Preface to Special Issue on Software Verification

C.A.R. HOARE
Microsoft Research Labs, Cambridge

and

JAYADEV MISRA

University of Texas at Austin

The origins of software verification go back to the pioneers of Computing Science, von
Neumann and Turing. The idea has been rediscovered several times since then, for
example by McCarthy, Naur and Floyd. The ideals of verification have inspired half
a century of productive computing research at the foundations of the subject. There
are now flourishing research schools in computational logic, computer-aided proof, pro-
gramming theory, formal semantics, specification and programming languages, pro-
gramming methodology and software engineering.

By the end of the last century, enormous progress had been made in verification the-
ory and in tools to assist in its application. The technology of proof was extended to
include constraint solving and model checking, which were routinely exploited in the
electronics industry to increase confidence in the absence of errors in circuit designs
before commitment to silicon. Programming theory and semantics provided logics for
proof of correctness of well-structured sequential programs. The foundations of con-
current programming were explored by employing temporal logic, and communication
over channels was explored in a number of process algebras. Formal specifications were
used in certain safety-critical applications as an aid to system development and verifi-
cation of correctness. Internal program specifications in the form of program assertions
were used in the software industry as test oracles, to detect and diagnose errors in
regression tests conducted overnight. In suitable cases they are left in customer code
for re-checking at run time.

The early years of the current century have seen a dramatic spurt in progress towards
realization of the ideal of verification of software as well as hardware. Proof technology
is now routinely exploited in industrially supported program analysis tools, which suc-
cessfully detect many kinds of generic program error even before a program is tested.
Mature proof tools, both automatic and interactive, are now providing indispensable
aid in computing research, including research into verification. For mechanized proof
of classical conjectures in mathematics, computers have become an indispensable tool.

Authors’ addresses: C.A.R. Hoare, Microsoft Research Cambridge, Roger Needham Building, 7 J J Thoma-
son Avenue, Cambridge CB3 0FB, UK; J. Misra, University of Texas at Austin, Department of Computer
Sciences, College of Natural Sciences, 1 University Station C0500, Austin, TX 78712, Corresponding email:
misra@cs.utexas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

©2009 ACM 0360-0300/2009/10-ART18 $10.00

DOI 10.1145/1592434.1592435 http://doi.acm.org/10.1145/1592434.1592435

ACM Computing Surveys, Vol. 41, No. 4, Article 18, Publication date: October 2009.

jdm
下划线

18:2 C.A.R. Hoare and J. Misra

It has suddenly become easier to use mechanical aids than not to do so! Programming
theory has moved on to cover many of the complex aspects of modern programming lan-
guages, without restriction to well-structured forms of program and data. Concurrency
theory is now beginning to tackle the problems posed by threads that share memory,
even the weakly consistent memory offered by modern multi-core architectures. Asser-
tions and internal interface specifications (contracts) have been incorporated in most
of the widely used programming languages. The design of recent programming lan-
guages has explicitly recognised among its design criteria the assistance offered to the
programmer in the achievement of correct programs.

At the same time, computer software has infiltrated every aspect of modern life and
has set the pace of innovation in all of them. Industry and commerce, science and en-
gineering, domestic appliances, travel, entertainment, education and even research in
science and the humanities, have all changed beyond recognition. In total, software
must now be counted as one of the world’s few trillion-dollar industries. With this
growth, the significance of verification has also increased. The financial cost of pro-
gramming error to the world economy has been estimated as tens of billions of dollars
per year. Most of it falls (in small but frequent doses) on the billions of users of software
rather than on its producers. This economic argument is an added incentive supporting
research towards the ideal of software verification.

The verification research communities have recognized the enormous opportunities
now presented for beneficial research in this area. At the same time, they recognize that
success will depend on a significant change in the culture and practices of research in
computing science. It will be necessary to move towards the culture of the big sciences,
for example physics, astronomy, and (more recently) biology. Like them, more rapid
progress will require longer term projects, and wider collaborations than are custom-
ary today. In particular, it will require collaboration among theorists, tool-builders, and
experimenters, each contributing an independent specialist skill to a common enter-
prise. The experimenters have to take the lead: they will apply theories originated by
theorists; they will use tools constructed and maintained by tool-builders; and they
will apply them to verify (at some level) a repository of challenge applications derived
from practical use, and generally agreed as significant for the advancement of the basic
science and technology of verification. The results of the experiment will provide inde-
pendent and objective evidence of the applicability of the theory to useful software, and
the capability of the tools in prevention or detection and elimination of errors.

This new paradigm for the conduct of verification research is called the Verified
Software Initiative. It has been discussed intensively at two international conferences.
The first was in Zurich (2005), and was attended by international leaders of many of
the relevant research communities. The second was in Toronto (2008), and many of
its participants signed a manifesto declaring their commitment to the initiative. The
manifesto is reproduced as an appendix to this special issue of the Computing Surveys.

The main content of the Survey provides the technical background of the Verified
Software Initiative. The article by Woodcock et al. describes the current state of the art
in the practical application of verification technology for software. It covers all stages of
the software life cycle, from requirements analysis through specification, design, code
construction, testing, delivery, and subsequent evolution. The article reports the results
of a recent survey of industrial practice, and continues with an account of a number of
recent industrial projects. They are landmarks in the delivery of software to a high level
of verification: many of these software products are still in use. The article concludes
with a description of a collection of advanced verification challenges, which have been
undertaken by the research community as experiments for contribution to the software
repository.

ACM Computing Surveys, Vol. 41, No. 4, Article 18, Publication date: October 2009.

jdm
下划线

jdm
下划线

Preface to Special Issue 18:3

The article by Shankar is devoted to the advances in automated deduction techniques
currently prevalent in widely used verification tools. It starts with brief recapitulation
of the concepts of logical reasoning, as applied in formal verification. This covers both
propositional logic and predicate calculus, extended with first-order theories. It de-
scribes the remarkable technology of modern satisfiability (SAT) solvers, which have
improved the efficiency of automated proof by three or more orders of magnitude; this
is cumulative to the rather slower growth of raw computing power in accordance with
Moore’s law. The article then describes a collection of the mature tools available to-
day, and describes how they combine the benefits of SAT with decision procedures,
model checking, proof search, algebraic rewriting, and human interaction. The article
concludes with a survey of outstanding challenges.

The article by Majumdar and Jhala describes the achievements of research in model
checking. The goal of model checking is to establish correctness properties of a program
or find counterexamples to these properties by exploring concrete or symbolic repre-
sentations of the state space of the program. Model checking was exploited first in the
electronics industry for circuit design, as specified by their simulation programs; but
it is now incorporated in more general program analysers to generate test cases, or
to detect errors without testing. It is particularly appropriate for application to legacy
code, which is often found to have no external or internal assertions or other documen-
tation. The article describes how such documentation can be inferred automatically,
using symbolic execution together with predicate abstraction, Craig interpolation, or
widening in an abstract domain. The article concludes with a survey of current mature
model checking tools, and an introduction to remaining research challenges.

We hope that publication of this special issue will inspire the modern generation
of students of Computing Science to devote their research to the goals of the Verified
Software Initiative. The articles in this issue will provide them with the essential back-
ground for an understanding of the technical challenges. The range of topics covered
has been limited by the available space. There are many other research areas essen-
tial to the goal of software verification. We hope that they will be the subject of future
articles submitted to Computing Surveys.

ACKNOWLEDGMENTS

We are extremely grateful to the reviewers of the articles for this special issue. They have reviwed the dense
technical material at great depth, and provided detailed constructive suggestions on succesive versions of
the manuscripts.

ACM Computing Surveys, Vol. 41, No. 4, Article 18, Publication date: October 2009.

