Part 2

Graphical Approaches to Multiple Testing

Structured families of hypotheses

Example for structured hypotheses

Example

A parallel group study with

- Two treatments and a control

- One primary and one secondary endpoint
- For example, FEV1 and time to exacerbation in a COPD trial (see Part 1)

Structure:

- Four hypotheses of interest
- Two are primary (FEV1 for low and high dose)
- Two secondary (time to exacerbation for low and high dose)

Precise role of study objectives

Key question in case of several study objectives/hypotheses:

What is their precise role?

$$
\begin{array}{cc}
\text { Primary? } & \text { Required for study success? } \\
\text { Secondary? } & \Leftrightarrow \quad \text { For additional label claims? } \\
\text { Tertiary? } & \text { Just exploratory? }
\end{array}
$$

- Type I error rate control may be only required for some (maybe just one primary) hypothesis
- Classification is specific to the study, needs discussion within clinical teams and with regulatory agencies

Precise role of primary hypothesis

The primary hypothesis may be

- Clinically more important than the secondary hypothesis
- Example: Glucose level in blood (e.g. HbA1c) and weight loss in diabetes
- Key to approval, although not clinically more important
- Example: FEV1 and time to exacerbation in COPD
- Prerequisite for possible significance in the secondary hypothesis
- Example: non-inferiority needs to be established before testing superiority

Structured hypotheses

Traditional multiple testing methods assume

- No order (all hypotheses equally important)
- Strict hierarchy (e.g. H_{2} only tested if H_{1} is rejected before)
- Strict hierarchy in blocks:

Structured hypotheses

Traditional multiple testing methods assume

- No order (all hypotheses equally important)
- Strict hierarchy (e.g. H_{2} only tested if H_{1} is rejected before)
- Strict hierarchy in blocks:

Secondary hypotheses

Concrete applications often impose more structure through successiveness property between primary and corresponding secondary hypotheses:

Structured hypotheses - example revisited

- The two doses are equally relevant
- FEV1 increase and reduction in time to exacerbation within a dose group are successive
- That is, for the same dose, time to exacerbation is only of interest if FEV1 increase has been shown before

How to construct decision strategies that reflect such complex requirements?

Need for suitable multiple test procedures

Standard multiple comparison procedures ...

- include Bonferroni, Holm, Hochberg, Dunnett, etc.
- control the FWER at level α
- are not suitable, because they treat all hypotheses equally and do not address the underlying structure of the test problem

Need for suitable multiple test procedures

Standard multiple comparison procedures ...

- include Bonferroni, Holm, Hochberg, Dunnett, etc.
- control the FWER at level α
- are not suitable, because they treat all hypotheses equally and do not address the underlying structure of the test problem

An intuitive procedure that does not control the FWER

- Test H_{1}, H_{2} with Holm at level α; if at least one is rejected, test the "descendant" secondary hypothesis at level $\alpha / 2$.
- This procedure (or many variants thereof) does not control the FWER at level α; actual error rate can be up to $3 \alpha / 2$.

Gatekeeping procedures

- Often applied to clinical trials with structured families of hypotheses and several levels of multiplicity

Gatekeeping procedures

- Often applied to clinical trials with structured families of hypotheses and several levels of multiplicity
- Multiple endpoints (e.g. HbA1c and body weight)
- Multiple treatments of the same drug (e.g. dose or regimen)
- Multiple populations (e.g. full and sub-population)
- Combined non-inferiority and superiority testing

Gatekeeping procedures

- Often applied to clinical trials with structured families of hypotheses and several levels of multiplicity
- Multiple endpoints (e.g. HbA1c and body weight)
- Multiple treatments of the same drug (e.g. dose or regimen)
- Multiple populations (e.g. full and sub-population)
- Combined non-inferiority and superiority testing
- Reflect the difference in importance as well as the relationship between the various study objectives

Gatekeeping procedures

- Often applied to clinical trials with structured families of hypotheses and several levels of multiplicity
- Multiple endpoints (e.g. HbA1c and body weight)
- Multiple treatments of the same drug (e.g. dose or regimen)
- Multiple populations (e.g. full and sub-population)
- Combined non-inferiority and superiority testing
- Reflect the difference in importance as well as the relationship between the various study objectives
- Can be represented as weighted closed test procedures

Closed test procedure

Hypotheses:

- H_{1}, \ldots, H_{m} : m elementary null hypotheses
- $2^{m}-1$ intersection hypotheses

$$
H_{J}=H_{j_{1}} \cap H_{j_{2}} \cap \ldots \cap H_{j_{k}}, J=\left\{j_{1}, \ldots, j_{k}\right\} \subseteq\{1, \ldots, m\}
$$

Closed test procedure (CTP):

- Test each H_{J} with a suitable α-level test
- Reject an elementary hypothesis H_{j}, if all intersection hypotheses containing the index j can be rejected
- This controls the FWER strongly at level α

Weighted Bonferroni test

- Test H_{1}, \ldots, H_{m} at level α with weights $w_{1}, \ldots, w_{m} \geq 0$ such that $w_{1}+\ldots+w_{m} \leq 1$, i.e. $w_{1} \alpha+\ldots+w_{m} \alpha \leq \alpha$

Weighted Bonferroni test

- Test H_{1}, \ldots, H_{m} at level α with weights $w_{1}, \ldots, w_{m} \geq 0$ such that $w_{1}+\ldots+w_{m} \leq 1$, i.e. $w_{1} \alpha+\ldots+w_{m} \alpha \leq \alpha$
- Assume m unadjusted p-values p_{1}, \ldots, p_{m}

Weighted Bonferroni test

- Test H_{1}, \ldots, H_{m} at level α with weights $w_{1}, \ldots, w_{m} \geq 0$ such that $w_{1}+\ldots+w_{m} \leq 1$, i.e. $w_{1} \alpha+\ldots+w_{m} \alpha \leq \alpha$
- Assume m unadjusted p-values p_{1}, \ldots, p_{m}
- Weighted Bonferroni test (for the global null hypothesis): Reject $H=H_{1} \cap \ldots \cap H_{m}$ if $p_{j} \leq w_{j} \alpha$ for at least one j

Weighted Bonferroni test

- Test H_{1}, \ldots, H_{m} at level α with weights $w_{1}, \ldots, w_{m} \geq 0$ such that $w_{1}+\ldots+w_{m} \leq 1$, i.e. $w_{1} \alpha+\ldots+w_{m} \alpha \leq \alpha$
- Assume m unadjusted p-values p_{1}, \ldots, p_{m}
- Weighted Bonferroni test (for the global null hypothesis):

Reject $H=H_{1} \cap \ldots \cap H_{m}$ if $p_{j} \leq w_{j} \alpha$ for at least one j

- Alternatively, define weighted p -values $\tilde{p}_{j}=p_{j} / w_{j}$ and reject H if $\min _{j} \tilde{p}_{j} \leq \alpha$

Weighted Bonferroni test

- Test H_{1}, \ldots, H_{m} at level α with weights $w_{1}, \ldots, w_{m} \geq 0$ such that $w_{1}+\ldots+w_{m} \leq 1$, i.e. $w_{1} \alpha+\ldots+w_{m} \alpha \leq \alpha$
- Assume m unadjusted p-values p_{1}, \ldots, p_{m}
- Weighted Bonferroni test (for the global null hypothesis):

Reject $H=H_{1} \cap \ldots \cap H_{m}$ if $p_{j} \leq w_{j} \alpha$ for at least one j

- Alternatively, define weighted p -values $\tilde{p}_{j}=p_{j} / w_{j}$ and reject H if $\min _{j} \tilde{p}_{j} \leq \alpha$
- If $w_{j}=1 / m$, this results in the ordinary, unweighted Bonferroni test

Weighted Bonferroni test

- Test H_{1}, \ldots, H_{m} at level α with weights $w_{1}, \ldots, w_{m} \geq 0$ such that $w_{1}+\ldots+w_{m} \leq 1$, i.e. $w_{1} \alpha+\ldots+w_{m} \alpha \leq \alpha$
- Assume m unadjusted p-values p_{1}, \ldots, p_{m}
- Weighted Bonferroni test (for the global null hypothesis):

Reject $H=H_{1} \cap \ldots \cap H_{m}$ if $p_{j} \leq w_{j} \alpha$ for at least one j

- Alternatively, define weighted p -values $\tilde{p}_{j}=p_{j} / w_{j}$ and reject H if $\min _{j} \tilde{p}_{j} \leq \alpha$
- If $w_{j}=1 / m$, this results in the ordinary, unweighted Bonferroni test
- CTP using weighted Bonferroni tests for each intersection hypothesis H_{J} controls the FWER strongly at level α

Weighted Bonferroni test

- Test H_{1}, \ldots, H_{m} at level α with weights $w_{1}, \ldots, w_{m} \geq 0$ such that $w_{1}+\ldots+w_{m} \leq 1$, i.e. $w_{1} \alpha+\ldots+w_{m} \alpha \leq \alpha$
- Assume m unadjusted p-values p_{1}, \ldots, p_{m}
- Weighted Bonferroni test (for the global null hypothesis):

Reject $H=H_{1} \cap \ldots \cap H_{m}$ if $p_{j} \leq w_{j} \alpha$ for at least one j

- Alternatively, define weighted p-values $\tilde{p}_{j}=p_{j} / w_{j}$ and reject H if $\min _{j} \tilde{p}_{j} \leq \alpha$
- If $w_{j}=1 / m$, this results in the ordinary, unweighted Bonferroni test
- CTP using weighted Bonferroni tests for each intersection hypothesis H_{J} controls the FWER strongly at level α
- See below on how to select weights $w_{j}(J)$ for each J

Consonance

- CTP is consonant, if the following condition is satisfied: If $H=H_{1} \cap \ldots \cap H_{m}$ is rejected, then reject at least one H_{j}

Consonance

- CTP is consonant, if the following condition is satisfied: If $H=H_{1} \cap \ldots \cap H_{m}$ is rejected, then reject at least one H_{j}
- Desirable property of CTP, as it ensures rejection of an individual null after rejecting the global null

Consonance

- CTP is consonant, if the following condition is satisfied: If $H=H_{1} \cap \ldots \cap H_{m}$ is rejected, then reject at least one H_{j}
- Desirable property of CTP, as it ensures rejection of an individual null after rejecting the global null
- Consonance enables construction of sequentially rejective procedures, reducing the number of tests from $2^{m}-1$ to m

Consonance

- CTP is consonant, if the following condition is satisfied: If $H=H_{1} \cap \ldots \cap H_{m}$ is rejected, then reject at least one H_{j}
- Desirable property of CTP, as it ensures rejection of an individual null after rejecting the global null
- Consonance enables construction of sequentially rejective procedures, reducing the number of tests from $2^{m}-1$ to m
- Not all CTP are consonant
- Assume $m=2$ and test H_{1}, H_{2} using a CTP

Consonance

- CTP is consonant, if the following condition is satisfied: If $H=H_{1} \cap \ldots \cap H_{m}$ is rejected, then reject at least one H_{j}
- Desirable property of CTP, as it ensures rejection of an individual null after rejecting the global null
- Consonance enables construction of sequentially rejective procedures, reducing the number of tests from $2^{m}-1$ to m
- Not all CTP are consonant
- Assume $m=2$ and test H_{1}, H_{2} using a CTP
- If $H_{12}=H_{1} \cap H_{2}$ is rejected with a weighted Bonferroni test (i.e. either $p_{1} \leq w_{1} \alpha$ or $p_{2} \leq w_{2} \alpha$), then either H_{1} or H_{2} can be rejected at α, respectively (consonance).

Consonance

- CTP is consonant, if the following condition is satisfied: If $H=H_{1} \cap \ldots \cap H_{m}$ is rejected, then reject at least one H_{j}
- Desirable property of CTP, as it ensures rejection of an individual null after rejecting the global null
- Consonance enables construction of sequentially rejective procedures, reducing the number of tests from $2^{m}-1$ to m
- Not all CTP are consonant
- Assume $m=2$ and test H_{1}, H_{2} using a CTP
- If $H_{12}=H_{1} \cap H_{2}$ is rejected with a weighted Bonferroni test (i.e. either $p_{1} \leq w_{1} \alpha$ or $p_{2} \leq w_{2} \alpha$), then either H_{1} or H_{2} can be rejected at α, respectively (consonance).
- If H_{12} is rejected with an F test, it is possible that neither H_{1} nor H_{2} is rejected at α (inconsonance).

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$
- If for every pair $I, J \subseteq\{1, \ldots m\}$ with $J \subseteq I$ the monotonicity

$$
w_{j}(I) \leq w_{j}(J) \text { for all } j \in J
$$

holds, then consonance is satisfied

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$
- If for every pair $I, J \subseteq\{1, \ldots m\}$ with $J \subseteq I$ the monotonicity

$$
w_{j}(I) \leq w_{j}(J) \text { for all } j \in J
$$

holds, then consonance is satisfied

- Resulting CTP can be performed as sequentially rejective procedure based on weighted p-values $\tilde{p}_{j}(J)=p_{j} / w_{j}(J)$, starting with $J=\{1, \ldots, m\}$:

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$
- If for every pair $I, J \subseteq\{1, \ldots m\}$ with $J \subseteq I$ the monotonicity

$$
w_{j}(I) \leq w_{j}(J) \text { for all } j \in J
$$

holds, then consonance is satisfied

- Resulting CTP can be performed as sequentially rejective procedure based on weighted p-values $\tilde{p}_{j}(J)=p_{j} / w_{j}(J)$, starting with $J=\{1, \ldots, m\}$:
(1) If $\tilde{p}_{i}(J)=\min \left\{\tilde{p}_{j}(J), j \in J\right\} \leq \alpha$, reject H_{i}; otherwise stop.

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$
- If for every pair $I, J \subseteq\{1, \ldots m\}$ with $J \subseteq I$ the monotonicity

$$
w_{j}(I) \leq w_{j}(J) \text { for all } j \in J
$$

holds, then consonance is satisfied

- Resulting CTP can be performed as sequentially rejective procedure based on weighted p-values $\tilde{p}_{j}(J)=p_{j} / w_{j}(J)$, starting with $J=\{1, \ldots, m\}$:
(1) If $\tilde{p}_{i}(J)=\min \left\{\tilde{p}_{j}(J), j \in J\right\} \leq \alpha$, reject H_{i}; otherwise stop.
(2) $J \rightarrow J /\{i\}$

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$
- If for every pair $I, J \subseteq\{1, \ldots m\}$ with $J \subseteq I$ the monotonicity

$$
w_{j}(I) \leq w_{j}(J) \text { for all } j \in J
$$

holds, then consonance is satisfied

- Resulting CTP can be performed as sequentially rejective procedure based on weighted p-values $\tilde{p}_{j}(J)=p_{j} / w_{j}(J)$, starting with $J=\{1, \ldots, m\}$:
(1) If $\tilde{p}_{i}(J)=\min \left\{\tilde{p}_{j}(J), j \in J\right\} \leq \alpha$, reject H_{i}; otherwise stop.
(2) $J \rightarrow J /\{i\}$
(3) Go to step 1.

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$
- If for every pair $I, J \subseteq\{1, \ldots m\}$ with $J \subseteq I$ the monotonicity

$$
w_{j}(I) \leq w_{j}(J) \text { for all } j \in J
$$

holds, then consonance is satisfied

- Resulting CTP can be performed as sequentially rejective procedure based on weighted p-values $\tilde{p}_{j}(J)=p_{j} / w_{j}(J)$, starting with $J=\{1, \ldots, m\}$:
(1) If $\tilde{p}_{i}(J)=\min \left\{\tilde{p}_{j}(J), j \in J\right\} \leq \alpha$, reject H_{i}; otherwise stop.
(2) $J \rightarrow J /\{i\}$
(3) Go to step 1.

Consonance for Closed Weighted Bonferroni Tests

- For each $J \subseteq\{1, \ldots, m\}$ choose weights $w_{j}(J) \geq 0$ such that $\sum_{j} w_{j}(J) \leq 1$
- Reject H_{J}, if $p_{j} \leq w_{j}(J) \alpha$ for at least one $j \in J$
- If for every pair $I, J \subseteq\{1, \ldots m\}$ with $J \subseteq I$ the monotonicity

$$
w_{j}(I) \leq w_{j}(J) \text { for all } j \in J
$$

holds, then consonance is satisfied

- Resulting CTP can be performed as sequentially rejective procedure based on weighted p-values $\tilde{p}_{j}(J)=p_{j} / w_{j}(J)$, starting with $J=\{1, \ldots, m\}$:
(1) If $\tilde{p}_{i}(J)=\min \left\{\tilde{p}_{j}(J), j \in J\right\} \leq \alpha$, reject H_{i}; otherwise stop.
(2) $J \rightarrow J /\{i\}$
(3) Go to step 1.
- Holds for weighted Holm procedure, fixed sequence test, Bonferroni-based fallback and gatekeeping procedures, etc

Graphical Approach

Heuristics

Notation

- Null hypotheses H_{1}, \ldots, H_{m}
- Initial allocation of the significance level $\alpha=\alpha_{1}+\ldots+\alpha_{m}$
- Unadjusted p-values p_{1}, \ldots, p_{m}

Heuristics

Notation

- Null hypotheses H_{1}, \ldots, H_{m}
- Initial allocation of the significance level $\alpha=\alpha_{1}+\ldots+\alpha_{m}$
- Unadjusted p-values p_{1}, \ldots, p_{m}
" α propagation"
If a hypothesis H_{i} can be rejected at level α_{i} (i.e. $p_{i} \leq \alpha_{i}$), reallocate its level α_{i} to the remaining, not yet rejected hypotheses (according to a prefixed rule) and continue testing with the updated α levels.

Conventions

Conventions

(1) Hypotheses H_{1}, \ldots, H_{m}

Conventions

(1) Hypotheses H_{1}, \ldots, H_{m} represented as nodes

2 Split of significance level α as weights $\alpha_{1}, \ldots, \alpha_{m}$
$\alpha_{1}=\frac{\alpha}{2}$
$\alpha_{2}=\frac{\alpha}{2}$
(H_{1}
H_{2}

Conventions

(1) Hypotheses H_{1}, \ldots, H_{m} represented as nodes

2 Split of significance level α as weights $\alpha_{1}, \ldots, \alpha_{m}$

3 " α propagation" through weighted, directed edges

Conventions

(1) Hypotheses H_{1}, \ldots, H_{m} represented as nodes

2 Split of significance level α as weights $\alpha_{1}, \ldots, \alpha_{m}$

Bonferroni $H_{1}^{\frac{\alpha}{2}} H_{1}$
(3) " α propagation" through weighted, directed edges

Holm

Bonferroni Test $(m=2)$

$\frac{\alpha}{2}$

Bonferroni Test $(m=2)$

Remarks

- Single-step procedures (e.g. Bonferroni) have no α propagation (i.e. no edges between nodes)
- Stepwise procedures (e.g. Holm) include α propagation and are thus more powerful

Bonferroni-Holm test $(m=2)$

Bonferroni-Holm test $(m=2)$: Example with $\alpha=0.025$

Bonferroni-Holm test ($m=2$): Example with $\alpha=0.025$

Bonferroni-Holm test $(m=2)$: Example with $\alpha=0.025$

Bonferroni-Holm test $(m=2)$: Example with $\alpha=0.025$

$$
\begin{aligned}
\alpha & =0.025 \\
p_{1} & =0.04
\end{aligned}
$$

Bonferroni-Holm test ($m=2$): Example with $\alpha=0.025$

$$
\begin{aligned}
& \alpha=0.025 \\
& p_{1}=0.04
\end{aligned}
$$

Using weighted Bonferroni tests

Weighted Bonferroni-Holm test
Use α_{1}, α_{2} with $\alpha_{1}+\alpha_{2}=\alpha$ instead of $\alpha_{1}=\alpha_{2}=\alpha / 2$

Using weighted Bonferroni tests

Weighted Bonferroni-Holm test
Use α_{1}, α_{2} with $\alpha_{1}+\alpha_{2}=\alpha$ instead of $\alpha_{1}=\alpha_{2}=\alpha / 2$

Fixed sequence test

Fallback procedures ($m=3$)

Original fallback

Fallback procedures ($m=3$)

Original fallback
$\xrightarrow{H_{1}} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \xrightarrow{\alpha_{3}}$

Improved fallback I

$$
\gamma=\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}
$$

Fallback procedures ($m=3$)

Original fallback
$\xrightarrow{H_{1}} \xrightarrow{\alpha_{1}} \xrightarrow{\alpha_{2}} \xrightarrow{\alpha_{3}}$

Improved fallback I

$$
\gamma=\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}
$$

Improved fallback II

$$
\epsilon \rightarrow 0
$$

Parallel Gatekeeping

Table I. Weights assigned to the intersection hypothesis tests.

Intersection hypothesis	Weights			
	H_{1}	H_{2}	H_{3}	H_{4}
$H_{1} \cap H_{2} \cap H_{3} \cap H_{4}$	0.5	0.5	0.0	0.0
$H_{1} \cap H_{2} \cap H_{3}$	0.5	0.5	0.0	0.0
$H_{1} \cap H_{2} \cap H_{4}$	0.5	0.5	0.0	0.0
$H_{1} \cap H_{2}$	0.5	0.5	0.0	0.0
$H_{1} \cap H_{3} \cap H_{4}$	0.5	0.0	0.25	0.25
$H_{1} \cap H_{3}$	0.5	0.0	0.5	0.0
$H_{1} \cap H_{4}$	0.5	0.0	0.0	0.5
H_{1}	0.5	0.0	0.0	0.0
$H_{2} \cap H_{3} \cap H_{4}$	0.0	0.5	0.25	0.25
$H_{2} \cap H_{3}$	0.0	0.5	0.5	0.0
$H_{2} \cap H_{4}$	0.0	0.5	0.0	0.5
H_{2}	0.0	0.5	0.0	0.0
$H_{3} \cap H_{4}$	0.0	0.0	0.5	0.5
H_{3}	0.0	0.0	1.0	0.0
H_{4}	0.0	0.0	0.0	1.0

Parallel Gatekeeping

Parallel Gatekeeping: Example with $\alpha=0.025$

Procedure not successive:
H_{4} could be rejected without having H_{2} rejected

Parallel Gatekeeping: Example with $\alpha=0.025$

Parallel Gatekeeping: Example with $\alpha=0.025$

(H4) $p_{4}=0.04$

Formal definition of the graphical approach

General Definition

- $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right), \sum_{i=1}^{m} \alpha_{i}=\alpha$, initial levels
- $\mathbf{G}=\left(g_{i j}\right): m \times m$ transition matrix $g_{i j}$ with $0 \leq g_{i j} \leq 1, g_{i i}=0$ and $\sum_{j=1}^{m} g_{i j} \leq 1$ for all $i=1, \ldots, m$.
- $g_{i j}$: fraction of the level of H_{i} that is propagated to H_{j}
- \mathbf{G} and α determine the graph and the multiple test

Update algorithm

Set $J=\{1, \ldots, m\}$.
(1) Select a j such that $p_{j} \leq \alpha_{j}$. If no such j exists, stop, otherwise reject H_{j}.

Update algorithm

Set $J=\{1, \ldots, m\}$.
(1) Select a j such that $p_{j} \leq \alpha_{j}$. If no such j exists, stop, otherwise reject H_{j}.
(2) Update the graph:

$$
\begin{gathered}
J \rightarrow J /\{j\} \\
\alpha_{\ell} \rightarrow \begin{cases}\alpha_{\ell}+\alpha_{j} g_{j \ell}, & \ell \in J \\
0, & \text { otherwise }\end{cases} \\
\boldsymbol{g}_{\ell m} \rightarrow \begin{cases}\frac{g_{\ell m}+g_{\ell j} g_{j m}}{1-g_{\ell j} g_{j \ell},} & \ell, m \in J, \ell \neq m, g_{\ell j} \boldsymbol{g}_{j \ell}<1 \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

Update algorithm

Set $J=\{1, \ldots, m\}$.
(1) Select a j such that $p_{j} \leq \alpha_{j}$. If no such j exists, stop, otherwise reject H_{j}.
(2) Update the graph:

$$
\begin{gathered}
J \rightarrow J /\{j\} \\
\alpha_{\ell} \rightarrow \begin{cases}\alpha_{\ell}+\alpha_{j} g_{j \ell}, & \ell \in J \\
0, & \text { otherwise }\end{cases} \\
g_{\ell m} \rightarrow \begin{cases}\frac{g_{\ell m}+g_{\ell j} g_{j m}}{1-g_{\ell j} g_{j \ell}}, & \ell, m \in J, \ell \neq m, g_{\ell j} g_{j \ell}<1 \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

(3) Go to step 1.

Main result

Theorem

The initial levels α, the transition matrix \mathbf{G} and the algorithm define a unique sequentially rejective test procedure that controls the FWER strongly at level α.

Proof idea:

- The graph and algorithm define weighted Bonferroni tests for each intersection hypothesis
- The algorithm defines a shortcut for the resulting consonant closed test, which does not depend on the rejection sequence

Updating the Graph: Numerical Example

Generic Example

Successive test procedures for structured hypotheses

Example

- Two primary hypotheses H_{1}, H_{2} For example,
- low/high dose for primary endpoint or non-inferiority claim
- Two secondary hypotheses H_{3}, H_{4} For example,
- low/high dose for secondary endpoint or superiority claim

Successive test procedures for structured hypotheses

Example

- Two primary hypotheses H_{1}, H_{2} For example,
- low/high dose for primary endpoint or non-inferiority claim
- Two secondary hypotheses H_{3}, H_{4} For example,
- low/high dose for secondary endpoint or superiority claim

Proposed graphs

- ... are successive, control FWER, and display possible decision paths
- ... can be finetuned to reflect clinical considerations or treatment effect assumptions

Successive procedure for 2×2 structured hypotheses

low dose
high dose

Successive procedure for 2×2 structured hypotheses

low dose
high dose

Successive procedure for 2×2 structured hypotheses

low dose
high dose

Example with $\alpha=0.025$

Successive procedure for 2×2 structured hypotheses

Resulting graph ...
needs to be finetuned with respect to α_{1}, γ_{1}, and γ_{2}, based on:

- further clinical considerations, or
- assumptions about effect sizes, correlations, etc.

Power considerations

Probability to reject at least one hypothesis, i.e. to identify at least one true effect

- depends only on the initial levels $\alpha_{1}, \ldots, \alpha_{k}$, and
- on the (unknown) true effect sizes and the correlations between the test statistics.
- For successive procedures only levels, effect sizes and correlations of primary hypotheses are relevant.

Probability to identify several true effects

- depends in addition on the edge weights of the graph.

Case Studies

Case study I

Structured family of hypotheses

1. Four-armed trial comparing

- Three dose levels of a new therapy adjunctive to standard-of-care
- Placebo + standard-of-care as control

2. Two hierarchically ordered endpoints

- Relapse rate and total medication score after 24 weeks
\Rightarrow Six hypotheses $H_{i j}$
Dose $\quad i=1$ (low), 2 (medium), 3 (high dose)
Endpoint $j=1$ (relapse rate), 2 (total medication score)

Clinical considerations

Clinical considerations

(1) Relapse rate is more important than total medication score. Therefore,

Clinical considerations

(1) Relapse rate is more important than total medication score. Therefore,

- Primary hypotheses H_{11}, H_{21}, H_{31},
- Secondary hypotheses H_{12}, H_{22}, H_{32}.

Clinical considerations

(1) Relapse rate is more important than total medication score. Therefore,

- Primary hypotheses H_{11}, H_{21}, H_{31},
- Secondary hypotheses H_{12}, H_{22}, H_{32}.
(2) Primary hypotheses considered as equally important, but significance of adjacent doses (i.e. reject H_{11}, H_{21} or H_{21}, H_{31}) preferred over significance of non-adjacent significant doses (i.e. reject H_{11} and H_{31})

Clinical considerations

(1) Relapse rate is more important than total medication score. Therefore,

- Primary hypotheses H_{11}, H_{21}, H_{31},
- Secondary hypotheses H_{12}, H_{22}, H_{32}.
(2) Primary hypotheses considered as equally important, but significance of adjacent doses (i.e. reject H_{11}, H_{21} or H_{21}, H_{31}) preferred over significance of non-adjacent significant doses (i.e. reject H_{11} and H_{31})
(3) Successiveness: A secondary hypothesis cannot be rejected without having rejected the associated parent primary hypothesis.

Resulting multiple test procedure

(1)

low dose
medium dose
high dose

Resulting multiple test procedure

(1)

low dose
medium dose
high dose

Resulting multiple test procedure

(1)

low dose

medium dose

high dose

Resulting multiple test procedure

(2)

low dose

medium dose

high dose

Resulting multiple test procedure

(2)

low dose

medium dose

high dose

Resulting multiple test procedure

(3)

Resulting multiple test procedure

Resulting multiple test procedure

$(2)+(3)$

Easily implemented in SAS/IML

```
/* h: indicator whether a hypothesis is rejected (= 1) or not (= 0) (1 x n vector)
    a: initial significance level allocation (1 x n vector)
    w: weights for the edges ( }\textrm{n}x\textrm{x n matrix)
    p: observed p-values (1 x n vector) */
START mcp(h, a, w, p);
    n = NCOL(h);
    mata = a;
    crit = 0;
    DO UNTIL(crit = 1);
        test = (p < a);
        IF (ANY(test)) THEN DO;
            rej = MIN(LOC(test#(1:n)));
            h[rej] = 1;
            w1 = J(n, n, 0);
            DO i = 1 TO n;
                a[i] = a[i] + a[rej]*w[rej,i];
            IF (w[i,rej]*w[rej,i]<1) THEN DO j = 1 TO n;
                w1[i,j] = (w[i,j] + w[i,rej]*w[rej,j])/(1 - w[i,rej]*w[rej,i]);
                    END;
                w1[i,i] = 0;
                END;
                w = w1; w[rej,] = 0; w[,rej] = 0;
                a[rej] = 0;
                mata = mata // a;
            END;
        ELSE crit = 1;
    END;
```

 PRINT h; PRINT (ROUND(mata, 0.0001)); PRINT (ROUND(w, 0.01));
 FINISH:

Example call

PROC IML;
START $\operatorname{mcp}(\mathrm{h}, \mathrm{a}, \mathrm{w}, \mathrm{p})$;
FINISH;

/*** Numerical example ***/					
$\mathrm{h}=\left\{\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\right\} ;$					
$\mathrm{a}=\{0.008330 .008330$.			0.00833	330	0\};
$\mathrm{w}=\{0$	0.5	0	0.5	0	0
0.3333	0	0.3333	0	0.3333	0
0	0.5	0	0	0	0.
0	1	0	0	0	0
0.5	0	0.5		0	0
0		0		0	0
		0.0050			

RUN mcp(h, a, w, p);
QUIT ;

R code with interface to JAVA

gMCP package in R

- Open source package available on CRAN at http://cran.r-project.org/web/packages/gMCP/
- Provides GUI within R through interface to JAVA

Case study II

- Two treatments (A and B) compared with comparator (C)
- Superiority and non-inferiority tests for primary and multiple secondary endpoints.
- Three elementary hypotheses and two families of hypotheses:
- H_{1} : superiority of A vs. C
- H_{2} : non-inferiority of B vs. C
- H_{3} : superiority of B vs. C
- \mathcal{H}_{4} : multiple secondary variables for A vs. C
- \mathcal{H}_{5} : multiple secondary variables for B vs. C

Final multiple test procedure

primary

H_{2}

Final multiple test procedure

primary

(H_{2}
H_{3}
secondary

treatment A
treatment B

Final multiple test procedure

	$\alpha / 2$	$\alpha / 2$
primary	H_{1}	H_{2}

secondary

treatment A

treatment B

Final multiple test procedure

secondary

treatment A
$\alpha / 2$
H_{2}

treatment B

Final multiple test procedure

Example

Example

Example

Example

Example

Example

Case study III

- Gold standard design comparing experimental drug (E) against placebo (P) and active comparator (C)
- Mixture of superiority and non-inferiority tests
- Two primary endpoints: pain, symptoms, resulting in six elementary hypotheses:
$H_{P, p}^{s u p}$: superiority of E vs. P for pain
$H_{P, s}^{s u p}$: superiority of E vs. P for symptoms
$H_{C, p}^{n i}$: non-inferiority of E vs. C for pain
$H_{C, s}^{n i}$: non-inferiority of E vs. C for symptoms
$H_{C, p}^{s u p}$: superiority of E vs. C for pain
$H_{C, s}^{s u p}$: superiority of E vs. C for symptoms

Initial proposal: strict sequence

Next proposal: gatekeeping

Next proposal: gatekeeping

Reasonable procedure?

Next proposal: gatekeeping - new display

pain
symptoms

Next proposal: gatekeeping - new display

pain
symptoms
sup of E vs. P
ni of E vs. C
sup of E vs. C

Next proposal: gatekeeping - new display

pain

symptoms

sup of Evs. P

ni of E vs. C
$H_{C, p}^{\text {sup }}$
$H_{c, s}^{\text {spe }}$
sup of E vs. C

Next proposal: gatekeeping - new display

pain

symptoms
$H_{P, s}^{\text {sup }} 0$
sup of E vs. P

${ }_{\left(H_{C, s}^{n i}\right.} 0$ ni of E vs. C

$$
0 H_{C, D}^{S u p}
$$

${ }_{c}^{\text {Sup }} 0$ sup of E vs. C

Next proposal: gatekeeping - new display

pain
symptoms

sup of E vs. P ni of E vs. C
sup of E vs. C

Next proposal: gatekeeping - new display

pain

symptoms

sup of E vs. P ni of E vs. C
sup of E vs. C

Reject $H_{P, p}^{\text {sup }}, H_{C, p}^{n i}, H_{C, p}^{\text {sup }}$

Next proposal: gatekeeping - new display

pain
symptoms

Reject $H_{P, p}^{\text {sup }}, H_{C, p}^{n i}, H_{C, p}^{\text {sup }}$

Next proposal: gatekeeping - new display

pain

symptoms

Reject $H_{P, p}^{\text {sup }}, H_{C, p}^{\text {ni }}, H_{C, p}^{\text {sup }} \Rightarrow$ Lack of succession property

Final proposal

pain

symptoms
$\alpha H_{P, p}^{\text {sup }}$
$H_{P, s}^{\text {sup }} 0$ sup of E vs. P

${ }_{\left(H_{C, S}^{n i}\right.} 0$ ni of E vs. C

$H_{C, S}^{\text {sup }} 0$
sup of E vs. C

Final proposal

pain symptoms

Case study IV

- Graph describing a test procedure for 4 EEG frequency bands and 5 sub-bands (Ferber et al., 2011)

Summary

- Proposed graphical approach offers the possibility to

Summary

- Proposed graphical approach offers the possibility to
- tailor advanced multiple test procedures to structured families of hypotheses,

Summary

- Proposed graphical approach offers the possibility to
- tailor advanced multiple test procedures to structured families of hypotheses,
- visualize complex decision strategies in an efficient and easily communicable way, and

Summary

- Proposed graphical approach offers the possibility to
- tailor advanced multiple test procedures to structured families of hypotheses,
- visualize complex decision strategies in an efficient and easily communicable way, and
- ensure strong FWER control.

Summary

- Proposed graphical approach offers the possibility to
- tailor advanced multiple test procedures to structured families of hypotheses,
- visualize complex decision strategies in an efficient and easily communicable way, and
- ensure strong FWER control.
- Approach covers many common gatekeeping procedures as special cases (Holm, fixed sequence, fallback, ...)

Extensions

- Approach can be extended to address other problems:

Extensions

- Approach can be extended to address other problems:
- Adjusted p-values and simultaneous confidence intervals available

Extensions

- Approach can be extended to address other problems:
- Adjusted p-values and simultaneous confidence intervals available
- Power and sample size considerations

Extensions

- Approach can be extended to address other problems:
- Adjusted p-values and simultaneous confidence intervals available
- Power and sample size considerations
- Use of weighted and trimmed Simes tests

Extensions

- Approach can be extended to address other problems:
- Adjusted p-values and simultaneous confidence intervals available
- Power and sample size considerations
- Use of weighted and trimmed Simes tests
- Weighted parametric test procedures to exploit correlation

Extensions

- Approach can be extended to address other problems:
- Adjusted p-values and simultaneous confidence intervals available
- Power and sample size considerations
- Use of weighted and trimmed Simes tests
- Weighted parametric test procedures to exploit correlation
- Multiple testing in group sequential trials and adaptive designs

Extensions

- Approach can be extended to address other problems:
- Adjusted p-values and simultaneous confidence intervals available
- Power and sample size considerations
- Use of weighted and trimmed Simes tests
- Weighted parametric test procedures to exploit correlation
- Multiple testing in group sequential trials and adaptive designs
- Convex combination of graphs and other geometric representation of multiple test procedures

Reference

- Bretz, Maurer, Maca (2014) Graphical approaches to multiple testing. To appear in: Young and Chen (eds.), Clinical Trial Biostatistics and Biopharmaceutical Applications, Taylor \& Francis.

