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Notations 
Regression:  𝑌 = 𝑔(𝑥;𝛽) + 𝜀, where 𝜀~𝑁(0,𝜎2) is considered as the random residual error that 
consists with (unknown) different proportions of model error (error in model structure), measurement 
error in 𝑦1, … ,𝑦𝑛 and measurement error in 𝑥1, … , 𝑥𝑛.   

Notes:  

(1) The fourth component, unobserved heterogeneity, sometimes also exists in 𝜀.  A simple 
example of the unobserved heterogeneity is different metallurgical components in the pipe 
steels from different manufacturers. 

(2) In my view, unless extra efforts are made, there is no way to identify and separate the three/ 
four components in 𝜀.  However, sensitivity analysis might be able to identify and justify which 
component(s) should be further reduced. 

(3) The measurement error in 𝑥 sometimes cause model error (model misspecification) and 
underestimate of parameter uncertainty. 

Suppose a lifetime 𝑇 is defined by the response 𝑌 and a threshold value 𝜁.  Then 𝑇 = ℎ(𝑌).  Often 𝜁 is a 
decision parameter and subject to no uncertainty.  We omit this parameter in the following discussion. 

 

Setting 
Using the given data (𝑥𝑖 ,𝑦𝑖; 𝑖 = 1, … ,𝑛), we have obtained the estimate �̂� and 𝜎�2.  Their parameter 
uncertainty is also quantified.  For a linear regression model, the expressions are well established.  That 
is, the estimator 𝛽 follows a normal distribution and estimator 𝜎2 follow a 𝜒2 distribution. For nonlinear 
regression model, similar results can be obtained using the delta approach (originated from Taylor series 
expansion of function 𝑔(𝑥)) and the large sample theory.  Asymptotically, 𝛽 also follows a normal 
distribution and 𝜎2 a 𝜒2 distribution.   

In this model setting, 𝜀 is called aleatory uncertainty, and the parameter uncertainty is the epistemic 
uncertainty. 

 



Presentation of Results 
The prediction of 𝑌 can be presented in several ways. 

(1) 𝑌 as a function of 𝑥.  To represent the uncertainty, five curves are often included.  They are, 
from top to bottom, 95 percentile upper bound for response 𝑌|𝑥, 95 percentile upper bound for 
the mean response 𝐸[𝑌|𝑥], mean response 𝐸[𝑌|𝑥], 5 percentile lower bound for the mean 
response 𝐸[𝑌|𝑥], and 5 percentile lower bound for the response 𝑌|𝑥. 

(2) Probability distribution of 𝑌|𝑥.   It is often represented by the cumulative distribution function 
(CDF), rather than the probability density function.  There are also two approaches to present 
the CDF.   

a. Integrated CDF:  For linear regression, it is just a CDF of 𝑡 distribution that considers 
both aleatory uncertainty 𝜀 and epistemic uncertainty in parameter. 

b. Aleatory CDF plus epistemic bounds:   A normal CDF for 𝑌|(𝑥,𝛽,𝜎) as the central curve, 
plus 95th- and 5th-percentile bounds of the CDF when the parameter uncertainty of 𝛽 
and 𝜎 is included.   It can be shown that the average of those epistemic plots should 
equal the integrated CDF in (2a). 

 

Figure 1:  Blue curve is the aleatory CDF (i.e., normal distribution); the cyan curve is the integrated CDF (i.e., the t-
distribution); the red curve of solid line is the average of the hair plots, which overlaps the cyan curve (i.e., a sample average 

approximate of t distribution); the red curves of broken line is the 5th and 95th epistemic bounds of the CDF. 

 

c. Aleatory quantile plus epistemic bounds:  A normal quantile for 𝑌|(𝑥,𝛽,𝜎) as the 
central curve, plus 95th- and 5th-percentile bounds of the quantile when the parameter 
uncertainty of 𝛽 and 𝜎 is included.   It can be shown that the average of those epistemic 
plots should equal the integrated quantile of the 𝑡 distribution. Although a quantile is an 
inverse function of the CDF, the probability bounds of the quantile are not the inverse of 
the corresponding bounds of the CDF.  Alternatively, the quantile curve with a specific 
percentage of confidence (one-sided bound) can be plotted. 
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Figure 2: color convention is the same as in Figure 1. 

(3) 90th percentile of 𝑌|𝑥 with 95% confidence, or 𝑝th percentile of 𝑌|𝑥 with 𝑞% confidence.   This 
can be directly read from Figure 2, if the 95% one-sided bound are given.      

It should be clear now that the prediction of the lifetime 𝑇 is exactly the same as that of 𝑌.  The 
confusion arose probably because we often use (1) for 𝑌 and (2) for 𝑇. 
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Figure 3: Can you add another curve for the mean of y|x with consideration of epistemic uncertainty?  
It should be even steeper than the blue line. 

 

Interpretation 
There are still several issues to be addressed.   

(1) Since we decided to include model error into the residual error 𝜀 term, how do we explain the 
alteatory CDF of 𝑌|𝑥 in (2b)?  Although Der Kiureghian and Ditlevsen suggested that 
categorization of the aleatory uncertainty and epistemic uncertainty be based on our answer to 
whether the uncertainty can be further reduced through efforts in a reasonable time, people 
often interpret the aleatory CDF as the objective probability, something like the property or 
propensity of the subject we analyze, similar to the mass of a coin.  However, the inclusion of 
model error in 𝜀 contaminates this interpretation. 

(2) Use of terminology.  Regarding epistemic uncertainty, shall we use confidence interval or 
credibility interval?  In my view, we use avoid using the frequentist terminology because 
confidence interval actually describes only the inference procedure, not the quantity of our 
interest. 

(3) I believe that the 𝑝th percentile with 𝑞% confidence represents one kind of tolerance limit, it is 
a one-sided tolerance limit.   According to Cambridge Dictionary of Statistics (Everitt, 2006, 3rd 
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ed) a tolerance interval is the statistical interval that contain at least a specified proportion of a 
population either on average, or else with a stated confidence value.  If we look at Figure 2, we 
can actually read predictive interval (also refer to Figure 3), which is the distance (not shown in 
Figure 2) dictated by the cyan line.  On the other hand, the y-axis value pointed by arrow 1 is 
90th percentile with 95% confidence.  The distance between 1 and 2 is the (two-sided) 
confidence interval for 90th percentile with 90% (not a mistake!) confidence.  But the distance 
between 1 and 3 is the (two-sided) tolerance interval for 90th percentile with 90%  confidence.  
However, I think the value at 1 also represents a one-sided upper tolerance limit if we read the 
definition of tolerance limit.  Another thing we should be clear now is that the predictive interval 
represents only the tolerance limit with 50% confidence. 

 

Appendix  A:  Interpretation from Bayesian Statistics 
 

Take the univariate variable case for an example.  Suppose 𝑋~𝑁(𝜇,𝜎2) and the distribution parameters 
𝜇 and 𝜎2 or 𝜆 = 𝜎−2 (usually called precision) are to be estimated from a set of independent 
observations, collectively called data 𝒟 = {𝑥1, … , 𝑥𝑛}.  In Bayesian statistics, the parameters are treated 
as unknown quantities and also modeled as two random variables with prior distributions 𝜋(𝜇) and 
𝜋(𝜆).  Assume both priors to be noninformative, i.e., 𝜋(𝜇) ∝ 1 for −∞ < 𝜇 < ∞ and 𝜋(𝜆) ∝ 𝜆−1 for 
𝜆 > 0. (This is also called the reference prior for 𝜇 and 𝜆) 

Denote the sample mean and sample variance of the data as 𝑚 = 1
𝑛
∑𝑥𝑖  and 𝑠2 = 1

𝑛−1
∑(𝑥𝑖 − 𝑚)2, 

respectively.   Then the posterior distributions of the two parameters are 

𝑝(𝜇, 𝜆) ∝ 𝜋(𝜇)𝜋(𝜆)𝜆
𝑛
2 exp �−

𝜆
2
�(𝑥𝑖 − 𝜇)2� 

Note that  

�(𝑥𝑖 − 𝜇)2 = �[(𝜇 −𝑚) − (𝑥𝑖 − 𝑚)]2 = �(𝜇 −𝑚)2 +�(𝑥𝑖 − 𝑚)2 = 𝑛(𝜇 −𝑚)2 + (𝑛 − 1)𝑠2 

Hence, 

𝑝(𝜇, 𝜆) ∝ �𝜆
1
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This joint posterior can be expressed as 

𝑝(𝜇, 𝜆) = 𝑝(𝜆) × 𝑝(𝜇|𝜆) 

where 



𝑝(𝜆) = 𝐺𝑎 �𝜆�
𝑛 − 1

2
,
𝑛
2
𝑠2� 

and  

𝑝(𝜇|𝜆) = 𝑁(𝜇|𝑚,𝑛𝜆) 

The marginal posterior for 𝜇 is actually a 𝑡 distribution as 

𝑝(𝜇) = 𝑡𝑛−1 �𝜇�𝑚,
𝑠2

𝑛 − 1�
 

The posterior predictive distribution is 

𝑝(𝑥|𝐷) = 𝑡𝑛−1 �𝑥�𝑚, �1 +
1
𝑛
� 𝑠2� 

These all are the same as the frequentist results. 

Note that the posterior predictive is derived from the following integral 

𝑝(𝑥|𝐷) = �𝑝(𝑥|𝜇, 𝜆,𝐷)𝑝(𝜇, 𝜆|𝐷)d𝜇d𝜆 

in which the blue colored 𝑝(𝑥|𝜇, 𝜆,𝐷) is actually the aleatory uncertainty while the red colored 
𝑝(𝜇, 𝜆|𝐷) is the epistemic uncertainty. 

 

In Figures 1 and 2, I used 𝑚 = 0, 𝑠 = 1 and 𝑛 = 10 for the simulation.  Nsim = 200. 
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