SCIENTIFIC REPORTS

Received: 14 December 2015 Accepted: 01 March 2016 Published: 17 March 2016

OPEN Superconducting H₅S₂ phase in sulfur-hydrogen system under highpressure

Takahiro Ishikawa¹, Akitaka Nakanishi¹, Katsuya Shimizu¹, Hiroshi Katayama-Yoshida², Tatsuki Oda³ & Naoshi Suzuki⁴

Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (T_c) under high-pressure. The superconducting T_c shows 30–70 K in pressure range of 100–170 GPa (low- T_c phase) and increases to 203 K, which sets a record for the highest T_c in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high- T_c phase). Here we present a solid H_sS_2 phase predicted as the low-T, phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfurhydrogen system under high-pressure. The H₅S₂ phase is thermodynamically stabilized at 110GPa, in which asymmetric hydrogen bonds are formed between H_2S and H_3S molecules. Calculated T_c values show 50–70K in pressure range of 100–150GPa within the harmonic approximation, which can reproduce the experimentally observed low- T_c phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system.

Search for room-temperature superconductors is a challenging study in materials science, and pressurization and hydrogenation have been considered as a way to push up the superconducting critical temperature, T_{e} , to the higher region¹. Recently, high T_c superconductivity was experimentally observed in compressed hydrogen sulfide (H₂S) and T_c reaches 203 K at 150 GPa^{2,3}, which exceeds copper oxide superconductors^{4,5} and sets a record for the highest T_c . In the experiments, the superconducting T_c shows 30–70 K in pressure range of 100–170 GPa for the H₂S samples loaded at 100–150 K and compressed to 100 GPa (low-T_c phase) and increases to 203 K for the samples annealed by heating it to room temperature at pressures above 150 GPa (high- T_c phase). The pressure-temperature path dependence of T_c is considered to be involved by changes of stoichiometry from H₂S, but the details have not been identified completely. Therefore, further studies on sulfur-hydrogen system under high-pressure are required for the understanding of the mechanism for its excellent superconductivity.

Stoichiometry, crystal structure, and superconductivity of sulfur-hydrogen system under high-pressure have been investigated by first-principles calculations based on the density functional theory (DFT)⁶⁻¹⁷. Duan et al. predicted that H₂S is stable below 43 GPa and decomposes into H₃S and S above the pressure⁸. For H₂S, a monoclinic P2/c structure transforms into a monoclinic Pc structure at 27 GPa. H₃S shows the sequence of pressure-induced structural phase transitions as follows: triclinic $P1 \rightarrow$ orthorhombic Cccm (37–111 GPa) \rightarrow trigonal R3m $(111-180 \text{ GPa}) \rightarrow \text{cubic } Im-3m$. Other hydrogen-rich stoichiometries, H₄S, H₅S, and H₆S, were reported to be unstable up to at least 300 GPa⁸. Errea et al. predicted the stabilizations of HS₂ above 200 GPa and HS above $300 \text{ GPa by including zero-point energy}^9$. HS₂ crystallizes in a monoclinic C2/c and it transforms into a monoclinic C2/m above 250 GPa. HS takes a monoclinic C2/m. Recently, energetically competitive stoichiometries, H₂S₃, H₃S₂, and H₄S₃ were identified¹⁴. H₂S₃ and H₃S₂ are unstable above 25 and 34 GPa, respectively, whereas H_4S_3 is thermodynamically stable in pressure range from 25 to 113 GPa, in which an orthorhombic $P2_12_12_1$ structure is formed in pressure range of 25-60 GPa and an orthorhombic Pnma in 60-113 GPa.

For the superconductivity, T_c calculated for Im-3m H₃S with the inclusion of anharmonic effects shows 194 K at 200 GPa^{9,10}, which is in good agreement with recent results of synchrotron x-ray diffraction measurements

¹Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. ²Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. ³Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan. ⁴Department of Pure and Applied Physics, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan. Correspondence and requests for materials should be addressed to T.I. (email: ishikawa@stec.es.osaka-u.ac.jp)

Figure 1. Formation enthalpy per atom, *H*, of crystal structures obtained by the application of the GA technique to the H_5S_2 stoichiometry. H_5S_2 takes a disorderly mixed structure of H_2S and H_2 molecules at 50 GPa, and it transforms into a monoclinic *C*2/*m* at 64 GPa and then into a triclinic *P*1 with mixed H_2S and H_3S structure at 92 GPa.

combined with electrical resistance measurements for the high- T_c phase¹⁸. On the other hand, for R3m H₃S stabilized below 180 GPa, the calculated T_c is lower by approximately 50 K than the experimentally observed one^{9,10,14}. For the low- T_c phase, H₂S has been considered as a candidate, and T_c is predicted to be 30–60 K for pressure range of 130–160 GPa in a triclinic *P*-1 structure and 80–40 K for 160–250 GPa in an orthorhombic *Cmca*^{6,11}. However, the calculated T_c dose not completely reproduce the experimental data in the pressure region except for 150–160 GPa. For other stoichiometries, the calculated T_c values of C2/c HS₂, C2/m HS₃ and *Pnma* H₄S₃ are 23.4 K for the effective screened Coulomb repulsion constant μ^* of 0.16 at 200 GPa⁹, 14.9 K at 250 GPa⁹, 23.4 K at 300 GPa⁹, and 0.75 K at 300 GPa¹⁴, respectively, which are all far from the experimentally observed values.

Results

In the present study, we focus on another stoichiometric compound, H_5S_2 , which has hydrogen content between H_2S and H_3S . We first explored stable structures of H_5S_2 by the genetic algorithm (GA) technique and first-principles calculations based on DFT, and then compared formation enthalpy per atom among the obtained structures in pressure range from 50 to 250 GPa (Fig. 1). The formation enthalpy was calculated as follows: $\Delta H = H_{H5S2} - 5/7H_H - 2/7H_S$, where H_{H5S2} , H_H , and H_S are the enthalpies per atom of H_5S_2 , pure hydrogen (H), and pure sulfur (S), respectively. At 50 GPa, H_5S_2 takes a disorderly mixed structure of H_2S and H_2 molecules. At 64 GPa, a monoclinic C2/m structure is stabilized. In this structure, four H atoms form two H_2 molecules, and the other H atoms make covalent bonds with the S atoms (Fig. 2a). The C2/m structure transforms into a triclinic P1 structure at 92 GPa. In this phase, H_5S_2 takes a mixed structure of H_2S and H_3S molecules, between which asymmetric hydrogen bonds are formed (Fig. 2b). This structure is also interpreted as a member of the Magnéli-like crystals reported very recently¹⁹.

Next, we investigated thermodynamic stability of H_5S_2 from the convex hull diagram with respect to the H-S stoichiometric compounds, H_xS_{1-x} . Figure 3a shows the static formation enthalpy per atom of the compounds as a function of *x*, which is defined as $\Delta H(x) = H(x) - xH_H - (1-x)H_S$, at 112 GPa. The structures of the compounds are as follows: β -Po for S²⁰, *Pnma* for $H_4S_3^{14}$, *P*-1 for H_2S^6 , *P*1 for H_5S_2 , *R3m* for H_3S^7 , and *B2/n* for H^{21} . The results show that H_4S_3 and H_5S_2 are below the line connecting between H_3S and S (dotted line) but H_4S_3 is above the line connecting between H_5S_2 and S. As the results, H_5S_2 and H_3S are the compounds on the convex hull (solid line) and are thermodynamically stable at 112 GPa, whereas H_4S_3 and H_2S are predicted to be decomposed at this pressure. Figure 3b shows the formation enthalpies of $H_4S_3 + H_3S$ and $H_3S + S$ relative to that of H_5S_2 as a function of pressure. H_5S_2 is composed from H_4S_3 and H_3S at 110 GPa ($H_4S_3 + 7H_3S \rightarrow 5H_5S_2$), and is decomposed into H_3S and S at 123 GPa ($3H_5S_2 \rightarrow 5H_3S + S$).

Figure 4 shows electronic band structure and density of states (DOS) for P1 H₅S₂ at 112 GPa. Antibonding bands formed by hybridization of S 3*p* and H 1*s* states, pushed up in the energy owing to the high pressure, appear as flat band dispersions at the Fermi level (E_F) at around the Γ symmetry point by overlapping conduction bands. As the results, DOS at E_F , *i.e.* $N(E_F)$, is increased and H₅S₂ is a good metal. The hybridization is remarkable at E_F similar to the cases of H₂S and H₃S predicted earlier^{6,7,12}, whereas for a ratio of the H 1*s* state to $N(E_F)$ there is a clear distinction among the compounds: $N_H(E_F) / N(E_F) \approx 0.50$ for H₃S at 130 GPa⁷, $N_H(E_F) / N(E_F) \approx 0.45$ for H₅S₂ at 112 GPa, and $N_H(E_F) / N(E_F) \approx 0.25$ for H₂S at 130 GPa⁶. Therefore, H₅S₂ and H₃S show a larger contribution of H to the electrons at E_F than H₂S.

We investigated the superconductivity of metallic P1 H₅S₂ within the harmonic approximation. Table 1 lists electron-phonon coupling constant λ , logarithmic-averaged phonon frequency ω_{log} , and T_c calculated for P1 H₅S₂. The calculated T_c values show 70.1–79.1 K for $\mu^* = 0.13$ and 58.3–66.5 K for $\mu^* = 0.17$ in pressure region of 112–130 GPa, which is close to the data for the experimentally observed low- T_c phase. We also list the similar data for P-1 H₂S^{6,11} at 130 GPa considered as a candidate of the low- T_c phase. The ω_{log} value of P1 H₅S₂ is almost identical to that of P-1 H₂S, whereas the λ value P1 H₅S₂ is almost 1.5 times as large as that of P-1 H₂S. The larger λ value is considered to be involved by the larger contribution of H to the electrons at E_F as mentioned above. As the results, T_c of P1 H₅S₂ is higher by approximately 40 K than that of P-1 H₂S.

Figure 2. Crystal structures obtained by the GA technique. (a) A monoclinic *C*2/*m*. The lattice parameters at 75 GPa are as follows: a = 2.1813Å, b = 10.5741Å, c = 3.0907Å, and $\gamma = 77.563^{\circ}$. The S atoms occupy a 4i site with (0.1420, 0.8507, 0), and the H atoms a 2a site and two 4i sites with (0.4323, 0.4710, 0) and (0.1476, 0.3429, 0). (b) A triclinic *P*1 with a mixed structure of H₂S and H₃S molecules. The lattice parameters at 112 GPa are a = 2.7127Å, b = 2.7119Å, c = 8.6105Å, $\alpha = 84.706^{\circ}$, $\beta = 84.447^{\circ}$, and $\gamma = 71.868^{\circ}$. All the atoms occupy 1a sites: (0.1869, 0.1539, 0.3865), (0.2812, 0.2819, 0.8685), (0.7196, 0.7232, 0.1301), and (0.8252, 0.8495, 0.6114) for S, and (0.6031, 0.5675, 0.7345), (0.7238, 0.8394, 0.8735), (0.1554, 0.2735, 0.1260), (0.0269, 0.9946, 0.9939), (0.7166, 0.5739, 0.4144), (0.2905, 0.4248, 0.5862), (0.0626, 0.0306, 0.7276), (0.9602, 0.9548, 0.2744), (0.4342, 0.4268, 0.2592), and (0.5163, 0.4870, 0.0020) for H. Asymmetric hydrogen bonds are formed between the H₂S and H₃S molecules: (1) $R_{S-H} = 1.4886$ Å and $R_{S+H} = 1.5929$ Å, and (2) $R_{S-H} = 1.4441$ Å and $R_{S-H} = 1.6596$ Å, where the numbers in parenthesis correspond to those represented on the S atom and *R* shows the distance between S and H.

We plotted the T_c values obtained at $\mu^* = 0.17$ for P1 H₅S₂ with the earlier-predicted T_c data for the H₂S^{6,11}, H₃S^{7,10,11}, H₄S₃¹⁴, and HS₂⁹ compounds and compared it with the experimental data³ (Fig. 5). Phonon calculations indicate that P1 H₅S₂ is mechanically stable to at least 150 GPa (Fig. 6) and is expected to sustain as a metastable phase above 122 GPa owing to high kinetic barrier, rigid grain boundary, *etc.* The T_c value shows 49.5 K at 100 GPa, slightly increases with pressurization, and reaches 71.8 K at 150 GPa, which are in good agreement with the experimental data below 170 GPa in the low- T_c phase. These results suggest that P1 H₅S₂ is a better candidate for the low- T_c phase than H₂S, H₄S₃, and HS₂.

Figure 3. Formation enthalpy per atom as a function of *x* for H_xS_{1-x} compounds. a, The formation enthalpies of H_4S_3 , H_2S , H_5S_2 , and H_3S compounds at pressure of 112 GPa. The H_5S_2 and H_3S compounds are on a convex hull shown by solid line, which indicates that the compounds are thermodynamically stable at this pressure. The other compounds are above the convex hull (open circle), which are predicted to be decomposed. b, Pressure dependence of the enthalpies for H_3S_2 , $H_4S_3 + H_3S$, and $H_3S + S$. H_5S_2 is composed from H_4S_3 and H_3S at 110 GPa ($H_4S_3 + 7H_3S \rightarrow 5H_5S_2$) and is decomposed into H_3S and S at 123 GPa ($3H_5S_2 \rightarrow 5H_3S + S$).

Discussion

We searched for stable crystal structures of the H_5S_2 stoichiometry, which has hydrogen content between H_2S and H_3S , by the genetic algorithm technique, and found three structures in pressure range from 50 to 250 GPa. H_5S_2 takes the disorderly mixed structure of H_2S and H_2 molecules below 64 GPa, and it transforms into the monoclinic C2/m structure. By further compression, the triclinic *P*1 structure with asymmetric hydrogen bonds formed between H_2S and H_3S emerges above 92 GPa. The convex hull diagram with respect to the H-S compounds shows that *P*1 H_5S_2 is thermodynamically stable in the pressure region from 110–123 GPa. By further compression, *P*1 H_5S_2 is predicted to decompose into R3m H_3S and S: 3 $H_5S_2 \rightarrow 5H_3S + S$.

We calculated the superconducting T_c for $P1 H_5S_2$ and obtained the values of 49.5–71.8 K in pressure region of 100–150 GPa within the harmonic approximation, which shows better superconductivity than $P-1 H_2S$ owing to the large contribution of the H 1s electrons to $N(E_F)$. Errea *et al.* reported the importance of the anharmonicity in sulfur hydrides under high-pressure^{9,10}. The anharmonicity hardens H-S stretching modes and softens H-S bending modes, which causes a suppression of λ . As the results, T_c is decreased by approximately 20% (see Table II in ref. 9). In addition, Akashi *et al.* nonempirically determined μ^* as 0.155 for H₂S and 0.168 for H₃S at 130 GPa¹¹. Considering these earlier works, we expect that T_c can be corrected to 46.6 K at 112 GPa and 53.2 K at 130 GPa in $P1 H_5S_2$, which are in good agreement with the experimental data for the low- T_c phase (see Table 1). Our predicted $P1 H_5S_2$ is mechanically stable to at least 150 GPa, whereas imaginary phonon frequency appears above the pressure. However, the stable region of the $P1 H_5S_2$ phase is expected to be shifted in higher pressure with the inclusion of the anharmonic effects because the phonon frequency is reported to be pushed up in H₃S owing to the anharmonic effects because the phonon frequency is reported to be pushed up in H₃S in the low- T_c phase^{2,3} is probably involved by the structural phase transition from P1 or the decomposition of H₅S₂ into H₃S via the intermediate Magnéli phases¹⁹, *i.e.* the transition from the low- T_c phase into the high- T_c phase.

Recently, the x-ray diffraction (XRD) measurements were carried out for H-S system under high-pressure, and R3m H₃S and β -Po S was experimentally confirmed in the high- T_c phase showing $T_c = 203$ K¹⁸. In the experimental XRD patterns, however, there are some peaks which cannot be identified only by R3m H₃S and β -Po S¹⁸. We checked whether the unidentified peaks are obtained by our predicted H₅S₂ compound. Figure 7a shows XRD patterns of R3m H₃S, P1 H₅S₂, P-1 H₂S, Pnma H₄S₃, and β -Po S at 123 GPa, simulated by RIETAN-2000²². The experimental XRD pattern was taken from Fig. 2a of ref. 18, which is obtained by decompression at room temperature after the high-Tc phase is observed at 150 GPa. The wavelength λ of 0.41397 Å was employed for the simulated XRD patterns, which is the same value as the experimental data. The XRD pattern of P1 H₅S₂ shows

Figure 4. Electronic band structure and density of states (DOS) for P1 H_5S_2 at 112 GPa. The lower panel shows a close-up view around the Fermi level (E_F). The calculated band structure forms flat bands near E_F at around the Γ symmetry point and H_5S_2 is a good metal. The partial DOS shows that S 3*p* and H 1*s* are strongly hybridized at E_F .

	P (GPa)	λ	ω_{\log} (K)	μ*	<i>T</i> _c (K)	
H_5S_2	112	1.1856	898	0.13	70.1	
				0.17	58.3	(46.6)
	120	1.2390	907	0.13	75.2	
				0.17	63.2	(50.6)
	130	1.2417	951	0.13	79.1	
				0.17	66.5	(53.2)
H_2S	130	0.77	950	0.13	33	
		0.801	913	0.155	29.4	(23.5)
Exp.	115				30, 50	
	122				40	
	130				55	

Table 1. Superconductivity of P1 H₅S₂. Superconducting parameters calculated for P1 H₅S₂ within the harmonic approximation: electron-phonon coupling constant λ , logarithmic-averaged phonon frequency ω_{log} , and superconducting critical temperature T_c . Effective screened Coulomb repulsion constant μ^* is assumed to be 0.13 – 0.17. The calculated data for H₂S and experimental data are taken from refs 3, 6 and 11, respectively. The values in parentheses show the T_c values decreased by 20%, which are expected in the calculations with the inclusion of the anharmonic effect.

small diffraction peaks at around $2\theta = 10^{\circ}$ and at $2\theta = 13^{\circ}$, which seem to correspond to the unidentified peaks observed in the experimental XRD pattern. However, we cannot clearly conclude that the experimental sample contains $P1 H_5S_2$ owing to the overlapping of many peaks. We also compared the simulated XRD patterns with another experimental data at 121 GPa, taken from Fig. 3(a) of ref. 14 (Fig. 7b). The experimental data is obtained by compression from 10 GPa at room temperature, which is a different experimental protocol from ref. 18. The wavelength λ was set at 0.6199 Å. $P1 H_5S_2$ seems to be included in the experimental XRD data with $Pnma H_4S_3$, while it is hard to explicitly claim the existence of H_5S_2 owing to weak intensity for small peaks in the experimental data. As noted in refs 3 and 14, dissociation products of H_2S depend on pressure-temperature paths. Therefore,

Figure 5. Superconducting critical temperature T_c of the H₅S₂, H₂S, H₃S, H₄S₃, and HS₂ compounds. For H₅S₂, T_c is obtained by the Allen-Dynes formula with the effective screened Coulomb repulsion constant μ^* of 0.17. Calculated T_c data of the other compounds and the experimental data are taken from refs 3, 6, 7, 9, 10, 11, 14 and 18, respectively. The H₅S₂ phase reproduces the experimental data below 170 GPa in the low- T_c phase.

Figure 6. Phonon dispersion curves and density of states for P1 H₅S₂ at 150 GPa. P1 H₅S₂ is thermodynamically unstable above 122 GPa but is mechanically stable to at least 150 GPa.

Figure 7. Comparison of x-ray diffraction (XRD) patterns. (a) The XRD patterns at 123 GPa are simulated for R3m H₃S, P1 H₅S₂, P-1 H₂S, Pnma H₄S₃, and β -Po S with the wavelength λ of 0.41397Å. The experimental data is taken from Fig. 2a of ref. 18, which is obtained by decompression at room temperature after the high- T_c phase is observed at 150 GPa. (b) The XRD patterns at 121 GPa are simulated with λ of 0.6199Å. The experimental data is taken from Fig. 3(a) of ref. 14, which is obtained by compression from 10 GPa at room temperature.

the H_5S_2 compound could be observed by further experimental search for optimum pressure-temperature paths to the low- T_c phase.

Methods

We searched for crystal structures by our genetic algorithm (GA) code, which has been developed along the line proposed by Glass *et al.*²³ and been combined with the Quantum ESPRESSO (QE) code²⁴. In our GA search, we carried 20 structures in each generation, where 8 structures are created by "crossover", 6 "mutation", and 6 "permutation". We used the simulation cells including 1 to 4 formula units for H_5S_2 . Pressures are set at 100, 150, and 200 GPa. The generalized gradient approximation by Perdew, Burke and Ernzerhol²⁵ was used for the exchange-correlation functional, and the Vanderbilt ultrasoft pseudopotential²⁶ was employed. The energy cut-off of the plane wave basis was set at 80 Ry. Marzari-Vanderbilt smearing²⁷ with the width of 0.01 Ry was used for the calculations and the *k*-space integration over the Brillouin zone (BZ) was performed on an $8 \times 8 \times 8$ grid. We increased the number of k-points to a $16 \times 16 \times 16$ grid for the most stable structures obtained through the GA search, which is enough to achieve a convergence within 0.1 mRy/atom in the enthalpy at each pressure.

The superconducting T_c was calculated by the use of the Allen-Dynes formula²⁸.

$$T_c = \frac{\omega_{\log}}{1.2} \exp \left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)} \right]$$

The parameters of electron-phonon coupling constant λ and logarithmic-averaged phonon frequency ω_{\log} represent a set of characters for the phonon-mediated superconductivity. The softening on the phonon mode is induced by a strong electron-phonon interaction, *i.e.* large λ , resulting in a decrease of ω_{\log} . Therefore, T_c is determined by a balance between λ and ω_{\log} . Using the QE code, we calculated these parameters with a $4 \times 4 \times 4$ q-point grid. The k-space integration over BZ was performed on a $16 \times 16 \times 8$ grid, and the electron-phonon matrix element at each q-point was calculated by a $32 \times 32 \times 16$ grid. The effective screened Coulomb repulsion constant μ^* was assumed to be 0.13–0.17, which is the values nonempirically determined by DFT for superconductors in sulfur-hydrogen system (see Table VI in ref. 11).

References

- 1. Ashcroft, N. W. Hydrogen Dominant Metallic Alloys: High Temperature Superconductors ? Phys. Rev. Lett. 92, 187002 (2004).
- Drozdov, A. P., Eremets, M. I. & Troyan, I. A. Conventional superconductivity at 190 K at high pressures. Preprint at http://arXiv.org/ abs/1412.0460 (2014).
- Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature* 525, 73 (2015).
- 4. Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. *Nature* 363, 56 (1993).
- 5. Gao, L. *et al.* Superconductivity up to 164 K in HgBa₂Ca_{*m*-1}Cu_{*m*}O_{2*m*+2+ δ} (*m* = 1, 2, and 3) under quasihydrostatic pressures. *Phys. Rev. B* **50**, 4260(R) (1994).
- Li, Y., Hao, J., Liu, H., Li, Y. & Ma, Y. The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014).
- 7. Duan, D. et al. Pressure-induced metallization of dense (H₂S)₂H₂ with high-T_c superconductivity. Sci. Rep. 4, 6968 (2014).
- 8. Duan, D. et al. Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B 91, 180502(R) (2015).
- 9. Errea, I. et al. High-Pressure Hydrogen Sulfide from First Principles: A Strongly Anharmonic Phonon-Mediated Superconductor. Phys. Rev. Lett. 114, 157004 (2015).
- Errea, I. et al. Quantum Hydrogen-Bond Symmetrization and High-Temperature Superconductivity in Hydrogen Sulfide. Preprint at http://arXiv.org/abs/1512.02933v1 (2015).
- 11. Akashi, R., Kawamura, M., Tsuneyuki, S., Nomura, Y. & Arita, R. First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides. *Phys. Rev. B* **91**, 224513 (2015).
- 12. Bernstein, N., Hellberg, C. S., Johannes, M. D., Mazin, I. I. & Mehl, M. J. What superconducts in sulfur hydrides under pressure and why. *Phys. Rev. B* 91, 060511(R) (2015).
- 13. Heil, C. & Boeri, L. Influence of bonding on superconductivity in high-pressure hydrides. Phys. Rev. B 92, 060508(R) (2015).
- 14. Li, Y. et al. Dissociation products and structures of solid H₂S at strong compression. Phys. Rev B 93, 020103(R) (2016).
- 15. Bianconi, A. & Jarlborg, T. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. *Nov. Supercond. Mater.* **1**, 37 (2015).
- 16. Bianconi, A. & Jarlborg, T. Superconductivity above the lowest Earth temperature in pressurized sulfur hydride. *EPL* **112**, 37001 (2015).
- Quan, Y. & Pickett, W. E. van Hove singularities and spectral smearing in high temperature superconducting H₃S. Preprint at http:// arXiv.org/abs/1508.04491v2 (2015).
- Einaga, M. et al. Crystal Structure of 200 K-Superconducting Phase of Sulfur Hydride System. Preprint at http://arXiv.org/ abs/1509.03156v1 (2015).
- 19. Akashi, R., Sano, W., Arita, R. & Tsuneyuki, S. Possible "Magnéli" phases and self-alloying in the superconducting sulfur hydride. Preprint at http://arXiv.org/abs/1512.06680v1 (2015).
- 20. Luo, H., Greene, R. G. & Ruoff, A. L. β-Po phase of sulfur at 162 GPa: X-ray diffraction study to 212 GPa. *Phys. Rev. Lett.* **71**, 2943 (1993).
- 21. Pickard C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nature Physics 3, 473 (2007).
- 22. Izumi, F. & Ikeda, T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321-324, 198 (2000).
- 23. Glass, C. W., Oganov, A. R. & Hansen, N. USPEX—Evolutionary crystal structure prediction. Comput. Phys. Comm. 175, 713 (2006).
- Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
- 25. Perdew, J. P., Burke, K. & Ernzefhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
- 26. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. *Phys. Rev. B* **41**, 7892 (1990).
- Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal Contraction and Disordering of the Al(110) Surface, *Phys. Rev. Lett.* 82, 3296 (1999).
- 28. Allen P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalysed. Phys. Rev. B 12, 905 (1975).

Acknowledgements

This work was supported by JSPS KAKENHI, Grant-in-Aid for Specially Promoted Research (26000006) and Grant-in-Aid for Young Scientists (B) (15K17707).

Author Contributions

T.I., A.N., K.S., H.K.-Y. and N.S. designed the project. T.I. and T.O. developed the genetic algorithm code for crystal structure search, and T.I. performed all the calculations. T.I. wrote the manuscript and all the authors reviewed it.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ishikawa, T. *et al.* Superconducting H₅S₂ phase in sulfur-hydrogen system under high-pressure. *Sci. Rep.* **6**, 23160; doi: 10.1038/srep23160 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/