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ABSTRACT 

Stochastic dynamic prediction assumes the laws governing atmospheric behavior are 
entirely deterministic, but seeks solutions corresponding to probabilistic statements of 
the initial conditions, thus recognizing the impossibility of exact or sufficiently dense 
observations. The equation that must be solved is the continuity equation for proba- 
bility. For practical reasons only approximate solutions to this equation are possible 
in general. Deterministic forecasts represent a very low order of approximation. More 
exact methods are developed and some of the attributes and advantages of stochastic 
dynamic predictions are illustrated by applying them to a low order set of dynamic 
equations. 

Stochastic dynamic predictions have significantly smaller mean square errors than 
deterministic procedures, and also give specific information on the nature and extent 
of the uncertainty of the forecast. Also the range of time over which useful forecasts can 
be obtained is extended. However, they also require considerably more extensive cal- 
culations. 

The question of analysis to obtain the initial stochastic statement of the atmospheric 
state is considered and one finds here too a promise of significant advantages over pres- 
ent deterministic methods. It is shown how the stochastic method can be used to assess 
the value of new or improved data by considering their influence on the decrease in the 
uncertainty of the forecast. Comparisons among physical-numerical models are also 
made more effectively by applying stochastic methods. Finally the implications of 
stochastic dynamic prediction on the question of predictability are briefly considered, 
with the conclusion that some earlier estimates have been too pessimistic. 

List of symbols 

coefficients of quadratic terms in the de- 
terministic prognostic equations (1 1) 
coefficients of harmonic terms used to 
specify the vorticity (18) 
least squares estimates of A ,  (33) 

coefficients of linear terms in the deter- 
ministic prognostic equations (1 1) 
constant terms in the deterministic prog- 
nostic equations (11)-(in sec. 3 only) 

= (-41, ..., A,) 

It has been brought to my attention that V. I. 
Tatarskiy (Izvestia, Atmospheric and Oceanic Phys- 
ics, 6 (3), 1969, 293-297) has independently derived 
the approximate stochastic dynamic equations. 
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coefficients in the approximate stochastic 
equations (23-31)-(in sec. 4 only) 
the number of parameters used to define 
the state of the atmosphere; equivalently 
the dimensionality of the phase space 
expected value operator ( 5 )  
minimum wave no. in the x-direction (18) 
minimum wave no. in the y-direction (18) 
number of observing stations 
sample size for Monte Carlo experiments 
standard error of each observation 
= (Z’Z)+, proportional to covariancesof A, 

time 
time of initialization of the forecast 
orthogonal coordinates defining the plane 
of motion 

xi, yt coordinates locating the ith observing sta- 
tion (in sec. 6) 

xi the general time-dependent parameters 
defining the state of the atmosphere; coor- 
dinates in phase space (in SIX. 2, 3) 
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= h, . * a ,  ZD) 
a forecast for X 
an estimate of X from observations 
observation made a t  the i th station 

terms in eq. (32) by which the A ,  are 
multiplied 

= (Yl, *.a, Y,)  

= ( ( Z t j ) )  
= kjl 

expected values of zi or of A (6) 
expected values of zlzj or of A i A ,  ( 7 )  
covariances of zi or of A ,  (8) 

t 
= Oil 

third moments of z, about their means 
probability density, a function of the 
state of the atmosphere and of time 
streamfunction for two-dimensional flow 
d(  )I&, a total derivative with respect to 
time 

1. Introduction 

The present study is an attempt to deal ex- 
plicitly with the problems imposed on meteoro- 
logical prediction by the patent impossibility of 
observing the atmosphere either in sufficient 
detail or with sufficient accuracy to consider 
the initial state as known with certainty. 

It has long been recognized that observational 
errors contribute substantially to errors in pre- 
diction. Much effort has gone into “analysis” 
as a procedure for determining that single at- 
mospheric state which, in terms of the available 
data, is a “best” approximation of the unknown 
true state of the atmosphere. There are a dozen 
or so weather services which daily produce 
their own analyses, each different from all the 
others, but each consistent with all the obser- 
vational data. One cannot say that the product 
of any such system is right or wrong; each 
represents an individual member of an infinite 
ensemble of atmospheric states which are con- 
sistent with the data. The different analyses 
will yield different forecasts, even if each were 
submitted to the same forecast procedure. If 
there is no way of determining which, if any, 
analysis is right, and since none is known to be 
wrong, there is no way of knowing, in any in- 
stance, which forecast to believe. 

The best that we can do is to assign to each 
analysis some number which is proportional to 
the amount of confidence we wish to place in 

that result. There exist formal statistical pro- 
cedures for this, which amounts to assigning a 
probability number to every possible analysis, 
or better, to describing a probability density 
function in a multidimensional phase space. 
This notion will be pursued further, but for the 
present let us simply note that the notion of a 
probability density function is equivalent to 
that of an infinite ensemble of initial states with 
relative frequencies within the ensemble pro- 
portional to the probability densities. In  either 
case, this is the only accurate way of stating the 
initial conditions for a forecast. This point 
has been clearly stated by Gleeson (1968). Since 
the probabilistic nature of the initialization is 
unavoidable, then so also is the probabilistic 
nature of the prediction. 

It has been shown earlier (Epstein, 1969) 
that even when each member of an ensemble 
obeys identical deterministic laws, the center of 
the ensemble will in general follow a different set 
of laws. 

Thus we propose an approach to forecasting 
that treats the atmosphere as deterministic, 
obeying the fundamental laws of hydrodynam- 
ics, but recognizes that the state of the at-  
mosphere can be known only in a probabilistic 
form. We refer to this approach as “stochastic 
dynamic”. It is important to emphasize that 
the physical aspects of this approach dominate, 
but that application of the physics to prediction 
must be modified in the light of elementary 
probability theory. The use of the term “sta- 
tistical” is avoided here to make it clear that 
the method does not depend on the accumulated 
records of past weather, other than to the extent 
that these can verify the physical models used 
to describe atmospheric behaviour. 

The present study was stimulated largely by 
the work of Gleeson (1966, 1967, 1968) and 
Lorenz (1965, 1 9 6 8 ~ ) .  In an important contribu- 
tion not sufficiently known in meteorological 
circles, Freiberger & Grenander (1965) antici- 
pate much of the framework we shall discuss. 
Other than the work of these authors, however, 
and the earlier contributions by Thompson 
(1957) and Novikov (1959), very little has been 
done to deal explicitly with the general problem 
of uncertainties in the initialization of the fore- 
cast. 

The approach being proposed here actually 
offers more than simply improving the forecast. 
As will be shown it is essential to the method 
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that there be given clear expression to the even- 
tual uncertainties (or degrees of certainty) in the 
forecast. By examining some of the aspects of 
Stochastic dynamic prediction many of these 
advantages will, it is hoped, become apparent. 
Necessctrily, because the procedures to be de- 
scribed provide more, they also cost more in 
terms of the computing effort they require. Only 
by examining both aspects of the problem can 
the merits of this approach be judged, but just 
as experience and study is likely to reduce the 
production cost, so will time and effort point 
out increasingly the benefits of stochastic pre- 
dictions. In  what follows only brief suggestions 
of the possibilities for carrying out and using 
stochastic predictions can perforce be given. 

In  the next section we will discuss the pri- 
mary mathemathical basis for stochastic dynam- 
ic prediction, which is the continuity equation 
for probability (Gleeson, 1966, 1968). Since this 
equation cannot be readily dealt with numeri- 
cally, some approximate methods will be intro- 
duced in sections 3 and 4. Various applications 
of these methods, and examples designed to  
throw some light on their attributes and the 
potential benefits from the stochastic approach 
are described in sections 4-8. These examples 
are based primarily on Lorenz’s (1960) maxi- 
mum simplification of the dynamic equations. 
In  the light of these examples some of the impli- 
cations of the stochastic method for determining 
the predictability of the atmosphere are pre- 
sented in section 9. The last section presents a 
few concluding remarks. 

2. The continuity equation for probability 

Let us represent the state of the atmosphere 
at any time t by a finite number of parameters, 
xi, i = 1, ..., D. One can think of these as defining 
a vector X in a D-dimensional phase space. The 
dimensionality of the phase space may be quite 
large and will depend on the particular model 
chosen to represent the atmosphere. The models 
that will be dealt with here will be relatively 
simple and contain only a few ( < 10) parameters. 
I n  any case the models should have fewer para- 
meters than there are observations to define 
them, so that in a practical situation dimen- 
sions of the order of several hundred, but no 
larger, may be encountered. 

The changing state of the atmosphere is re- 
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presented by the motion through phase space 
of the end-point of the vector X. The principles 
of physics may in general be stated in such a 
way that the instantaneous velocity of the 
vector in phase space depends only on its cur- 
rent value. In  other words the deterministic 
physical laws may be stated as 

x = G(X(t)) (1) 

where the dot (*) implies a total derivative with 
respect to time. 

The observations that are available to define 
the value of X at a given time may also be de- 
scribed by a vector Y (of somewhat larger di- 
mensionality than X). In  effect, deterministic 
procedures are to define a single “best” initial 
condition X in terms of the observations Y, and 
then to integrate (l) ,  starting with X = 2 at 
t =to, to obtain the predicted state of the at- 
mosphere X, at some t > to.  Symbolically one can 
write 

= A(Y) (2) 

x,- x = Q ( X ( t ) )  dt (3) s:. 
where A is the analysis operator by which % 
is chosen for Y. 

We have argued that a more reasonable inter- 
pretation of the observations is that they imply 
a probability density F(X; to)  defined over the 
entire phase space, where 9, must have the 
properties that q~ 2 0  for all X and t and 
jS ... jpl(X; t )dz ,  *cixz ... ck~, = 1 (see footnote). In  
place of (2), then, one must consider an analysis 
B(Y) which accomplishes this. One example of 
such a procedure is described in section 6. 

I f  (2) is modified, so also must a substitute 
be found for (3); it is necessary to describe 
an algorithm by which q ( X ;  t ) ,  t =-to, can be 
determined once q(X, to )  is known. For this pur- 
pose the one-dimensional continuity equation 
for probability introduced by Gleeson (1966) 
may be extended to any number of dimensions 
and written 

It is possible to  visualize the probability den- 
sity in phase space, as analogous to mass density 
(usually e )  in three-dimensional physical space. Note 
that e > O  for all space and time, and j j j ( e / M )  
dxdydz = 1 if M is the total mass of the system. The 
“total probability” of any system is, by definition, 
one. 
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or 
1 a 

at axi 

D 

2+ 2 - ( X , r p ) = O  

where V D  is the del-operator in D-dimensional 
phase space. The derivation of (4) is entirely ana- 
logous to the derivation of the standard equa- 
tion of continuity of mass. One derivation is 
based on the principle that mass is neither crea- 
ted nor destroyed, the other on the principle 
that the total amount of probability must al- 
ways be one (no ensemble members may be 
created or destroyed). 

Given appropriate boundary conditions (e.g. 
Q + O  as x 1  --f +co) and the initial value Q ( X ;  t o ) ,  
the direct integration of (4) ... to obtain 
Q ( X ;  t ) ,  t > t o ,  offers no mathematical difficulties. 
Practically, however, any calculation of Q by 
direct numerical integration of (4) is a most 
ambitious undertaking. If one wishes to  eval- 
uate Q at L incremental values of each of the 
components of the phase vector, this cor- 
responds to an L x  L x  ... x L  grid in phase space 
or DL points, for each of which it is nec- 
essary to remember and update the numerical 
value at each time step. D = L  = 10 would be a 
modest meteorological problem, but 1O’O is too 
many quantities for any computer. 

If the complete numerical evaluation of Q is 
an excessive problem, it could be added that 
this both requires and provides more informa- 
tion than is normally of interest. In  general one 
is interested in only a relatively small number 
of functions of the form 

where d X  =dz, .  dxz  ... dxD and the integration 
is over all of phase space. This is just the 
“expected value” of f ( X )  at time t .  If f ( X )  is of 
the form x y x i  ... one is just defining the mo- 
ments of the distribution. Usually it is the 
simplest moments that are of concern. These 
are the means 

and the second moments’ 

In place of (7) one is generally more concerned 
with 

which are the variances (i =j) and the covarian- 
ces (i  9 j). The set of quantities comprising the 
first and second moments has only D ( D  +3)/2 
members and contains as much of the informa- 
tion about Q as is usually of general interest.* 
It would therefore be useful to evaluate only 
these quantities at each time step and hope- 
fully this is a more feasible undertaking than 
working with the entire function Q. 

Unfortunately we know of no way of obtain- 
ing exact representations of just these integrals 
in a, closed finite set of equations that can be 
evaluated conveniently. Consequently we have 
turned to approximate procedures. The follow- 
ing sections describe and discuss some of these. 

3. The approximate stochastic method 

We first describe a procedure by which it is 
possible to obtain directly the moments (6) and 
(8), through the application of certain assump- 
tions concerning higher order moments. Note 
first that differentiation of ( 5 )  gives 

= I j p i d X  (9) 

@ , j  = E(Xi X j  + * { X I )  (10) 
1 To continue the analogy between mass and 

probability densities, means and second moments 
correspond to centers of mass and moments of 
inertia. The variances are the moments of inertia 
about the center of mass. 

a The common notation of an expected value plus 
or minus one standard deviation (pfo) is an illu- 
stration of this. Also there are theorems in the 
theory of mathematical probability which permit 
one to make limiting statements about q given the 
means and covarimces. 
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According to Lorenz (1963), forced dissipative 
systems, of which the atmosphere may be pre- 
sumed to be an example, are typified by prognos- 
tic equations of the form 

where 

(cf. the prognostic equations of Platzman (l960), 
Baer (l964), Ellsaesser (1966), Robert (1966), 
Saltzman (1962), Bryan (1969) and others). 
Then from (10) 

and 

Introducingttjk=E[(zi - P i )  (Xi -P j )  (xk-&)], the 
third moments about the instantaneous mean, 
(13) can be rewritten 

It can be assumed that initial values of the 
pt and the ut, are known. However, unless the 
third moments are also known, (14) cannot be 
solved and, then, neither can (12). One could 
assume initial values for the ttjk but to integrate 
(14) these values would have to be known for 
t >to. A prognostic equation for the t{jk could be 
derived by again applying (g), but the new equa- 
tions would then contain the fourth moments. 

As discussed very clearly by Freiberger & 
Grenander (1965) as long as the deterministic 
prognostic equations are nonlinear it is impos- 
sible to write a closed finite set of prognostic 
equations for the moments. In other words, to 
predict exactly the future behavior of even the 
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mean of the distribution, all the momenta of the 
distribution (or, equivalently, the entire distri- 
bution itself) must be known. There is good 
justification, however, for expecting that a use- 
ful approximate procedure may be found by 
making suitable assumptions concerning the 
higher order momenta. 

If one expresses pf(t )  as a Taylor series in time, 
using repeatedly (6) and (9), one finds that the 
higher order moments enter only in the terms 
containing higher powers of ( t - to ) .  In other 
words, these terms would be very important 
for very long-range predictions, but they should 
have very little significance if t is not too large. 
In any case the range of time over which the 
higher moments remain unimportant will de- 
pend on the higher order moments themselves. 
Since, in the physical situations being con- 
sidered here, all moments must remain finite, 
it should always be possible to find some limiting 
order of moment that one must retain in order 
to assure that the cumulative error in the mean 
remain sufficiently small for a specified length 
of forecast. In general, unless one included very 
high order moments, one could not expect a 
forecast to remain valid beyond the time when 
the probability density begins to resemble cli- 
matological relative frequencies. 

On the other hand thore is no guarantee that 
truncation of the series a t  a low order, say after 
the second moments, will produce acceptable 
results. Yet the requirement of holding down 
the total number of dependent variables seems 
to dictate this limit. Also, for many operational 
purposes it is these moments and only these 
that one is required to know, and, moreover, a 
knowledge of the first two moments may be a 
reasonable limit as to what one can expect to 
derive, with confidence, from the observational 
data. 

Finally, there are earlier results (Epstein, 
1969) which suggest that if the first two mo- 
ments are the same, and assumptions concerning 
the higher order moments are not unreasonable, 
then the forecasts are insensitive to the assump- 
tions. Thus, we have made the pragmatic deci- 
sion to attempt to predict the first and second 
moments by making appropriate assumptions 
about the third moments. 

Specifically we will assume that 
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This allows us to write, instead of (14), 

Equations (12) and (16) now form a closed set 
which can be integrated subject to initial values 
of the pi and aff. We refer to these as the 
approximate stochastic equations. 

It is the very success of deterministic predic- 
tions which suggests that the approximate sto- 
chastic equations are a useful set. While (12) 
and (16) include terms for the covariances and 
for the rates of change of the covariances, deter- 
ministic prediction implicitly assumes that all 
variances are zero. Thus the approximate sto- 
chastic equations are higher order approxima- 
tions to the general stochastic dynamic equa- 
tions than have previously been used. They will 
be superior, but whether the extent of the supe- 
riority can justify the extra effort can only be 
judged on the basis of experimentation. Sec- 
tions 5 through 8 will describe a few experi- 
ments of this nature. 

The general condition on the deterministic 

implies that Z , x :  is conserved along each tra- 
jectory, in the absence of forcing or dissipative 
effects (represented by the b,, and e , ) .  The 
physical nature of the conserved quadratic 
property (or properties if partial sums of the 
a, ,kx ,x jxk  are zero depends of course on the 
model considered. Typically these are various 
forms of energy or, in certain common problems 
in fluid dynamics, the mean square vorticity. 
The corresponding quantity which is conserved 
according to the stochastic equations (12) and 
(14), and also according to the approximate 
stochastic equations (12) and (16), is X i ( &  + uJ. 
The stochastic equations thus provide for a 
partitioning of the energy of the system (or 
other quadratic terms) between that which is 
associated with the ensemble mean (a “speci- 
fiable” component, 2, p:) and that which is as- 
sociated with the variances (an “uncertain” 
component, C, ari). 

Also note that the approximation (15), in- 
volving third moments, implies the derivatives 
of the individual variances are inexact. However 
the equation for the rate of changes of Ciai, 

PI’OgnOstiC equations, that x , , j , k  atjkx&x,xk =o, 

does not contain any third moments. Therefore 
the approximate equations for the time rate 
of change of the uncertain component are of the 
same order of accuracy as those for the means. 

4. Monte Carlo solutions 

Monte Carlo methods for evaluating integrals 
have the disadvantage that they tend to require 
a considerable amount of computer time, but 
they also have the advantage that one is able 
to achieve any desired level of accuracy. Monte 
Carlo methods suggest themselves especially in 
the present instance because of the multidimen- 
sional nature of the integrals (6) and (7) that are 
to be evaluated. The computing time required 
for evaluation of integrals by Monte Carlo meth- 
ods increases much more slowly as the dimen- 
sion of the problem increases than do, say, 
quadrature methods. 

There exist many sophisticated methods for 
Monte Carlo calculations (see e.g. Hammersley & 
Handsomb, 1965) but no effort has been made 
to exploit these. We will mention only one re- 
latively crude procedure, and some applications 
of this method will be shown later. The parti- 
cular technique employed belongs in the cate- 
gory of “importance sampling” and corresponds 
directly with the notion of an ensemble as the 
physical analog to our calculations. Discrete 
initial points in phase space are chosen by a 
random process such that the likelihood of se- 
lecting any given point is proportional to the 
given initial probability density. For each of 
these initial points (i.e. for each of the sample 
selected from the ensemble) deterministic tra- 
jectories in phase space are calculated by nu- 
merical integration of the particular version of 
(1 1) being used. Means and variances are deter- 
mined, corresponding to specific times, by av- 
eraging the appropriate quantities over the 
sample. 

In  the applications of this method that we 
have made the initial probability densities have 
been taken to be multivariate normal. In  some 
examples there are three parameters, and in 
others there are eight. In  both cases the pro- 
cedure for selecting the initial points is essen- 
tially the same. The first sample parameter 
(a1) is selected from a normal distribution with 
mean p1 and variance uI1. The second is selected 
as a normal variable with mean p2 + tclu12/u11 
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and variance ual - &/u,,. Each successive pa- 
rameter is chosen as a normal variable with a 
mean conditional on the specific choices for the 
preceding parameters and a variance which is 
the total variance of that parameter (a,,) times 
1 - R;.12...(j-l) where R?.,,... is the mul- 
tiple correlation coefficient between a, and all 
those a’s already selected (cf. Mood & Graybill, 
1903). A total sample size N meam N sets of D 
parameters, and requires ND references to the 
program for generating normal variables. 

Our use of the Monte Carlo calculations, in what 
follows, is in the nature of a standard against 
which onecancompare the results of the approxi- 
mate stochastic calculations. It will be neces- 
sary to recognize that the “verification data” 
are themselves subject to some error. Standard 
statistical formulas may be used to judge the 
accuracy of the various Monte Carlo estimates. 
For example the standard deviations of the 
m0ans will decrease in proportion to N - * .  
However, many different quantities will be 
evaluated on the basis of each sample and the 
errors inherent in these quantities will not be 
independent of one another. This can create 
some difficulty in the interpretation of these 
results. Detailed statistical comparisons are 
avoided for this reason. 

The selection of the multivariate normal as 
the initial probability density function is made 
because it is convenient and reasonable. In any 
particular real application the form of the initial 
probability densities will depend on both the 
analysis procedure and the error characteristics 
of the data. In section 0 the particular example 
used for illustration ten& to emphasize the 
reasonableness of the multivariate normal. 

Stochastic solutions of Lorenz’s minimum 
hydrodynamic equations 

As a first test of the stochastic methods they 
have been applied to the “minimum hydrody- 
namic equations” of Lorenz (1960). Lorenz con- 
sidered two-dimensional horizontal flow gov- 
erned by the vorticity equation 

a 
~~ V’y = - k . VY, x V( V’y) (17) at 

where y is the streamfunction, V is the usual del- 
operator in two-dimensional physical space, 
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and k is the unit vector normal to the plane of 
the flow. By considering the flow to be periodic 
over a rectangular region of dimensions 2nlk by 
27c/l, expanding the streamfunction in terms of 
a double Fourier series and then truncating the 
series a t  wave number 1, he was able to repre- 
sent the vortioity as 

V’y = A ,  COB ly + A ,  COP kx + A ,  sin ly  + A ,  sin kx 

+ A ,  COB kx cos ly + A, sin kx sin ly 

+ A ,  cos kx sin ly + A ,  sin kx cos ly (18) 

where the coefficients A ,  ... A ,  are functions 
only of time. If, initially, A, = A ,  = A ,  = A ,  = A ,  
= 0, then this condition, according to (17), must 

hold for all time. This reduces (18) to 

V z y  = A ,  cos ly + A ,  cos kx + A6 sin kx sin ly (19) 

Applying (17) to (19) one obtains the governing 
prognostic equations 

3 
a 

a’+ 1 
A , = ~ - - A ~ A ,  

where a = k / l .  These are Lorenz’s “minimum 
equations” and they are a particularly simple 
three-component version of (11). Lorenz points 
out that the set (20) conserves both mean kinetic 
energy 

and mean square vorticity 

Equations (12) and (10), applied to (20 )  allow 
us to write down the approximate Stochastic 
equations for this case: 

i 1 =ci(PaPs + 02s) (23) 

Pa = ~ a ( ~ i ~ r  +ole) (24 )  

~ l s  =c&Cc,~llz +d (25) 
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where c1 = - [2a( 1 + aa)]- l ,  C, = #a*(a* + l)-1,c3 = 

- (a’ - l) /a,  and the p’s and u’s are the means 
and covariances of the A’s. 

Note that (23)-(31) reduce to (20) if and only 
if the initial variances are zero. Even if the 
covariances which appear specifically in (23)- 
(25) are initially zero, they will not remain so, 
because of (29)-(31), unless the variances are 
also zero. If the variances are zero, then all the 
covariances must be zero (u;, <uifu,,) and (26)- 
(28) will indicate no change. 

Although no explicit condition has been 
stated to the effect that u;, <utio,,, or that 
ui i  > 0, these are necessary conditions for ((a,,)) 
to be considered a covariance matrix. In  general 
the covariance matrix must be positive definite. 
The approximate stochastic equations (12) and 
(16), or in this example (23)-(31), will always 
maintain that condition if the initial conditions 
are properly chosen. There is always the possi- 
bility that the numerical solution, however, 
will violate that condition. It is necessary to 
take some care, therefore, to avoid both insta- 
bilities and excessive amplifications in the nu- 
merical solutions. A Runge-Kutta four-point 
integration scheme has been used. Regular 
checks on the solution (i.e. evaluation of the 
eigenvalues of the covariance matrix) have been 
made to assure that the matrix does indeed 
remain positive definite. Difficulties arose in an 
early stage of the study when the H e m  method 
(as used by Lorenz, 1963) was employed. This 
experience corroborates the conclusions of 
Young (1968) regarding the choice of time dif- 
ferencing scheme. 

The first situation studied by Lorenz was 
one in which there is a cyclical exchange of 
energy between the “zonal flow” ( A , )  and the 
“eddies” ( A ,  and As) .  He chose a = 2  and initial 
conditions A, = 0.12, A, = 0.24, A, = 0.00. These 
coefficients have the dimension (time)-’; Lorenz 
considered that the time unit was 3 hr and also 

scaled his problem by taking 2n/k = 5000 km. 
For ease of discussion and comparison we will 
adopt the same scaling. For the stochastic 
solutions the initial conditions on the A’s can 
only represent initial ensemble means. Thus, 
initially p1 = 0.12, p, =0.24 and pa =O.OO. Let 
us now assume also initial values ui, = O.O(i =k j )  
and uii =10-4(3 hr- , ( i  =1, 2, 6), i.e. that the 
initial parameter values are uncorrelated, but 
each has a standard deviation of 0.01 (3 hr)-l. 
This corresponds to the maximum expected 
“zonal” wind of 65 km/hr having a standard 
deviation of 5.3 km/hr. As indicated earlier, 
for the Monte Carlo solution it is further as- 
sumed that the initial probability density is 
multivariate normal. 

Fig. 1 shows the stochastic solutions for p, 
and ps and the deterministic solutions for A ,  
and A,. On the scale of the graphs it is not pos- 
sible to distinguish between the approximate 
stochastic solution and the Monte Carlo solution 
which wm based on a sample size N =500. 
Partial tabulation of the solutions by the three 
methods is given in Table 1. Note that the dif- 
ference between the two stochastic solutions is 
nowhere more than about 2.3 standard errors of 
estimate of the Monte Carlo mean (a ,JN)* .  

The differences between the deterministic and 
stochastic solutions become discernable only 
after about 50 hours, and remain small through- 
out the 150-hour period for which solutions were 
obtained. As one could have anticipated the 
initial uncertainties have the effect of reducing 
the amplitudes of the variations (Epstein, 1969). 

0.D - 

1 2 3 L 5 6 *  

Fig. 1. Stochastic solutions for p, and p6 and the 
deterministic solution for A, and A,. Initial condi- 
tions for the deterministic solution are A, =0.12, 
A ,  = 0.24, A, = 0. For the stochastic solutions all co- 
variances are initially zero and the variances are 
each 10-4. The Monte Carlo and approximate sto- 
chastic solutions essentially overlap. 
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Table 1. sekcted r d t s  of cakulatione of h m m z ' s  minimum tXpdiOn 

For the Monte Carlo experiment the sample size was N = 500 

A ,  f a& 
7 

p, f ah A* p, f at2 A ,  
I Deter- I Deter- 

A ,  
Deter- 

t min- Monte Approx. min- Monte Approx. min- Monte Approx. 
(hrs) istic Carlo stoch. istic Carlo stoch. istic Carlo stoch. 

0 .120 
12 .124 
24 .131 
36 .134 
48 .129 
60 .122 
72 .121 
84 .126 
96 .133 

108 ,133 
120 .126 
132 .120 
144 .122 

.120 f .010 

.124 f .010 

.132?.010 

.134 .009 

.129 f .007 

.123 f .008 

.127 f .013 

.132f.012 

.132+.008 
-127 f.006 
.123+.009 
.124f.013 

.122 f.011 

.120 f .010 

.124 f.010 

.131 f.010 

.134 f .009 

.128 f .007 

.123 f .008 

.126 f.013 

.132 f.012 

.132 f .006 

.127 f.004 

.123 f. .008 

.124 k .014 

.121 f.011 

.240 .240 f .010 

.210 .207f.011 

.111 . l l O f . O Z l  
- .025 - .026 f .033 
- .151 - .151 f.033 
- .226 - .223 f .020 
- .236 , - .228 f .018 
-.180 -.lSSf.048 
- .065 - .056 k .077 

.073 .072 f .084 

.185 .172 f .086 

.237 .216 k .037 

.223 .195 f .056 

.240 f .010 

.207 f .011 

.llOf..02l 
- .025 f .032 
- .149 f -032 
- .222 k .019 
- .229 f.014 

- .061 f .080 
- .171 f.047 

+ .067 f .087 
.169 f .063 
.215 f .019 
.196+.043 

Plots of a& and a& are shown in Fig. 2. Here 
the two stochastic solutions give almost indis- 
tinguishable results over the first 60 hours. 
Thereafter some systematic differences begin 
to appear and grow. One would of course not 
expect the approximate stochastic solution to 
represent the variances quite as well as it does 
the means, since the approximation (15), while 
second order in the variances, is third order in 
the means. 

In this first example, the initial uncertainties 
were relatively small, i.0. small enough that 
they did not have severe effects on the fore- 
casts of the parameters. In cases such as this 
the utility of the stochastic procedure lies in 
the information it provides about the uncertain- 
ties. For example, after 100 hours the uncer- 
tainty of Al is not very different from its initial 
value, but the uncertainty of A, has increased 
more than threefold and that of A, is larger by 
a factor of 8. There is also information provided 
by the stochastic calculations on the correla- 
tions among the parameters. For example, after 
about 18 hours, and continuing until beyond 
100 hours, A, and A, have a correlation coeffi- 
cient less than - 0.9. 

This comparison of the deterministic and 
stochastic results is not necessarily typical. Let 
us now consider another situation discussed by 
Lorem (1960), that of a large initial disturbance 
which gives rise to large oscillations in the zonal 
wind. If A: > 30 A;, such oscillationa can occur 

Tellus XXI (1969), 6 

.ooo 
-.167 
- .291 
- .327 
- .255 
- .110 

.061 

.218 
.316 
.313 
.210 
.050 

-.120 

- Monte corlo -- Apprm. Stmh 
0.15 t 

.ooo f .011 .ooo 2.010 
-.167f.018 -.166f.017 
- .291 f .020 - .290 f .019 
- .324 f .015 - .324 f .014 

-.104f.062 -.107f.061 
- .250 f .036 - .252 f .036 

.065 f .077 .060 f .077 

.214 k .072 .210 f .072 

.299 f .042 .297 f .034 
.288 f .050 .290 f .039 
.187f.O99 .193+.101 
.037 f .131 .046 + .138 

- .117 k.133 - .110 k.142 

0.10 t / 

1 2 3 L 5 6 
Time ldqJ 

Pig. 2. Stochastic dynamic solutions for the standard 
deviations of A, and A,. Initial conditions are as for 
Fig. 1. 

and the sign of A, can alternate. For initial 
conditions, then, we now choose p, = 0.12 fO.02, 
p2 = 0.00 fO.02 and p, = 0.666 fO.02, again with 
all covariances initially zero. For the deter- 
ministic solution initial values are A, = 0.12, 
A, =O.OO,  A, =0.666 so that Ai/Ai =30.8 and 
indeed, aa shown in Fig. 3, after about three 
days the sign of A, does become negative. The 
stochastic solutions for p, shown in the same 
figure remain positive throughout the period. 
The differences between the two stochastic 
solutions are certainly real after day 3, i.0. 
attributable to  the approximations (15). Yet 
the indicated behavior of the expected mean 
zonal wind is reasonably good through the fifth 
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-..___. -0.1 .... 
0 1 2 3 L 5 6 

Time (days1 

Pig. 3. Stochastic solutions for pl and ull* and the 
deterministic solution for A,. Initially A,@,) = 0.12, 

= O., and A6(p6)  = 0.666. For the stochastic 
solutions covariances were initially zero and varian- 
ces were initially 4 x 

day. The deterministic solution shows syste- 
matic departures from the Monte Carlo solution 
after 24 hours and is very misleading after about 
3 days. Solutions for Az(pz )  and A , ( p 6 )  shown 
in Fig. 4, tend to emphasize these differences. 

Note that this does not mean the deterministic 
forecast is wrong, only that it is a poor forecast. 
It is possible that the deterministic solution 
would be verified in a given situation, but the 

-.- .._______... .* 
0 1 2 3 L 5 6 

Time (w) 

.... 
- 0 . 4  

Fig. 4. Stochastic solutions (dashed lines) for p2, 
p8, u P 2 ~ ,  and uE6*, and the deterministic solution 
(solid lines) for A, and A,. Initial conditions were as 
for Fig. 3. Shorter dashes refer to the approximate 
stochastic solution. 

In all examples based on Lorenz’s minimum 
equations +/a% = 0. Therefore the deterministic so- 
lution will remain the modal solution if it started as 
such. In this case large differences develop between 

stochastic solutions would have better average 
verification scores. 

Figs. 3 and 4 also show the stochastic solu- 
tions for the standard deviations (ai = uft) of the 
three parameters. After three days, for example, 
the differences between the deterministic solu- 
tion and the mean of the ensemble are about one 
standard deviation for A,. It is apparent from 
Figs. 3 and 4 that the usefulness of the approxi- 
mate stochastic results to indicate the individual 
variances diminishes very rapidly here after 
two days. This is the poorest comparison of the 
approximate stochastic and Monte Carlo solu- 
tions that has been calculated. The difficulties 
encountered here, due of course to the special 
circumstances chosen, however, also emphasize 
the advantages of the stochastic solutions over 
the deterministic solution for the parameter 
values themselves. 

5. An extension including a n  example of 
analysis 

The situations just discussed are peculiar in 
the sense that the model, (17) and (18), con- 
tains eight parameters, which were artificially 
divided into two groups: A,, A s  and A, were 
admitted to be subject to uncertainty, while the 
others were assumed known with certainty. A 
more realistic application of the stochastic 
method to this case should include the possible 
variability of all eight parameters. Indeed it is 
possible to assume the ‘‘true’’ streamfunction is 
given by Lorenz’s simplifying initial conditions, 
but a t  the same time require that the “forecast” 
be initialized by making observations of the 
streamfunction. 

Let us therefore consider that n observing 
stations are spread over the region 0 < y G 2~11 ,  
0 < x  G 2n/k ,  and that a t  each an observation 
Y ,  is made. The observations, it will be as- 
sumed, are random variables with expected 
values E( Y i )  =y(x,, y,) where 

4 A 4 . y(x, y) = - 1 COB ly - f k COB kx - - I’ sin ly 

4 A 
- - sin kx - -bj cos kx COB ly 

ka k’+l 

the mode and the mean. Therefore the distributions 
of A,, A, and A, must be highly skewed. 

Tellus XXI (1969), 6 
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coskx _ -  A’ sin kx sin ly - __ 
k‘+l’ ka +- 1’ 

A 
k’+l 

x sin ly - L- sin kx cos ly (32) 

and (x,,y,) are the coordinates of the ith ob- 
serving station. We will assume also that each 
observation is subject to the same variance, 8’. 

It then becomes convenient (and in a statistical 
sense optimum) to obtain estimates A, of the 
parameters A, by least squares; this procedure 
also provides estimates of the covariances 
among the A t .  

Defining 

1 
Zt’ = - - cos lyt  

1’ 

1 
Z,% = - kz - cos kx, 

1 
z i 8 =  - - sinly,, etc. lP 

and writing in matrix form Z = ( ( z i j ) )  we have 

a = (Z’Z)-’Z’Y (33) 

COV (A) =(z‘z)-’8’ (34) 

and 

(Mood t Graybill, 1963). 
Note in particular that in general the matrix 

Z is not orthogonal (unless all observations are 
made at specific grid points) and that the co- 
variance matrix will therefore not be diagonal. 
The variances and also the covariances depend 
on the locations of the observing stations, and 
also on the model (32), but not on the specific 
initial conditions. 

The A ,  are random variables whose values 
depend on the observations (themselves random 
variables) and the unknown true values of the 
parameters A,. The required starting point for 
a stochastic prediction is a probability state- 
ment about the A,. The formal Statistical pro- 
cedure by which the sampling distribution of 
the A, given A, can be related to a probability 
density distribution for the A, (given the data) 
is by applying Bayes’ theorem (cf. Epstein, 
1960). 

Tellus XXI (l969), 6 

Avoiding details, there are two inputs to the 
evaluation of q(A  I A): the sampling distribution 
of the A,,  and a “prior” probability density of 
the A,. This latter, in themeteorological context, 
is the result of the previous day’s forecast. Thus 
it is natural and consistent with stochastic 
methods to use the previous day’s forecast as 
direct input into today’s analysis. Here, how- 
ever, no artificial weights or arbitrary coeffi- 
cients are necessary. In  a sense the relative 
“weights” of the observations and forecast are 
self-determining and are measurable in terms 
of the relative uncertainties, i.e. the variances 
of the two density functions. 

In the present example, to keep things as 
simple as possible, we will assume that the un- 
certainty in the forecast is very large compared 
to the uncertainty in the estimates based on the 
observations. Then we can write p ,  = E ( A , )  = A ,  
and u,, = cov (A) = cov (a). 

For the present experiment a random set of 
7~ = 20 observing stations has been selected. 
Their locations are plotted in Fig. 5. The co- 
variance matrix (34) corresponding to this array 
of stations, and also the implied correlation 
coefficients, are given in Table 2. For these cal- 
culations we have chosen k(km-’) = 2n/5000, 
a = 2, and ark* = 0.004 (3 hr)-%. This last figure 
corresponds, if one relates v, to a geostrophic 
stream function gz/f, to a standard error of 
about 35 m in the determination of the height 
of a pressure surface in middle latitudes. Note 
that changing a, or k, or a changes the variances 
and covariances in Table 2, but not the correla- 

Fig. 5. Location of the 20 stations as determined by 
a random process such that all locations were equally 
likely for each station. The shape and scale of the 
region are determined by 2n/k = 5000 km, a = 2. 
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tion coefficients. Based on the particular station 
locations that were selected (and Fig. 5 does 
resemble a map of aerological stations) some of 
the estimates of the initial parameter values will 
have considerable correlation. For example, if A ,  
is overestimated, one would also expect a posi- 
tive error in the estimate of A,. 

Returning to the first situation considered in 
the previous section, the initial values will be 
taken as ,ul = 0.12, pz = 0.24, p, = 0.00 (i > 2), as 
before, but with covariances as given in Table 2. 
With eight parameters the approximate stochas- 
tic equations are a set of 44 simultaneous equa- 
tions similar to (23)-(31), and readily derived 
from (12), (16), (17) and (18). A Monte Carlo 
solution has also been obtained, with again 
the added assumption that the initial parameter 
estimates are multivariate normal. The last as- 
sumption would have been implied by the 
analysis procedure if the observations had been 
assumed to be Gaussian; the converse does not 
follow. The calculated initial conditions for the 
Monte Carlo experiment, based on a sample size 
of 1000, are given in Table 3. This should be 
compared with Table 2. The Monte Carlo run 
required about 30 times as much computer time 
as the approximate stochastic calculation, 
although neither program was designed to be 
particularly efficient. 

We can examine here only a portion of the 
numerical results, trying to select those few 
quantities that provide the greatest insight 
into the various attributes of the results. Table 4 
contains the calculated mean values and stand- 
ard deviations of the eight parameters after 
2, 4 and 6 days. These results are reasonably 
typical of those at other intermediate time 
steps. The differences between the two sto- 
chastic solutions remain within the statistical 
uncertainty of the Monte Carlo results. For 
example at t - to  = 144 hrs, the standard devia- 
tion of the estimate of p,,, based on the Monte 
Carlo results, would be O . l 0 4 / d ~ =  0.003, 
while the difference between the two stochastic 
estimates of ,u6 is 0.004. 

It is of some interest that the stochastic soh- 
tions for those parameters whose values are 
identically zero in the deterministic solution 
remain very close to zero. A situation where 
this is not the case will be discussed later. Also, 
here, the indicated changes in the variances of 
these terms are small, but these changes are 
similarly indicated by both methods. 

Tellus XXI (1969), 6 
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Monte Corlo 
Appmx. Stoch. 

1 1 2 3 L 5 6 

Tine (days) 
O O  

Fig. 6. Stochastic dynamic evaluations of the uncer- 
tain component of the kinetic energy assuming ob- 
servations made at the stations of Fig. 4 and initial 
mean values ,ul = 0.12, ,u2 = 0.24, .,u = 0 for j > 2. The 
ordinate is expressed as a fraction of the constant 
total kinetic energy. 

It was mentioned earlier that the stochastic 
procedures would conserve the total mean ki- 
netic energy, but separate that total into two 
components. Fig. 6 illustrates the changes in the 
uncertain component, as given by the two sto- 
chastic methods. 

The general behaviour of these curves is re- 
miniscent of, and undoubtedly typical of the 
variance of cyclical parameters of somewhat 
uncertain phase, amplitude and frequency, as 
described by Epstein (1969). Note in particular 
the general increasing trend. The amount by 
which these curves exceed their value a t  to  must 
be equal to the amount by which the deter- 
ministic solution overspecifies the kinetic energy 
of the predictable portion of the flow. 

The covariance between A ,  and A ,  serves as 
a final example of the numerical results for this 
situation. This pair was chosen because the 
parameters themselves undergo significant fluc- 
tuations, and also because the correlation be- 
tween them in this case becomes relatively 
large. Fig. 7 shows both the covariance and the 
calculated correlation coefficients. Although ini- 
tially A ,  and A ,  are only weakly correlated (cf. 
Tables 3 and 2) their covariance undergoes suc- 
cessively more extreme fluctuations and the 
correlation coefficient reaches extremes outside 
the range k0.75.  

Before leaving the subject of analysis entirely, 
it is worth remarking that the procedure sketched 
above for including the earlier forecast in 

T i m  

Pig. 7. Calculated correlation coefficient and co- 
variance between A ,  and A ,  for thesituation of Fig. 6. 

the analysis pertains as well to the inclusion of 
asynoptic data or almost any form of supple- 
mental information. It is only necessary to 
translate the new data into a likelihood function 
(i.e. the probability of the data given the at- 
mospheric parameters) and to modify through 
Bayes’ theorem the probability density other- 
wise determined for the appropriate time. 

6. The value of more observational data 

One of the most pressing problems facing 
meteorologists i s  the value of new data, or the 
cost of not having enough (Gandin ef al., 1967). 
On the one hand weather services juggle bud- 
gets to achieve compromises between observing 
stations and computers or other facilities. On 
the other planning proceeds for a World Weather 
Watch involving costly additional or novel 
observing capability. Stochaatic methods can be 
used to assess the importance and value of new 
data. We will indicate here how the method can 
contribute to judgements concerning the opti- 
mum location of the new observing stations. 

This discussion will be based on the premise 
that, within the context of a particular mathe- 
matical-physical model, the best forecast is the 
one with the least uncertainty. The uncertainty 
in a forecast will depend, in general, on the 
model and also on the data, the analysis and 
forecast procedures, and the particular meteoro- 
logical situation. For the present, attention will 
be confined to the particular model, the parti- 
cular analysis and forecasting procedure, and 
also the assumed initial conditions of the pre- 
vious section. The questions to be studied are 
what improvement results from the addition of 
a single observation, and how does that depend 
on the specific location of the added station. 

Adding a single observation at any specific 
location adds a row to the matrix Z and may 
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change all the elements of S = (Z’Z)-l, which is 
proportional to the initial covariance matrix. In 
particular, though, the new S must always have 
diagonal elements which are less than or equal 
to  those of the original S. The variances (and 
consequently the uncertain component of the 
conserved quadratic quantities) will always be 
a t  least as small as they were originally. 

Given the original 20 stations shown in Fig. 5, 
calculations have been made of the percentage 
reduction in the uncertain component of the 
initial kinetic energy for each of 49 possible 
additional observing sites placed on a regular 
grid over the region. Isopleths drawn from 
these data are shown in Fig. 8. The resulting 
pattern depends on both the analysis model 
(32) and the particular set of previously estab- 
lished stations, but not on the meteorological 
situation. Note that the greatest reduction in 
uncertainty is achieved by adding stations 
where there were “holes” in the previous net- 
work, and also that the isopleth pattern reflects 
the inclusion in the model of only wave numbers 
0 and 1. 

The 49 additional stations provided 49 dif- 
ferent new covariance matrices with which to 
initialize the computations. Using the same set 
of initial mean values for the parameters as in 
section 6, approximate stochastic computations 
were carried out to produce 150-hour forecasts 
based on each of these initial covariance matri- 
ces. The forecasted expected values of the para- 
meters were almost identical with one another, 

Fig. 9. Decrease in the uncertain component of 
kinetic energy after 150-hour forecast versus initial 
decrease. Each point represents the result for a dif- 
ferent location of a single additional observation. 
Decreases are measured as the percent of the uncer- 
tain component of KE initially and after the 150- 
hour forecast, respectively, with only the original 20 
observations. 

and with the original run. However, changes in 
the variances were more noticable. Fig. 9 is a 
scatter diagram between the reduction in the 
uncertain component of mean kinetic energy 
due to each additional station initially, and 
after 150 hours. The pattern of the reduction in 
uncertainty, according to the location of the 
added station, is shown in Fig. 10. 

There is clearly a correlation between the 
improvement in the initial conditions and the 
improvement in the forecast, but judging by 
the scatter in Fig. 9 that is far from the entire 
story. The shift in patterns between Figs. 8 and 
10 is certainly dependent on the initial flow field 

Fig. 8. Percent decrease in the initial uncertain 
component of the kinetic energy due to the addition 
of a single observation as it depends on the location 
of the observation. Locations of the original 20 
stations are also shown. 
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Fig. 10. Percent decrease in the uncertain compo- 
nent of the kinetic energy after 150-hour forecast, 
attributable to a single additional observation, as a 
function of the location of the observation. Loca- 
tions of the original 20 stations are also shown, 
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and its relation to the locations of the pre- 
existing observations. No simple, fully con- 
sistent explanation of the particular changes is 
apparent. 

If one were considering adding a station to a 
network, one would certainly not base his deci- 
sion on the results from a single experiment in- 
volving one initial streamfunction. Instead one 
would try to maximize the improvement aver- 
aged over a wide range of initializations. I would 
speculate that if this averaging were carried out 
over an ensemble of streamfunctions that was 
isotropic and homogeneous, then the indicated 
best new location would be that which mini- 
mizes the initial uncertainty, in which case it 
would appear that the experiment might as well 
never have been carried out. If the averaging 
were over an ensemble which resembled a cli- 
matology of weather patterns, however, I then 
believe that there would be definite advantages 
to some locations other than those which look 
best in terms of initial uncertainty. 

As is evident in Fig. 9, each additional station 
resulted in .  at least some improvement in the 
forecast. This need not be the case. The very 
peculiar situation can arise where an additional 
observation, although it must reduce the initial 
uncertainty, also changes the initial covariance 
matrix so as to produce, corresponding to some 
future time, a forecast which is more uncertain 
than it would have been if the observation had 
not been available. This, however, is an excep- 
tional and transient phenomena. With that same 
additional station, but most other forecast pe- 
riods, some improvement will be found. 

This discussion has been intended to be ex- 
emplary of the approach that one might take 
to the question of the value of adding data. A 
similar approach could also provide a meaning- 
ful answer to the somewhat simpler, but never- 
theless important question of the value of 
simply improving the present observations by 
reducing their individual errors. Also, one could 
develop comparable programs, in terms of 
more complex models, for comparing the bene- 
fits of various forms of novel measurements of 
winds, temperatures, densities, etc. 

7. Prediction of unstable flow 

The prediction of the development of insta- 
bilities rests on the recognition of a situation in 
which a small perturbation, if  present, will grow 

at the expense of pre-existing “steady” flow. 
There are physical-numerical models now avail- 
able which can simulate the non-linear interac- 
tions implicit in the growth and development of 
perturbations. Many different types of insta- 
bility have been recognized. I f  conditions are 
ripe for instabilities to develop, however, it may 
not be possible to identify observationally the 
incipient disturbances. The prediction then be- 
comes highly speculative and the specific fore- 
cast can depend very critically on random initial 
errors. 

Stochastic methods cannot predict a develop- 
ment if there is insufficient initial information. 
They will, however, allow one to judge whether 
or not there is sufficient information, and they 
will indicate the amount of confidence, or lack 
thereof, one may pla.ce in a forecast made under 
conditions of instability. 

The model for this study will again be (17)  
and (18), but this time we choose a =k/L =0.95. 
As discussed by Lorenz (1960) a < 1 implies that 
small perturbations will grow at the expense of 
the zonal flow. He showed a solution in which 
a small perturbation grew to reach a maximum 
value after about 24 time units (3  days), a t  
which time the zonal flow had decreased to zero 
and was beginning to reverse itself. 

For this experiment we choose the same set 
of stations as previously, but a slightly different 
initial covariance matrix since 1 = ak is different. 
Initial mean conditions are taken to be pl = 1.0; 
p, = 0, i z 1. Approximate stochastic and Monte 
Carlo ( N  = 1000) solutions have been calculated. 
A deterministic solution, corresponding to the 
specific initial mean conditions of the Monte 
Carlo sample has also been calculated. (The de- 
termininistic solution for the case A ,  = 0, i > 1 is 
A ,  =constant for all i.) The forecasts of the A ,  
and pi  are summarized in Table 5. Plots of the 
solutions for pl, p 3  and pa  are shown in Fig. 11. 

The instability is reflected in all threesolutions. 
However, because the initial mean perturba- 
tions of the Monte Carlo solution were so small, 
the deterministic solution shows no appreciable 
decay in A ,  until the fourth day. By that time 
the stochastic solutions both clearly indicate an 
expected reversal of the mean zonal flow. It is 
evident from a comparison of these results that 
the dominating terms in the forecast of the 
means should be those reprwenting the uncer- 
tainties, and not the small initial mean pertur- 
bations. Compare, for example the solutions for 
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Pig. 11. Stochastic and deterministic solutions for 
selected parameters under conditions of unstable 
flow. The initial values for the deterministic solution 
were the same as the initial Monte Carlo sample 
mean and slightly different from the mean values 
for the approximate stochestic solution. The deter- 
ministic solution for A,  is indistinguishable from 
zero. Note differences in scale. 

Aa(pB) and A,(p,) .  Since the largest initial mean 
perturbation is that of A,, it grows most ra- 
pidly in the deterministic solution, while A ,  
stays near zero. After 24 hours, however, the 
largest mean perturbation indicated by the 
stochastic solutions is pcs.  The Monte Carlo 
result for p, is similar to the deterministic 
result up to 24 hours but this is deceptive. Some 
of the indicated increase must indeed be due to 
the initial mean perturbation, but much of it is 
the result of the uncertainties. Note how the 
continued growth of A,  indicated by the deter- 
ministic results is not substantiated by the 
stochastic results. 

The deterministic solution must a t  all times 
make a very specific allocation of the energy. 
On the other hand the stochastic solutions are 
able, in terms of the initial uncertainties and 
their subsequent developments, to indicate that 
only some of the energy can be specifically al- 
located to particular waves, while some is the 
uncertain component of the kinetic energy. This 
is shown in Fig. 12, in which the uncertain com- 
ponent of the kinetic energy, indicated by the 
two stochastic calculations, is plotted. Note the 
very large extent of the oscillation of this term. 
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Fig 12. Stochastic calculations of the uncertain com- 
ponent of K E  for the situation of unstable flow. 

Fig. 13. Stochastic calculations of the standard de- 
viations of some of the parameters for the situation 
of unstable flow. (Note differences in scale of the 
ordinates.) 

The stochastic calculations indicate that after 
about three days, when the expected magnitude 
of the zonal component is least, it cannot be 
said how the energy that has been released will 
appear. A couple of days later, however, the 
uncertain component is much less because there 
is a relatively high probability that the zonal 
flow will be large and negative. 
The estimates of the standard deviations of 

several of the terms are shown in Fig. 13. The 
discrepancy between the two results for u1 
is relatively large (although further exaggerated 
by the scales of the graphs). Here again is a 
situation in which the approximations (15) have 
deficiencies which show up relatively early in 
the solution. Even so, in this case it has already 
been evident that approximate solution repre- 
sents the expected flow very well, the allocation 
of the energy into specifiable and uncertain 
components with only slightly less fidelity, and 
even many of the individual variance terms are 
remarkably well represented. 

8. Stochastic prediction and predictability 

Considerable attention has been given, in 
recent years, to the question of atmospheric 
predictability (Charney et a?., 1966; Robinson, 
1967; Lorenz, 1965, 1968a, 1969). To a large 
degree this interest is spurred by practical needs 
vis 8. vis forecasting: do the prospects for ex- 
tended (and more accurate) forecasts justify 
expensive new observing programs. On the 
other hand predictability is an important and 
intriguing scientific problem, in its own right, 
and is deserving of even more attention. How- 
ever, it has not been a very tractable problem, 
which explains why more has not been done 
in this area. 

Because of its unique attribute of dealing 
specifically with the uncertainty of the forecast, 
stochastic dynamic prediction makes the inves- 
tigation of predictability far more tractable. It 
is possible even now to outline a reasonable 
approach, based on the stochastic method, 
which should be a significant improvement on 
methods previously attempted. Also, we will 
point out, there is a hidden bias in the most 
recent estimates of predictability, a bias which 
only stochastic methods can remedy. 

Consider an experimental program of extended 
stochastic forecasts based on a set of initial 
conditions carefully chosen to reflect climato- 
logical ranges and frequencies of observed 
states. This would lead directly, not only to esti- 
mates of the growth of uncertainty (dependent 
of course on the assumed observing program) 
on the average, but also it would reveal the 
extent to which predictability is itself variable 
and dependent on the initial state of the atmos- 
phere. This last point has been raised previously 
by Lorenz (1965), but it has never really been 
possible to study it systematically. It may turn 
out to be a significant aspect of predictability 
studies. 

This approach lies, in some respects, midway 
between the approaches of Charney et al. (1966) 
and Lorenz (1969). Lorenz (19686) refers to the 
former as the “dynamical” approach and to the 
latter as “dynamical-empirical”. In  the dyna- 
mica1 approach one studies the rate of growth 
of small initial differences on the basis of ex- 
tended integration with advanced models of the 
general circulation. One then extrapolates this 
‘‘error’’ growth to the time when the resultant 
states will be sufficiently dissimilar from one 
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another. In the dynamical-empirical method 
Lorenz derives an equation for the growth of 
average “error kinetic energy”. This average is 
taken over an ensemble of error fields (which 
one has to assume have certain restrictive sta- 
tistical properties) and also over an ensemble 
of initial flow fields. The statistical representa- 
tion of the flow fields is based on the atmos- 
phere’s observed spectral characteristics, but it 
is also necessary to assume these fields are ho- 
mogeneous and isotropic. While these assump- 
tions probably do not affect Lorenz’s most im- 
portant conclusion, that the growth of uncer- 
tainties from small scales to large may ulti- 
mately place a finitelimit on the range of predict- 
ability of the atmosphere, they may seriously 
influence his estimates of that limit as applied 
to the atmosphere. 

The dynamical-empirical method is very gen- 
eral, and consequently requires sweeping as- 
sumptions. On the other hand the dynamical 
method is so specific to the two chosen initial 
states that the generalization of its results is 
subject to question. The stochastic dynamic 
method is in this sense a compromise. Averaging 
over error fields is intrinsic to the method, but 
the statistics of the error fields can be very 
general. Averaging over initial states can be 
done systematically, with full regard to the 
heterogeneity and anisotropy of the atmosphere. 

One attribute of the stochastic dynamic re- 
sults already presented bears significantly on 
this problem. In Fig. 6 and especially in Fig. 12 
it was shown that the “uncertain component” 
of the kinetic energy underwent significant oscil- 
lations. The uncertain component of kinetic 
energy, as defined earlier, is entirely analogous 
to Lorenz’s (1969) error kinetic energy, except 
that Lorenz considered an average over many 
initial states. If we were also to consider such an 
average it seems most likely that the oscilla- 
tions in the individual curves would tend to 
cancel one another and the result would be a 
monotonically increasing function of time. 

In the specific examples shown, however, it 
would be unreasonable to define predictability 
only in terms of current uncertainty. Certainly, 
during those periods when the uncertainty ex- 
ceeds a value it will later attain, it would be 
much more reasonable to define predictability 
in terms of that eventual minimum value. 
Without being concerned with specific defini- 
tions, however, one can clearly see that in each 
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individual case predictability will sometimes be 
greater, and never less than that indicated by 
the current uncertainty. Therefore the average 
uncertainty implies an underestimation of the 
predictability. Entirely on this basis one must 
judge that Lorenz’s estimate of a limiting range 
of predictability for the atmosphere of about 
24 weeks is pessimistic. 

One other point would seem pertinent here. 
When dealing with predictability one tacitly 
msumw the forecast procedure is the best pos- 
sible. Deterministic procedures, coupled with 
realizable sets of observations are not optimum. 
Only by the use of stochastic procedures, which 
are designed to minimize the uncertainty, can 
one hope to approach the limits indicated by 
studies of predictability. 

9. Summary and conclusions 

The use of real observational data as the basis 
of forecasts requires that special care be taken 
in the interpretation and analysis of the data 
and the formulation of the prediction procedure. 
The state of the atmosphere can never be known 
with certainty, and by taking specific account 
of this uncertainty improvements in the fore- 
casts can be achieved. One way of dealing with 
this uncertainty is to add simple correction 
terms to the deterministic prognostic equations, 
and thereby convert them to stochastic dynam- 
ic equations which predict the expected state 
of the atmosphere with the smallest possible 
mean square error. In order to evaluate the 
correction terms additional prognostic equations 
must be derived. 

The total set of prognostic equations which 
are finally derived, the approximate stochastic 
equations, involve aasumptions pertaining to 
the statistical nature of the uncertainties. Solu- 
tions of these have been compared, in a number 
of examples, with results of both the deter- 
ministic equations and Monte Carlo experi- 
ments to simulate the initial uncertainty of the 
initial conditions. Within the framework of the 
relatively simple dynamic systems studied, the 
results indicate that the approximate stochastic 
equations are excellent for forecasting the ex- 
pected state of the atmosphere, and also give 
very good results in defining the amount and the 
nature of the uncertainty of the predictions. 

Some of the applications of the method are 
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more obvious than others. Stochastic dynamic 
prediction can undoubtedly improve forecasts, 
and improvement in forecasts implies extended 
ranges for useful forecasts. Knowledge of the 
uncertainty of the forecast in each instance not 
only increases the value of the forecast, but also 
suggests tools for generating extended fore- 
casts expressed in stochastic terms, and for 
studying the predictability of the atmosphere, 
not only in a highly idealized average sense, but 
also in terms of the specific initial situation. In  
this context, the notion of initial situation in- 
cludes both the atmospheric state and the ways 
and means by which it is observed. This allows 
one to calculate how changes in the system for 
observing the atmosphere can influence predict- 
ability. Examples of this type of study are 
shown. Although idealized, they demonstrate 
that maximum reduction of the uncertainty in 
the analysis is definitely not the same criterion 
as minimum uncertainty in the forecast. 

There are other advantages of the stochastic 
dynamic method which have been touched upon 
only lightly, for exa,mple the ease with which 
analysis can incorporate not only the previous 
forecast, but also additional asynoptic data. 
Neither has much attention been given t o  the 
added facility with which user requirements of 
weather forecasts can be met given specific in- 
formation on uncertainties. 

We can also point out that stochastic dy- 
namic methods can be useful in studying and 
evaluating particular physical-numerical models 
of the atmosphere. A major difficulty in the past 
has been the isolation of the separate influences 
on verification data of errors in the initial data, 
errors in the prediction procedure itself, and 
errors in the verification data. However, sto- 
chastic dynamic methods permit a methodo- 

logically sound comparison of stochastically ex- 
pressed forecasts with stochastically expressed 
verification analyses. Biases and distortions at-  
tributable to the model are estimatable by ordi- 
nary statistical procedures. 

We have detected a single major drawback 
to the stochastic dynamic method. It requires 
much more computing than deterministic meth- 
ods. This follows since one calculates not only 
the expected value of each parameter, but also 
the variances and covariances among all the 
parameters. It is possible that in more complex 
models than have been studied so far many of 
these terms will not change very much (or very 
rapidly). This would be useful in reducing some- 
what the burden of the computations. Other 
possibilities for reducing the amount of comput- 
ing also exist, but even a t  best the task will be 
formidable. For this reason it does not seem 
stochastic methods can now be given serious 
consideration as operational procedures. On the 
other hand we very firmly believe that they 
must be studied further and put into use as im- 
portant tools of atmospheric research and in the 
development of improved weather analysis and 
prediction. 
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CTOXACTHYECKOE AHHAMBgECKOE UPEACKA3AHBE 

m @ o p M a q m o  o npapoAe H npeaenax H e o n p e A e -  
neHHocTEi  nporaoaa. K p o M e  T o r o ,  p a c n m p s e T c H  
HHTepBaJ I  BpeMeHH,  AJIH KOTOpOrO n p O r H O 3  MO- 
X e T  6bITb  IIOJIe3HbIM. OAHaKO,  3TH MeTOAbI T p e -  
6YIOT 3HaYHTeJIbHO 6onbmero o6-be~a BbIqHCJIe- 
HHB. 

P a c c M a T p m a e T c s  B o n p o c  06 a ~ a ~ 1 ~ 3 e  H a -  
YaJIbHOrO COCTORHHR aTMOC@epbI, H 3AeCb  MOXHO 
0 6 H a p y X H T b  3HaYHTeJIbHbIe I I p e H M y w e C T B a  H a A  
H a C T O R ~ H M H  AeTePMHHHPOBaHHbIMH MeTOAaMH. 
n O K a 3 a H 0 ,  K a K  CTaTHCTHYeCKHe MeTOgbI M O r y T  
6bITb  HCnOJIbaOBaHbI AJIR OqeHKH HOBbIX HJIH 
J’JIyYIIIeHHbIX AaHHbIX I lyTeM PaCCMOTpeHHR HX 
BJIHRHHR H a  yMt?HbIIIeHHe HeOIIpeAeJleHHOCTH 
n p O r H 0 3 a .  n y T e M  I lpHMeHeHHR CTOXaCTHqeCKHX 
MeTOAOB 6onee B@@?KTHBHO IIPOBOAHTCR C p a -  
BHeHHe pa3JIHYHbIX @H3HKO-MaTeMaTHYeCKBX 
M O A e J I e k  H a K O H e q ,  K p a T K O  paCCMaTpHBaeTCI3 
H a  OCHOBe CTOXaCTHYeCKOrO AHHaMAqeCKOrO 
n p e ~ c ~ a 3 a ~ ~ ~  B o n p o c  o n p e A c K a a y e M o c T H  II 
A e j r a e T c s  ~ ~ K J I I O Y ~ H H ~ ,  vro H e K o T o p b I e  pawme 
OUeHKH CJIHIIIKOM IIeCCHMHCTAYHbI. 
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