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Google: The Sexiest Jobs?

For Today’s Graduate, Just One Word: Statistics
— The New York Times, August 5, 2009

“I keep saying that the sexy job in the next 10 years will be
statisticians. And I'm not kidding.”

— Hal Varian, Google’s Chief Economist

Data Scientist: The Sexiest Job of the 21st Century
— Harvard Business Review, October 2012

The Sexiest Job of the 21st Century? Data Analyst
— CNBC, June 5, 2013



Why Survival Analysis?

Many studies are concerned with times to events (e.g., death,

disease, machine breakdown, bankrupt, employment).

Event times are censored if subjects are not followed long

enough.
Standard statistical methods cannot handle censoring.

Special statistical methods have been developed to provide

valid and efficient analysis of censored data.



PART 1

ANALYSIS OF SURVIVAL DATA



I. INTRODUCTION
A. Survival Data

1. Survival times (failure times): times to the occurrence of a
given event (failure) measured from a well-defined starting point
(randomization)

e death

e physical symptoms/diseases
e machine failure

e bankruptcy

e purchase of product

2. Censoring: some subjects are not observed for the full time to
failure as a result of

e loss to follow-up

e end of study



3. Latent variables and observable data:
(X5, A, 7)) (i=1,...,n)
X = observation time (last contact date)
A = failure (censoring) indicator
Z = covariates (treatment, etc.)
T = survival (failure) time
(' = censoring time
X = min(T,C)
A=I(T<C)
e /(A) = indicator function for A

Z(t) ={Z:(1), ..., Zp(t)}’



B. Real Examples:

1. Leukemia Study. In a clinical trial, the drug 6-MP was
compared to placebo with respect to the ability to maintain

remission in leukemia patients.

Lengths of remission (in weeks) for two groups of patients

6-MP 6,6,6,6%,7,9%,10,10*,11*,13,16,17*,19%,
20%,22,23,25% 32% 32* 34* 35*

Placebo 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,
17,22,23

* denotes censored observations



2. Mayo PBC Study

In a double-blind clinical trial, 312 PBC patients were randomized
to DPCA and placebo. Additional 106 patients were also followed.

ID X A 7y Zy s
1 400 1 0 58 145
2 1504 0 1 38 34




3. Colon Cancer Study. A national intergroup trial was
conducted in the 1980’s to study the drugs Lev and 5-FU for
adjuvant therapy of resected colon carcinoma. Patients with Stage

C disease were randomly assigned to observation, Lev alone, or
Lev+5-FU.

Group Patients Deaths
observation 315 114
Lev 310 109

Lev+5-FU 304 78




C. Scientific Questions:
1. Estimating survival distribution
2. Testing equality of two or more survival distributions

3. Estimating effects of covariates (e.g., treatment) on survival

time
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D. Characterizing Survival Distribution:
Distribution function: F(t) = Pr(T <1t)
Density function: f(t) = dF(t)/dt

Survival function:

Hazard function:

At—0 At
= f()/5(1)
Cumulative hazard function: A(t) = f(f Au)du
A(t) = —dlog S(t)/dt =
S(t) = e A
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E. Independent Censoring: The subjects censored at time ¢
should be “representative” of the subjects under observation at ¢.
Subjects cannot be censored because they are at unusually high or
low risk of failure.

One-sample case: 1" and C are independent.
Two-sample case: T and C are independent within each group.

Regression case: T' and (' are independent conditional on Z.
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F. Naive Methods

Ignore censoring status: failure times associated with censored

observations are underrepresented.

Delete censored cases: estimates are biased towards shorter
failure times because larger failure times are more likely to be

censored.

Example:
Pr(T=1)=Pr(T=3)=0.5

E(T)=2
Pr(C=2)=1
E(X)=15
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G. Nelson-Aalen and Kaplan-Meier Estimators

Nelson-Aalen estimator

Q

At + At — A(t) =~ \t)AL
Pr(t <T < t+ At|T > t)
Pr(t <T <t+At|T >t,C >t)

N

X>t

Q

A(tl) — A(tl_1> ~ Pr(tl_l <T < tl|X > tl—l) ~ dl/yl
Aty =D dify— > Dp/Yy

It <t k:TQ<t
as m— 00, maxi<i<ml|ti —ti—1| =0
TY < TY < ... = distinct observed failure times
Dy, = # failures at T}
Y; = #subjects at risk at T}
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Kaplan-Meier estimator
PI‘(T > t) = PI‘(T > tQ)PI‘(T > t1|T > to)PI‘(T > tle > tl) e

Sy~ || Pr(T > t|T > t,_1)

l:t; <t
= H {1-Pr(T < T >t-1)}
l:t; <t
Sy =TT a=di/yw) — TI 1= Dw/¥n)
Lt <t k:TQ<t

as m — 0o, maxi<i<ml|ti —ti—1] =0
ST =(1—=D1/Y1)...(1 = Dy_1/Y1_1)(1 — D, /Y },)

S(TP_1)(1 — Dy /Y})

For uncensored data, S reduces to one minus the empirical

distribution function.
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TP < T9 < ... < TP = distinct time points of observed failures
Dy, = # failures at T}
0=ty <t <...<t, =t= partition of the interval [0,t]
d; = # failures in [t;_1,t;)
y; = # subjects at risk at t;_1
= # subjects under observation just prior to #;_1

Y, = # subjects at risk at T}
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Illustration of Kaplan-Meier estimator

Data: 1 2 2 4 5* 6 7 8 9° 107

Calculations:

T, Dp Yy 1—2—: S(T0)
1 110 1—1_10:1% 19_0
2 2 9 1_325 %xg_llo
6 1 5 1—-:=4% %x%:%




)
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Relationship between Nelson-Aalen and Kaplan-Meier

estimators

S(t) = e A
S(t) = e~ A

_ H e_Dk/?k

.70
k:TO<t

H (1—Dy/Y}) (if Dy/Y, ~0)
TO

— S(t)  (Kaplan-Meier Estimator)

PBC data: Figs. 1-2
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Nelson cumulative hazard estimate for DPCA group, PBC data.
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Survival Probability
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Figure 2  Estimated survival curves for DPCA group, PBC data.
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H. Log-Rank Statistic:

TY < T9 < ... < TP = distinct observed failure times in the

combined sample

At T ,g Failures Non-failures Risk Size
GI‘OUp 1 le ?1k — le ?lk
Group O DOk ?Ok — D()k ?Ok
Dy ?kz — Dy, ?kz
_ DpYyy ~ Dip(Yr — Di)Y11Y ok
Elk — - , Vlk — 9 __

~ N(0,1)

Leukemia Study: Q? = 14.5, p-value=0.00014, Fig. 3
PBC Study: Q? = 0.32, p-value=0.76, Fig. 4
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Survival Probability

Figure 4
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Time Interval
0-2 2-4 4-6 6-8 8-10
14/158  22/143  12/101 10/65 5/34
19/154  20/135 5/93 6/65 7/33
(# events/# at risk)

Estimated survival curves for the DPCA and placebo groups, PBC Data. The table below
the curves gives the number of failures in each time interval, and the number of cases at risk at the
beginning of the interval.
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I. Cox Regression:

1. Model:

1
ANt|Z) = iltrilo KPr(t <T<t+ AT >t,7)

_ )\O(t)eﬁéz(”
e \o(t) = A(t|Z = 0) = arbitrary baseline hazard function
e 3y = unknown regression parameters

2. Partial Likelihood Inference:
Partial likelihood:

A
i B Zi(Xy) '
L(@)—H{Z R, 6@Z(X)}
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Score function:
B 0log L(3)
— zn:A. {Z.(X-) _ 2jer, e 71X 7;(X;) }
i=1

¥ e, €5

Information matrix:

- 9%log L(B)

I(8) = -

MPLE 3: {U(8) = 0}

Properties:

U(Bo) ~ N(0,Z(5o))
BN N(ﬁ()az-_l(B\))
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3. PBC Study:

Covariate Est SE Est/SE
Treatment 0.136 0.185 0.73
Age 0.035 0.009 3.89
log (Albumin) -3.078 0.729  —4.28
log (Bilirubin)  0.884 0.099 8.96
Edema 0.786  0.296 2.65
log (Protime)  2.971 1.016  2.92
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J. Citations:

Ryan, T. P. and Woodall, W. H. (2005). The most-cited statistical
papers. J. App. Stat., 32, 461-474

(1) With 25,869 citations (currently cited 1,984 times per year):

Kaplan, E. L. & Meier, P. (1958). Nonparametric estimation from
incomplete observations. J. Amer. Statist. Assoc., 53, 457-481.

(2) With 18,193 citations (1,342 per year):

Cox, D. R. (1972). Regression models and life tables. J. Roy.
Statist. Soc. B, 34, 187-220.

Garfield, E. (1990). The most-cited papers of all time, SCI
19451988. Part 1A. The SCI top 100 will the Lowry method ever
be obliterated? Clurrent Comments, 7, 3—14.

Kaplan & Meier (1958) and Cox (1972) ranked among the 100
most-cited papers in the 1945-1988 Science Citation Index.
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II. COUNTING PROCESSES AND MARTINGALES

1. Counting Process Fomulation:

(Ni(1), Yi()), Z:(0)} G =1,...,m)

General case:

Counting process: N;(t) = # observed events on subject ¢ by time ¢
At-risk process: Y;(t) = 1 iff subject ¢ is at risk at time ¢

Covariate process: Z;(t) = covariate value at time ¢ on subject 4
Classical survival data:

N;(t) = A I(X; <t)

Yi(t) = I(X; > 1)

Fig. 5
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2. Martingales:

Mi(t) = N (t) — /O Y; (1) A (1)

e A martingale is a pure random noise process, which has no
systematic behavior in the mean: the conditional expectation
of the increment given the past history (failure, censoring and

covariates) is zero.

e Fach M,(t) is a martingale. This fact provides the basis for
studying many censored-data statistics by the martingale

theory.
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3. Stieltjes Integration

5= /O ' f(@)dG(@)

o If dG(x)/dx = g(x) exists, then

5= [ s@gtis

o If G is a step function with jumps AG(xr) = G(xk) — G(xr—),
then

S= Y flzx)AG(x)

o Jo H(u)dA(u) = [y H(u)A(u)du
o [y H(u)dN;(u) = I(X; < t)AH(X;)
o [7 H(u)dN;(u)=AH(X;)
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4. Counting-Process Martingale Representation

Nelson-Aalen estimator:

B IX <A = [TdN;(w)
Ry — _ ) _ —
(t) k:%):StDk;/Yk ; Y(X@) 121/0 Y(u)
Y(t) = y Yi(t)
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Log-rank statistic:

P { 1 if patient ¢« was on treatment 1
,Z: p—

0 if patient ¢ was on treatment 0

_ 2 Yi)Zi _ Ya(t)
XYt Y(@)
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Partial likelihood score function:
den B Zi(Xi) Z

ZA { B Z n €P'Zi (X) }
_Z EPYERAVLEEEIL AN, (¢
Z] 1 ] ﬁ/Z (*) z
o0 Yt eﬁZ QAL
:Z/ Zz(t)_ j - j( B/Z (t)
i—1 70 Z] 1 ]

n 00 1Y:7 eﬁoZ (t)Z
U(Bo) = ;/o {Zz'(t) - jzj 1( ])( 1)ePZs () t)} M;(¢)

Common theme: Censored-data statistics (when properly

{dN; (1)

centered) can be written as
n ot
3 / H,(w)dM; ()
i=1 "0
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5. Martingale Theory

U(t) = / H, (u)dM; (u)
U(t) is a martingale
E{U#)} =0
Var {U(6)} = B {1, fy HZ(w)Yi(u) i (w)du |

V() =30 fy H2(w)Yi(u)Xi(u)du
U(t) ~ N (0, V(t))
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III. NELSON-AALEN AND KAPLAN-MEIER
ESTIMATORS

1. Properties

i) -+f5 [ 5= 5)
I




2. Confidence Intervals for S(t)
Untransformaed: S(t) + 21_q 25 (£)V/2(t)

Log transformation: :S’\(t)eizl—a/zvl/2 (1)

~ex 5 1/2 N
Log-log transformation: S(t) p{i 1-a/2V (t)/A(t)}

Ly = O ()

3. S function
survfit (Surv(time, status) ~ group, conf.type=c(‘log-log’))
4. Leukemia Study: Figs. 6-8

35



1.0

0.8

0.6

0.4

0.2

0.0

Fe. &

)éﬂf)ém— 777@01 Exlernats, 7ﬁy iué/u& /,ﬂ??

-

fDrudq 6-4/)/7

;

Place bo

L\

10 20 30

35-1




1.0

0.8

0.6

0.4

0.2

0.0

..................

..........

..........

.............................

..........

..........

----------

............................

...................

...............................................

..........

..............

35-92




1.0

0.8

0.6

0.4

0.2

0.0

..........

..........

..........

.............................

.............................

..........

..........

...................

.......

...............................................




IV. WEIGHTED LOG-RANK STATISTICS

1. Definition

e W (t) assings weights according to timing of events

o W(t) - wi(t)

36



Statistic W (t)
log-rank 1 (GY)
Prentice-Wilcoxon S (GY
Harrington-Fleming G” 5P (¢)
Gehan-Wilcoxon Y(t)/n

Tarone-Ware
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2. Null Distribution
HO . Al(t) = )\0(75) for all ¢

Uy = ; /OOO W(t){Z; — Z(t) } dM;(¢)

E(U,) =0

Var(Uy) = E {Z /O T (2,-Z@)} Y;<t>dAo<t>}
V., = Z /OOO W2()Z(t) {1 — Z(t)} dN;(t)

= Y WAHX)AZ(X) {1 - Z(X0)}

Uy ~ N(O,Vw)
Qu =Uy,/Vi/? ~ N(0,1) = Q2 ~ X7
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Special case: W =1
V=>" A Var(Z) (equal censoring)

= D/4 (equal allocation: ny = ng =n/2)
3. Software:
Data input:
time status group
S-Plus:
Survdiff (Surv(time, status) ~ group, rho= p)
SAS:
proc lifetest;

time time*status(0);

test group;
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4. Power
Hi = A\ (t) = \g(t)ePowo®)

U = zn; /OOO W(t){Z; — Z(t)} dN;(t)
= i /O S {Zi = Z(t)} {dN;(t) = Yi(t)ePoroDZix (t)di}
+ En; /O ) W(t){Z; — Z(t)} Y;(t)eP D7 \o(t)dt
_ zn; /OOO W(t) {2, — Z(t)} dM(t) + pa
Hw & o i /0 ) W (t)ywo(t) {Zs — Z(t) } Yi(t) Zsdo(t)dt

~ B ; /O h W (t)wo(t)Z(t) {1 — Z(t)} dN;(¢)
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w(t) oc wo(t) = ,uw/Vul)/2 is maximized at BOVU%/Q

Power= Prp, (Qw > Zl—a/2)
— PrHl (Qw — ,LLw/Vul)/Q > Zl—oz/Q o :uw/vli/Q)

=1 q) (Zl—a/Q — luw/vu%/Q)
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5. Sample Size Determination

General: w(t) o< wo(t)
L= B=1-® (20— BoV/?)

(1-a2 + 21-8)°
B3

e V,, depends on n, and distributions of entry times, failure times

Vw =

& censoring times

Special case: w = wy = 1, equal censoring and equal allocation

4 (21 aj2+21-8)"

B

e for one-sided test, replace z1_, /2 by 214

e convert D to n by specifying distributions of entry times,
failure times & censoring times.
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V. COX REGRESSION
A. Basic Analysis
1. Model: \(t|Z) = \o(t)ePoZ®)
2. Data: {X;,A;,Z;(t)} (i=1,...,n)
(N8, Yi(8), Zi(®)} (i=1,...,n)
3. Notation:

(1) (2)
* E(Bat) — g(O)Egi;a V(th) — > (B:t) o E(th)®2
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4. Inferences

Partial likelihood:

Score function:

n

-y /O " Z4(t) - B(B.1)} a1

i=1
Information matrix:

Z(B) = —82 log L{(p) = ZAiV(BaXi)

032
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MPLE 3: {U(8) = 0}
e 7(() is positive semi-definite
e obtain E by Newton-Raphson algorithm

Breslow estimator:

Ao(t) = /0 o(u)du

Ao(t) = > Ai

i X<t Z] 1 J( )GB,ZJ'(X”

_Z/o S(0) 5,

So(t) = Pr(T > t|Z = 0) = ¢ 2o
So(t) = e~ Mo

o /, —zyp = Mg and Sy pertain to zg
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Asymptotic Properties:

M;(t) :Ni(t)—/tY( )ePoZi (W) N (u)du

/ {Z:(t) — E(Bo, )} dM;(t)

U(Bo) ~ N (0,Z(50))
G~ N (80, 27(5))
U'(Bo)Z " (Bo)U(Bo) ~ x

e Likelihood-type methods are used to make inferences about (.

e If 7 is a dichotomous scalar, then U(0) reduces to the

two-sample log-rank statistic.
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Ao(t) ~ N (Ao(t), V(1))
So(t) ~ N (So(t), §g(t)V(t))

e When no covariates are involved, /A\O(t) reduces to
Nelson-Aalen estimator and Sy(t) is asymptotically equivalent
to Kaplan-Meier estimator. When covariates are involved, V (t)

involves extra variation due to estimation of [j.

e Construction of confidence intervals for Sy(t) is similar to the

one-sample case.

e It is possible to obtain simultaneous confidence bands (Lin,
Fleming & Wei, 1994).
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5. PBC Study

PBC: fatal chronic liver disease; no effective drugs; liver

transplantation for advanced stage
Mayo Clinic database:
424  patients, 1/74 ~ 5/84
312 randomized to DPCA vs placebo
106 followed off study

6 loss to followup early
Date of data listings: 7/86
Numbers of deaths: 125/312, 36/106

Covariates: 14 demographic, clinical, biochemical /histologic

parameters.

Source: Appendix D.1 of Fleming & Harrington (1991)

48



Effect of DPCA on survival:
Cox model: \(t|Z) = \o(t)eP?

1 DPCA

0 placebo
U(0) =1.7811, Z(0) = 31.198, [(0) = —639.9799

3 =0.0571, Z(B) = 31.153, I(B) = —639.9290
Testing Hy : =10

Wald: 52Z(53) = 0.10166

Score (log-rank): U2(0)/Z(0) = 0.10168

Likelihood ratio (LR): 2{1(8) — I(8o)} = 0.10193
Estimation of the hazard ratio: 8 = \;(t)/\o(t) = €”
Point estimate: § = ef = 0.944

95% confidence interval: ¢fE1-96T/2(8) — (0.665,1.342)
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Natural history model:
Usefulness:
e counseling patients
e understanding the course of PBC in untreated patients

e providing historical control information to evaluate new

intervention
Model building:
1. Inexpensive, non-invasive and readily available measurements
= elimination of stage, urine copper and SGOT
2. Step-down elimination (p > 0.01 using Wald statistics)

e LR for 5 eliminated variables = 2(554.237 — 550.603) = 7.268
(x3)

3. Clinical and empirical evidence for transformations
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e adding variables log(age), log(albumin), log(bilirubin) and
log(protime) = significantly better fit: LR = 31.926

e log(bilirubin) = substantial improvement, hepatomegaly nonsig

e stepwise considerations of logarithmic and squared
transformations for albumin, age and protime = model with
age, log(albumin), log(bilirubin), edema and log(protime)

51



Parameter Est. S.E.  Est./S.E.
Age 0.039 0.008 5.15
log (Albumin) —2.533  0.648 -3.91
log (Bilirubin)  0.871 0.083 10.54
Edema 0.859 0.271 3.17
log (Protime) 2.380 0.767 3.10
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Risk score (Mayo R-score)

R=03,2) + ...+ BsZs

5(t12) = {e~Mo@ye"
Median risk score: R = 5.24 = S(1) = .982, §(5) = .845

Low-risk patient: bilirubin=0.5, albumin=4.5, age=>52,

protime=10.1, edema=0

— R =3.49 = S(5) = 0.97 = low risk of death

High-risk patient: bilirubin=13.9, albumin=2.8, age=52,

protime=13.8, edema=.5

- R=9.19= §(1) = 0.39 = candidate for transplant
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6. Software:

Data input:

time status covariates

S-Plus:

coxph (Surv(time, status) ~ covariates, method="breslow’)
SAS:

proc phreg;

model time*status(0)=covariates;
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B. Stratified Analysis

Setup: K strata, ny (k=1,..., K) subjects in kth stratum
Tr; = 1th failure time of kth stratum

C'r; = 1th censoring time of kth stratum

Observation time: Xj; = min(7Ty;, Ck;)

Failure indicator: Ay, = [(T; < C;)

Covariates: Zp;(t) = {Z1pi(t), ..., Zpri(t)}
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Model(s):

Ne(t| Zki) = Ao ()e? 25D i =1, gy k=1,

e strata-specific baseline hazard functions
e common vs. strata-specific parameters

Notation:

At-risk indicator: Yi;(t) = I(Xg; > t)
SV (B,t) = 0%, Yia(t)e”

S/(cl)(ﬁat) > ok kz(t)eﬁ Zri(t) Z4(¢)
S(B,1) = S0, Yia(t)e? 20 2, (1)%?

t)ed Zri(t)
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Inferences:

K ny 65 Zrs (X i) }Am‘
gl

k=11=1 S(O)BX

K (%

(1) |
U(B) = ZZAM {Zki(X;ﬂ-) Sy (B Xii) }

0
k=1 i=1 S,g )(Bani)

_ iiAk {5122)(573(13@') B S/il)(ﬂ,Xm)@}
k=1

1 i—1 S;io) (8, Xki) S](gO)(ﬁani)Q

e Asymptotic properties for U(3) and B\ are the same as the
unstratified case.

e Inferences can be implemented by including the strata option

in coxph or the strata statement in phreg.
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C. Model Misspecification

1. Model Assumptions:
e proportional hazards
e functional forms of covariates

e exponential regression function

2. Properties of B for Misspecified Models

SO () Z Y (t

(1) ZY (1)
sM() = E {n_lS(T) (t)} LM@Y =E {n—ls@“) (8, t)}
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b o (s <)

t) s8¢
B {h(B) = 0}
B~ N(8",D)
D=7I'Bz!

(Sandwich robust variance estimator)
n
Boyowe
i=1

W, = / {Zi(t) - BB} {aniw) - Yi(t)eglzi(t)df\o(t)}
0
e D is always valid whereas Z~! may not be (Lin & Wei, 1989)

e D may be obtained by including the option “robust=T" in

coxph or “covs’ in phreg
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Data input:
time status covariates
SAS procedure:
proc phreg covs;
model time*status(0)=covariates/ties=breslow;

strata vstrata;

e covs or covsandwich requests robust sandwich variance-covariance

estimate
e strata requests stratification on variable vstrata

S-Plus function:
coxph(Surv(time, status) ~ covariates+strata(vstata),robust="T",

method="breslow’)

e robust="T" requests the robust variance-covariance estimate
e strata requests stratification on variable vstrata
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3. Consequences of Model Misspecification in Treatment

Comparisons

A1(t) and Ag(t) nonproportional, but no overlapping = loss of
power, 3* =average of log{A1(t)/Ao(t)} over ¢

A1(t) and Ag(t) cross = poor power, 5* meaningless

)\(t‘Zl,ZQ) = )\O(t)eﬁ1Z1-|—52Z27 ZlHZQZ
Omitting Z5 = A1(t) and A\y(¢) are nonproportional,
85| < |B1], and 8* — By is small unless |5>| is large

Omitting or mismodelling baseline prognostic factors has little
effect on size of test for no treatment difference but may reduce

power
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D. Model Checking

1. Martingales

o E{M;(t)} =0
o Cov{M;(t),M;(t)} =0 (i #j)

e M,;(t) = observed minus model-predicted numbers of events by
time t on subject ¢
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2. Martingale Residuals

M;(t) = N;(t) — /O t y;(u)e/?’ZMdKO(u)

—

e M;(t) are similar to residuals in linear and Poisson regression

—

e M,;(t) = observed minus model-estimated numbers of events by

time t on subject 1
* > i ]\Z(t) =0
o E{M;(t)} ~ 0
o Cov{M;(t),M;(1)} =0 (i # j)

—_~—~ S~ N~
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3. Model Checking Techniques
(1) Functional Forms of Covariates

Individual residuals:

e~ e~

M;j—y = M; when Z; is excluded from the model

Scatterplot of ]\Z vs. Zj; is centered around O if the functional

form for Z; 1s correct.

A smoothed plot of ]\Z

form for Z;.

(j—) VS. Z ;i suggests approximate functional

e good approximation if Z; has a weak effect on T" and is
independent of other covariates in the model.

e highly subjective
PBC data: Fig. 9
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Figure .§  Martingale residuals in the PBC data. Residuals from a model with the covariate edema
and three of the four continuous variables (age, log(albumin), log(bilirubin), and log(protime)) are
plotted against the omitted variable. LOWESS smooths use a span of .2.
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Cumulative sum of residuals:
e Take cumulative sum of M; over Z;

e Approximate null distribution of cumulative-sum process by a

zero-mean (Gaussian process

e Compare observed process with simulated realizations from the

approximate distribution

PBC data: Figs. 10-14
(2) Exponential Regression Function:
Plot cumulative sum of ]\/I\Z VS. B\’ Z;

PBC data: Fig. 15
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Martingale Residuals
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Fy. 1 Mayo PBC Model
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Cumulative Martingale Residuals
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Cumulative Martingale Residuals
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Fig. 13. Functional Form of Bilirubin
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Cumulative Martingale Residuals
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Fig 15. Exponential Regression Function
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(3) Proportional Hazards:

U(.) = 3 | {Z:() ~ B, w)} dNi(u)

U(@o,)—z {(Zi(w) = B(Bo,u)} dM;(w)

0=3; [ #

p=1:5Wyeycoe T 2(B)U(B, )| ~ supg<,<y |BO(5)]

e BY = Brownian bridge
e critical value = 1.358 for @ = 0.05
e consistency

p > 1: simulate dist of supy<;. ., Z~/2(8 )33|U (B,1)|
PBC data: Figs. 16-17
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Standardized Score Process
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Standardized Score Process
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4534 4 Chapter 64: The PHREG Procedure

ASSESS Statement

ASSESS <VAR=(list) > < PH> </options> ;

The ASSESS statement performs the graphical and numerical methods of Lin, Wei, and Ying (1993)
for checking the adequacy of the Cox regression model. The methods are derived from cumulative
sums of martingale residuals over follow-up times or covariate values. You can assess the functional
form of a covariate or you can check the proportional hazards assumption for each covariate in the
Cox model. PROC PHREG uses ODS Graphics for the graphical displays. You must specify at
least one of the following options to create an analysis.

VAR=(variable-list)
specifies the list of explanatory variables for which their functional forms are assessed. For
each variable on the list, the observed cumulative martingale residuals are plotted against the
values of the explanatory variable along with 20 (or n if NPATHS=n is specified) simulated
residual patterns.

PROPORTIONALHAZARDS

PH
requests the checking of the proportional hazards assumption. For each explanatory variable
in the model, the observed score process component is plotted against the follow-up time
along with 20 (or n if NPATHS=n is specified) simulated patterns.

The following options can be specified after a slash (/):

NPATHS=n
specifies the number of simulated residual patterns to be displayed in a cumulative martingale
residual plot or a score process plot. The default is n=20.

CRPANEL
requests that a plot with four panels, each containing the observed cumulative martingale
residuals and two simulated residual patterns, be created.

RESAMPLE <=n>
requests that the Kolmogorov-type supremum test be computed on 1,000 simulated patterns
or on n simulated patterns if 7 is specified.

SEED=n
specifies an integer seed for the random number generator used in creating simulated realiza-
tions for plots and for the Kolmogorov-type supremum tests. Specifying a seed enables you
to reproduce identical graphs and p-values for the model assessments from the same PHREG
specification. If the SEED= option is not specified, or if you specify a nonpositive seed, a
random seed is derived from the time of day.
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4700 + Chapter 64: The PHREG Procedure

Output 64.12.3 Typical Cumulative Residual Plot Patterns

200

-200

Cumulative Residual

100

50

Cumulative Residual
o

Table 64.9 Model Misspecifications

Covariate Misspecification

(a) Data: log(X), Model: X

(b) Data: X*X, Model: X

400
» '{\ N
200 . ;
0. \ j'
\\\ /|
-200 /
- -400
(c) Data: X*X*X, Model: X*X
200
0
'y -’f'
‘ \ / -200
TAA \ ./
f -400
Ay
2 4 6 8 10 2 4 6 8 10
X X
Plot Data Fitted Model
(a) log(X) X
(b {X,x? X
© {X, X% X3 {X,x%
d I(X>5) X

The curve of observed cumulative martingale residuals in Output 64.12.2 most resembles the be-
havior of the curve in plot (a) of Output 64.12.3, indicating that log(Bilirubin) might be a more
appropriate term in the model than Bilirubin.
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Log-log survival plot
S(t12) = So(t)"”
= log {—1log S(t|Z)} = By Z + log {—log So(¢)}
= log A(t|Z) = B, Z + log Ao(t)
= log K(t|Z(1)) and log K(t\Z(z)) are parallel

e need to discretize covariates

o p=1: A are stratum-specific Nelson-Aalen estimates

o p > I: A are stratum-specific Breslow estimates

PBC data: Fig. 18
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Dummy time-dependent covariates

A(t|Z) = Ao (t)ePoZH10Z;Q()

e Q(t) =torlogt

e testing Hy: vy =0

e sensitive to departures in the form of ()
Adjusting for non-proportional hazards

e dummy time-dependent covariates

e stratification

e robust variance

e transformation models (Zeng & Lin, 2007)
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E. Covariate Adjustment in Randomized Trials

e Randomization permits valid testing of the null hypothesis of
no treatment effect without recourse to any probability model
and without regard to any (baseline) covariates that may or

may not be measured.

e Weighted log-rank tests provide valid testing of no treatment
effect regardless of whether or not there are chance imbalances

iIn covariates.

e Randomization ensures that treatment assignment is
independent of covariates. Consequently, the use of significance
testing for covariate imbalance in determining which covariates

to adjust is illogical.
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Covariate adjustment may yield more powerful test of

treatment effect.

The treatment effect conditional on covariates is not equal to

the unconditional effect.

Omitting or mismodelled covariates may yield biased estimate

of treatment effect.

Covariate adjustment may be used to relax the assumption of

independent censoring.

For testing no treatment effect, both unadjusted and adjusted
tests may be used. However, the decision on which one is the
primary test should be made beforehand and must not be
based on minimization of the p-value. Covariate adjustment in

estimating treatment effect with censored data requires care.
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VI. SEQUENTIAL ANALYSIS

1. Introduction

Rationale: Most clinical trials recruit patients over a long period
of time, and the data accumulate gradually during the course of the
study. For ethical, scientific and economic reasons, it is desirable to
monitor the accumulating data periodically so that the study can
be terminated as soon as the superiority of one treatment is
compelling or when it becomes evident that there is little or no

difference between treatments.

Group sequential tests: Repeated significance tests based on
data accumulated at interim analyses for possible early termination

of trial.

71



Multiple looks effects: Repeated use of significance tests

increases the overall Type I error probability.

Overall percentage of rejecting Hy at the 5% nominal significance
level after K repeated tests when there is no treatment difference

K I 2 5! 10 25 o0 200
Error rate 5 8.3 14.2 193 26.6 32.0 424
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2. Brownian Motion Statistics

Preliminaries:

Ho:0=0vs. H :0 =0,

t “score” statistic calculated at analysis time ¢

amount of “information” at ¢
B(0,V(t)) under H
B(6.V(t),V(t)) under Hy

<

t

U
Ul(t

U(t)
(?)
(t) ~
(t) ~

B = Brownian motion

Q) =U(t)/VY2(t) ~ N(0,1) under Hy
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Number of interim analyses: K

Times of interim analyses: t1 <ty < ... <tg
Test statistics: Qr = Q(tr) (k=1,..., K)
Overall (two-sided) type I error: «

Boundary values: c¢q,...,cx

Pry, {|Qk| > ¢ for some 1 < k< K} =«

Pocock boundary: ¢t =c; =... =cg
O’Brien-Fleming boundary: ¢, = (K/k)"?ck
e equal group size (increment of information)

e tabulated boundary values
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Slud-Wei method:
Exit probabilities: m + ...+ g = «

Pry, {|Q1] > a1} =m

Pry, {|Q1] < c1,|Q2| > ca} = mo

PrHO {|Q1‘ < Cq, - '7‘QK—1| < CK-1, |QK| > CK} — K

Lan-DeMets method:
Error spending function: f(t), t =V (¢)/V (tx)

~

e f(t) nondecreasing, f(0) =0, f(1) = «

o mp = f(tr) — f(tr—1)
o f(t) =2 (za/g/fl/Q) (O’Brien-Fleming)
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3. Weighted Log-Rank Tests

Problem:
A(z) = Ao(z)ePwo@

Hy:68=0vs. H : 8=/
Notation:
e n = total number of patients in the study
e R, = entry time for the ith patient
o T — failure time measured from R;
e (; = censoring time measured from R;

e /, = treatment indicator for the ¢th patient
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Data available at ¢:

{Xi(0),A:(t), 2} (i=1,...

o X;(t) = max{0, min(7;,t — R;,C;)}
o Ai(t) =I{T; <min(C;,t — R;)}

Illustration: Fig. 19
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Sequential statistics
U(t) = 3 Wt Xalt) Au(t) {2 = Z (1, X:(0)}

o W(t,z) = weight for failure time x calculated at analysis time ¢

Z?Zl I{X,;(t)>x}Z;
Z?:l IH{X;(t)>z}

o 7(75,:17) =

V(t) = Z W2 (2, X(4) Ai(t) Z (, X(4) {1 — Z (¢, Xs(1)) }

special case: W =1
V(t)=>" Aj(t)Var(Z) (equal censoring)
= D(t)/4 (equal allocation)
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Sequential properties of U(t):
U(t) ~ B(t) = Gaussian (u(t), V(t))
Wit x) BN w(x): B(t) = Brownian motion

e true for most weight functions, but not for Gehan and

Tarone-Ware statistics
w(z) = wo(x): B(t) =B(BV(t), V(1))
e B(t)=DB(0,V(t)) under Hy
e B(t)=B(5V(t),V(t)) under H;
e Brownian motion statistics

e optimality, simplicity
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4. Colon Cancer Study
Enrollment: March 1984 — October 1987

Stopping rule: O’Brien-Fleming boundary with K = 4 and
a = 0.0

Planned analyses: 125, 250, 375, 500 deaths

Actual analyses:
e times: December 1987, September 1989
e deaths: 125, 301

Boundary values: c¢; = 4.006, ¢y = 2.582
Lev vs. Obs: ;1 =0.71, )2 = 0.004
Lev+5-FU vs. Obs: (1 = 1.163, Q5 = 2.726
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PART 11

ANALYSIS OF MULTIVARIATE FAILURE
TIME DATA
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I. INTRODUCTION

1. Multivariate Failure Time Data: Each study subject may
experience several events/failures, or there exists natural /artificial
clustering of subjects which induces dependence among failure
times of the same cluster.

2. Multiple Events Data: each study subject can potentially

experience several events

(a) Ordered: natural ordering of failure times

(i) Recurrent events: repetitions of a phenomenon (e.g., illness)
e tumor recurrences
e infection episodes
e repeated breakdowns of machinery

e employment/unemployment cycles
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(ii) Distinct events: successive events of different natures
e HIV-infection—AIDS—death
e randomization—cancer recurrence—death
e birth—marriage—child birth

(b) Unordered: several concurrent failure processes

e physical symptoms or diseases in several organ systems

(cardiovascular, cancer, etc.)
e purchases of various consumer products
3. Clustered Data: natural/artificial clustering of study subjects
e family (twin) studies
e multi-center (group) studies

e litter matched carcinogeneicity experiments
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4. Real Examples:

AIDS Study: A randmized clinical trial was conducted to assess
the antiretroviral capability of ribavirin over time in AIDS patients.
Blood samples for each patient were collected at weeks 4, 8 and 12.
The “viral load” in each sample was measured by the number of
days when virus positivity was dectected. Censored observations
occurred when the culture required a longer period of time to
register as virus positive than was achievable in the lab or when the
sample was contaminated before positivity was dectected.

Detected positivity

Group n  Week 4 Week 8 Week 12
Placbo 12 12 8 8
Low-dose ribavirin 11 8 7 6
High-dose ribavirin = 13 11 11 8

Unordered multiple events
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Colon Cancer Study: A randomized clinical trial was conducted
in the 1980’s to study the drugs Lev and 5-FU for adjuvant therapy
of resected colon carcinoma. Patients with Stage C disease were
randomly assigned to observation, Lev alone, or Lev+5-FU. The
time to cancer recurrence and the survival time were both

considered important outcome measures.

Group Patients Recurrences Deaths
observation 315 155 114
Lev 310 144 109
Lev+5-FU 304 103 78

Multiple events
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Bladder Tumor Study: A randomized clinical trial was
conducted to assess the efficacy of thiotepa in reducing cancer

recurrences in patients with superficial bladder tumors.

Cancer recurrences
Group n 0 1 2 3 4 >4 total
Thiotepa 38 20 8 3 2 2 3 45
Placebo 48 19 10 4 6 2 7 87

Recurrent events
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CGD Study. Chronic granulomatous disease (CGD) is a rare
immune disorder characterized by recurrent pyogenic infections. To
study the ability of gamma interferon to reduce the rate of
infections, a placebo controlled randomized trial was conducted by
the International CGD Cooperative Study Group in the late 1980’s.

Infections
Patients >1 2 3 >4
Placebo 65 30 5 4 3
Treatment 63 4 4 1 —

Recurrent events
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Diabetic Retinopathy Study. The Diabetic Retinopathy Study
was conducted by the National Eye Institute to assess the
effectiveness of laser photocoagulation in delaying visual loss in
patients with diabetic retinopathy. One eye of each patient was
randomly selected for photocoagulation and the other eye was
observed without treatment. The patients were followed over
several years for the occurrence of visual loss in the left and right

eyes.

Treatment Patients (eyes) Visual loss
Yes 1727 242
No 1727 03D

Clustered data
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Schizophrenia Study. In a genetic epidemiologic study of
schizophrenia, 487 first degree relatives (273 males, 214 females) of
93 female schizophrenic probands were enrolled. The number of
relatives of a single proband ranges from 1 to 12. An important
question is whether the risk of affective illness (depression or mania
or both) in the relatives is associated with the age at onset of

schizophrenia of the proband.

Clustered data
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5. Scientific/Statistical Questions:

e Distributions of multivariate failure times (joint, marginal and

conditional distributions)

o Liffects of covariates (e.g., treatment) on multivariate failure

times
6. Statistical Challenges:
e Dependence of failure times within the same subject/cluster
e Censoring due to patient withdrawal /study termination

e Multiplicity of outcome measures
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7. Organization of the Presentation
Marginal Cox Models for Multiple Events Data
Marginal Cox Models for Clustered Data
Intensity /Rate Models for Recurrent Events
Frailty (Random-Effects) Models

Joint Models
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II. MARGINAL COX MODELS FOR MULTIPLE
EVENTS DATA

1. Methods
Setup: n subjects, K potential events
Ty; = kth failure time of ith subject
Ci = kth censoring time of ith subject
Observation time: Xj; = min(7Ty;, Ck;)
Failure indicator: Ay, = [(T; < C;)
Covariates: Zy; = (Z1kiy- -y Zpki)

Data: (X]W,A]m,Z]m) (kzl,,K,@zl,,n)
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Marginal Cox models:
A (t Zii) = Mo ()€ 26 =1, Kii=1,...,n
e cvent-specific baseline hazard functions

e event-specific regression parameters

e modeling the marginal distributions without specifying the

dependence structures

(Wei, Lin & Weissfeld, WLW, 1989)

Censoring assumption: Ty; [[ Cy; given Zy;
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Notation:

At-risk indicator: Yy;(t) = I[(Xg; > t)
Sy (B,1) = o1 Via(t)e? 20
Si(B,1) = iy Yia(t)e” 240 Zy (1
S (B,1) = Yy Yii(£)eP 200 2y (1)
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Partial likelihood functions:

Score functions:

Ur(B) = Odog Li(f) _ ZAki

ap

Information matrices:

Ii(B) = FlosLu(f) _ > A

032
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Asymptotic Properties:
By ( b1 Dy ... Dik \
: N : : : :

B K BK D1 ... Dkk )

Dy = Ik_l(gk)BklIl_l(B\l)

Bri= Y Wi,

Wii = Ag; {Zki(in) —

S (Br, Xni) }
S (B, Xis)

Ak Yii (X )eﬂkz’“(X’”) S;(gl)(gkanj)
. Z & Za(Xpy) — 225
Sy (/%ng) Sy (B Xkj)
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e Robust sandwich covariance matrix estimators Dy; (k # 1)
account for the dependence of the multiple failure times

AN

e Dy is the robust covariance matrix estimator whereas Z, ' (3¢)
is the model-based estimator.

98



Simultaneous Inference:
Parameters of interest: n, = 511, k=1,..., K.

Estimators: 7, = Blk, k=1,..., K.

AN
AN

Covariance matrix estimator: ¥ = cov(7y,...,7k)

Global Test: Hy:n =0, k=1,....K

Q= (ﬁlw"?ﬁK)\I}_l(ﬁl:“-»ﬁK), ~ X%(
Estimation of Common Parameter: 7 = ... =g =17
K
= Cr Tk
k=1
(c1,...,c) = (€W le) 1 Le
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Estimation of Ayy’s

N Almj
Apo(t) = E —
i X1 <t SI(cO) (ﬁka Xk:i)

{Km(t), o ,KKO(t)} ~ Nk ({A10(t), ..., Ago(®)}, V(#))
(Spiekerman & Lin, 1998)
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Features:
e arbitrary dependence structures
e overall treatment effect
e ordered (recurrent or distinct) and unordered events
e total times for ordered events
e compatibility of treatment groups

e software packages
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2. Software

Data input:
pid enum time status covariates
SAS procedure:
proc phreg covs(aggregate);
model time*status(0)=covariates/cov ties=breslow;

strata enum;
id pid;
S-Plus function:
coxph(Surv(time, status) ~ covariates+cluster(pid)+strata(enum),

method="breslow’)
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3. Examples

Bladder Tumor Study
n=386, K =4
Tw; = time to the kth tumor recurrence of the ith patient
Zri = (Zikis Zokir Z3ki)'

0 if the ¢th patient was on thiotepa,

1 if the ith patient was on placebo.
Zo; = number of initial tumors

Z31; = size of the largest initial tumor

Nk :611{:7 k= 1727374
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Parameter Est SE  Est/SE p-value

n 518 .308  1.681  .092
o 619 364 1.701 089
3 700 415 1.687 092
4 651 490 1316  .184
n=m =..=mn .549 285 1.924 054
095 .060 .057 .044 |
G 132 130 116
172 159
_ 240

Q) = 3.967, p—value=0.41
¢ = (0.677,0.257,—0.075,0.141)’
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AIDS Study
n=36 K=3

Tr; = number of days to virus positivity in the kth sample of the
1th patient

Zii = (Z1kiy Zoki)'

(
1 if patient ¢ was on low dose ribavirin,
Z1ki =
\ 0 otherwise.
)
1 if patient ¢ was on high dose ribavirin,
Zoki = 4
\ 0 otherwise.

Nk :Blka k= 17273
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Parameter Est SE  Est/SE p-value

m -1.394 525  -2.655 .008
72 -0.655 523 -1.253 210
UB! -0.615 .554  -1.110 267

n=mn=mn=mn -0972 38 -2.519 012

245 051 .107
U= 287 133
257

Q) = 8.93, p—value=0.036
c = (0.441,0.340,0.219)’
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I1I. MARGINAL COX MODELS FOR CLUSTERED
DATA

1. Methods

Setup: n clusters, K; members in ith cluster
Tr; = failure time for kth member of 7th cluster
C'vi = censoring time for T},

Observation time: X; = min(7Ty;, Ck;)

Failure indicator: Ay, = [(Tk; < Ck;)
Covariates: Zy; = (Z1kiy- -y Lpki)

Data: (X]W,A]m,Z]m) (]C = 1, e ,Kq;; 1= 1, ce ,n)
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Marginal Cox model:
ANt Zii) = M) 25O k=1, K;;i=1,...,n
e )\o(:) = arbitrary baseline hazard function
o 3=(01,...,0p)
e stratification

e modeling the marginal distributions without specifying the

dependence structures

(Lee, Wei & Amato, 1992)
Censoring assumption: Ty, [[ Ck; given Zy;

Independence working assumption: failure times within the

same cluster are independent

e analogous to GEE for longitudinal data
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Notation:

At-risk indicator: Yy;(t) = I(Xg; > t)
SO(B, 1) = 31, Sy Yai(t)e? ™)
SW(B,t) = 321y oy Yaa(t)e? 70 Zyi (1)
SP(Bt) =31, Zkz 1 Yii(H)e? 250 2, (1) ©2
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“Partial likelihood function”:

“Score function”:

0 - (1) ki
U(B) = & gé(ﬂ) = ZZAm {Zki(in) S A )}

“Information matrix”’:

0% log L(3 n & {S( (B, X)) SW(B le‘)®2}
I /8 _ — A (2 o ’
D=5 2; MUSOE X) T SO, X0)?

Parameter estimator 3: {U(8) = 0}
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Asymptotic Properties:

U(B) ~ N(0,B(8))

n K; K;

=220 Wk(B)Wu(s

1=1 k=1 [=1

SO(B, sz‘)}

- A Y ( ng )eB Zri(X5) SW(B, X;)
j=11=1 lj Rl

Wii(B) = Ak {Zki(sz‘) -

B~ N(8,D)
D =I"Y(B)B(FI(5)
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e Robust variance estimators B(f8) and D account for intra-class
dependence; naive variance estimators Z(8) and Z~(3) do not.

o If K =1, then D becomes the robust variance-covariance

estimator for misspecified univariate Cox models.

Test statistics:
Hy:f=0: U'0)B™ (0)U(0)
Ho:LB=0: (LB)(LDL') " (LB)—x}
e [ is ar X p contrast matrix

Estimation of Ag

N A
Ao(t) = —
i,k:sz:igt S(0) (57 in)

Ro(t) ~ N (Ao(1), V(1))
(Spiekerman & Lin, 1998)
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2. Software

Data input:

pid time status covariates

SAS procedure:

proc phreg covs(aggregate);
model time*status(0)=covariates/ties=breslow;
id pid;

S-Plus function:

coxph(Surv(time, status) ~ covariates +cluster(pid),method="breslow’)
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3. Examples

Diabetic Retinopathy Study

n =197, K =2

Tr; = time to visual loss of the kth eye for the ith patient
Zwi = (Z1kis Zokiy Z3ki)

)
1 if kth eye of patient ¢ was treated,
ki = _
0 otherwise;
\
(
P ) 1 if patient ¢+ had adult onset diabetes,
2ki =
Z 0 if patient ¢ had juvenile onset diabetes;
\

Zski = L1ki * Loki
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Covariate

S.E. (p-value)

Treatment (Z7)
Diabetic type (Z5)

Interaction (Z3)

Est. Naive Robust

-0.43 0.22 (0.051) 0.19 (0.022)
0.34 0.20 (0.088) 0.20 (0.082)

-0.85 0.35 (0.016) 0.30 (0.005)
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Probabilities of retained visual acuity

o
—i

0.8

0.6

0.4

0.2

Fig 1. Probabilities of Retained Visual Acuity for Adult Onset Diabetes

0 20 40 60

Follow-up time (months)
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Schizophrenia Study
n=93, K,=1~12
Ti.; = time to affective illness of kth relative of ith proband

Zri = (Z1kiy Zoki)'

1 if 7th proband’s age at onset < 16,
Z1ki = S _
0 otherwise;

p ; 1 if kth relative of proband 7 is male,
2ki =
0 if kth relative of proband i is female.
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Est.
S.E.
naive

robust

—0.238

0.489
0.517

Gender
—~1.244

0.411
0.408
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IV. INTENSITY/RATE FUNCTIONS FOR
RECURRENT EVENTS

1. Methods

Notation:

N*(t) = number of events by time ¢

Z(t) = covariates

Fi = history {N*(s), Z(s);0 < s <t}

dN*(t) = increment of N*over [t,t + dt)

Intensity function: E{dN*(t)|Fi_} = Az (t)dt

Rate function: E{dN*(t)|Z(t)} = duz(t)

Mean function: pz(t) = E{N*(t)|Z(s) : s > 0}
e external time-dependent covariates

o duy(t) = B{AN*(t)|Z(s) : s > 0}
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Intensity models:
Az (t) = P 2B\ (2)
e )\o(t) = arbitrary baseline intensity function
e 3 = unknown regression parameters
e Poisson process
o E{dN*(t)|F;_} = E{dN*(t)|Z(t)} = P Z®) Xy (t)dt
(Andersen & Gill, 1982)
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Rate/mean models:
dpz(t) = " 7N dpg ()
pz(t) = e’ 7 po(t)

e 1io(t) = arbitrary baseline mean function

e (3 = unknown regression parameters

e general counting process

o o(t) = fot o(s)ds

e random-effect model: Az (t|n) = ne® 2\ (t)
(Pepe & Cai, 1993; Lawless & Nadeau, 1995; Lin et al, 2000)
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Notation:

Tw; = kth event time of the ith subject

N7 = Y5, (T < )

(C; = censoring time of the ith subject

Failure indicator: Ay, = [(Tk; < Cy)

At-risk indicator: Y;(t) = I(C; > t)

SO(B,1) = T, Vilt)e? 40

SW(B,1) = Y, Yi(t)e? 20 2,(1)

Censoring assumption: C; [[ N/ (-) given Z,(-)
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“Partial likelihood score function”:

— SW(B, Ty,)
U(B) = Z ZAM {Zz'(Tki) — : }
“Information matrix”:
ouU (B)
Z(B)=———
5) =5
Estimator of 8: {U(B) = 0}
Estimator of 1 :
. Aki
pio(t) = =
i,k%;igt S(O)(ﬁa Tki)
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Asymptotic Properties:

k=1

g A Yi(Ty ) 7 M) S8, Tiy)
_Z E 0) ZZ(TZJ) (0)

j=11=1 SON(B,Ti5) S, Tig)
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For intensity models, lim B(8) = lim Z(3).

Robust variance-covariance estimators B(3) and D account for
the dependence of multiple events on the same subject, whereas

naive variance-covariance estimators Z(3) and I_l(B\) do not.

Nonparametric statistic U’(0)B~(0)U(0) can used to test
H() . 6 = 0.

Wald statistics can be used for testing individual parameters.
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Features:

e cfficient and parsimonious summarization of recurrence

experience and covariate (e.g., treatment) effects
e arbitrary dependence structures
e casy/intuitive interpretations
e software packages

e recurrent events only
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2. Computational Issues

Subject ¢ has K; events at times 751, ..., Tk,

=S S iy - S i) 2 2T
S L (TP AT

1=1 k=1

X2

ZZ Zl 1Y2 )eﬁsz(Tik)Z(X)Q(Tik) B Zl 11/2( zkz)eﬁ Zl(Tzk)Zl(Tk)
Zl 1K<Tk)€B’ZZ(T’Lk) Zl 11/2( zk)eﬁlzl(T’Lk)

1=1 k=1
In the data set, subject 7 is represented by a series of records

status trt,age,...
S(tscgt, Stt;-p, 0ij ( ij ); 7 =1,...,n4;
where (s;;,t:;] (j =1,...,n;) are disjoint time intervals, open on the
left and closed on the right, which are formed by dividing the time
period(s) in which subject ¢ is at risk into finer intervals such that
an event may occur only at the end of an interval and the covariates
take some constant values over each interval. Specifically, subject ¢
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is at risk throughout (s;;,%;;], d;; = 1 if the subject has an event at

tij, and Z;; is the value of the covariate vector Z; over (s;;,t;;].

(A EEIES i e (slm <t < )P B

— i i Oj i { Z;Lzl an{:l I(Slm < tz] < tlm)eﬁ'sz Zl@;nZ
— i

i=1 j=1 2?21 Z%Il I(Slm <t < tlm)eﬁ’sz

®2

_ 2?21 Z%ﬂ I(sim < ti; < tzm)eﬁlzlm Lim
Z?Zl Z:Lnle I(Slm < t’Lj S tlm)eﬁlzlm
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3. Software:

Data input: pid start stop status covariates

The ith subject contributes (K; + 1) records, where K is the
number of observed events. For the kth record of the 7th subject,
start is the time of the (k — 1)th event (or 0 if kK = 1), stop is the
time of the kth event (or censoring time if £ = K; + 1), and status

indidates whether there is an event at the stop time.

start stop  status
0 171, 1
Ty 13 1

Tr,—1: Tk, 1
Tx.:  C; 0
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SAS procedures:
Intensity model:
proc phreg;
model (start, stop) * status(0)=covariates/ ties=breslow;
Rate/mean model:
proc phreg covs(aggregate);
model (start, stop) * status(0)=covariates/ ties=breslow;
id pid;
S-Plus functions:
Intensity model:
coxph(Surv(start, stop, status) ~ covariates, method=’breslow’)
Rate/mean model:

coxph(Surv(start, stop, status) ~ covariates +cluster(pid),

method="breslow’)
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4. CGD Study

Two-Sample Regression

Intensity Model Rate Model
Est SE  Est/SE SE  Est/SE
First Event 1.09 0.34 3.27 0.34 3.27
All Events
“Markov” 1.10 0.26 4.20 0.31 3.53
“Semi-Markov” 0.99 0.27 3.72 0.29 3.36
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Fig 2. Estimates of Mean Cumulative Frequencies of Infections
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General Regression

Intensity Model Rate Model
Covariate Est SE  Est/SE SE  Est/SE
Treatment  1.12 0.26 4.29 0.31 3.62

Age -0.03 0.013 231 0.014 214

133



Fig 3. Estimates of Mean Cumulative Frequencies of Infections
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V. FRAILTY (RANDOM-EFFECTS) MODELS
1. Methods
Models:

Multiple events:

Mo (t Zai bi) = Apo(£)e Zei®+0iZei®) =1 Kii=1,....n
Clustered data:

MNE Zais by) = Ao(t)ef Zei®+bi2u®) b1 K i=1,...n
Recurrent events:

Mt Zs, b)) = Ag(£)eP ZO+0Z:0) i —1 g
o b ~ f(b;)
o« ZCZ
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Features:
e Population-average vs subject-specific interpretations
e Efficient estimation of covariate effects
e Accurate prediction of related events
e Characterization of intra-class dependence
e Adjustment of dependent censoring

e Joint modelling for several types of outcome measures
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Likelihood (clustered data):

H/ B/Zki(qu;)—Fb/gm(in))\O(in)}Aki
b

k=1

Xk / 1>
X exp { / ef Zri(t)Tb Zki(t)dAO(t)} f(b;)db
0

e allow discrete Ag and replace \y(t) by jump size of Ay at ¢

e maximize over 3, v and jump sizes of Ay at observed event

times
e (nonparametric) MLEs: B, ~, Ao

e Likelihoods for multiple events and recurrent events are similar
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Asymptotic Properties:
Consistency

Asymptotic normality
Asymptotic efficiency
Variance Estimation:

Fisher information matrix for 3, v and jump sizes of Ay at observed

event times
Profile likelihood
Computation:

EM algorithm
e E-step: numerical integration for conditional expectations

e M-step: similar to partial likelihood and Breslow estimators
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SOFTWARE

S-Plus functions:
Multiple events:

coxph(Surv(time, status) ~ covariates + frailty (pid, dist="Gauss’)
+ strata(enum), method=’breslow’)

Clustered data:

coxph(Surv(time, status) ~ covariates +frailty (pid, dist="Gauss’),
method="breslow’)

Recurrent events:

coxph(Surv(start, stop, status) ~ covariates +
frailty(pid,dist="Gauss’), method="breslow’)

Note: The implementation is based on penalized partial likelihood
Stata: available soon

Matlab code: http://www.bios.unc.edu/~dzeng/Transform.html
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EXAMPLES

Colon Cancer Study:

0 observation,

1 Lev+5-FU;

7 0 surgery < 20 days before randomization,
2 p—
1 surgery >20 days before randomization;

0 submucosa or muscular layer invasion,
Ly =
1 serosa invasion;
0 nodes =1 —4,

1 nodes > 4.

Zy =
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Cancer recurrence Death

Parameter Estimate St. error Estimate St. error
Treatment —1.48 0.24 —0.72 0.28
Surgery —0.69 0.22 —0.64 0.26
Depth of invasion 2.24 0.41 1.94 0.43
Node 2.89 0.24 3.10 0.27
Variance component 11.6 1.2
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Survival Functions
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Figure 1: Fig. 4
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Diabetic Retinopathy Study

Marginal Model Frailty Model
Parameter Estimate St. error Estimate St. error
Treatment —0.43 0.19 —0.52 0.23
Diabetic type 0.34 0.20 0.42 0.26
Interaction —0.85 0.30 —-1.00 0.37
Variance component 1.04 0.19
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CGD Study:

Intensity Model Rate Model
Est SE  Est/SE SE  Est/SE
First Event 1.09 0.34 3.27 0.34 3.27
All Events
“Markov” 1.10 0.26 4.20 0.31 3.53
“Semi-Markov” 0.99 0.27 3.72 0.29 3.36

Intensity Model With Normal Random Effect

Parameter Est SE  Est/SE
Treatment 1.05 0.31 3.40
Variance component 0.60 0.07 8.28
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Survival probabilities
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Figure 2: Fig. 5
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VI. JOINT MODELS

Generalized Linear Mixed Model:
g{E(Yi5| X5, b1} = o X5 + 0] X3
e Y, = response of ¢th subject at jth occasion
e X;; = covariates of ith subject at jth occasion

e g = link function

® (o = regression parameters
e X CX

o b ~ f(b;)
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Random-Effects Proportional Hazards Model:

o Z; = subset of Z;
e ) = unknown constants

e v 0 vy = component-wise product of v; and v,
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Likelihood:
n Xi ng
1] /A(Xi]ZZ., b)2i exp {_/ A(tZi,b)dt} ] £ (Yi51Xi550) £ (b ) db
i=170 0 j=1
e f,(-|X;b) = conditional density of Y given X and b
e non-informative censoring and measurement times
Inference: Similar to frailty models (Zeng & Lin, 2007)
Software:
Stata: available soon

Matlab code: http://www.bios.unc.edu/~dzeng/Transform.html
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HIV Study

A clinical trial was conducted to evaluate the benefit of switching
from zidovudine (AZT) to didanosine (ddI) for HIV patients who
have tolerated AZT for at least 16 weeks (Lin and Ying, 2003).
The investigators were interested in comparing the CD4 cell counts
between the two groups at weeks 8, 16 and 24.

Group Patients Dropouts
AZT 304 174
ddI 298 147
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Transformation function

Logarithmic Square-root
Est SE Est SE
CD4 Counts
ddI 0.506  0.215 0.613 0.261
Time -0.041  0.005 -0.041  0.004
Dropout Time
ddI -0.316 0.116 -0.328 0.118
o 7.421  0.575 8.994 0.772
(0 -0.132  0.021 -0.154  0.023
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APPENDIX. NONPARAMETRIC MAXIMUM
LIKELIHOOD ESTIMATION

1. Standard Cox Model
Model: \(t|Z) = €5 Z X\ (t)
Data: (Xu Ai, Zz) (Z = 1, T ,n)
Likelihood:
i / A, /
L(B,Mo) =] ] {65 Zi)\o(Xz')} exp {—eﬁ ZiAo(Xi)}

)

I
[T

~ ° / Aj /
L(B,Ay) = H (eﬁ Zi)\i) exp | —e” % Z Aj
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Maximum likelihood estimation:

For fixed 3, z(ﬁ ,\g) is maximized at
A;

ZjeRi e’ 45’

Profile likelihood for £:

Ai =

/[::17...7"’2/

~ n 65/Zi Ai
PL(B) = SXfL(B, Ap) o 1;[1 { > }

JER, ef’ 2

NPMLEs:
E = argmaxPL([)

N P—

i X, <t ZjeRi el Zi
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2. Frailty Model for Clustered Failure Time Data
Data: (Xu;, Agiy Zii) (k=1,---  Kj;i=1,--+,n)
Model: A(t|Zy;, &) = &eP Zridg(t), k=1,--- Ki;i=1,---,n
o &~ f(&7)
Likelihood:

L(B,7,Ao) = ﬁ/ ﬁ {ﬁieﬁlzkiAO(in)}Aki exXp {—fieﬁlz’“iAo(in)} f(&sv)d&
i=1¢&

i k=1

NPMLESs: maximization of L(3,, Ag) with right-continuous Ag
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EM algorithm:

=

n

. / A 7 /

(87, 80) = [T TT {&e” 2 20(Xi) b exp { —ie” %0 Ao (Xia) |
1=1 k=1
n K;

F(B,7, M) =) [Aki {log & + B Zri + log Ao(Xki)} — &ie” ZMAO(XM)}
1=1 k=1

. K. - / .
n K " T I( Xy > Xii)&jeP 2mi Z,,
2D 3) S PAERS SR LTRSS 7| =0
1=1 k=1 23:1 Zm:l I(ij > sz')fje mJ

n K;

Z Z I(Xpi <t)Ap;

i=1 k=1 Zuj= 1Zm VI (Xonj > Xii)§ P Zmi

n

v: Y E{dlog f(&;v)/0v/Data} = 0
1=1

o & = E(&|Data)
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Figure Legend

Fig. 1. Estimates and pointwise 95% confidence intervals for the
survival functions, namely, the probabilities of retained visual acuity, for

adult onset diabetes, separated by treatment groups.
Fig. 2. Cumulative frequencies of infections for CGD patients.

Fig. 3. Cumulative frequencies of infections for 14-year old CGD
patients: (a) receiving gamma interferon; (b) receiving no gamma
interferon. The point estimates are shown by the solid curves, the
pointwise 95% confidence limits by the dashed curves, and the 95%

simultaneous confidence bands by the dotted curves.

Fig. 4. Survival probabilities of the colon cancer patients with cancer
recurrences at days 500. The blue and green curves pertain to
z=1(1,1,0,0) and z = (0,0, 1, 1), respectively.

Fig. 5. Recurrence-free probabilities given first infection at 200 days:

treated patient aged 20 vs placebo patient aged 5.
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