {N,;;0 <t < oo} on some (0, #,P) is
given by

(2.14) Ee ™ = exp[—t{ma + J (1- e‘“’)u(df)}:l; t>0,0>0,
(0,0)

for a constant m > 0 and a o-finite measure y on (0, ) for which the integral
in (2.14) is finite. Furthermore, if ¥ is a Poisson random measure on (0, o0)? (on
a possibly different space (&, #, P)) with intensity measure

(2.15) Aldt x d¢) = dt- u(de),
then the process
(2.16) NAamt+ J £9((0,t] x d¢); 0<t< oo
(0,0)
is a subordinator with the same finite-dimensional distributions as N.
2.8 Remark. The measure p in Theorem 2.7 is called the Lévy measure of the

subordinator N. It tells us the kind and frequency of the jumps of N. The
simplest case of a Poisson process with intensity 4 > 0 correspondstom = 0
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and p which assigns mass 4 to the singleton {1}. If u does not have support
on a singleton but is finite with A = u((0, 00)), then N is a compound Poisson
process; the jump times are distributed just as they would be for the usual
Poisson process with intensity 4, but the jump sizes constitute a sequence of
independent, identically distributed random variables (with common distribu-
tion u(d/)/2), independent of the sequence of jump times. The importance
of Theorem 2.7, however, lies in the fact that it allows y to be o-finite; this is
exactly the device we need to handle the subordinator S = {S,;0 < b < oo},
which has infinitely many jumps in any finite interval (0, b].

PROOF OF THEOREM 2.7. We first establish the representation (2.14). The
stationarity and independence of the increments of N imply that for o > 0,
the nonincreasing function p,(t) £ Ee™*™; 0 < t < oo, satisfies the functional
equation p,(t + s) = p,(t)p,(s). It follows from Problem 2.2 that

(2.17) Ee™®M = ¢™W®; >0 a>0,

holds for some continuous, nondecreasing function ¥: [0, 00) - [0, o0) with
¥(0) = 0. Because the function g(x) £ xe™*; x > 0, is bounded for every a > 0,
we may differentiate in (2.17) with respect to « under the expectation sign to
obtain the existence of ¢’ and the formula

1 1
' (a)e V@ = ;E[N,e""”t] =- f te™P[N,ed(]; a>0,t>0.

[0,0)

Consequently, we can write

(2.18) ' (@) = lim ke, J (1 + £)e ' p,(d?t),
[0, 0)

k-

where

N 1 /7
A E| & ————P[N,,ed/].
Cx |:l T Nigx > Di(df) e 1+7 [ €4t ]

If N = 0as, the theorem is trivially true, so we may assume the contrary and
choose a > 050 that ¢ £ E(N; 1y, ) is positive. For ¢, we have the bound

Nyu 1
2.19 >E{———-1 >——E[N,,1
( ) Cx = |:l + Nl/k {Nl/kSa}:| “1+a [ 1k {Nl/kSa}]

k(l +a) Z E[(Nj — Ni- 1)/k)1{ Njp—Ny- 1)/k<a}]

£
=
k(1 + a)

We can establish now the tightness of the sequence of probability measures
{Pi}iZs. Indeed,
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P[N, <¢]1= P[Ny, — Njoou <¢; j=1,...,k]
= (PN <71,
and thus, using (2.19), we may write

k(1 + a)
£

(220) pu((t,0) < 1“;—‘ka[N,/k > ] < {1 —(P[N, < £])"™}.
Because lim, , k(1 — &%) = —log & 0 < & < 1, we can make the right-hand
side of (2.20) as small as we like (uniformly in k), by taking # large. Prohorov’s
Theorem 2.4.7 implies that there is a subsequence {p }iZ, which converges
weakly to a probability measure p on ([0, ), Z([0, 0))). In particular, be-
cause the function Z— (1 + #)e* is bounded for every positive «, we must
have

lim J (1 + 0)e™ py (d) = J (1 + £)e™* p(d?).
[0.) [0.0)

jmeo

Combined with (2.18), this equality shows that k;c, converges to a constant
¢ > 0, so that

221) yY@=c J (1 + £)e ™ p(d?)
[0.0)

=cp({0}) + ¢ J (1 + e *p(dr);, 0<a< o0.
(0.0)

Note, in particular, that ¢’ is continuous and decreasing on (0, c0). From the

fundamental theorem of calculus, the Fubini theorem, (2.21), and ¢/(0) = 0, we

obtain now

1+7
(222) (o) = acp({0}) + ¢ J %(l — e \p(df); 0<o < o0,
(0.0)
The representation (2.14) follows by taking m = cp({0}) and
1+7¢
(2.23) a(dey = ¢ ; ) pidey, ¢>0,

the latter being a o-finite measure on (0, c0). In particular, we have from (2.22).

(2.24) W(0) = mo + J (1 — e )u(df) < 0; 0<a< .
(0,)

We can now use Theorem 2.4 with H = (0, 0)? and # = %(H), to construct
on a probability space (3, #, P) a random measure ¥ with intensity given by
(2.15); a nondecreasing process N can then be defined on (€, F, P) via (2.16).
It is clear that N, = 0, and because of Definition 2.3 (i), N has independent
increments (provided that (2.25), which follows, holds, so the increments are
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defined). We show that N is a subordinator with the same finite-dimensional
distributions as N. Concerning the stationarity of increments, note that for a
nonnegative simple function ¢(¢) = Y'_, a,1,,(¢) on (0, oc), where 4, ..., A
are pairwise disjoint Borel sets, the distribution of

J e()((t,t + h] x df) = Z a; ¥((t,t + h] x 4,)
(0, 0) i=1

is a linear combination of the independent, Poisson (or else almost surely
infinite) random variables {¥((t,t + h] x A,)}’-; with respective expectations
{hu(A))}i-;. Thus, for any nonnegative, measurable ¢, the distribution of
J(0.00) @) T((t,t + B] x df) is independent of t. Taking ¢(¢) = #, we have the
stationarity of the increment N,,, — N,.

In order to show that N is a subordinator, it remains to prove that

(2.25) N<oo; 0<t<ow

and that N is right-continuous, almost surely. Right-continuity will follow
from (2.25) and the dominated convergence theorem applied in (2.16), and
(2.25) will follow from the relation

(2.26) e = g W@, 4 >0t >0,

where Y isasin (2.24). Withn > l,and /" £ j27" " = (4", £™]; 1 <j < 4",
we have from the monotone and bounded convergence theorems:

(2.27)

Eexp{—af £ 9((0,t] x d/)} = lim Eexp{—a Z £, 9((0,£] x I‘"’)}
(0,) n—w

But the random variables #((0,t] x I{”); 2 < j < 4" are independent, Poisson,
with expectations tu(I{"); 2 < j < 4", and these quantities are finite because
the integral in (2.14) is finite. The expectation on the right-hand side of (2.27)
becomes

f] Eexp{—az{" #((0,t] x I!")} = exp{—t Z (1 — e )u(I}"’)},

which converges to exp{—t fo..,(1 — e"*)u(d?)} as n — co. Relation (2.26)
follows and shows that for each fixed t > 0, N, has the same distribution as
N,. The equality of finite-dimensional distributions is a consequence of the
independence and stationarity of the increments of both processes. O

Theorem 2.7 raises two important questions:

(I) Are the constant m > 0 and the Lévy measure p unique?
(II) Does the original subordinator N admit a representation of the form
(2.16)?

One is eager to believe that the answer to both questions is affirmative; for
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the proofs of these assertions we have to introduce the space of RCLL
functions, where the paths of N belong.

2.9 Definition. The Skorohod space D[0, ¢) is the set of all RCLL functions
from [0, o) into R. We denote by #(D[0, o)) the smallest o-field containing
all finite-dimensional cylinder sets of the form (2.2.1).

2.10 Remark. The space D[0, 00) is metrizable by the Skorohod metric in
such a way that #(D[0, o)) is the smallest o-field containing all open sets
(Parthasarathy (1967), Chapter VII, Theorem 7.1). This fact will not be needed
here.

2.11 Problem. Suppose that P and P are probability measures on (D[0, o),
A(D[0, ©0))) which agree on all finite-dimensional cylinder sets of the form

{yeD[0, c0); y(t,)eTy, ..., y{t)el,},

wheren>1,0<t, <t, < <t,<oo,and ;e BR);i=1,...,n Then P
and P agree on #(D[0, ). (Hint: Use the Dynkin System Theorem 2.1.3.)

2.12 Problem. Given a set C < (0, 0)?, let n(-; C): D[0, 00) > Ny u {c0} be
defined by

(2.28) n(y; C) £ #{(t.0)e C; [y(t) — y(t—-)| = £},

where # denotes cardinality. In particular, n(y; (t,t + h] x (£, c©))is the num-
ber of jumps of y during (¢,t + h] whose sizes exceed . Show that n(-; C) is
A(D[0, cv))-measurable, for every Ce%((0,00)?). (Hint: First show that
n(; (0,t] x (£, o0)) is finite and measurable, for every ¢t > 0, £ > 0.)

Returning to the context of Theorem 2.7, we observe that the subordinator
N on (Q, %, P) may be regarded as a measurable mapping from (Q, #) to
(D[O, 00), B(D[0, 20))). The fact that N defined on (&3, #, P) by (2.16) has the
same finite-dimensional distributions as N implies (Problem 2.11) that N and
N induce the same measure on D[0, o0):

P[NeA] = P[NeA];Y Ae B(D[0, 0)).

We say that N under P and N under P have the same law. Consequently, for
C,, C,, ..., C, in %((0, 00)?), the distribution under P of the random vector
(n(N; Cy), ..., n(N; C,)) coincides with the distribution under Pof(n(N; C,),
..., n(N; C,)). But

(2.29) n(N; C) = #C); CeB((0, ) x (0, )
is the Poisson random measure (under P) of Theorem 2.7, so
(2.30) v(C) & n(N; C) = #{(t,/)eC; N,— N,_ =¢}; CeR((0, )?)

is a Poisson random measure (under P) with intensity given by (2.15).
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We observe further that for ¢ > 0, the mapping ¢,: D[0, oc) — [0, c0] defined
by

oy & f £n(y; (0,t] x d¢)
(0,)

is B(D[0, 00))/#([0, cc])-measurable, and

@,(N) =J v((0,t] x df), cp,(ﬁ) =J £9((0,t] x do).
(0,0)

(0, )

It follows that the differences {N, — ,(N);0 <t < o0} and {RN, — Ny,

0 <t < oo} have the same law. But N, — ¢,(N) = mt is deterministic, and thus
N, — ¢,(N) = mt as well. We are led to the representation

(231 N =mt + J v((0,t] x df), 0<t< oo,
(0,)
We summarize these remarks as two corollaries to Theorem 2.7.

2.13 Corollary. Let N = {N,; 0 < t < o0} be a subordinator with moment gen-
erating function (2.14). Then N admits the representation (2.31), where v given
by (2.30) is a Poisson random measure on (0, 00)? with intensity (2.15).

2.14 Corollary. Let N = {N;0 < t < o0} be a subordinator. Then the constant
m > 0 and the o-finite Lévy measure u which appear in (2.14) are uniquely
determined.

PrOOF. According to Corollary 2.13, u(A) = Ev((0, 1] x A); Ae B0, ), where
v is given by (2.30); this shows that u is uniquely determined. We may solve
(2.31) for m to see that this constant is also unique. O

2.15 Definition. A subordinator N = {N;0 <t < oo} is called a one-sided
stable process if it is not almost surely identically zero and, to each o > 0,
there corresponds a constant f(«) > 0 such that {aN,; 0 < t < oo} and {N,g,;
0 <t < o} have the same law.

2.16 Problem. Show that the function f(«) of the preceding definition is con-
tinuous for 0 < a < oo and satisfies

(2.32) Bloy) = B(@)B(y); «=0,7=>0
as well as
(2.33) Y@ =rf(a); a=0,

where r = (1) is positive and ¥ is given by (2.17), or equivalently, (2.24). The
unique solution to equation (2.32) is () = «*, and from (2.33) we see that for
a one-sided stable process N,
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(2.34) Ee*™ = exp{ —ty(2)} = exp{—tra’}; 0 <o < o0.

The constants r, ¢ are called the rate and the exponent, respectively, of the
process. Because y is increasing and concave (cf. (2.21)), we have necessarily
0 <& < 1. Thechoicee=1leadstom=r,u=0in(2.14). For 0 <e¢ < 1, we
have

re df

(2.35) m=0, pd)= =g [1.;5;

¢ > 0.

D. The Process of Passage Times Rewvisited

The subordinator S of Theorem 2.1 is one-sided stable with exponent ¢ = (1/2).
Indeed, for fixed a >0, (1/®)S, /, is the first time the Brownian motion
(Lemma 2.9.4 (i)) W* = {W* £ (1/\/2)W,; 0 < t < oo} reaches level b; ie.,

1 .
&S,,\/;zS,;" £ inf{t > 0; W* > b}.

Consequently, {¢S,; 0 <b < oo} hasthesamelaw as {aS =S, /; 0<b < o0},
from which we conclude that f(«) appearing in Definition 2.15 is /. Com-
parison of (2.11) and (2.34) shows that the rate of S is r = /2, and (2.35) gives
us the Lévy measure

u(de) = ¢ > 0.

¢
S22t
Corollary 2.13 asserts then that
S, = J £v((0,b] x df), 0<b < oo,
(0,0)

where, in the notation of (2.1)-(2.4), (2.30)
(2.36) v(C) = #{(b,\)eC; S, — S, =1}

= #{(b,£)e C; |W| has an excursion of duration £ starting at
time T, }; C e #((0, 00)?),

is a Poisson random measure with intensity measure (dt d¢//2n¢>). In par-
ticular, for any I € ((0, c0)) and 0 < § < & < oo, we have

(2.37) Ev( x [d,¢)) = meas(]) J: \/% = meas(I)\/% <\}3 — —%)

For 0 <& <& < oo and b = 0, let us consider the random variables
(2.38)  NP* £ v((0,b] x [0,¢))
— Number of jumps of size # €[4, ¢) suffered by {S,; 0 < a < b},
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(2.39) Edca J £v((0,b] x df)

[3,¢)
= Total length of jumps of size £ € [ 9, ¢) suffered by
{S;;0<a<b}.

We also agree to write
Ny & Ny = =v((0,b] x [6,00)), £;£ £9° = J £v((0,b] x d?).
(0,¢)

The process N*={N}50<b< oo} is Poisson with intensity
v (2/m) ((l/\/g) - (1/\/2)); the process £>¢= {£25,0<b < o0} is a sub-
ordinator which grows only by jumps (see the last paragraph of the proof of
Theorem 2.7). Furthermore,

ds
(2.40) Ee 3" = exp[—b J (1—e) ]
@) S 2nl3

and these assertions concerning £5°° hold even if 4 = 0.
The behavior of Nf as § | 0 merits some attention. Of course, limyy o Nf = o0
a.s., and any meaningful statement will require some normalization.

2.17 Proposition. For almost every weQ,

5
(2.41) lim /%Ng’(w) —b: VO<bh< oo

8d0

ProoF. The process

Q4 V((O,b] X |:tl—2,00>>; 0<t< o,

has nondecreasing, right-continuous paths and independent increments. For
0 <s<t, the increment Q, — Q, = v((0,b] x [t72,572)) is Poisson with

expectation
S de 2
EQ,—Q)=b =b [—(t —s).
@~ 0) J‘t—z 2nt3 \ﬁ

We conclude that Q is a Poisson process, for which the strong law of large
numbers of Remark 1.3.10 gives lim,__, (Q,/t) = b./(2/n) a.s. By definition we
have NY = Q,, /5, so (2.41) holds a.s. for each fixed b. Except for w in a null
set A < Q, this relation must hold for all rational, nonnegative b. The mono-
tonicity in b of sides of (2.41) then gives us its validity for « e Q\A4,0 < b < 0.

J

As ¢ | 0, the dominated convergence theorem shows that £; | 0 a.s. In other
words, since S, is finite, the total length of its jumps of size less than ¢ must
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approach zero with &. We thus normalize £; in a manner “opposite” to the
normalization of (2.41).

2.18 Proposition. For almost every we Q,

(2.42) lim [ (@) =b; VO<b< .
edo 2e
PRrROOF. Given ¢ > 0and 0 < p < 1, we have foralln > 1:
n 1
(243) Y, Vepu((0,b] x [ep™,ep?* ) < — £
k=1 &

< Z \/;:pzuc—l)v((o, b] x [8p2k, 8pzuc—l)))_
k=1
The left-hand side of (2.43) may be written as

S (oSN — g Jep TN,
k=1

which converges as ¢ | 0 (see (2.41)) to

z" k __ + _ % _ ntl
b\ﬁk;(p p* 1)—b\ﬁ(p p"h).

It follows that lim£¢0(l/\/§)L§ > b/(2/m)(p — p"*), as., and letting first
n — oo and then p 11, we obtain

.1 2
lim —£; > b\/: as.
ed0 \/;2 n

Now let n(e) & sup0<,558|\/5N,;j — b /(2/m)|, so that lim, on(e) =0 as.
(Proposition 2.17). The right-hand side of (2.43) is subject to the bound

iJWHWMh&w@WW

{ \/g)ﬁNsp k_l\/WNbgpz(k—l)}
{ < f+"(8)> . 1<b\/§—'1(8)>}
T
b |2 1 2
= ;\/; + '1(8)<; + T——p>‘

It follows that Tim, o (1/1/2) £ < (b/p){/(2/m). Letting p 1 1, we obtain

lim —L,, <b 2 as.

ed 0

u[\/js u[\/]8
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This proves that (2.42) holds a.s. for each fixed b. We conclude as in Propo-
sition 2.17. 0

2.19 Exercise. Show that for fixed, positive J, the process X,(5) 2 N? —
b\/2/nd; 0 < b < o0, is a right-continuous, square-integrable martingale
(with respect to the filtration {£,*®}). This process has stationary, inde-
pendent increments and

<X(5)>,,=b\/z; 0<b< .
7o

Furthermore, we have the law of large numbers

lim iNp= |2
m — = —<, 4a.S.
b_mgb b 71.’5

2.20 Exercise. Show that for fixed, positive ¢, the process V,(e) 2 £; —
b./(2¢/m); 0 < b < oo is a right-continuous, square-integrable martingale
(with respect to the filtration {#,®}). This process has stationary, inde-
pendent increments and

2 &
(2.44) Vs =~ \/;

Establish the representation

(2.45) B = —eN} +j Nldt; 0<b< o, as.,
(0,2

as well as the law of large numbers

1 2
(2.46) lim-£;= |2 as
b—»oob T

(Hint: Obtain the moment generating function
2¢ ds
247) Ee‘“”’“’=exp[“b\ﬁ _”J (l—e—af>—].
n (©.¢) LA

E. The Excursion and Downcrossing Representations
of Local Time

Let us now discuss the significance of Propositions 2.17, 2.18, for Brownian
local time. Returning to the context of (2.1)~(2.4) and with v the Poisson
random measure given by (2.36), we may recast these propositions as

(2.48) P[lim \/”;‘gv((o, M x [g,00)) = Mz V0 <t < oo] =1,

ed0
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(2.49) 11m\/7j v((O,M,] x d¢) = M,,V0<t<oo]
a¢0 (0, 5)

But, by (2.36),
v((0, M,] x [, 0))

# {jumps of size > ¢ suffered by {S,; 0 < b < M,}}

_ excursion intervals away from the origin,
~ 7 |of duration >¢, made by {W,; 0 <u < Sy}

As observed earlier, if we have W, # 0 so that (2.7) holds, then Sm, = B, is the
time of conclusion of the excursion of W straddling ¢, and

excursion intervals away from
(2.50a) v((0,M,] x [&,00)) = # < the origin, of duration >¢,
initiated by W before ¢

On the other hand, if W, = 0, then

excursion intervals away from the
(2.50b)  v((0,M,] x [, 00)) = # < origin, of duration >, initiated
by W at or before time ¢

Instead of the expressions on the right-hand side of (2.50a, b), it is perhaps
easier to visualize the “number of excursion intervals away from the origin,
of duration >e&, completed by W at or before time t.” This expression differs
from v((0, M,] x [&, 00)) by at most one excursion, and such a discrepancy in
counting would be of no consequence in formulas (2.48), (2.49): in the former,
it would be eliminated by the factor \/E as £ | 0; in the latter, the effect on the
integral would be at most ¢, and even after being divided by \/E, the effect
would be eliminated as ¢ | 0. Recalling the identifications (2.1), we obtain the
following theorem.

221 Theorem (P. Lévy (1948)). The local time at the origin of the Brownian
motion W satisfies

L,(0) = lim ne excursion intervals away from the origin, of
T e duration >¢, completed by {W,;0 <s <t}

= lim
ed 0

Sfrom the origin of individual duration <z, ;

\/; Total duration of all excursion intervals away
completed by {W; 0 <s <t}

VO <t < oo, as.

2.22 Remark. The notion of local time 2L,(0) as occupation density suggests
that this quantity is determined by the behavior of the Brownian path W near,
rather than at, the origin. Theorem 2.21 shows that local time is actually
determined by the way in which Brownian motion spends time at the origin,
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for both representations in that theorem can be computed from knowledge
of the zero set Z,, = {0 <t < oc0; W, = 0} alone.

A third representation of local time in the spirit of Theorem 2.21, the
downcrossings theorem, was conjectured by Lévy (1959) and proved by It6 &
McKean (1974). We offer a proof taken from Stroock (1982).

Recalling the notation introduced immediately before Theorem 1.3.8, let

Di(e) = Dyo (0, &; [W])
be the number of downcrossings of the interval [0, £] by the Brownian motion
{IW0<s<t).

2.23 Theorem (P. Lévy’s Downcrossings Representation of Local Time). The
local time at the origin of the Brownian motion W satisfies

(2.51) 2L,0)=limeD,(e);, 0<t< o0,as.
ed0

PRrOOF. For fixed & > 0, let us define recursively the stopping times 7, = 0 and
Linf{t > 1,_; Wl =¢}, 1,2inf{t >0,; |W]|=0}

forn > 1. Withy, =6, — 7,_4, ¢, = 7, — 6,, we have from the strong Markov

property as expressed by Theorem 2.6.16 that the pairs (n,, ¢,), (75, &,), ... are

independent and identically distributed. Moreover, Problem 2.8.14 asserts
that

(2.52) En, = %,
and we also have
(2.53) {i < D(e)} = {1; < t} is independent of {(n,, &) }izj+1-

Suppose that te[o,,7,) for some n > 1; then

O

n—1
Y AIWing) = Wong [} = 3 (W, — W} + Wil —¢
4 F=

= —eD/(e) + |W| —
If l¢ U;l'o=1 [Gna Tn)a then Z;O=1 {|VVM:,| - |m/\u-|} = _th(g)- In either case,

(2.54) Zl {Wins] = IWir |} = —eDile) + (W] ~ ) Z Lia, (8
= F=

On the other hand, the local time L (0) is flat on | ), [g,, ,) (cf. Problem
3.6.13 (ii)), and thus from the Tanaka formula (3.6.13) we obtain, a.s.:

R0 t/\ﬂ'l
(2.55) Zl {IWingl = IWina)l} = IWi| — 2L,(0) — J sgn(W,)dW,.
Jj= t

ATy

s

From (2.54), (2.55) we conclude that
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(2.56) eD(e) — 2L,(0) = —| W Zl Iy ap(®) — & Zl Lig,.¢(0)
F= =

J

w [tAa;
+ Y sgn(W,)dW,, as.
j=1

tAty

2.24 Problem. Conclude from (2.56) that, for some positive constant C(r)
depending only on ¢, we have

(2.57) EleD,(g) — 2L,(0)]> < C(t)e.

Cebysev’s inequality and (2.57) give
P[In2D,(n"%) — 2L,(0)| > n"'*] < C(t)n™ 2,
and this, coupled with the Borel-Cantelli lemma, implies

lim n™2D,(n"2) = 2L(0), as.
But for every 0 <& < 1, one can find an integer n = n(e) > 1 such that
(n+ 1)"? < ¢ < n"2, and obviously

(n+ 1)72D,(n"%) < eDy(e) < n~2D,((n + 1)72)

holds. Thus, (2.51) holds for every fixed ¢ € [0, c0); the general statement follows
from the monotoncity in ¢ of both sides of (2.51) and the continuity in ¢ of

L,(0). O

2.25 Remark. From (2.51) and (2.1), (2.2) we obtain the identity
(2.58) lim eDy, 4(0, & M(w) — B(w)) = M(w); Y0 <t < o
ed0

for P-ae. weQ. The gist of (2.58) is the “miraculous fact,” as Williams (1979)
puts it, that the maximum-to-date process M of (2.2) can be reconstructed
from the paths of the reflected Brownian motion M — B, in a nonanticipative
way. As Williams goes on to note, “this reconstruction will not be possible for
any picture you may draw, because it depends on the violent oscillation of the
Brownian path.” You should also observe that (2.58) offers just one way of
carrying out this reconstruction; other possibilities exist as well. For instance,
we have from Theorem 2.21 that

lim

origin, of duration >¢, completed > = M,; V0 <t < co,
&40

e excursion intervals away from the
[ #
by {M, — B;0<s <t}

total duration of all excursion

. T |i 1 he origin,
lim [ mt.erv.a S, away frorpt corg =M,; V0<t< oo,
<oV 2¢ | of individual duration <eg,

completed by {M, — B;0 <s < t}

hold almost surely.
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6.3 Two Independent Reflected Brownian Motions

Our intent in this section is to show how one can create two independent,
reflected Brownian motions by piecing together the positive and negative
excursions of a standard, one-dimensional Brownian motion. This result has
important consequences, and we develop some of them, most notably the first
Jormula of D. Williams (Theorem 3.6). Our basic tools will be the F. Knight
Theorem 3.4.13 and the theory of Brownian local time as developed in Section
3.6; we shall retain the setting, assumptions, and notation of that section.

A. The Positive and Negative Parts of a Brownian Motion

We start by examining the Tanaka formulas (3.6.1 1-12) a bit more closely.
Witha =z =0, L(t) 2 L,0), and

t

By L2 —J' o, (W,) AW, L(t)éf w0l W) AW,
1] 1]

these formulas read
(3.2) Wt =—1,0)+L(t; 0<t<oo

a.s. P°. The processes in (3.1) are continuous, square-integrable martingales,
with quadratic variations

(3.3) L) =T, (t) £ meas{0 <5 < t; W, > 0}
(3.9) LX) =T_() £ meas{0 < s < t; W, < 0}
and cross-variation equal to zero:

t
(3.5) i, 15t = J Lo, 00 (W) o, 0 Ws) ds = 0.

1]
We also have
(3.6) limT,(t) = o0, as. P°

| Sudee]

from Problem 3.6.30.
On the other hand, W* are nonnegative processes which satisfy

37 r L. W () dL(s) = 0
1]

a.s. P° (Problem 3.6.13 (ii)). It becomes evident then from (3.2), (3.7) that the
pairs (L, W *) are solutions to the Skorohod equation of Lemma 3.6.14 for the
functions —1I,, respectively. From the explicit form (3.6.32) of the solution to
this equation, we deduce 7

(3-8) L(t)= max I.(s), W= max I ,(s)—1I.(t; 0<t<oo, as. PO

0<s<t 0<s<t
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Now let us introduce the right-continuous inverses of the occupation times
I'; of (3.3), (3.4), namely

(3.9 Il =mf{t=0T, (>} 0<1< 0.
Theorem 3.4.13 asserts, in conjunction with (3.3)-(3.6), that the processes
(3.10) B.(2I,Ti(x); 0<t<oo

are independent, standard, one-dimensional Browntan motions under P°, and
from Theorem 3.4.6 we also have the representations

(3.11) I.)=B,T.(t), 0<t< 0.

Here then is the fundamental result of this section.

3.1 Theorem. The processes

(3.12) W.()2 +W, 0<7< o0

3@

are independent, reflected Brownian motions under P°.

PRrOOF. We start by introducing
(3.13) L.()2 LT ()

and observing that because of (3.8), (3.11), and Problem 3.4.5 (11), (ii1) we have,
a.s. PO

(314) Li(t)= max I.(s)= max B, (T',(s)) = max B.(u)

0<s<T3(r) 0<I, ()< 0<u<s

for all 0 < 7 < oo; in particular, L, are independent, continuous nondecreas-
1ng processes.

Now for each 1> 0, T, (I';!(1)) = t < T (T3} (7) + &) for all § > 0, and
consequently Wr_i,, > 0, Wi_i(,, < 0 hold as. P°. It follows then that
(3.15) W, (1) = Witiy = L.(t) — B4(1) = max B.(u)— B.(7)

O<u<rt

also hold a.s. P, first for a fixed t > 0, and then by continuity, for all > 0
stmultaneously. From Theorem 3.6.17, each of the processes W, is a reflected
Brownian motion starting at the origin; W, are independent because B, are.

O

3.2 Remark. Theorem 3.6.17 also yields that the pairs {(W.(z), L, (7));
0 < 7 < oo} have the same law as {(|W,}, 2L,(0)); 0 < t < oo}, under P°.
In particular, we obtain from (3.6.36) and (3.14), (3.15):

1
(3.16) Li(x)= 1i¢m z—smeas{O <o<t;Wio)<g}, as. P°
ev 0

for every € [0, co). The processes L. are thus adapted to the augmentations
of the filtrations 4 £ ¢(W,(u);0 < u < 7).
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3.3 Remark. As suggested by the accompanying figure, the construction of
W.(-) = Wr.1(., amounts to discarding the negative excursions of the Brownian
path and shifting the positive ones down on the time-scale in order to close
up the gaps thus created. A similar procedure, with a change of sign, gives the
construction of W_(-) = Wi,(,,. Theorem 3.1 asserts then, roughly speaking,
that the motions of W on the two half-lines (0, o) and (— 0, 0) are independent.

+3
t t T
+3
)
o tho
I |
! +
g B
! | I
+1 l +1 4
| I I
i ! |
0 W, W0 T T, 0 W,

3.4 Problem. Derive the bivariate densities
b + |a| { (b +{a)?
eXpy —————

< 2ntd 2t

Aa+b) {_(a +b)?

3

(3.17)  P°[W,eda;2L,(0)edb] = }dadb; aeR

(3.18) P°[|W,|eda; 2L,(0)edb] =

}dadb; a>0

forb > 0.

3.5 Exercise. Show that the right-hand side of (5.3.13), Exercise 5.3.12, is given
by (- 4.(a) da, where

_ 1 _(lal +1)? ~2}dl * v —1?
(3.19) q,(a)—\/—zzm[exp{ BT }+e 2 Ll exp{— 5 }dv}
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B. The First Formula of D. Williams

The processes L, of (3.13) are continuous and nondecreasing (cf. (3.14)), with
right-continuous inverses

(320) L7'(b)2inf{t >0, L,(t)> b} = inf{r >0; max B, () > b}.

o<u<t
For every fixed be[0, o), L3!(b) is P%-a.s. equal to the passage time
(3.21) T, & TP+ = inf{t > 0, B, (1) > b}

of the Brownian motion B to the level b; cf. Problem 2.7.19 ().

3.6 Theorem (D. Williams (1969)). For every fixed a > 0, t > 0 we have
(322)  EO[e 7O\ W, (), 0 < u < 0] = e V2L g5 PO,

PrOOF. The argument hinges on the important identity
(3.23) TN =1+ LML (D) =1+ T as P°

which expresses the inverse occupation time I'; (1) as 1, plus the passage time
of the Brownian motion B_ to the level L, (). But L.(1) is a random variable
measurable with respect to the completion of a(W, (u); 0 < u < ), and hence
independent of the Brownian motion B_. It follows from Problem 2.7.19 (i) that

(3.24) LML (1) = Ty as. PO,

and this takes care of the second identity in (3.23). The first follows from the
string of identities (see Problem 3.7)

(3.25) LZYL,(r)) = inf{t = 0; L_(t) > L(7)}
=inf{t > 0; L(T-'(t)) > L(T'T'(1)}
=inf{t > 0; T-'() > I'1' (1)}
=T (I () =T - TL.I(0)
=T;Y1)—1, as. P°

Now the independence of {B_(1); 0 < u < oo} and {W,(u); 0 <u < o0}, along
with the formula (2.8.6) for the moment generating function for Brownian
passage times, express the left-hand side of (3.22) as

e—atEO e_aTElb=L+(:) — e—ar—\/2;L+(r), a.s. PO. [:I
3.7 Problem. Establish the third and fourth identities in (3.25).

Following McKean (1975), we shall refer to (3.22), or alternatively (3.23), as
the first formula of D. Williams. This formula can be cast in the equivalent
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forms

(326) PO[TYN(D) < (W0 <u< 0] = PO[Ty <t — tllpep o

)

' e—LE(:)/z(o-r)
:f L,(1)————df
t 27(6 — 1)°

a.s. P°, which follow easily from (3.23) and (2.8.4), (2.8.5). We use the notation
D(z) = (1/3/2n) 2, e du.

We offer the following interpretation of Williams’s first formula. The re-
flected Brownian motion {W, (u); 0 < u < o0} has been observed, and then a
time t has been chosen. We wish to compute the distribution of I';! () based
on our observations. Now W, consists of the positive part of the original
Brownian motion W, but W, is run under a new clock which stops whenever
W becomes negative. When t units of time have accumulated on this clock
corresponding to W,, I'(z) units of time have accumulated on the original
clock. Obviously, I';!(z) is the sum of  and the occupation time T_(I';(2)).

Because W_ is independent of the observed process W, , one might surmise
that nothing can be inferred about I'_(t) from W, . However, the independence
between W, and W_ holds only when they are run according to their respec-
tive clocks. When run in the original clock, these processes are intimately con-
nected. In particular, they accumulate local time at the origin at the same
rate, a fact which is perhaps most clearly seen from the appearance of the same
process L in both the plus and minus versions of (3.2). After the time changes
(3.12) which transform W < into W, , thisequal rate of local time accumulation
finds expression in (3.13). (From (3.16) we see that L is the local time of W, .)
In particular, when we have observed W, and computed its local time L, (z),
and wish to know the amount of time W has spent on the negative half-line
before it accumulated t units of time on the positive half-line, we have a
relevant piece of information: the time spent on the negative half-line was
enough to accumulate L_ (7) units of local time.

Suppose L, (r) = b. How long should it take the reflected Brownian motion
W™ to accumulate b units of local time? Recalling from Theorem 3.6.17 that
the local time process for a reflected Brownian motion has the same distribu-
tion as the maximum-to-date process of a standard Brownian motion, we see
that our question is equivalent to: How long should it take a standard
Brownian motion starting at the origin to reach the level b? The time required
is the passage time T,” appearing in (3.23), (3.26). Once L, (¢) = b is known,
nothing else about W, is relevant to the computation of the distribution of
I_(T7(x))

3.8 Exercise. Provide a new derivation of P. Lévy’s arc-sine law for T, (¢)
(Proposition 4.4.11), using Theorem 3.6.
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C. The Joint Density of (W (¢), L(t), T',(¢))

Here is a more interesting application of the first formula of D. Williams. With
© > 0 fixed, we obtain from (3.26):

S pe—b2/2a—0)
(327) PIIT'(edtiW, (1) =a; L,(1) =b] = ————dt; 1<t < o0,

St — 13

for almost every pair (a, b) of positive numbers. Remark 3.2 and the bivariate
density (3.18) give

P°[W,(x)eda; L,(1)edb] =

2(61—+?e—(a+b)2/2r da db; a > 0, b> 0,

2nt
and in conjunction with (3.27):
(3.28) P°[W.(v)eda; L, (1)edb; T (1)edt] = f(a, b; t, 1) dadbdt;
a>0, b>0, t>1

where

(329 fla b4

bla + b) { b’ _(a+b)2}

P —” P\ Te—0 20

We shall employ (3.28) in order to derive, at a given time t€(0, o), the
trivariate density for the location W, of the Brownian motion; its local time
L(t) = L(0) at the origin; and its occupation time I',(t) of (0, o) as in (3.3),
uptot.
3.9 Proposition. For every finite t > 0, we have
(3.30) P°[W,eda; L(t)edb; T, (t)edr]

__{fla,b;t,7)dadbdr; a>0, b>0, 0<t<t,
" f(—ab;t,t —t)dadbdr; a<0, b>0, 0<zt<t,

in the notation of (3.29).

3.10 Remark. Only the expression for a > 0 need be established; the one for
a <0 follows from the former and from the observation that the triples
(W, L(1),T,(t)) and (— W, L(¢t),t — T, (¢)) are equivalent in law.

Now in order to establish (3.30) for a > 0, one could write formally

1
EPO[W+(I) €da; L,(t)edb; T (7)edt]

=dLPO[W,eda;L(t)edb;F+(t)edr]; a>0, b>0, 0<t<t,
T
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and then appeal to (3.28). On the left-hand side of this identity, t is fixed and
we have a density in (a, b, t); on the right-hand side, ¢ is fixed and we have a
density in (g, b, 7). Because the two sides are uniquely determined only up to
sets of Lebesgue measure zero in their respective domains, it is not clear how
this identity should be interpreted.

We offer now a rigorous argument along these lines; we shall need to recall
the random variable §, of (2.6), as well as the following auxiliary result.

3.11 Problem. ForaeR, t > 0, ¢ > 0 we have

(3.31) P°|: max W,>a+ ¢ min WSSa—s:|=o(h)
t<s<t+h t<s<t+h

and fora> 0,7 > 0:

(3.32) POIW.()>a;t <T-'(0) <t +h: B, <t + h] = ofh)

(3.33) PO[W, > a; B, <t + h] = o(h)

ashlO.

PROOF OF PROPOSITION 3.9. For arbitrary but fixeda > 0,b > 0,t > 0, t€(0,¢t)
we define the function

(3.39) F(a, b;t,7) 2 Jm Jm fla, B t, ©)dodp
b a

which admits, by virtue of (3.28), (3.32), the interpretation
(3.35) F(a,b;t,7)

1
= lim —};PO[WJr(r) >a;L,(0)>b;t <T Y v) <t + h]
hi0

= iiir; %PO[WJ,(I) >a;L.(0)>b;t <T;Y(0)<t+ h; B, >t +h]
For every h > O we have
I.(s)=T, () +s—1t, L(s)=L{t), VYselt,t+ h]
on the event {W, > 0, §, = t + h}. Therefore, with 0 < ¢ < g and
(3.36) A& LW >b;t—h<T ()<t B>t +h},
we obtain

(3.37)
PIW. (0)>a+e; Lo (0)>b; t<T[ (1) <t+h; B>t +h]— P°[W,>a; A]

sP"[ max Ws>a+s;A]-P°[ min Ws>a;A]=o(h),

t<s<t+h t<s<t+h
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by virtue of (3.31). Dividing by h in (3.37) and then letting h | 0, we obtain in
conjunction with (3.35), (3.32):

1
(3.38) Fla+g¢b;t,7) < li_mzPo[W, >a;L)>b;t—h<T, ()< 1]
hlo
Similarly,
(3.38)
PO[W,>a; A]— PO[W,(1)>a—&; L,(1)>b; t<T 7 (x)<t+h; b, > t+h]

sP"[ max Ws>a;A:|—P°|: min Ws>a—s;A:|=o(h),

t<s<t+h t<s<t+h

and we obtain from (3.33):

—1
(3.39) F(a—¢& b;t,7) > lim EP"[W, >a; L) >b;t—h<T,(t) <]
nio

Letting ¢ | 0 in both (3.38), (3.39) we conclude that

1
F(a, b; t, 1) =lim EPO[W, >a;Lt)>b;t—h<T ()< 1],
hio

from which (3.30) for a > 0 follows in a straightforward manner. O

3.12 Remark. From (3.30) one can derive easily the bivariate density
bte—tbz/Br(t—r)

(3.40) P°[2L,(0)edb; T, ()edr] = dnt(t — o)

dbdt; b>0,0<t<t
as well as the arc-sine law of Proposition 4.4.11.

The reader should not fail to notice that for a < 0, the trivariate density
of (3.30) is the same as that for (W, M,,6,) in Proposition 2.8.15, for M, =
maxg<,< W,, 6, = sup{s < t; W, = M,}. This “coincidence” can be explained
by an appropriate decomposition of the Brownian path {W;0 <s < t}; cf.
Karatzas & Shreve (1987).

6.4. Elastic Brownian Motion

This section develops the concept of elastic Brownian motion as a tool for
computing distributions involving Brownian local time at one or several
points. This device allows us to study local time parametrized by the spatial
variable, and it is shown that with this parametrization, local time is related
to a Bessel process (Theorem 4.7). We use this fact to prove the Dvoretzky-
Erdos-Kakutani Theorem 2.9.13.
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We employ throughout this section the notation of Section 3.6. In par-
ticular, W = {W,, #,0 < t < o}, (Q, F), {P*}, . will be a one-dimensional
Brownian family with local time

1
@.1) L,(a)=1im£meas{05s5t;|Ws—a|sf:}; 0<t< w,aeR
ed0

On a separate probability space (', #', P'), let Ry, ..., R, be independent,
exponential random variables with (positive) parameters P15 ++-s Vu» TESPEC-
tively, ie.,

P'(Ryedr,...,R,edr,) =[] yie 7" dr..
i=1

We consider n distinct points ay, ..., a, on the real line and define a new
process W, which is the old Brownian motion W “killed” when local time at
any of these points g, exceeds the corresponding level R;. More precisely, with

t(a)=inf{t>0;L(a)>r}; r>0, and

(42) (2inf{t>0;L,(a)> R, forsome 1 <i< n} = min tp(a;),

l<i<n
we define the new process
N V.Y -4
and call it elastic Brownian motion with lifetime {. Here, A is a “cemetery” state

isolated from R. We may regard WasaprocessonQ2 Q x 0, # = # @ &,
P =P xP.

A. The Feynman-Kac Formulas for Elastic Brownian Motion

Our intent is to study the counterpart

t

4.3) u(x) = E* fm f(W,)exp{—at — f
0

0

= j j f f(W,)exp{—at - ft k(Ws)ds} dtdP’ dP*.
aJa Jo 0

of the function z in (4.4.14). The constant o is positive, and the functions f and
k are piecewise continuous on R (Definition 4.4.8), mapping Ry {A} into R
and [0, o), respectively, and with

4.4 &) = k(&) = o.

Hereafter, we will specify properties of functions restricted to R; condition

k(W) ds} dt
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(4.4) will always be an unstated assumption. In order to obtain an analytical
characterization of the function u, we put it into the more convenient form

o) © min r,.'_(a,-) . n
u(x) = J J J J“S'S" f(Wt)e—m—[Uk(Ws)as 1 ve " dtdr,...dr,dP*
Q i=1

0 0 0
PO o0 o . n
= J J J J f(W)e = fo kW ds T ye V" dry ...dr,dtdP?,
QJO JLay) L.(a,) i=1
whence

[ el

4.5) u(x)=EFE" J

0

fOW) exp{—at - f K(W)ds — ), y.-L,(a,-)} d.
0 i=1

4.1 Theorem. Let f: R — R and k: R — [0, 00) be piecewise continuous func-
tions, and let D = D, L D, be the union of their discontinuity sets. Assume that,
for some o > 0,

(4.6) E"J e ™| f(W)ldt < 0; VxeR,
0
and that there exists a function ii: R —» R which is continuous on R, C! on
R\{a;,...,a,}, C* on R\(D U {ay,...,a,}), and satisfies
1
@7 (o + k)i = Eﬁ” +f onR\(Du{ay,...,a,}),

(4.8) #'(a+) — #'(a;—) = pila), l<i<n

If f and ii are bounded, then il is equal to the function u of (4.3), (4.5), if fand il
are nonnegative, then il > u.

PROOF. An application of the generalized It rule (3.6.53) to the process

i n
X 2 ﬁ(W,)exp{—at - J k(W) ds — Y. y,-L,(a,-)}; 0<t< o,
0 i=1

yields
nAS, t n

E* J f(Wt)exp{—at - J k(W,)ds — > yiLt(ai)} dt = i(x) — E*X,, .5,
0 0 i=1

where

4.9) S, = inf{t > 0; |W,| = n}.

If f and ii are bounded, we may let n — co and use the bounded convergence

theorem to obtain u = i. If f and # are nonnegative, then E*X, 5, >0 and
we obtain @ > u from the monotone convergence theorem.
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4.2 Remark. Theorem 4.1 is weaker than its counterpart Theorem 4.4.9 be-
cause the former assumes the existence of a solution to (4.7), (4.8) rather than
asserting that u is a solution. The stronger version of Theorem 4.1, which
asserts that u defined by (4.5) satisfies all the conditions attributed to #, is
also true, but the proof of this result is fairly lengthy. In our applications,
the function u with the required regularity will be explicitly exhibited. These
comments also apply to Theorem 4.3.

A variation of Theorem 4.1 can be obtained by stopping the Brownian
motion W when it exits from the interval [b,c], where —o0 < b < ¢ < o0 are
fixed constants not in {a,,...,a,}. With the convention T,, = oo, define

4.10)

v(x) = Ex[l{rch} exp {——a’[}, - J

0

T

k(Wy)ds — Z '}’:Lrb(ai)}:|§ b<x<ec.
i=1

4.3 Theorem. Let k: [b,c] — [0, o0) be piecewise continuous, o > 0, and assume
that there exists a function ©: [b,c] —» R which is continuous on [b,c], C' on
(b,o\{ay,...,a,}, C* on(b,c)\(D, v {ay,...,a,}), and satisfies

4.11) (o + k)5=%5” on (b,c)\(Dy v {ay,...,a,}),
4.12) F(a+) — ¥(a—) = y,da), 1<i<n,
(4.13) ib)y=1,

4.14) #(c) = 0,

(except that (4.13) should be omitted if ¢ = o). If ¥ is bounded, then © is the
Sunction v of (4.10); if ¥ is nonnegative, then & > v.

ProoF. With
t n
Y, & 5(W.)CXP{—at - J k(W,)ds — 3 y.-L.(a.-)}; 0<t< oo,
1] i=1

the generalized Itd rule (3.6.53) yields #(x) = E* X1, 1 anns,; b < x < ¢, where
S, is given by (4.9). If § is bounded, we may let n —» oo to conclude that 5(x) =
E*l(q, <1, Y1, = v(x). If D is nonnegative, Fatou’s lemma gives

5(x) 2 Exl{Tb< Tc} YTb = U(x). D

The following exercises illustrate the usefulness of Theorem 4.3 in computa-
tions of distributions.

4.4 Problem. For any positive numbers «, 8, y, b, justify the formula
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(415 E* eXp(—aT}, — BTA(Ty) — yL1,(0)

(7 +/20
smh(xa /2(a + B)) + cosh(x/2(x + B))
20+ B .

f ; 0<x<h,
Y+ o
¥ sinh(b/2 h(b./2
_ ] 2(m_’_ﬁ)sm (b/2(z + B)) + cosh(by/2(x + B))
x < 0.

szi(a_’_ismh(m /2(x + B)) + cosh(b/2(a + )

With x = 0, we obtain in the limitas a |0, § ] 0:

(4.16) E°exp(—7Lr,(0) = y>0

1 .
1+ b’
In other words, Ly, (0) under P is an exponential random variable with expecta-
tion E®Ly,(0) = b. On the other hand, as 10,7 ] 0, (4.15) becomes

h(x./2p8
4.17) E*e BT+(Ty) — M; 0<x<b,
cosh(b./2p)

and we recover (4.4.23) by setting x = 0. Can you also derive (4.4.23) from
(2.8.29) and Theorem 3.1 without any computation at all?

4.5 Exercise. Let R, be the first time that the Brownian path W, falls b > 0
units below its maximum-to-date M, £ max, <<, Ws; i€,

R, =inf{t > O; M, — W, = b}.
Show that

J2
(4.18)  E°exp(—aR, — yMg) = x

/2acosh(b/2x) + ysinh(b./2a)

holds for every o > 0, 7 > 0. Deduce the formula

4.19) E%exp(— YMpg,) = y >0,

1
1+ b
which shows that M_ is an exponential random variable under P° with expecta-
tion E°Mg, = b. (Hint: Recall Theorem 3.6.17)

The following exercise provides a derivation based on Theorem 4.1 of the
joint density of Brownian motion, its local time at the origin, and its occupa-
tion time of [0, c0). This density was already obtained from D. Williams’s first
formula in Proposition 3.9.
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4.6 Exercise.

(i) Use Theorem 4.1 to justify the Laplace transform formula

[+ 0]

(4.20) EOJ I[a,m)(m)e_“'_ﬂr*")_““"o’dt
0

e/t
T 20+ By + V20 + 2@ + )]

for positive numbers «, §, y, and a.
(i) Use the uniqueness of Laplace transforms, the Laplace transform formula
in Remark 4.4.10, the formula

o 2
e M b exp —b— dt =exp{—b./24}; b>0,1>0,
</ 2nt3 2t

0

and (4.20) to show thatfora > 0, > 0,0 <1 < 1:
4.21) P°[W, > a; L(0)edb; I',(t)edr]

b b2 (a+ by
= a2 P {_2@ T L

(iii) Use (4.21) to prove (3.30).

B. The Ray-Knight Description of Local Time

We now formulate the Ray-Knight description of local time, evaluated at time
t = T,, and viewed as a process in the spatial parameter.

4.7 Theorem (Ray (1963), Knight (1963)). Let {R,, #;0 <t < o}, (8, &),
{P"},~ o be a Bessel family of dimension 2, and let b > 0 be a given number.
Then {1R?;0 <t < b} under P° has the same law as {Ly,(b —1);0 <t < b}
under P°.

In order to prove Theorem 4.7, it is necessary to characterize the finite-
dimensional distributions of {R?; 0 <t < b}. Toward that end, we define
recursively

(4.22) fo=1,

and for n > 1,

(423) fn(tla Y1582 Y255 tas yn) = fn—l(tz — 1, Y25ty — tl’ V35003 th—1y» yn)

n
+4 kZ1 VeSailiar = oo Vw15 Tewz — Lo Vw2s -+ tn = B Va)-
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Although we will not need this fact, the reader may wish to verify that
faltisvista, Va5t =1+ ), witi + ZZ Yvitlt; — )

1<i<n 1 <i<j<n

+ Y YY pymtdt; — )G —8) +

151<5<k<n
+ 9172 Vati(tz — t1) (b — tat):

We will, however, need the relation

(424) fn+1(t19 Y13 ---5 tm Tns tn+19 'yn+1)

Vn+1
=[1 4+ Ype1lturs — tD1Sal o P15 oo s bumts Vo153 tns Vo F ,
L Yns1(Ent1 )]f( 1> N1 15 Yn—1 Y 1+ 01 (toes —t,,))

valid for n > 1, which is easily proved from (4.22), (4.23) by induction.

48 Lemma. For 0 <t, <t, < - <t,< 0o and positive numbers yy, ..., Yn,
the Laplace transform of the finite-dimensional distributions of the two-
dimensional Bessel process is given by

~ ‘ 1e l_ !
(4.25) E°} ex {—_ "Rz} '
P 2:=Z1v " S, 7055 s V)

Proof. The straightforward computation

E"e“”W‘Z/z =

St 21+ )

gives

(426) Ere7Ri2 =

2
exp{——(vr—}; y>0, t>0, r=0,

14yt 2(1 + y?)

which proves (4.25) for n = 1. Assume that (4.25) holds for some value of n,
and choose 0 < t; <~ < t, < t,4; < o0 and positive numbers y;, ..., Yus Vn+1-
From the strong Markov property, (4.26), and (4.24), we obtain

1ntl

i)
( 1.z 1,

= eXp £y Z exXp __'yn+1Rt,,H Rt" =Ty
J10,0)n T2 = 2

x P°[R, edry,...,R, edr,]

fod 1 n 1
= _ Er" 2 R2 B
J[0,00)" exp { 2 Z } I:exp< 2?n+1 T+t ’">]

x P°[R, edry,...,R, €dr,]
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l l < 2 yn+1rr|2/2 }
= €XPy —5 L Wili —
J;O.oo)" l + yn+1(tn+1 - tn) p{ 2 i; l + yn+1(tn+1 - tn)

x P°[R, edr,,...,R, edr,]

1
f;l+1(t19 Y1545 tm Yns tn+19 yn+1)

49 Lemma. With 0 = ¢, <--- < &, < b and positive numbers §,, ..., §,, we
have the Laplace transform formula

(4.27)

n 1
0 — . . =
E [e"p{ Z 5‘“”“')}] Fb =0 dwb— &y o b =C )

ProOF. Theorem 4.3 implies that the function

v(x) & E* [Cxp{— i 5iLT,,(§i)}:|§ —o<x<b
i=1

can be found by seeking a bounded, continuous function & on (—oo, b) which

is linear in each of the intervals (—o0,0), (0,&,), ... (a—1, €4)s (£, b) and which
satisfies

FE+) = T(G—) =80y 1<i<n,
i(b) = 1.
Thus, # must be of the form

ix)=C + Lix on({, &), 0<i<n,

where ¢, = —o0, &,.; = b, and we must have

(4.28) Ly=0,

4.29) Ca+&L,=CG+E&L; 1<i<n,
4.30) Li— Ly =6(Ciy +&L;y); 1<i<n,
4.31) C,+bL,=1.

These 2n + 2 equations can be solved as follows. Let B;_, = (C;_, + &,L;_,)/
Cisl<i<n+1s0oB,=1 Wehave

L.

(4.32) B; = Bi_; + iy — éi)c—'; 1<i<n,
0

from (4.29), as well as

(433) Li = Li—l + 5,‘COB,'_1; l S l < n,

from (4.30). This last identity, along with (4.28), gives
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Li=C025ij._1; lSlSn,
j=1
which, substituted in (4.32), yields
(4.34) Bi=B_; + (& — &) ) §By; 1<isn
i=1

The recursion (4.34) determines B;, B,, ..., B,, and (4.31) together with the
definition of B, gives C, = (1/B,). The constants L, L,, ..., L, are now
determined by (4.33), and C, ..., C, can be found from (4.29).

Having thus solved the equations (4.28)—(4.31), we may conclude from
Theorem 4.3 that

l n
Co =5 = 3(0) = v(0) = E° [exp {— ) 6:Lr.,(éi)}]~

But comparison of the recursion (4.34) with (4.23) shows that
B; = f{&iv1 — &0 gy — $io1s Oi—15 -5 Givr — ¢4, 51); 1<i<n (O

PrOOF OF THEOREM 4.7. We simply make the identifications t; = b — {py1—is
% = 8,41_; in Lemmas 4.8 and 4.9. O

Armed with the description of local time in Theorem 4.7, one can provide

a very simple proof for the Dvoretzky-Erdds-Kakutani Theorem 2.9.13 con-
cerning the absence of points of increase on the Brownian path.

PrOOF OF THEOREM 2.9.13. We first show that

4.35) P°[weQ; W (w) has a point of strict increase] = 0.
The event in (4.35) is equal to | J, ,co 4., ,, Where
A, L {weQ; 30e(r, p)?;rl;fl that W, (w) < Wy(w) < W, (),
Vuelr,0),Vve(®,pl},

and thus it suffices to prove, for given rationals 0 < r < p, that P°(4, ) =0.
Considering, if necessary, the Brownian motion {W,, — W, #4;; 0 St < oo},
we may assume that r = 0.

Because of the continuity of Brownian local time, Problem 3.6.13(ii),
Theorem 4.7, and Proposition 3.3.22, we may choose an event Q* < Q with
P%(Q*) = 1 such that for every w e Q*:

4.36) the mapping (t,a)— L,(a,w) is continuous,
4.37) for every beQ, J L oy (Wi(@)) dL(b, ) = 0, and
0

4.38) for every be QN (0,©), Lrp,(a,0)>0; VO<a<b.
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Suppose that we Q* N A4, , for some p > 0, let 0 be as in the definition of 4, ,,
and choose a (positive) rational number b e (Wy(w), W,(w)). Let {b,};2, be a
nondecreasing sequence of nonnegative rational numbers with lim,_ b, =
Wy(w). From (4.38) we have

(4.39) 0 < Ly, ()(Wy(w), @) = [Lr, () (Wo(®), @) — L, (b, 0)]
+ [L1y(0)(Bay @) — Ly(by, )]
+ [Lﬂ(bmw) - LTb(w)(bmw)]; Vn> la

thanks to (4.37). From the nature of 0, the second difference on the right-hand
side of (4.39) vanishes for all n > 1, and we have lim,_, , T; (w) = 0.

We can now let n > o0 in (4.39), and use the joint continuity property (4.36),
to arrive at the contradiction 0 < Ly, ,(Wy(w),w) = 0. This shows that
P°(Ay.,) = 0, and leads ultimately to (4.35).

Consider now the process W(w) £ W(w) +t; 0 <t < o0, weQ. From
Corollary 3.5.2, there exists a probability measure P on (Q, £%) with

~ 1
P(A) = E° |:1Aexp{— Wy — ETZH; VAe F¥

holding for every finite T > 0, and such that W is standard Brownian motion
under P. For every w e, the points of increase of W (w) become points of
strict increase of W(w), and (4.35) shows that

P[weQ; W(w) has a point of increase] = 0.
But the two measures P° and P are equivalent on %, and consequently
P°[w e Q; W(w) has a point of increase on [0, T]] =0

for every fixed Te(0, c0). The assertion of the theorem follows easily. 0O

4.10 Exercise. Verify the Cameron & Martin (1945) formula

b 1
Eoexp{—ﬁf W,Zdt} = B>0,b>0
0 ~/ cosh(b./2p)

for the Laplace transform of the integral (5 W,? dt. (Hint: Use (4.17).)

C. The Second Formula of D. Williams

The first formula of D. Williams (relation (3.22)) tells us how to compute the
distribution of the total time elapsed I'; (), given that W, is being observed
and that 7 units of time have elapsed on the clock corresponding to W,. The
relevant information to be gleaned from observing W, is its local time L, (7).
The second formula of D. Williams (relation (4.43)) assumes the same observa-
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tions, but then asks for the distribution of the local time Lr_.,(b) of W at a
point b < 0. Of course, if b = 0, the local time in question is just L. (1), which
is known from the observations. If b < 0, then L, -1(,(b) is not known, but as
in Williams’s first formula, its distribution depends on the observation of W,
only through the local time L, (7) in the manner given by (4.43).

4.11 Problem. Under P°, the process {L,(0;0<b < oo} has stationary,
independent increments, and

(4.40) E®exp{—oaLy (0)} = a>0,beR

l .
1+ albl’

4.12 Lemma. Consider the right-continuous inverse local time at the origin
(4.41) p. 2 inf{t=>0; L,(0)>s}; 0<s< 0.

For fixed b # 0, the process Ny & L, (b, 0 < s < oo is a subordinator under
P° and

(4.42) Ele™Ms = exp{—i—}; a, 5> 0.

1 + a|b|
PRrOOF. Let L, = L,(0), and recall from Problem 3.6.18 that lim,_,,, L, = oo, P°
a.s. The process N is obviously nondecreasing and right-continuous with
N, = 0, as. P°. (Recall from Problem 3.6.13 (iii) that p, = 0 a.s. P°) We have
the composition property p, = p; + p,—; o 8, ; 0 < s < t, which, coupled with
the additive functional property of local time, gives P%-a.s.:

N,=Ny=L,_ . (Bob,; 0<s<t.
Note that W, = 0 a.s. According to the strong Markov property as expressed

in Theorem 2.6.16, the random variable L,, 4, (b) © 6, is independent of #,_

and has the same distribution as L,__(b) = N,_,. This completes the proof that
N is a subordinator.
As for (4.42), we have from Problem 3.4.5 (iv) for « > 0, § > 0:

gL E° Jw exp{—fs — aL, (b)} ds = E° Jw exp{ —BL, — aL,(b)} dL,
(1]

0

Ty
~ E° J e PLedL,

0

+ E° I:e”"“fb Jw exp{—BL, 0 Oy, — aL,(b) o 0r,}d(L, o 0r,).

0

The first expression is equal to [1 — E®e"#t%]/B, and by the strong Markov
property, the second is equal to E%¢™#'7 times
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B r exp{—BL, — aL ()} dL,
1]

B r exp{—BL, — oL,(b)} dL,

To

— EP[e~*n® J exp{—BLy 0 br, — aL,(b) o Or,} d(L, o br,)
1]

0

= Eb[e *Lr®)] - EO J exp{ —BL, — aL,(b)} dL,
1]

= q- E’[e™%®] = g- E%[e™*In].
Therefore,

1
g = gll = E%¢™#0] + g E°[en]- E%e""1n),

and (4.40) allows us to solve for

© o -1
— —ﬂsEO —aNs ds = .
q L e PE(e™ ") ds <ﬁ+l+a|b|>

Inversion of this transform leads to (4.42). O

4.13 Remark. Recall the two independent, reflected Brownian motions W,
of Theorem 3.1, along with the notation of that section. If b < 0 in Lemma
4.12, then the subordinator N is a function of W_, and hence is independent
of W,. To see this, recall the local time at 0 for W_: L_(7) £ Li-14(0), and let

L (7) = Lr:l(r)(b)

be the local time of W_ at b. Both these processes can be constructed from W_
(see Remark 3.2 for L_), and so both are independent of W, . The same is true
for

I'_(p) =inf{t >0:L_(z) > s},

and hence also for

Lb—(r—(Ps)) = erl(r,(p,))(b)-

But W, =0 as., and so I'_(p, + ¢) > I'_(p,) for every ¢ > 0 (Problem 2.7.18
applied to the Brownian motion W o 6, ). It follows from Problem 3.4.5 (iii)
that T-'(T_(p,)) = p,, and so Lb(T_(p,)) = N,.

A comparison of (4.42) with (2.14) shows that for the subordinator N, we
have m = 0 and Lévy measure u(d?) = b=2e " d¢,

4.14 Proposition (D. Williams (1969)). In the notation of Section 3, and for
fixed numbers o > 0, 1 > 0, b < 0, we have a.s. P°:
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(4.43) E°[exp{—aLr.(b)}|W,(u); 0 <u < 0] = exp {_ g }

1 + alb|
ProoF. This is obvious for b = 0, so we consider the case b < 0. We have from
Problems 3.4.5 (iii) and 3.6.13 (iii) that with p as in (4.41),
PLe-iy0 = sup{s = 1—:1(1.); L(0) = Lr,:l(r)(o)}
=inf{s > I'/'(z); W, =0}, as. P°.

Because W, >0 for T (1) <u< PLe-i @ = PL,» the local time L,(b) must
be constant on this interval. Therefore, with N the subordinator of Lemma
412,Np oy =L, (b) = Lr.14(b), as. P°. Remark 4.13, together with relation
(4.42), gives

EO[CXP{ ““NL+(1)}|W+(“); O0<u<w]= EO[CXP{ _aM}]|t=L+(r)

al (1)
= — . .PO;
e"p{ l+a|b|}’ as

(i) Show that for > 0,a > 0, b < 0, we have

PL (0

4.15 Exercise.

L, (0
E°[exp{—BL1 (b)}|W,(u),0 <u< o0}] = exp{——m , as. PO
° 1 + B|b|
(i) Use (i) to prove that fora >0, >0,a>0,b <0,
1

E”[exp{—ﬁLT,,(b) — aLT,,(o)}] = fz(a’ o a+ |b|, ﬁ),

where f, is given by (4.22), (4.23). (This argument can be extended to
provide an alternate proof of Lemma 4.9; see McKean (1975)).

6.5. An Application: Transition Probabilities of
Brownian Motion with Two-Valued Drift

Let us consider two real constants 8, < 8,, and denote by % the collection of
Borel-measurable functions b(t, x): [0, c0) x R — [6,,6,]. Forevery be% and
x € R, we know from Corollary 5.3.11 and Remark 5.3.7 that the stochastic
integral equation

t
(5.1) X,=x+J b(s, X,)ds + W; 0<t< oo
1]

has a weak solution (X, W), (Q, #, P¥), {#,} which is unique in the sense of
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probability law, with finite-dimensional distributions given by (5.3.11) for
0<t; <ty < " <t,=t < o0, [ eB(R":

(52) P[(X,,,....X,)eT]

t 1 t
=E"[lm ..... mer}-exp{ f bis, W) dW, — > f bZ(s,Ws)dsH.
1 n 0 0

Here, {W,, %}, (Q, %), {P"}, g is a one-dimensional Brownian family.

We shall take the point of view that the drift b(¢, x) is an element of control,
available to the decision maker for influencing the path of the Brownian
particle by “pushing” it. The reader may wish to bear in mind the special case
6y < 0 < 6y, in which case this “pushing” can be in either the positive or the
negative direction (up to the prescribed limit rates 6, and 6,, respectively). The
goal is to keep the particle as close to the origin as possible, and the decision
maker’s efficacy in doing so is measured by the expected discounted quadratic
deviation from the origin

J(x;b) = E"J e X2dt
0
for the resulting diffusion process X . Here, a is a positive constant. The control
problem is to choose the drift b, €% for which J(x; b) is minimized over all
beu:
(5.3) J(x; b)) =minJ(x; b), VxeR.
bel

This simple stochastic control problem was studied by Benes, Shepp &
Witsenhausen (1980), who showed that the optimal drift is given by b,(t, x) =
u(x);0<t < o, xeRand

6;; x<90 1 1
(5.4) u(x)é{ v T }, é& - :
By; x>0 JOE+20 + 0, /02 +20 — 6,

This is a sensible rule, which says that one should “push as hard as possible
to the right, whenever the process Z, solution of the stochastic integral
equation

t
(5.5) Z,=x+f w(Zyds+w; 0<t< oo,

0
finds itself to the left of the critical point J, and vice versa.” Because there is
no explicit cost on the controlling effort, it is reasonable to push with full
force up to the allowed limits. If §; = — 6, = 6, the situation is symmetric and
0=0.

Our intent in the present section is to use the trivariate density (3.30) in

order to compute, as explicitly as possible, the transition probabilities

(5.6) Pi(x,2)dz = E*[Z,edz]
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of the process in (5.5), which is a Brownian motion with two-valued, state-
dependent drift. In this computation, the switching point 6 need not be related
to 6, and 6,. We shall only deal with the value 6 = 0; the transition prob-
abulities for other values of d can then be obtained easily by translation.

The starting pomt s provided by (5.2), which puts the expression (5.6) in
the form

t

(57 Blx2)dz = E*[l{w,m} epr

0

UL f WA(W) ds}].

0

Further progress requires the elimination of the stochastic integral m (5.7).

But if we set
z 6,z; z<0
f(Z)éJ u(y)dy={ ' }

o 0pz; z=0

we obtain a piecewise linear function, for which the generalized 1t6 rule of
Theorem 3.6.22 gives

t

JW) = f(Wo) + J u(W,)dW; + (6, — 6,)L(1)

0

where L{t) is the local time of W at the origin. On the other hand, with the
notation (3.3) we have

t
f WA(W,)ds = 03¢ + (62 — 62)T., (),

0

and (5.7) becomes

68  Blxi2dz=exp [f(Z) - 69— %93]

-r Jt exp{b(91—90)+%(912—9§)}
b=0 J1t=0

- P*[W,edz; L(t)edb; T.(t) edr].

It develops then that we have to compute the joint density of (W,, L(t), T".(t))
under P*, for every xe R, and not only for x = 0 as n (3.30). This is accom-
plished with the help of the strong Markov property and Problem 3.5.8; in
the notation of the latter, we recast (3.30)for b > 0,0 < 7 <t as

P°[W,eda; L(t)edb; T, (t)edr]
_ )2h(z; b, 0)h(t — ;b — a,0) dadbdr;, a<0
" |2h(t — t; b, 0)h(t; b + a,0)dadbdr; a >0,

and then write, for x > 0 and a < O:
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(5.9 P*[W,eda; L(t)edb; T, (t)edr]
= P*[W,eda; L(t)edb; T.(t)edr; T, < 1]

= J P*[W,eda; L(t)edb; T, (t)edt|T, = s]- P*[T,eds]
0

= J P°[W,_,eda; L(t — s)edb; T, (t — s)edt — 5] h(s; x, 0)ds
0

=2h(t;b + x,0)h(t — t; b — a,0)dadbdr.
For x > 0, a > 0 a similar computation gives
(5.10)
P*[W,eda; L(t)edb; T, (t)edt] = 2h(t — t; b,0)h(z; b + a + x, 0)dadb dr,
and in this case we have also the singular part
(5.11) P*[W,eda; L(t) = 0,T,(t) = t] = P*[W,eda; T, > t] = p_(t; x,a)da
= Lp(t; x, a) — p(t; x, — a)] da

(cf. (2.8.9)). The equations (5.9)—(5.11) characterize the distribution of the triple
(W, L(t), T, (t)) under P*. Back in (5.8), they yield after some algebra:

2”"lh —73b—z, —0)h(t; x + b, —0y)dtdb; x>0,z<0

2(b91+290)h(t — b, —0))h(t; x + b+ z, —6,)dr db

_ 2 — 0,1)?
N [exp{ w} _exp{ _x+z—007 290x}];
2nt 2t 2t

x=>0,z>0.

-

Now the dependence on 6,, 8, has to be invoked explicitly, by writing
Pi(x, z; 65, 0,) instead of p,(x, z). The symmetry of Brownian motion gives
(513) ﬁg(X, Z, 905 gl)zﬁt(-x5 —Z, _915 _90),

and so for x < 0 the transition density is obtained from (5.12) and (5.13). We
conclude with a summary of these results.

5.1 Proposition. Let u: R — [6,,0, ] be given by (5.4) for arbitrary real 8, and
let Z be the solution of the stochastic integral equation (5.5). In the notation of
(5:6), P,(x + 9,z + ) is given for every zeR,0 <t < oo by

(i) the right-hand side of (5.12) if x > 0, and
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(ii) the right-hand side of (5.12) with (x, z, 6y, 8,) replaced by (—x, —z, —0,,
—8), if x < 0.

5.2 Remark. In the special case 8, = —6, = 0 > 0 = 9, the integral term in
the second part of (5.12) becomes

PO t
ZJ J e2C-Dp(t — 1: b, —O)h(t; x + b + z, 0)drdb
0

ZJ J e 22h(t — 1; b, Oh(t; x + b + z,0)dr db
-2,

“202p(t; x + 2b + z, B)db

1 (x + z + 6t)? }
= expy ————— — 20x
./27tt|: p{ 2t

ee) _ 2
+ e~ 2¢" J;ﬂ exp {—(U 2th) }dv],

where we have used Problem 3.5.8 again. A similar computation simplifies
also the first integral in (5.12); the result is

(5.14) pix,z) =

1 (x —z — 0r)? e [ (v — 0r)?

= = T z IR ALAN O # F

\/z;[exp{ T } + Be o exp T v |;

x>0,z>0.

= ﬁ 2 w0 2

1 (x —z+ 61) 262 (v—0) .
\/ﬁ[exp {ZHx T } + e . eXpy—— dv |;
x>0,z<0.

-

When 6 = 1 and x = 0, we recover the expression (3.19).

5.3 Exercise. When 6; = —6, = 1, § = 0, show that the function v(t, x) £
E*(Z%);t > 0, xeR is given by

_1 f { (x |—t>2}
(5.15) o) =5+ [5=(Ix] =t = Dexpd ——
+{(|x|—t) +t——} <|x| )
x 1 x|
+e2'|<|x|+t—§>|:l (I)< \/ )]

+
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with ®(z) = (1//2m) |2, e™*/? du, and satisfies the equation
(5.16) v, = 3o, — (sgn x)v,,

as well as the conditions

1
lim v(t, x) = x2, limo(t,x) = <.
tlo t-w 2

5.4 Exercise (Shreve (1981)). With 6, = —6, = 1, é = 0, show that the func-
tion v of (5.15) satisfies the Hamilton-Jacobi-Bellman equation

1
(5.17) v, = =U,, + min (uv,) on(0,00) x R.

2 i< 1
As a consequence, if X is a solution to (5.1) for an arbitrary, Borel-measurable
b:[0,00) x R »[—1,1] and Z solves (5.5) (under P* in both cases), then

(5.18) E*7? < E*X?, 0<t< 0.

In particular, Z is the optimally controlled process for the control problem
(5.3).

6.6. Solutions to Selected Problems

2.5. If A is o-finite but not finite, then there exists a partition {H;}2, < # of H with
0 < A(H,) < oc for every i > 1. On a probability space (Q, %, P), we set up inde-

pendent sequences {£?; je N, }2, of random variables, such that forevery i > 1:

(i) &P, &Y, EP, ... are independent,
(i) N; 2 £9 is Poisson with EN; = A(H;), and
(iti) P[ﬁj‘-i)eC] =MCHH)AH)CeH,j=1,2,....

As before, v(C) 2 Y3, 1.(EM);, Ce #, is a Poisson random measure for every
i>1,and v, v,, ... are independent. We show that v& Y2, v, is a Poisson
random measure with intensity 4. It is clear that Ev(C) = E} 2, w(Cn H) =

® 1 A(C n H) = A(C)forall C e #, and whenever A(C) < oo, v(C) has the proper
distribution (the sum of independent Poisson random variables being Poisson).
Suppose A(C) = oo. We set 4; = A(C n Hy), so v(C) is the sum of the independent,
Poisson random variables {v,(C)}2,, where Ev,(C) = A,. Thereis a number a > 0
suchthat 1 —e * > 4/2,0 < A < a,and so with b £ 2(1 — e™°):

T PO = 11= 3 (1 —e"‘-‘)z% S (4 Ab)=m
i=1 i=1 i=1

because ) 2, 4; = 4(C) = co. By the second half of the Borel-Cantelli lemma
(Chung (1974), p. 76), P[v(C) = 0] = P[v{(C) = 1 for infinitely many i] = 1.
This completes the verification that v satisfies condition (i) of Definition 2.3; the
verification of (ii) is straightforward.
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2.12.

2.16.

2.24.

If for some ye D[0, ), t > 0, and £ > 0 we have n(y; (0,1] x (£, o)) = o, then
we can find a sequence of distinct points {te )32, €(0,1] such that |y(t) —
y(t,—)| > £; k = 1. By selecting a subsequence if necessary, we may assume
without loss of generality that {t,}iZ, is either strictly increasing or else strictly
decreasing to a limit 6 & [0, ¢]. But then {y(t)}i=, and {y(t,—)}iz, converge to
the same limit (which is y(6 —) in the former case, and y(0) in the latter). In either
case we obtain a contradiction.
For any interval (t,t + h], the set

A, 4al#) 2 {yeD[0,00); Ise(t,t + K] such that |y(s) — y(s—)| > ¢}

® o 1
=un U {yeD[o,oo);w(q)—y(rn>f+z}

k=1 m=1 t<r<g<t+h
q—r<(1/m),reQ
geQorg=tth

is in B(D[0, 0)), as is

{ye D0, ), n(y; (0,£] x (£, 0)) = m} = U Ay .al®):
0=gp<q;<++*<gm=t i=1
{a1.-+0s am-1}SQ

Let us now fix 0 < t < oo and # > 0 and let 2, , be the Dynkin system of all
sets Ce B((0,t] x (£, c0)) for which n(- ; C) is measurable. The o-field #((0,t] x
(¢, 00)) is generated by the sets of the form (0,7] x (4, 0),0 <1<, < A< o0,
the collection of such sets is closed under finite intersections, and each such set
belongs to Z, .. It follows from Theorem 2.1.3 that n(-; C) is measurable for
every Ce 4((0,t] x (£, 0)). For C e %((0, 0)?), we write C as the disjoint union

c- el

From (2.17) and Definition 2.15 we have Ee™*% = e~ BV which gives (2.33)
and the continuity of (-). Because N is not identically zgro, ¥(1) is strictly
positive. Furthermore, for every y 2 0,

e*rﬂ(av)llt(l) = Ee Mesen = Ee @M = Ee Nom = e—rﬂ(v)llt(a)

and (2.32) follows from (2.33). To see that B(x) = o, set Gla) = B(e”) and apply
Problem 2.2. For 0 < ¢ < 1, comparison of (2.24) and (2.33) yields

rat = mo + J (1 — e ) u(d?).
(0,)

Corollary 2.14 asserts that the constant m > 0 and o-finite measure p satisfying
the equation are unique. If ¢ = 1, they are givenbym=r,u=010<e<l,
we set m =0, u(d¢) = redf/T(1 — €)/'* and integrate by parts to reduce the
integral to a standard Laplace transform:

ro
(1 —e“)udl)=—=—-: J e ¥ edf = rot.
J(o.oo) Tt — &) Jio.0)

We have from (2.56)

tAay 2

EjeD/(e) — 2L (O < 26 + 2E 3, q sgn(WS)dWs> .
=t

tATy
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This last expectation is computed as

M8

1+D,(e) o
EY {trng)—(tnrt )} <E Xf (6,—1)=E 26 1< by Ni+1
=1 i=

Il
—_

j
=¢XED,(s) + 1)

by virtue of (2.52), (2.53). But now the downcrossing inequality (Theorem 1.3.8

(ii1)), applied to the submartingale | W|, gives ED,(¢) < %EI W] = ! %

3.7. The following are obviously valid, modulo P%-negligible events:
{t=0L.()>L,(0)} ={t>0, LC~'(1)) > L(T'71 ()}

c{t=0, T2 = I (1)}

S{t=0, L(T'(t)) = L(T; (1)}

{

t=>0,L_(t) > L,(v)}.

Therefore, we have a.s. P°:
TL=inf{t 20, L_(t) > L,(v)} <inf{t > 0; T-'(t) > ')}
<inf{t > 0, L_(t) > L, (1)} = L-N(L (7).

The third identity in (3.25) follows now from (3.24). For the fourth, it suffices to
observe ', (s) = inf{t > 0; T'}'(t) > s}; 0 < s < o0, as. P°, which is a conse-
quence of Lemma 3.4.5 (v).

3.11. Using the reflection principle in the form (2.6.2) and the upper bound in (2.9.20)
we obtain

'y

s<t+h t<s<t+h

Po[ max W,>a+¢ min VKSa—s]
t
sf P"[ma W>a+s:| P°[W,edx]
- O<s<h

+f P"[min WSSa—s]~P°[W,edx]

a O0<s<h

sP"[max W52a+s]+P"|:min WSSa—s]

O<s<h O<s<h

=2P°[max WSZ{I

O<s<h

4 [h _,
=4P°[W, > ] < - |—e 512k = o(h).
e\ 2n

For (3.32), we notice the inequality
PIW.()>a;t <T7'(0) <t + h; BO) < t + h]

sPo[ max W,>a; min mgo],

t<s<t+h t<s<t+h

where this term is o(h) as h | 0, thanks to (3.31); a similar argument proves (3.33).



6.7. Notes 445

4.11. Let L, = L,(0) and assume without loss of generality that b > 0. From the
additive functional property of local time, its invariance under translation, and
the composition property T, = T, + T, o 6, ;0 < a < b, we see that P*-as.

Ly, — LT,, = LT,,OG,. ° era = LT,,,,,oa;., ° 9{,; O<a<hb,

where 0*(w)(s) £ o(t + s) — o(t); s = 0. The stationarity and independence of
increments follow from the strong Markov property as expressed by Theorem
2.6.16. Formula (4.40) is just a restatement of (4.16).

6.7. Notes

Section 6.2: Most of the material here is due to P. Lévy (1937, 1939, 1948).
The representation (2.14) is a special case of a general decomposition result
for processes with stationary, independent increments (Lévy processes) into
Brownian and Poisson components, obtained by P. Lévy (1937), see also
Loéve (1978). In our exposition of Theorem 2.7, we follow 1t6 & McKean
(1974) and Williams (1979). Both these books, as well as McKean (1975) and
Chapter VII of Knight (1981), may be consulted for further reading on
Brownian local time. Chung & Durrett (1976) and Williams (1977) also deal
with the subject of Theorem 2.23. Taking up a theme of Lévy, lkeda &
Watanabe (1981), pp. 123-136, show how to use local time to construct
Brownian motion from a Poisson random measure on the space of excursions
away from the origin. This should be read together with Chung’s (1976)
excellent treatise on excursions. Itd (1961b) applied Poisson random measures
to the study of Markov processes. The characterizations of Theorems 2.21 and
2.23 have been generalized to Markov processes by Fristedt & Taylor (1983);
see also Kingman (1973). Invariance principles are discussed by Perkins
(1982a) and Csaki & Révész (1983); see also Borodin (1981). Perkins (1982b)
showed that Brownian local time is a semimartingale in the spatial parameter;
McGill (1982) studied its Markov properties.

Section 6.3: Theorem 3.1 appears in It & McKean (1974), section 2.11,
and in Tkeda & Watanabe (1981), pp. 122—-124. Proposition 3.9 is taken from
Karatzas & Shreve (1984a); the bivariate density (3.40) was obtained by
Perkins (1982b), using different methodology. The use of local time in decom-
position of Brownian paths is illustrated by the work of Williams (1974) and
Harrison & Shepp (1981).

Section 6.4: The strong version of Theorem 4.1 discussed in Remark 4.2,
but with n = 1, appearsin [td & McKean (1974), pp. 45-48. For more general
results along the lines of Theorems 4.1 and 4.3, the reader should consult
Knight (1981), Theorem 7.4.3. Exercise 4.5 comes from Taylor (1975), where
applications to finance and process control are discussed; see also Williams
(1976), Lehoczky (1977), and Azéma & Yor (1979). We follow 1td6 & McKean
(1974) in our approach to the Ray-Knight theorem 4.7 and in Lemma 4.12,
and Knight (1981) for the proof of the Dvoretzky-Erdds-Kakutani Theorem
2.9.13.
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Section 6.5: This material is taken from Karatzas & Shreve (1984a). The
control problem of this section was introduced and solved by Benes, Shepp,
& Witsenhausen (1980) and has also been solved in the symmetric case of
Exercises 5.3, 5.4 by martingale methods (Davis & Clark (1979)), stochastic
comparison methods (Ikeda & Watanabe (1977)), and the stochastic maxi-
mum principle (Haussmann (1981)). See also Balakrishnan (1980). Stochastic
control problems in which the optimal control process is a local time have
been studied by a number of authors, including Bather & Chernoff (1967);
Benes, Shepp & Witsenhausen (1980); Chernoff (1968); Chow, Menaldi &
Robin (1985); Harrison (1985); Karatzas (1983); Karatzas & Shreve (1984b,
1985); and Taksar (1985).
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