
Part 2

Graphical Approaches to Multiple Testing



Structured families of hypotheses
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Example for structured hypotheses

Example
A parallel group study with

• Two treatments and a control

C D1 D2

• One primary and one secondary endpoint
• For example, FEV1 and time to exacerbation in a COPD

trial (see Part 1)

Structure:
• Four hypotheses of interest

• Two are primary (FEV1 for low and high dose)
• Two secondary (time to exacerbation for low and high dose)
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Precise role of study objectives

Key question in case of several study objectives/hypotheses:

What is their precise role?

Primary? Required for study success?

Secondary? ⇔ For additional label claims?

Tertiary? Just exploratory?

• Type I error rate control may be only required for some
(maybe just one primary) hypothesis

• Classification is specific to the study, needs discussion
within clinical teams and with regulatory agencies

4 (54)



Precise role of primary hypothesis

The primary hypothesis may be

• Clinically more important than the secondary hypothesis
• Example: Glucose level in blood (e.g. HbA1c) and weight

loss in diabetes

• Key to approval, although not clinically more important
• Example: FEV1 and time to exacerbation in COPD

• Prerequisite for possible significance in the secondary
hypothesis

• Example: non-inferiority needs to be established before
testing superiority
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Structured hypotheses

Traditional multiple testing methods assume

• No order (all hypotheses equally important)

• Strict hierarchy (e.g. H2 only tested if H1 is rejected before)

• Strict hierarchy in blocks:
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Structured hypotheses

Traditional multiple testing methods assume

• No order (all hypotheses equally important)

• Strict hierarchy (e.g. H2 only tested if H1 is rejected before)

• Strict hierarchy in blocks:

Concrete applications often impose more structure through
successiveness property between primary and corresponding
secondary hypotheses:
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Structured hypotheses – example revisited

• The two doses are equally relevant
• FEV1 increase and reduction in time to exacerbation within

a dose group are successive
• That is, for the same dose, time to exacerbation is only of

interest if FEV1 increase has been shown before
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How to construct decision strategies
that reflect such complex requirements?
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Need for suitable multiple test procedures

Standard multiple comparison procedures ...

• include Bonferroni, Holm, Hochberg, Dunnett, etc.

• control the FWER at level α

• are not suitable, because they treat all hypotheses equally
and do not address the underlying structure of the test
problem
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Need for suitable multiple test procedures

Standard multiple comparison procedures ...

• include Bonferroni, Holm, Hochberg, Dunnett, etc.

• control the FWER at level α

• are not suitable, because they treat all hypotheses equally
and do not address the underlying structure of the test
problem

An intuitive procedure that does not control the FWER

• Test H1,H2 with Holm at level α; if at least one is rejected,
test the “descendant” secondary hypothesis at level α/2.

• This procedure (or many variants thereof) does not control
the FWER at level α; actual error rate can be up to 3α/2.
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Gatekeeping procedures

• Often applied to clinical trials with structured families of
hypotheses and several levels of multiplicity

– Multiple endpoints (e.g. HbA1c and body weight)
– Multiple treatments of the same drug (e.g. dose or regimen)
– Multiple populations (e.g. full and sub-population)
– Combined non-inferiority and superiority testing

• Reflect the difference in importance as well as the
relationship between the various study objectives

• Can be represented as weighted closed test procedures
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Closed test procedure

Hypotheses:

• H1, . . . ,Hm : m elementary null hypotheses

• 2m − 1 intersection hypotheses

HJ = Hj1 ∩ Hj2 ∩ . . . ∩ Hjk , J = {j1, . . . , jk} ⊆ {1, . . . ,m}

Closed test procedure (CTP):

• Test each HJ with a suitable α-level test

• Reject an elementary hypothesis Hj , if all intersection
hypotheses containing the index j can be rejected

• This controls the FWER strongly at level α
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Weighted Bonferroni test

• Test H1, . . . ,Hm at level α with weights w1, . . . ,wm ≥ 0
such that w1 + . . .+ wm ≤ 1, i.e. w1α+ . . . + wmα ≤ α

• Assume m unadjusted p-values p1, . . . ,pm

• Weighted Bonferroni test (for the global null hypothesis):

Reject H = H1 ∩ . . . ∩ Hm if pj ≤ wjα for at least one j

• Alternatively, define weighted p-values p̃j = pj/wj and
reject H if minj p̃j ≤ α

• If wj = 1/m, this results in the ordinary, unweighted
Bonferroni test

• CTP using weighted Bonferroni tests for each intersection
hypothesis HJ controls the FWER strongly at level α

• See below on how to select weights wj(J) for each J
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Consonance

• CTP is consonant, if the following condition is satisfied:

If H = H1 ∩ . . . ∩ Hm is rejected, then reject at least one Hj

• Desirable property of CTP, as it ensures rejection of an
individual null after rejecting the global null

• Consonance enables construction of sequentially rejective
procedures, reducing the number of tests from 2m − 1 to m

• Not all CTP are consonant
• Assume m = 2 and test H1, H2 using a CTP
• If H12 = H1 ∩ H2 is rejected with a weighted Bonferroni test

(i.e. either p1 ≤ w1α or p2 ≤ w2α), then either H1 or H2 can
be rejected at α, respectively (consonance).

• If H12 is rejected with an F test, it is possible that neither H1

nor H2 is rejected at α (inconsonance).
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Consonance for Closed Weighted Bonferroni Tests

• For each J ⊆ {1, . . . ,m} choose weights wj(J) ≥ 0 such
that

∑

j wj(J) ≤ 1

• Reject HJ , if pj ≤ wj(J)α for at least one j ∈ J

• If for every pair I, J ⊆ {1, . . .m} with J ⊆ I the monotonicity

wj(I) ≤ wj(J) for all j ∈ J

holds, then consonance is satisfied
• Resulting CTP can be performed as sequentially rejective

procedure based on weighted p-values p̃j(J) = pj/wj(J),
starting with J = {1, . . . ,m}:

1 If p̃i(J) = min{p̃j(J), j ∈ J} ≤ α, reject Hi ; otherwise stop.
2 J → J/{i}
3 Go to step 1.

• Holds for weighted Holm procedure, fixed sequence test,
Bonferroni-based fallback and gatekeeping procedures, etc
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Graphical Approach
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Heuristics

Notation

• Null hypotheses H1, . . . ,Hm

• Initial allocation of the significance level α = α1 + . . .+ αm

• Unadjusted p-values p1, . . . ,pm
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Heuristics

Notation

• Null hypotheses H1, . . . ,Hm

• Initial allocation of the significance level α = α1 + . . .+ αm

• Unadjusted p-values p1, . . . ,pm

“α propagation”

If a hypothesis Hi can be rejected at level αi (i.e. pi ≤ αi ),
reallocate its level αi to the remaining, not yet rejected
hypotheses (according to a prefixed rule) and continue testing
with the updated α levels.
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Bonferroni Test (m = 2)

H2H1

α
2

α
2

18 (54)



Bonferroni Test (m = 2)

H2H1

α
2

α
2

Remarks

• Single-step procedures (e.g. Bonferroni) have no α
propagation (i.e. no edges between nodes)

• Stepwise procedures (e.g. Holm) include α propagation
and are thus more powerful

18 (54)



Bonferroni-Holm test (m = 2)

H2H1

α
2

α
21

1
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Bonferroni-Holm test (m = 2): Example with α = 0.025
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Using weighted Bonferroni tests

Weighted Bonferroni-Holm test
Use α1, α2 with α1 + α2 = α instead of α1 = α2 = α/2

H2H1

α1 α21

1
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Using weighted Bonferroni tests

Weighted Bonferroni-Holm test
Use α1, α2 with α1 + α2 = α instead of α1 = α2 = α/2

H2H1

α1 α21

1

Fixed sequence test

H1 H2m = 2 :

α 0
1

H1 H2 H3m = 3 :

α 0 0
1 1
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Fallback procedures (m = 3)

Original fallback

H1 H2 H3

α1 α2 α3

1 1
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α2
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Fallback procedures (m = 3)

Original fallback

H1 H2 H3

α1 α2 α3

1 1

Improved fallback I

H1 H2 H3

α1 α2 α3

1
1

γ

1 − γ

γ =

α2
α1+α2

Improved fallback II

H1 H2 H3

α1 α2 α3

1 − ǫ

1 ǫ

1

ǫ → 0

22 (54)



Parallel Gatekeeping

(Dmitrienko, Offen & Westfall, 2003)
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Parallel Gatekeeping

H1 H2

H3 H4

1/2 1/2

1/21/2

1

1

α
2

α
2

0 0
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Parallel Gatekeeping: Example with α = 0.025

H1p1 = 0.01 H2 p2 = 0.005

H4H3p3 = 0.001 p4 = 0.04

1/2 1/2

1/21/2

1

1

α
2

α
2

0 0
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Parallel Gatekeeping: Example with α = 0.025

H2 p2 = 0.005

H4H3p3 = 0.001 p4 = 0.04

1/2

1/2

1

1

α
2

Procedure not successive:

H4 could be rejected without having H2 rejected

α
4

α
4
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Parallel Gatekeeping: Example with α = 0.025
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Parallel Gatekeeping: Example with α = 0.025
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Parallel Gatekeeping: Example with α = 0.025
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Parallel Gatekeeping: Example with α = 0.025

p4 = 0.04

α

H4
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Formal definition of the graphical approach

General Definition

• α = (α1, . . . , αm),
∑m

i=1 αi = α, initial levels

• G = (gij) : m × m transition matrix
gij with 0 ≤ gij ≤ 1, gii = 0 and

∑m
j=1 gij ≤ 1 for all

i = 1, . . . ,m.

• gij : fraction of the level of Hi that is propagated to Hj

• G and α determine the graph and the multiple test

26 (54)



Update algorithm

Set J = {1, . . . ,m}.

1 Select a j such that pj ≤ αj .
If no such j exists, stop, otherwise reject Hj .

2 Update the graph:
J → J/{j}

αℓ →

{

αℓ + αjgjℓ, ℓ ∈ J
0, otherwise

gℓm →

{

gℓm+gℓjgjm
1−gℓjgjℓ

, ℓ,m ∈ J, ℓ 6= m,gℓjgjℓ < 1

0, otherwise

3 Go to step 1.
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Main result

Theorem

The initial levels α, the transition matrix G and the algorithm
define a unique sequentially rejective test procedure that
controls the FWER strongly at level α.

Proof idea:

• The graph and algorithm define weighted Bonferroni tests
for each intersection hypothesis

• The algorithm defines a shortcut for the resulting
consonant closed test, which does not depend on the
rejection sequence

28 (54)



Updating the Graph: Numerical Example

H1 H3

H2

g12 = 1
2 g23 = 1

2

g13 = 1
2
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2 g23 = 1
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Updating the Graph: Numerical Example

H1 H3

H2

g12 = 1
2 g23 = 1

2

g21 = 1
4

g13+g12g23
1−g12g21

=
3
4

1− 1
2

1
4
= 6

7

g12g21
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Generic Example

30 (54)



Successive test procedures for structured hypotheses

Example

• Two primary hypotheses H1,H2
For example,

– low/high dose for primary endpoint or non-inferiority claim

• Two secondary hypotheses H3,H4
For example,

– low/high dose for secondary endpoint or superiority claim

31 (54)



Successive test procedures for structured hypotheses

Example

• Two primary hypotheses H1,H2
For example,

– low/high dose for primary endpoint or non-inferiority claim

• Two secondary hypotheses H3,H4
For example,

– low/high dose for secondary endpoint or superiority claim

Proposed graphs

• ... are successive, control FWER, and display possible
decision paths

• ... can be finetuned to reflect clinical considerations or
treatment effect assumptions

31 (54)



Successive procedure for 2 × 2 structured hypotheses

low dose high dose

primary H1 H2

secondary H3 H4

α
2

α
2

0 0
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α
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α
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Example with α = 0.025

low dose high dose

primary

secondary

H1p1 = 0.01 H2 p2 = 0.02

H3p3 = 0.07 H4 p4 = 0.001

1/2 1/2

1/2

1/2

11

α
2

α
2
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Example with α = 0.025

low dose high dose

primary

secondary

H2 p2 = 0.02

H3p3 = 0.07 H4 p4 = 0.001

2/3

1/3

1/2

1/2
1

3α
4

α
4 0
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Example with α = 0.025

low dose high dose

primary

secondary

H2 p2 = 0.02H2

H3 H4H3p3 = 0.07 H4 p4 = 0.001

2/3

1/3

1/2

1/2
1

3α
4

α
4 0
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Successive procedure for 2 × 2 structured hypotheses

H1 H2

H3 H4

1 − γ1 1 − γ2

γ1

γ2

11

α1 α2(= α− α1)

0 0

Resulting graph . . .

needs to be finetuned with respect to α1, γ1, and γ2, based on:

• further clinical considerations, or

• assumptions about effect sizes, correlations, etc.
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Power considerations

Probability to reject at least one hypothesis, i.e. to identify
at least one true effect

• depends only on the initial levels α1, . . . , αk , and

• on the (unknown) true effect sizes and the correlations between
the test statistics.

• For successive procedures only levels, effect sizes and
correlations of primary hypotheses are relevant.

Probability to identify several true effects

• depends in addition on the edge weights of the graph.
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Case Studies
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Case study I
Late phase development of a new compound as an adjunctive therapy

Structured family of hypotheses
1. Four-armed trial comparing

• Three dose levels of a new therapy adjunctive to
standard-of-care

• Placebo + standard-of-care as control

2. Two hierarchically ordered endpoints
• Relapse rate and total medication score after 24 weeks

⇒ Six hypotheses Hij

Dose i = 1 (low), 2 (medium), 3 (high dose)
Endpoint j = 1 (relapse rate), 2 (total medication score)

37 (54)



Clinical considerations

(1) Relapse rate is more important than total medication
score. Therefore,

• Primary hypotheses H11,H21,H31,
• Secondary hypotheses H12,H22,H32.

(2) Primary hypotheses considered as equally important, but
significance of adjacent doses (i.e. reject H11,H21 or
H21,H31) preferred over significance of non-adjacent
significant doses (i.e. reject H11 and H31)

(3) Successiveness: A secondary hypothesis cannot be
rejected without having rejected the associated parent
primary hypothesis.

38 (54)
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Resulting multiple test procedure

(1)

low dose medium dose high dose

relapse
rate H11 H21 H31
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Resulting multiple test procedure

(1)

low dose medium dose high dose

relapse
rate H11 H21 H31
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score H12 H22 H32
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Resulting multiple test procedure

(2)

low dose medium dose high dose
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α
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Resulting multiple test procedure
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Resulting multiple test procedure

low dose medium dose high dose
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Resulting multiple test procedure

(2) + (3)

low dose medium dose high dose

relapse
rate H11 H21 H31

total
score H12 H22 H32

0 0 0

α
3

α
3

α
3

1/2 1/2

1/3 1/3

1/2 1/3 1/2

1 1/2 1/2 1
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Easily implemented in SAS/IML

/* h: indicator whether a hypothesis is rejected (= 1) or not (= 0) (1 x n vector)

a: initial significance level allocation (1 x n vector)

w: weights for the edges (n x n matrix)

p: observed p-values (1 x n vector) */

START mcp(h, a, w, p);

n = NCOL(h);

mata = a;

crit = 0;

DO UNTIL(crit = 1);

test = (p < a);

IF (ANY(test)) THEN DO;

rej = MIN(LOC(test#(1:n)));

h[rej] = 1;

w1 = J(n, n, 0);

DO i = 1 TO n;

a[i] = a[i] + a[rej]*w[rej,i];

IF (w[i,rej]*w[rej,i]<1) THEN DO j = 1 TO n;

w1[i,j] = (w[i,j] + w[i,rej]*w[rej,j])/(1 - w[i,rej]*w[rej,i]);

END;

w1[i,i] = 0;

END;

w = w1; w[rej,] = 0; w[,rej] = 0;

a[rej] = 0;

mata = mata // a;

END;

ELSE crit = 1;

END;

PRINT h; PRINT (ROUND(mata, 0.0001)); PRINT (ROUND(w,0.01));

FINISH;
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Example call

PROC IML;

START mcp(h, a, w, p);

...

FINISH;

/*** Numerical example ***/

h = {0 0 0 0 0 0};

a = {0.00833 0.00833 0.00833 0 0 0};

w = {0 0.5 0 0.5 0 0 ,

0.3333 0 0.3333 0 0.3333 0 ,

0 0.5 0 0 0 0.5,

0 1 0 0 0 0 ,

0.5 0 0.5 0 0 0 ,

0 1 0 0 0 0 };

p = {0.1 0.008 0.005 0.15 0.04 0.006};

RUN mcp(h, a, w, p);

QUIT;
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R code with interface to JAVA

gMCP package in R

• Open source package available on CRAN at
http://cran.r-project.org/web/packages/gMCP/

• Provides GUI within R through interface to JAVA

42 (54)



Case study II
Late phase development of a new cardiovascular drug

• Two treatments (A and B) compared with comparator (C)

• Superiority and non-inferiority tests for primary and
multiple secondary endpoints.

• Three elementary hypotheses and two families of
hypotheses:

• H1: superiority of A vs. C
• H2: non-inferiority of B vs. C
• H3: superiority of B vs. C
• H4: multiple secondary variables for A vs. C
• H5: multiple secondary variables for B vs. C

43 (54)



Final multiple test procedure

H1 H2primary

treatment A treatment B
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Final multiple test procedure
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Final multiple test procedure

H1 H2primary

treatment A treatment B
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H4 H5
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Example

H4 H5

H2

H3

H1

α/2 α/2

0

3/4

1/4

1

1

3/4

1/41

0

0

45 (54)



Example

H4 H5

H2

H3

7
8α

3/4

3/4

1/4

1/4

3/4

1/41

0

01
8α

45 (54)



Example

H4 H5

H2

H3

7
8α

3/4

3/4

1/4

1/4

3/4

1/41

0

01
8α

45 (54)



Example

H4 H5

H3

1
8α

21
32α

7
32α

1/4

3/4
4/7

4/13

3/7
9/13

45 (54)



Example

H4 H5

H3

1
8α

21
32α

7
32α

1/4

3/4
4/7

4/13

3/7
9/13

45 (54)



Example

H4 H5
1
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1
2α

1

1
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Case study III
Post-marketing study of a migraine treatment

• Gold standard design comparing experimental drug (E)
against placebo (P) and active comparator (C)

• Mixture of superiority and non-inferiority tests
• Two primary endpoints: pain, symptoms, resulting in six

elementary hypotheses:
Hsup

P,p : superiority of E vs. P for pain

Hsup
P,s : superiority of E vs. P for symptoms

Hni
C,p: non-inferiority of E vs. C for pain

Hni
C,s: non-inferiority of E vs. C for symptoms

Hsup
C,p : superiority of E vs. C for pain

Hsup
C,s : superiority of E vs. C for symptoms

46 (54)



Initial proposal: strict sequence

Hsup
P,p Hni

C,p Hsup
P,s Hni

C,s Hsup
C,p Hsup

C,s
1 1 1 1 1

α 0 0 0 0 0
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Next proposal: gatekeeping
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Next proposal: gatekeeping – new display
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Final proposal
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Final proposal
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Case study IV

• Graph describing a test procedure for 4 EEG frequency
bands and 5 sub-bands (Ferber et al., 2011)



Summary

• Proposed graphical approach offers the possibility to
– tailor advanced multiple test procedures to structured

families of hypotheses,
– visualize complex decision strategies in an efficient and

easily communicable way, and
– ensure strong FWER control.

• Approach covers many common gatekeeping procedures
as special cases (Holm, fixed sequence, fallback, ...)
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Extensions

• Approach can be extended to address other problems:
• Adjusted p-values and simultaneous confidence intervals

available
• Power and sample size considerations
• Use of weighted and trimmed Simes tests
• Weighted parametric test procedures to exploit correlation
• Multiple testing in group sequential trials and adaptive

designs
• Convex combination of graphs and other geometric

representation of multiple test procedures
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