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Le Fanu, James; The Rise and Fall of Modern Medicine

Twelve milestones of modern medicine

1. 1941: Penicillin

2. 1949: Cortisone

3. 1950: Streptomycin, Smoking and Sir Austin Bradford Hill

4. 1952: Chlorpromazine and the Revolution in Psychiatry

5. 1952: The Copenhagen Polio Epidemic and the Birth of

Intensive Care

6. ..............
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Austin Bradford Hill
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The Bradford Hill criteria for causation

A group of minimal conditions necessary to provide adequate

evidence of a causal relationship between an incidence and a

consequence:

I Strength: A small association does not mean that there is not

a causal effect, though the larger the association, the more

likely that it is causal.

I Consistency: Consistent findings observed by different persons

in different places with different samples strengthens the

likelihood of an effect.

I Specificity: Causation is likely if a very specific population at

a specific site and disease with no other likely explanation.

The more specific an association between a factor and an

effect is, the bigger the probability of a causal relationship.
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The Bradford Hill criteria for causation

I Temporality: The effect has to occur after the cause (and if

there is an expected delay between the cause and expected

effect, then the effect must occur after that delay).

I Biological gradient: Greater exposure should generally lead to

greater incidence of the effect. However, in some cases, the

mere presence of the factor can trigger the effect. In other

cases, an inverse proportion is observed: greater exposure

leads to lower incidence.

I Plausibility: A plausible mechanism between cause and effect

is helpful (but Hill noted that knowledge of the mechanism is

limited by current knowledge).
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The Bradford Hill criteria for causation

I Coherence: Coherence between epidemiological and laboratory

findings increases the likelihood of an effect. However, Hill

noted that “... lack of such [laboratory] evidence cannot

nullify the epidemiological effect on associations”.

I Experiment: “Occasionally it is possible to appeal to

experimental evidence”.

I Analogy: The effect of similar factors may be considered.
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A causal question

At age 45, Ms. Smith is diagnosed with stage II stomach cancer.

I Her oncologist Rachael discusses with her two possible

treatments: (i) surgery alone, or (ii) surgery + chemo. They

decide on (ii).

I Ten years later, Ms. Smith is alive and the tumor has not

recurred.

I Her surgeon, Steve, and Rachael debate.

– Rachael says: “The chemo prevented the recurrence - without

it, the tumor would have recurred.”

– Steve says: “You can’t know that. It’s a fantasy - you’re

making it up. We’ll never know.”
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Two notions of causation

I Causes of an effect/outcome

What are causes of lung cancer?

Historian/detective paradigm

I Effects of a cause

Does smoking cause lung cancer?

Experimental paradigm

For this course, we concentrate on effects of a cause/intervention.
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Association versus causality

I Most scientific inquiry/data analyses have one of two goals:

– Association/prediction, i.e., determine predictors or variables

associated with the outcome of interest.

– Causality, i.e., understand factors that cause or have an effect

on the outcome of interest.

I We are often told that association is not causation;

– when can we claim an association is causation?

I The area of causal inference provides the answer.
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Whether an association is causal

Typical approach for determining whether an association is causal:

1. Observe treatments/exposures, outcomes, and other variables

in population

2. Use standard statistical methods to derive inferences about

associations between observable variables

3. Use series of ad hoc rules to determine whether associations

have causal interpretation

Useful to have more precise definitions of causal effects!
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An intuitive definition of cause

I Jim took the pill on Sept 1, 2001

– Five days later, he was dead

I Had Jim not taken the pill on Sept 1, 2001 (all others things
being equal)

– Five days later, he would have been alive

I Did the pill cause Jim’s death?
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Estimands: asking the right question

A fellow decides to wallpaper a bedroom in his house, but he isn’t

sure how many rolls of wallpaper he’ll need. He knows that his

next-door neighbor had recently done the same job, and the two

rooms are identical in size.

“So, how many rolls of wallpaper did you buy for your bedroom?”

the man asks his neighbor.

“Ten,” says the neighbor.
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Estimands: asking the right question

The man buys 10 rolls of paper and does the job. When it’s

finished, it looks wonderful, but he has four rolls of wallpaper left

over.

“Hey, neighbor,” he says. “I bought 10 rolls of wallpaper for the

bedroom, but I’ve got four left over.”

“That’s funny,” says the neighbor. “X XXX XXX”
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Definitions for causal inference

I Unit: Person, place, or thing upon which a treatment will

operate

I Treatment: An intervention or exposure investigators wish to

assess the effect of treatment compared to no treatment

I Treatment or intervention should be manipulable

Does anti-retroviral therapy affect CD4 count in HIV+

individuals?

Does caloric intake affect CD4 count?

Does obesity affect CD4 count?

Does gender affect CD4 count?
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Definitions for causal inference

I Potential outcomes: Values of a unit’s measurement of

interest when (i) treatment received and (ii) treatment not

received

Potential outcomes often referred to as counterfactuals

I Individual causal effect: For each unit, comparison between

potential outcome under treatment and potential outcome

under control
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Potential outcomes

I Let a denote whether treatment received

– a = 1 for treatment

– a = 0 for no treatment (or “control”)

I Let Yi (a) denote the potential outcome for unit i given
treatment a

– notation Yi (a), yia,Yia etc also common

– Often subscript i is dropped: y(a),Y (a), etc

– Sometimes a1 denotes a = 1, e.g., Y (1) = Y (a1)

I Each individual has a set of potential outcomes {Yi (0),Yi (1)}
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Individual causal effect

I Individual causal effect (ICE) is some comparison between

individual potential outcomes, e.g.

Yi (0)− Yi (1) or 1− Yi (1)

Yi (0)

I Potential outcomes model of causation; Neyman-Rubin causal

model

I Fundamental problem of causal inference:

Cannot observe both potential outcomes for same person
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Actual or observed data

I Y = 1 if patient died, 0 otherwise

I A = 1 if patient treated, 0 otherwise

ID A Y

Ian 1 1

Jim 0 0
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Ideal data

ID A Y Y(0) Y(1)

Ian 1 1 1 1

Jim 0 0 0 0
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Available data on Ian and Jim

ID A Y Y(0) Y(1)

Ian 1 1 ? 1

Jim 0 0 0 ?

I If untreated, A = 0, Y = Y (0) and Y (1) is missing

I If treated, A = 1, Y = Y (1) and Y (0) is missing

I Counterfactual and actual outcomes are linked via Y (A) = Y

(More details later!)

22 / 88



Your table vs God’s table

Yours God’s

ID A Y A Y(0) Y(1)

1 0 0 0 0 0

2 0 1 0 1 1

3 0 0 0 0 0

4 0 0 0 0 0

5 1 1 1 1 1

6 1 1 1 1 1

7 1 0 1 0 0

8 1 0 1 0 0

I Yours:

Pr(Y = 1|A = 1)− Pr(Y = 1|A = 0) = 2/4− 1/4 = 1/4

I God’s: Pr(Y (1) = 1)− Pr(Y (0) = 1) = E (Y (1)− Y (0)) = 0

I Association 6= Causation: Confounding for the effect of A on

Y
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Average causal effect

I Association (identifiable): crude risk difference

δ = E (Y |A = 1)−E (Y |A = 0) = E (Y (1)|A = 1)−E (Y (0)|A = 0)

I Causation (not identifiable): causal risk difference = average

causal effect (ACE)

δ∗ = E (Y (1)− Y (0)) = E (Y (1))− E (Y (0))

proportion diseased if all treated - proportion diseased if all

untreated

I ACE, instead of ICE, will be the main focus of this short

course with the exception of Fisher’s randomization procedure.
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Reinforcing the notations

I Y (1) and Y (0) are potential outcomes

I Y is the observed outcome

I There may be no link among the three.

I Need assumptions to link them.

I One key step in causal inference is to delineate these

assumptions.
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Observed quantities

I Data: Zi = (Yi ,Ai ,Xi ), i = 1, . . . , n, where for i th individual,

Yi : response

Ai : the treatment received

Xi : the covariates that have been collected on the individual

prior to the intervention.

I Interest: establish a causal relationship between the

intervention and the outcome
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Statistical paradigm

I Y |A = 0 ∼ N(µ0, σ
2)

Y |A = 1 ∼ N(µ1, σ
2)

I Population: patients with hypertension who have diastolic

blood pressure greater than 140.

I A sample from this population are studied, some who receive

statin drugs (A = 1) and others who don’t (A = 0); Y : the

change in a patient’s blood pressure after 6 months

I δ = µ1 − µ0: the observed difference in mean blood pressure

for patients receiving treatment versus those that don’t
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Association

I Associational relationship!

I Individuals who receive treatment may be inherently different

from those who do not.

I δ: reflect such inherent differences as well as any effect of

treatment.

I Confounding variables: factors that may be related both to

outcome as well as who may get treatment.
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Main task

Under certain assumptions, causation is identifiable.

Main focus: estimate E (Y (1)) and E (Y (0)), which must be done

using the observed data.

29 / 88



Causal parameters or estimands

I In causal inference, careful attention is given to the estimands

(“science”, “nature”)

I For a population of N units, average causal effect (ACE)

1

N

N∑
i=1

{Yi (1)− Yi (0)}

I Median causal effect

Median {Yi (1)− Yi (0) : i = 1, ...,N}
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Causal parameters or estimands

I Difference in median potential outcomes

Median {Yi (1) : i = 1, ...,N} −Median {Yi (0) : i = 1, ...,N}

I Critical requirement is comparison is on the same set of units

Median {Yi (1) : i ∈ S} −Median {Yi (0) : i ∈ T}

not a causal effect unless S = T
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Other causal estimands

I Conditional average causal effects also common

I Average treatment effect in the treated

E{Y (1)− Y (0)|A = 1} ≡ ATET

and avg treatment effect in the controls

E{Y (1)− Y (0)|A = 0} ≡ ATEC
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Stable Unit Treatment Value Assumption (SUTVA)

I That the notation {Yi (0),Yi (1)} sufficiently describes all

possible potential outcomes requires SUTVA

I 1. Consistency: Value Yi (a) for unit i when exposed to

treatment a will be the same no matter what mechanism is

used to assign treatment a to unit i ; no different versions of

treatment

Yi = Yi (1)Ai + Yi (0)(1− Ai )

Not to be confused with the statistical concept of an

estimator being consistent (i.e., converges in probability)
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Stable Unit Treatment Value Assumption (SUTVA)

Individual i receives treatment 1 in a hypothetical situation where

I everyone in the population is given treatment 1

I a sample of individuals are randomized to receive treatment 1

or 0

I some individuals receive treatment 1 or 0 according to their

physician

Observed response would be the same for patient i .
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SUTVA

I 2. No interference between units: Outcome of one individual

assumed to be unaffected by treatment assignment of others

Violated in infectious diseases (vaccines)?

I Without SUTVA things are potentially much more

complicated

I Need to expand notation to reflect the dependence of the

outcomes on treatment of others or different possible

treatments
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Nonparametric bounds

I Identification (statistical) of parameter: the parameter can be

calculated (correctly) from the joint distribution of observable

quantities

I Here: we would like to be able to learn something about the

potential outcomes Y (a):

I Distributions and expectations of Y (a)

I Comparisons (e.g., differences or ratios of expectations; causal

risk differences or ratios)
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Nonparametric bounds

I Problem: potential outcomes Y (1), Y (0), not observed for

every subject in population

I What can be stated about these sometimes unobserved

quantities?

I No additional assumptions: bounds – introduce briefly
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Nonparametric bounds

I Bounds: consider binary Y

I What is largest value for Pr(Y (1) = 1) that is consistent with

data? What is smallest?

I What about Pr(Y (0) = 1)?

I What is maximum value for causal risk difference

Pr(Y (1) = 1)− Pr(Y (0) = 1)?

(Consider inference either for finite population (no sampling)

or sample of infinite size)
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Nonparametric bounds

I Can expand probability:

Pr(Y (0) = 1) = Pr(A = 0,Y (0) = 1) + Pr(A = 1,Y (0) = 1)

= Pr(A = 0)Pr(Y (0) = 1|A = 0)

+Pr(A = 1)Pr(Y (0) = 1|A = 1)

= Pr(A = 0)Pr(Y = 1|A = 0)

+Pr(A = 1)Pr(Y (0) = 1|A = 1)

I What quantities above are observable, estimable from data?

I Where is the SUTVA used?
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Nonparametric bounds

I All quantities known or estimable except Pr(Y (0) = 1|A = 1)

I What about bounds on Pr(Y (0) = 1|A = 1)?

Limits for Pr(Y (0) = 1|A = 1): 0 ≤ Pr(Y (0) = 1|A = 1) ≤ 1

40 / 88



Nonparametric bounds

I Limits for entire population: i.e., on Pr(Y (0) = 1):

Pr(A = 0)Pr(Y = 1|A = 0)

≤ Pr(Y (0) = 1)

≤ Pr(A = 0)Pr(Y = 1|A = 0) + Pr(A = 1)

I For binary outcome, can learn something about potential

outcomes without making any further assumptions about

unobserved quantities

I For other potential outcome Y (1)

Pr(A = 1)Pr(Y = 1|A = 1)

≤ Pr(Y (1) = 1)

≤ Pr(A = 0) + Pr(A = 1)Pr(Y = 1|A = 1)
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Nonparametric bounds

I How can one construct bounds on risk difference?

I For lower bound, take largest value for Pr(Y (0) = 1)

consistent with data, smallest value for Pr(Y (1) = 1)

Pr(Y (1) = 1)− Pr(Y (0) = 1)

≥ Pr(A = 1)Pr(Y = 1|A = 1)

−Pr(A = 0)Pr(Y = 1|A = 0)− Pr(A = 1)

I Similarly, for upper bound:

Pr(Y (1) = 1)− Pr(Y (0) = 1)

≤ Pr(A = 1)Pr(Y = 1|A = 1)

+Pr(A = 0)− Pr(A = 0)Pr(Y = 1|A = 0)
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Nonparametric bounds

I Difference between upper and lower bounds on Pr(Y(1)=1) -

Pr(Y(0)=1) is 1

I So half of theoretical range (-1 to 1; range of 2) excluded by

observable variables with no other assumptions

I No matter how large study, how much data obtained, this

approach cannot get narrower range for causal risk difference

I Can never exclude null hypothesis of no treatment effect
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Nonparametric bounds

I How would one derive inference from sample about

population?

I One could calculate sampling variances of bounds

Will generally lead to even wider intervals

I Nonparametric bounds are generally fairly broad; More precise

inference desired

I Suggest methods (very general) for obtaining inferences
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Nonparametric bounds

I To get more precise and informative inference, two

approaches:

1. Consider assumptions that allow tightening of nonparametric

bounds approach, e.g. Manski (1990)

2. Specify assumptions sufficient to identify causal

parameters/effects; consider how to weaken/make assumptions

more reasonable.

Approach 2 will often justify familiar approaches; more widely

used in practice in epidemiology and biostatistics
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Nonparametric bounds

I Most of course will follow approach 2, will consider the

following different settings:

1. Randomized trials without noncompliance

2. Simple observational studies
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Simple examples

I Example 1 - Additive
i Yi (1) Yi (0) Yi (1)− Yi (0)

1 10 7 3

2 3 0 3

3 5 2 3

4 12 9 3

Mean 7.5 4.5 3

I Example 2 - Non-additive
i Yi (1) Yi (0) Yi (1)− Yi (0)

1 10 10 0

2 3 0 3

3 5 5 0

4 12 3 9

Mean 7.5 4.5 3
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Additivity

I Causal effect is additive if

Yi (1)− Yi (0) = δ for all i

where δ is some constant

I Example 1 additive, Example 2 non-additive

I Additivity assumption plays important role in some of the

results of Neyman and Fisher below
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Assignment mechanism

I In order to learn about the causal effects of interest, we need

to know or posit an assignment mechanism

I Assignment mechanism: The process of deciding which

units receive treatment and which receive control

I Define Y obs ≡ Y (A) = (1− A)Y (0) + AY (1) (consistency)

I Assigned treatment unmasks the potential outcome

Y (A) = Y obs but masks the other potential outcome

Y (1− A) = Ymis
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Completely randomized experiment

I Exactly k of N units receive treatment, with each assignment

equally likely

I Let A ≡ (A1, ...,AN) and a ≡ (a1, ..., aN)

I For completely randomized experiment

Pr [A = a] =

I Unconfounded or strongly ignorable assignment mechanism,

also called full exchangeability (Hernan and Robins 2013)
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The randomization assumption

I Data from a randomized intervention study can be used to

derive an unbiased estimation of causal treatment effect

I Suppose you randomize the population of patients to either

treatment with probability p > 0 or to control with probability

1− p > 0. Then, with q denoting independence, it holds that

Y (a)q A, a = 0, 1

or

(Y (0),Y (1))q A
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Randomization leads to causality

I In this case

E (Y |A = 1) = E (Y (1)A + Y (0)(1− A)|A = 1)

= E (Y (1)|A = 1)

= E (Y (1)).

I Thus, the probability distribution of the counterfactuals

Y (a), a = 0, 1, can be written in terms of the distribution of

the observed data (Y ,A) and hence it is identified.

I Hence δ∗ = δ = E (Y |A = 1)− E (Y |A = 0).
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The null hypothesis of no treatment effect

I Note that randomization does not imply Y q A since

Y = AY (1) + (1− A)Y (0) is determined by treatment and

therefore is a posttreatment variable.

I Y q A: represents the null hypothesis of no treatment effect.

Y = Y (1)A + Y (0)(1− A) = A{Y (1)− Y (0)}+ Y (0)

Therefore Y q A iff Y (1) = Y (0).
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Causal Inference in randomized experiments

I Randomization-based inference
I Neyman 1923 lays out potential outcome framework
I Fisher 1925 realizes importance of randomization

I Model-based inference
I Frequentist
I Bayesian
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Neyman
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RA Fisher
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Causal Inference in randomized experiments

I Neyman approach – based on ACE:

H0 : ACE =
N∑
i=1

{Yi (1)− Yi (0)} = 0

Not a “sharp” null hypothesis.

I Fisher approach – based on ICE:

H0 : Yi (0) = Yi (1), ∀i = 1, . . . ,N

No treatment effect on any unit

⇒ A “sharp” null hypothesis – specifies all potential outcomes
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Neyman

I Suppose we have a completely randomized experiment

I Then an unbiased estimator of ACE

ÂCE ≡
∑

i Y
obs
i Ai∑
i Ai

−
∑

i Y
obs
i (1− Ai )∑
i (1− Ai )

I Expectation is taken over all possible randomizations

I Potential outcomes {Yi (0),Yi (1) : i = 1, ...,N} regarded as

fixed

I Only treatment assignments Ai are considered random

I Randomization-based repeated-sampling inference
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Neyman

I Draw simple random sample without replacement of size k

from population of size N

I Then the sample average∑
i Y

obs
i Ai∑
i Ai

=
1

k

∑
i :Ai=1

Yi (1)

is an unbiased estimator of the population average

1

N

N∑
i=1

Yi (1) = Ȳ (1)

I Prove E (ÂCE ) = ACE .
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Example 1 revisited

I Example 1

i Yi (1) Yi (0) Yi (1)− Yi (0)

1 10 7 3

2 3 0 3

3 5 2 3

4 12 9 3

Mean 7.5 4.5 3

I EXERCISE: Completely randomized experiment where k = 2

a Pr [A = a] ÂCE

0011 1/6 (5+12)/2 -(7+0)/2=5

1010 1/6

1001 1/6

0110 1/6

0101 1/6

1100 1/6

Mean
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Neyman

I Estimator of variance

V̂ar(ÂCE ) ≡ σ̂21
k

+
σ̂20

N − k

where σ̂2j is the sample variance of {Y obs
i : Ai = j} for

j = 0, 1,

I Positively biased unless effect is additive, i.e.,

E{V̂ar(ÂCE )} = Var(ÂCE ) +
1

N
σ21−0

where σ21−0 ≡
∑

i [{Yi (1)−Yi (0)}−{Ȳ (1)− Ȳ (0)}]2/(N − 1)
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Example 1 revisited

I Example 1: additive causal effect

i Yi (1) Yi (0) Yi (1)− Yi (0)

1 10 7 3

2 3 0 3

3 5 2 3

4 12 9 3

I Completely randomized experiment where k = 2

a Pr [A = a] ÂCE V̂ar(ÂCE )

0011 1/6 (5+12)/2 -(7+0)/2=5 24.5

1010 1/6 (10+5)/2-(0+9)/2=3 26.5

1001 1/6 (10+12)/2-(0+2)/2=10 2.0

0110 1/6 (3+5)/2 -(7+9)/2=-4 2.0

0101 1/6 (3+12)/2-(7+2)/2=3 26.5

1100 1/6 (10+3)/2-(2+9)/2=1 24.5

Mean 3 17.67

Variance* 17.67
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Example 2 revisited

I Example 2: non-additive causal effect

i Yi (1) Yi (0) Yi (1)− Yi (0)

1 10 10 0

2 3 0 3

3 5 5 0

4 12 3 9

I Completely randomized experiment where k = 2

a Pr [A = a] ÂCE V̂ar(ÂCE )

0011 1/6 3.5 37.25

1010 1/6 6.0 8.5

1001 1/6 8.5 7.25

0110 1/6 -2.5 13.25

0101 1/6 0.0 26.5

1100 1/6 2.5 13.25

Mean 3 17.67

Variance* 13.17
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Large sample approximation

I Assuming additivity, as k , (N − k)→∞

ÂCE − ACE

V̂ar(ÂCE )1/2
→ N(0, 1)

I For large samples, (1− α)% confidence interval

ÂCE ± z1−α/2V̂ar(ÂCE )1/2

I Hypothesis testing: H0 : ACE = 0

Zobs =
ÂCE

V̂ar(ÂCE )1/2
∼ N(0, 1)
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Neyman summary

I Credited with founding potential outcomes model of causality

I Derived unbiased estimator of ACE and

(positively biased) estimator of variance of ACE

I Leads to valid large sample confidence intervals

I Assumes only SUTVA and completely randomized experiment
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Extensions of Neyman’s potential outcomes

I A may take on multiple levels, say 0, 1, 2, ... such that each

individual has potential outcomes {Yi (0),Yi (1),Yi (2)}

I Similarly, may have treatment at multiple time points, eg:

Yi (a1, a2) potential outcome when treatment aj received at

time j

I A continuous, {Yi (a)} infinite dimensional

I Yi (a) random instead of deterministic function of a

I Interference: Outcome for individual i may depend on

treatment assignment of others Yi (a)
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Fisher: motivating example

I Suppose want to understand vaccine’s ability to prevent

infection/disease from some pathogen a = 1 vaccine, a = 0

control; Y = 1 infection, Y = 0 uninfected

I Four types of individuals

Yi (0) Yi (1) ICE

0 0 0 Immune

1 0 1 Protected

0 1 -1 Harmed

1 1 0 Doomed

I Fundamental problem of causal inference: cannot say to

which stratum individuals belong, do not know ICE or ACE
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Observed table - Fisher

I Conduct completely randomized experiment; observe 2× 2

table

Y = 1 Y = 0

Vaccine
∑

i AiY
obs
i

∑
i Ai (1− Y obs

i )
∑

i Ai

Placebo
∑

i (1− Ai )Y
obs
i

∑
i (1− Ai )(1− Y obs

i )
∑

i (1− Ai )∑
i Y

obs
i

∑
i (1− Y obs

i ) n

I Vesikari et al. (1990) randomized n = 200 infants aged 2-5

months to rotavirus vaccine or placebo

Diarrhea NoDiar

Y = 1 Y = 0

Vaccine 37 63 100

Placebo 52 48 100

89 111 200
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Causal table - Fisher

For completely randomized experiment, under sharp null the

observed 2× 2 table

Y = 1 Y = 0

Vaccine
∑

i AiY
obs
i

∑
i Ai (1− Y obs

i )
∑

i Ai

Placebo
∑

i (1− Ai )Y
obs
i

∑
i (1− Ai )(1− Y obs

i )
∑

i (1− Ai )∑
i Y

obs
i

∑
i (1− Y obs

i ) N

equivalent to

Y = 1 Y = 0

Vaccine
∑

i AiYi (0)
∑

i Ai (1− Yi (0)) n

Placebo
∑

i (1− Ai )Yi (0)
∑

i (1− Ai )(1− Yi (0)) N − n∑
i Yi (0)

∑
i (1− Yi (0)) N
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Fisher’s randomization or exact test

I Assuming H0 and completely randomized experiment, row and

column totals are fixed

I
∑

i AiYi (0) is the total of a simple random sample (without

replacement) of size k from a population of size N with∑
i Yi (0) ones and

∑
i (1− Yi (0)) zeros

I
∑

i AiYi (0) has a hypergeometric distribution
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Hypergeometric distribution

From Wiki: the hypergeometric distribution is a discrete

probability distribution that describes the probability of k successes

in n draws without replacement from a finite population of size N

containing exactly K successes.

success no success

drawn k n − k n

not drawn K − k N − K − n + k N − n

K N − K N

P(X = k) =

(K
k

)(N−K
n−k

)(N
n

)
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Fisher’s randomization or exact test

I Veiskari data: one-sided p-value Pr[
∑

i AiYi (0) ≤ 37] = 0.023

I In R

phyper(37,89,111,100)

phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)

q vector of quantiles representing the number of white balls

drawn from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

p probability, it must be between 0 and 1.
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Randomization-based inference

I Before looking at the observed data:
I Specify a sharp null hypothesis
I Specify a test statistic for estimating the treatment effect and

evaluating the null hypothesis.

I Using the Yobs data

I Calculate the value of the test statistic, and specify values that

are more extreme (i.e., unusual).
I Fill in the missing potential outcomes using the sharp null

hypothesis and the observed Y values.

I Obtaining a p-value

I For each possible assignment, calculate the value of the test

statistic of interest that would have been observed under that

assignment .
I Determine how extreme the value observed is.
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Permutation test

I Test statistic D = ÂCE

I Under H0 : Yi (1)− Yi (0) = 0, randomization-based

distribution of D is computed by considering all possible

treatment assignments k

I Under H0, can compute D for each of these randomization

assignments

I For completely randomized experiment, each possible

randomization assignment is equally likely
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Permutation test: example

I A new drug is being tested in humans for the first time to

assess effect on CD4+ T cells in patients with HIV

I 7 individuals are randomized to 2 groups: control (N − k = 3)

or drug (k = 4)

I Outcome Yi (a): percent increase in CD4+ count from

baseline for a = 0 control, a = 1 drug

I Null hypothesis is the drug has no effect

H0 : Yi (1)− Yi (0) = 0 for i = 1, . . . ,N

76 / 88



Permutation test: example

I Observed data: control (65, 69, 73); drug (70, 88, 89, 92)

I There are 35 possible randomizations

i.e. there are 35 possible ways to assign 4 individuals to drug

I Under H0, can compute D for each of these randomization

assignments
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Example: all possible group assignments

A = 0 A = 1 d A = 0 A = 1 d

65 69 73 70 88 89 92 15.75 65 69 70 73 88 89 92 17.50

65 69 89 70 88 73 92 6.42 65 69 88 70 73 89 92 7.00

... ... ... ... ... ...
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Example: CDF of D

d P(D ≤ d) d P(D ≤ d)

-20.42 0.029 1.17 0.600

-11.08 0.057 1.75 0.629

-10.67 0.086 2.33 0.657

-9.92 0.114 3.50 0.686

-9.33 0.143 4.08 0.714

-8.75 0.200 4.67 0.743

-7.58 0.229 5.83 0.771

-7.00 0.286 6.42 0.800

-6.41 0.371 7.00 0.886

-6.00 0.400 12.83 0.914

-4.67 0.457 15.17 0.943

-0.58 0.543 15.75 0.971

-0.00 0.571 17.50 1.000
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Permutation test example

I Observed d = −15.75

I Two-sided p-value

Pr(|D| ≥ 15.75) = 3/35 = 0.086

I In R

library(exactRankTests)

perm.test(c(65,69,73),c(70,88,89,92),exact=T,tol=0.01)
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Randomization-based inference

I Fisher Interval: The set of possible values of the causal

quantity of interest corresponding to test statistics with

p-values that fall within some range set by the researcher;

usually interpreted to be a set of plausible values of the

average causal effect
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Example - explaining the Fisher interval

Jane is 23 years younger than her mother.

Jane’s parents’ ages sum to 58.

Jane’s mother is two years younger than Jane’s father.

How old is Jane?
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Example - explaining the Fisher interval

I Start by assuming Jane is 30.

I This means Jane’s mother must be 53, which means Jane’s

father must be 5. Contradiction!

I Our assumption that Jane is 30 must be wrong.
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Example - explaining the Fisher interval

Try again!

I Assume Jane is 10.

I This means that Jane’s mother must be 33, which means

Jane’s father must be 25.

I Our assumption that Jane is 10 must be wrong.
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Example - explaining the Fisher interval

Keep repeating the process until you don’t arrive at a

contradiction.

I Assume Jane is 5.

I This means that Jane’s mother must be 28, which means

Jane’s father must be 30.

I We cannot reject the assumption that Jane is five years old.
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Randomization-based confidence interval

I Use p-values to determine an interval of plausible numbers for

the treatment effect.

I Systematically go through hypothesized values for the

treatment effect.

I Keep the values that are “plausible”, for example, their

corresponding p-values are between .05 and .95; discard others

I The ones we keep form a 90% Fisher interval.
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Randomization-based confidence interval

I Suppose causal effect is additive

Yi (1)− Yi (0) = δ for i = 1, . . . , n

I Consider test of H0 : Yi (1)− Yi (0) = δ0 for some δ0 6= 0

I Set of δ0 where we fail to reject at the α significance level

forms a (1− α)× 100% confidence interval for δ.
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Randomization-based confidence interval

I Want to test H0 : Yi (1)− Yi (0) = δ0 for some δ0 6= 0

I Instead of Y obs
i , perform randomization test on

Y obs
i + (1−Ai )δ0 which is independent of A because under H0

Y obs
i +(1−Ai )δ0 = (1−Ai )Yi (0)+AiYi (1)+(1−Ai )δ0 = Yi (1)

I Confidence intervals are “exact” in the sense that the

coverage probability is guaranteed to be at least (1− α)

I E.g., in R:

perm.test(c(65,69,73),c(70,88,89,92),exact=T,tol=0.01,

conf.int=TRUE)

88 / 88


	Introduction
	Potential outcomes
	Observed outcomes
	Association vs causation
	The SUTVA causal assumption
	Nonparametric bounds
	Randomized Experiments
	The randomization assumption
	Neyman
	Fisher


