Springer Series in Chemical Physics 113

Chang Q. Sun Yi Sun

Attribute of Nater

Single Notion, Multiple Myths

Springer Series in Chemical Physics

Volume 113

Series editors

Albert W. Castleman, University Park, USA J. Peter Toennies, Göttingen, Germany Kaoru Yamanouchi, Tokyo, Japan Wolfgang Zinth, München, Germany The purpose of this series is to provide comprehensive up-to-date monographs in both well established disciplines and emerging research areas within the broad fields of chemical physics and physical chemistry. The books deal with both fundamental science and applications, and may have either a theoretical or an experimental emphasis. They are aimed primarily at researchers and graduate students in chemical physics and related fields.

More information about this series at http://www.springer.com/series/676

Chang Q. Sun · Yi Sun

The Attribute of Water

Single Notion, Multiple Myths

Chang Q. Sun School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore Yi Sun Xiangtan University Changsha China and China Jiliang University Hangzhou China

ISSN 0172-6218 Springer Series in Chemical Physics ISBN 978-981-10-0178-9 ISBN 978-981-10-0180-2 (eBook) DOI 10.1007/978-981-10-0180-2

Library of Congress Control Number: 2015960779

© Springer Science+Business Media Singapore 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature The registered company is Springer Science+Business Media Singapore Pte Ltd. Nothing is softer or more flexible than water, yet nothing can resist it.

-Lao Tzu (571-470 B.C.)

If there is magic on this planet, it is contained in water. —Loren Eiseley (1907–1977)

The great seal of truth is simplicity.

-Herman Boerhaave (1668–1738)

Simplicity is about subtracting the obvious, and adding the meaningful.

-John Maeda, The Laws of Simplicity, 2006

The nature of the chemical bond bridges the structures and properties of crystals and molecules.

-Linus Pauling, The Nature of the Chemical Bond, 1939

Bond and nonbond relaxation and the associated energetics, localization, entrapment, and polarization of electrons mediate the performance of substance accordingly.

-Chang Q. Sun, Relaxation of the Chemical Bond, 2014

O:H–O bond segmental disparity and O–O repulsivity form the soul dictating the extraordinary adaptivity, coopera-tivity, recoverability, and sensitivity of water and ice

Dedicated to our beloved

Water is the source and central part of all life—without it, life cannot be sustained or evolve. Water is simple but magical, pure but elegant, perseverant but flexible. Water also symbolizes kindness, wisdom, wealth, and prosperity. Lao Tze, an ancient Chinese philosopher and thinker, wrote: *water represents the highest morality of human beings. It benefits all others, without expecting anything in return. It retains its ethical standard, but stays in where disdained* (上善若水,利万物而不争。处众人之所恶,故几于道).

Water is so magically sensitive to any perturbation of biological signals, radiations, and external constraints or stimuli that it lends itself to many romantic notions throughout history. Masaru Emoto described a variety of crystal patterns of ice grown from pure and polluted sources and influenced by emotions, thoughts, and voices in his book, *The Healing Power of Water*. James Brownridge dedicated himself for some 10 years to conducting over 20 experiments to identify the factors influencing the Mpemba effect, which describes the phenomenon where warmer water freezes more quickly than cold water, as first documented by Aristotle in 350 B.C. Gerald Pollack proposed *The Fourth Phase of Water* associated with the hydrophilic interface contact, which has explained numerous phenomena from the perspective of the exclusion zone of the layered, three-coordinated hydronium, H_3O^+ , gel-like structure, capable of absorbing all types of energies, separating charges, and excluding microspores and organisms. Because of all these sensitive fascinations, water is described as having intelligence and spirit, and even as a messenger of God.

However, water is too strange, too anomalous, and too challenging, as noted by Philip Ball, a scientific writer and a former senior editor for *Nature*. Its versatile structural phases and strange behavior have fascinated inspiring minds such as Archimedes, Francis Bacon, René Descartes, Lord Kelvin, Isaac Newton, Siméon Denis Poisson, Thomas Young, Pierre-Simon Laplace, Carl Friedrich Gauss, Frantz Hofmeister, William Armstrong, Johann Gottlob Leidenfrost, Gilbert Newton Lewis, and Linus Pauling among many others. In 1611, Galileo Galilei and Ludovico delle Colombe ignited the debate on why ice floats, from the perspectives of buoyant force, surface tension, and mass density. In 1859, Michael Faraday, James Thomson, and James Forbes started the debate on ice regelation—the behavior of ice melting under pressure and refreezing when the pressure is relieved. Michael Faraday, James Thomson, William Thomson (Lord Kelvin), and Willard Gibbs had been involved in exploring the slipperiness of ice since 1850, based on the concepts of quasi-liquid skin, pressure melting, and friction heating.

In the 125th anniversary special issue, *Science* magazine listed *The Structure of Water* as one of the 125 big questions to mankind. In 2012, the Royal Society of Chemistry organized a competition offering a £1,000 award to the participant, out of 22,000 entries, who could provide the best possible explanation for the Mpemba effect. The International Union of Pure and Applied Chemistry (IUPAC) gathered over 30 experts in Pisa in 2005 to form a task force to revise the definition of the hydrogen bond, and the agreed-upon result was published in 2011. To commemorate the 400th anniversary of the debate between Galileo and Colombe on the mystery of floating ice, twenty-five bright minds met in Florence, Italy, in July 2013, for a week, to discuss unanswered questions on water. However, fierce debates regarding the structure and anomalies of water are still ongoing, *converging* Mark Twain's (1835–1910) saying that *whiskey is for drinking; water is for fighting over*. The current status is that each of the various anomalies of water and ice is debated by multiple theories. It has been a long-standing dream of the scientific society to develop one notion that reconciles as many anomalies as possible.

Alternative ways of thinking and approaching are necessary to resolve the anomalies of water and ice. Turning our perspectives from classical thermodynamics to hydrogen bond (O:H–O) cooperativity, from single snapshots to statistical means, from surface to skin, and from spectroscopy to spectrometrics would be essentially helpful. In place of the conventional approach in terms of dipole–dipole interaction in the "dipole sea" of water, we have focused on the performance of a representative O:H–O bond for all as an asymmetrical oscillator pair with short-range interactions and O–O Coulomb coupling. This premise enables us to examine the consequence of the O:H–O cooperativity and polarizability on the detectable properties of water and ice.

An oxygen atom always tends to hybridize its *sp* orbits when interacting with atoms of any arbitrary electropositive elements and therefore a water molecule takes the tetrahedral configuration not only in the gaseous phase but also in solid at temperatures of only several Kelvins, although the O:H–O bond containing angle and its segmental lengths are subject to relaxation under perturbation.

Rather than the O:H nonbond or the H–O polar-covalent bond alone, the O:H–O bond integrates both the O:H intermolecular and the H–O intramolecular asymmetrical, ultra-short-range interactions and the Coulomb repulsion between electron pairs on adjacent oxygen. Being conventionally overlooked, the Coulomb repulsion between oxygen anions and the segmental disparity of the O:H–O bond form the soul dictating the extraordinary adaptivity, cooperativity, recoverability, and sensitivity of water and ice when responding to perturbation at any level.

The segmental disparity and the strong H–O bond allow for molecular flipping vibration, but unlikely the "proton tunneling transition" (Bernal-Fowler 1933) or

the "two-in two-out" proton frustration (Pauling 1935). Rather, the segmented O:H–O bond relaxes in a "master–slave" manner. One segment becomes stiffer if it turns to be shorter, and the other will become longer and softer. The O:H nonbond always relaxes more than the H–O bond. The flexible and polarizable O:H–O bond exists commonly to all phases irrespective of their geometries such as the superionic $OH_3^+:OH^-$ phase and the X phase of identical O:H and H–O distances. As uncovered by Yanming Ma at Jilin University, China, $(H_2O)_2$ only transits into the OH_3^+ (hydronium):OH⁻ (hydroxide) configuration under 2 TPa pressure and 2000 K temperature. The O:H–O bonding premise is more comprehensively appealing than the convention of intermolecular dipole–dipole interactions, and it is also general to situations with a presence of electron lone pairs.

In dealing with the strongly correlated and fluctuating water system, one should be more focused on the statistical mean of the collection of all correlated parameters than on the instantaneous accuracy of a certain isolated quantity under a specific condition at a certain point of time. One has to keep in mind the meaningful parameters and disregard those such as the long-range interactions and nuclear quantum dynamics as the common background of all to derive a simple solution for the seemingly unrelated phenomena.

The specific heat disparity between the O:H nonbond and the H–O bond discriminates the thermal dynamics of water and ice in different temperature regimes, which defines a quasisolid phase where the negative thermal expansion occurs. The rule of global bond contraction between undercoordinated atoms also applies to water molecules at the skins of bulk water, hydration shells, droplets, bubbles, and hydrophobically encapsulated water. Molecular undercoordination not only disperses the quasisolid phase outwardly to lower the freezing temperature and raise the melting point but also creates a supersolid skin phase that is less dense, ice like, elastic, and hydrophobic.

An HX-type acid dissolves into the X^{-} anion and the H^{+} that binds to an H₂O to form the hydronium H_3O^+ tetrahedron with one lone pair and the H_3O^+ interacts with one of its four neighbors through the O-H++H-O anti-hydrogen bond (anti-HB). The H↔H serves as a point breaker of the entire HB network, making the bulk water "fragile". A YOH-type base dissolves into the Y^+ cation and the OH⁻ hydroxide with three lone pairs, and the HO⁻ interacts with one of its four neighbors through the O: -: O super-HB that serves as a point compressor, elongating the H–O bond and releasing heat when reaction rakes place. The X⁻ and Y⁺ solute ions create each an electric field to align, cluster, polarize, and stretch the H₂O molecules in the hydration shells. Electrification of H₂O molecular dipoles by the fields of artificially attached charge, or an externally applied potential will also align, stretch, and polarize the O:H-O bonds. Electrification of the O:H-O bond by opposite fields effects adversely than under either alone. The hydration shells of solute ions are essentially the same as the water skin exhibiting stronger supersolidity behavior. The macroscopic properties of water and ice depend discriminatively and functionally on the cooperative relaxation in length and energy of the segmented O:H-O bond and the associated polarization under excitation.

Phonon spectrometrics is a powerful tool that enables discovery of the molecular site, multifield driven O:H–O relaxation dynamics in terms of segmental lengths and stiffness, order of molecular fluctuation, and phonon abundance, which reveals sufficiently and exactly what is happening to water molecules of the same coordination environment under excitation. A combination of the micro-jet UPS and XPS collects molecular site-resolved information about electron polarization and the O 1s energy shift. Lagrangian mechanics is efficient in dealing with the O:H–O asymmetrical oscillator pair dynamics, which enables mapping the potential paths for the O:H–O bond at relaxation. Fourier thermo-fluid transport dynamics is essential for solving the heat conduction involved in the Mpemba paradox. The use of multiple strategies is necessary for unlocking the mysteries of water. Computations and spectrometrics serve as powerful tools for verifying the theoretical predictions that are key to solving the long-standing puzzles. These considerations have led to a set of experimental, numerical, and theoretical strategies that have enabled the presented efforts and progresses.

This volume deals with the scientific popularization, quantitative resolution, and insightful extension of the best known mysteries of water and ice. Consistent resolution to the noted mysteries verifies the validity of the O:H–O bond notion and the approaching strategies. This book also demonstrates how the segmented O:H–O bond responds adaptively and cooperatively to stimulus of chemical contamination, electrification, magnetization, mechanical compression, molecular undercoordination, thermal excitation, and their joint effect in a coordination-resolved manner, and how the bond relaxation changes the macroscopic properties of water and ice. This volume presents an effort to resolve, once and for all, the following systematic issues:

- 1. Crystallographic structure order (tetrahedrally-coordinated fluctuating monophase with a supersolid skin)
- 2. Density-geometry-size-separation correlation of molecules packed in water and ice
- 3. Bond-electron-phonon-property correlation of water and ice
- 4. Asymmetrical, short-range, and coupled potentials for the relaxed O:H–O bond
- 5. O:H-O bond relaxation kinetics crossing the phase diagram
- 6. Ice Regelation—compression lowers but tension raises the T_m (O:H–O bond recoverability and quasisolid-phase boundary dispersivity)
- 7. Pressure-induced O:H–O bond proton centralization (O:H compression and H–O elongation)
- 8. Ice floating (specific heat disparity defined quasisolid phase that undergoes cooling expansion)
- 9. Mass density thermal oscillation of water and ice and coordination-resolved liquid O:H–O bond thermal dynamics (specific heat ratio entitled master–slave manner relaxation at different temperatures)
- Unusual thermodynamics of skins, hydration shells, free and confined nanodroplets and nanobubbles (H–O contraction elongates and polarizes the O:H nonbond)

xiv

- 11. Hydrophobicity and hydrophilicity transition (dipole creation and annihilation)
- 12. Superlubricity of ice and quantum friction (electrostatic repulsivity and O:H phononic elasticity)
- 13. Supersolid solute hydration shells (elastic, polarized, hydrophobic, less dense, and thermally more stable)
- 14. Quasisolid phase boundary dispersivity (phonon frequency relaxation modulates the Debye temperatures)
- 15. Hofmeister effect—ions modulation of surface tension and DNA solubility (O:H–O bond relaxation and polarization)
- 16. Molecular bonding in Lewis solutions of acids, bases, and adducts or salts (H↔H anti-HB pointer breaker in acid solutions, O:↔:O super-HB point compressor in base solutions, and solute ionic polarizer in adduct solutions)
- 17. Discrimination of acid and salt solutions in stress and solubility (ionic electrification and discriminative polarization)
- Hofmeister solution thermal stability—critical pressures, temperatures, and durations for phase transition (O:H–O bond deformation by the coupled fields)
- 19. Armstrong water floating bridge (long-range ordered electrification disperses the quasisolid phase boundary)
- 20. Electromelting (artificial electrification effect on quasisolidity)
- 21. Magnetization and electromagnetic radiation—(moving dipoles—Lorentz field current induction—antiferromagnetism)
- 22. Soil wetting by aqueous solutions (electric fields superposition)
- 23. Correlation of H–O phonon frequency, lifetime, self-diffusion, skin stress, and solution viscosity
- 24. Mpemba paradox—warm water freezes quickly (O:H–O bond memory and water skin supersolidity)
- 25. Molecular-site-resolved O:H–O bonding dynamics in terms of segmental stiffness, structure order, phonon abundance, etc.

Water forms such a strongly correlated and fluctuating system that not only involves asymmetrical, ultra-short-range, and coupling interactions but also responds sensitively to any perturbation or radiation in an ultra-long range manner under a domino-like effect.

Water is much more interesting but less complicated than many of us could ever imagine. Nothing is more fun than playing with water and ice from the perspective of predictive bond-electron-phonon-property collaborative relaxation. It is really an enjoyable and fascinating experience to tackle these anomalies. It is our obligation and great pleasure to share these discoveries and progress, although some formulations and solutions might be subject to further improvement and refinement. Corrections, critiques, and better solutions are welcome and furthermore, much appreciated.

We hope that this volume, though it contributes a tiny drop to the ocean of water knowledge, could inspire fresh ways of thinking and approaching and stimulate more interest and activities toward uncovering the mysteries of water and ice, especially in the contexts of water being embedded in or interacting with other species. The strong correlation, fluctuation, localization, and polarization could be important ingredients in this understanding. Directing effort to interaction between water and soft matter and to water's role of messaging, regulating, repairing, and signaling in bioelectronics, food, drug, and life sciences could be even more challenging, fascinating, promising, and rewarding.

We express our sincere gratitude to friends and peers for their encouragement, invaluable input, and support, and to collaborators, particularly, research associates Dr. Xi Zhang, Dr. Yongli Huang, Dr. Zengsheng Ma, and Mr. Yong Zhou, for contributions. Last but not least, we thank our families, Mrs. Meng Chen, in particular, for assistance, patience, support, and understanding throughout this joyous and fruitful journey.

Singapore China Chang Q. Sun Yi Sun

1	Wond	lers of Water	1
	1.1	Significance of Water and Ice	1
	1.2	Phase Diagram	3
	1.3	Physical Anomalies	9
	1.4	Challenges and Objectives	12
	1.5	Scope of this Volume	15
	Refere	ences	19
2	Wate	r Structure	25
	2.1	Challenge: What Rules the Structure Order?	25
	2.2	Clarification: O Hybridizes Its sp Orbits	26
	2.3	History Background	28
		2.3.1 Typical Structural Models	29
		2.3.2 Intermolecular Interactions	33
	2.4	Quantitative Resolution	35
		2.4.1 Basic Rules	35
		2.4.2 Confirmation	40
	2.5	Summary	44
	Refere	ences	45
3	0:H-	O Bond Cooperativity	49
	3.1	Challenge: How Does a Hydrogen Bond Work?	49
	3.2	Clarification: O:H–O Bond Oscillator Pair	50
	3.3	History Background	51
		3.3.1 O:H Nonbond or Hydrogen Bond?	51
		3.3.2 Pauling's Notion	53
		3.3.3 IUPAC Definition	54
	3.4	Quantitative Resolution	55
		3.4.1 Hydrogen Bond Generality.	55
		3.4.2 O:H–O Bond Segmentation	59
		3.4.3 O:H–O Bond Relaxation	60
		3.4.4 O:H–O Bond Mechanical Disparity	63
		± •	

		3.4.5 Molecular Undercoordination	64
		3.4.6 Thermodynamics: Specific-Heat Disparity	66
		3.4.7 Electromagnetic Activation and Isotope Effect	69
		3.4.8 O:H–O Bond Cooperative Relaxation	72
	3.5	Summary.	76
	Refere	nces	77
4	Phase	Diagram: Bonding Dynamics	81
	4.1	Challenge: What Is Behind the Phase Diagram?	81
	4.2	Clarification: O:H–O Bonding Dynamics	82
	4.3	History Background	83
	4.4	Quantitative Resolution	84
		4.4.1 Energy Required for Phase Transition	84
		4.4.2 Compression Induced O:H–O Bonding Kinetics	86
		4.4.3 Thermally Stimulated O:H–O Bonding	
		Dynamics.	89
		4.4.4 Phase Boundaries: O:H–O Bond Relaxation	94
	4.5	Summary	99
	Refere	nces	99
5	0:H-(Bond Asymmetrical Potentials 1	03
	5.1	Challenge: Symmetrical or Asymmetrical? 1	03
	5.2	Clarification: Asymmetrical, Coupled, and Short Range 1	04
	5.3	Historical Background	05
	5.4	Quantitative Resolution	08
		5.4.1 Lagrangian Oscillating Dynamics 1	08
		5.4.2 Analytical Solutions 1	09
	5.5	Potential Paths for the Relaxed O:H–O Bond 1	11
		5.5.1 O:H–O Bond Compression	11
		5.5.2 O:H–O Bond Elongation	15
	5.6	Generality of ρ -d _x - ω_x -E _x Correlation	18
	5.7	Summary 1	20
	Refere	nces 1	20
6	Mecha	nical Compression 1	25
	6.1	Challenge: Why Does Pressure Melt Ice? 1	25
	6.2	Clarification: H–O Bond Elongation Depresses the $T_m \ldots 1$	26
	6.3	Historical Background	27
		6.3.1 Discovery of Ice Regelation	27
		6.3.2 Liquid Fusion Mechanism	29
		6.3.3 Proton Centralization via Quantum Tunneling 1	29
	6.4	Quantitative Resolution	30
		6.4.1 O:H–O Bond Symmetrization	30
		6.4.2 Phonon Cooperative Relaxation 1	32

xviii

		6.4.3	Liquid/Quasisolid Phase Boundary Dispersion	134
		6.4.4	O:H–O Bond Extraordinary Recoverability	134
		6.4.5	Mechanisms for Regelation	135
		6.4.6	Compression Freezing, Melting, Dewing, and	
			Boiling	136
		6.4.7	Bandgap Expansion: Polarization	137
	6.5	Relevan	t Issues	139
		6.5.1	Ice Cutting	140
		6.5.2	Glacier: Source of Rivers	140
		6.5.3	Spiky Ice	140
		6.5.4	Summary	141
	Appen	dix: Featu	ıred News.	142
	Refere	nces		143
-	There] . F : 4.	A ²	147
/		Challen		14/
	7.1	Challeng	ge: why Does ice Float?	14/
	1.2	Ularinca	Destance d	148
	1.3	History	Einst Dahata	149
		7.5.1	First Debate Augusta between the second se	149
		7.3.2	Available Mechanisms.	151
	74	7.3.3 Oranatita	Remaining Issues	152
	7.4	Quantita	Business Versus Density	153
		7.4.1	Buoyancy Versus Density	153
		7.4.2	Quasisolid Phase.	154
		7.4.5	Site Developed Line in O H O Developed and the	154
		7.4.4	Site-Resolved Liquid U:H=O Bond Relaxation	161
		7.4.5	ΔE_{1s} and $\Delta \omega_{\rm H}$ Correlation	104
	75	/.4.0	Inermal Relaxation of Amorphous Ice	100
	1.5	Insight I		100
		7.5.1	Life Under and Above ice	100
		1.5.2	Rock Erosion: Freezing-Melting Cycle	100
		7.5.3	watering Soil in winter—Freezing Expansion	108
	7.0	7.5.4	Sea Level Rise—Global warming	108
	7.0 D.f.	Summar	Y	109
	Refere	nces		170
8	Molec	ular Und	ercoordination: Supersolidity	175
	8.1	Challeng	ge: Why Are Skins and Clusters so Special?	175
	8.2	Clarifica	tion: O:H–O Bond Elongation and Polarization	176
	8.3	Wonder	s of Molecular Undercoordination	177
	8.4	Quantita	ative Resolution	178
		8.4.1	Extended BOLS-NEP Notion	178
		8.4.2	Geometries: Rings, Cages, and Clusters	179

	8.4.3	O:H–O Length, Cohesive Energy, and Mass	
		Density	181
	8.4.4	H–O Bond Charge Densification	
		and Entrapment	182
	8.4.5	Nonbonding Electron Dual Polarization	183
	8.4.6	Phonon Cooperative Relaxation	185
	8.4.7	O:H–O Bond Potentials	187
8.5	Nanodro	plet and Nanobubble Thermodynamics	187
	8.5.1	Supercooling or Superheating?	187
	8.5.2	Quasisolid Phase Boundary Dispersion	189
	8.5.3	Nanodroplet and Nanofilm Supersolidity	190
	8.5.4	Nanobubbles and Nanodroplets	192
	8.5.5	Quasisolid Versus Supersolid: Second Critical	
		Point	195
8.6	Summary	V	196
Referei	nces	,	197
			- / /
Superl	ubricity o	of Ice	203
9.1	Challeng	e: Why Is Ice so Slippery?	203
9.2	Clarificat	tion: Supersolid Lubricant Skin	204
9.3	History 1	Background	206
	9.3.1	Wonders of Ice Friction	206
	9.3.2	Quasiliquid Skin Notion	209
	9.3.3	Quasiliquid Skin Formation	211
	9.3.4	A Common Supersolid Skin Covers Both Water	
		and Ice	214
9.4	Quantitat	tive Resolution	215
	9.4.1	Skin O:H–O Bond Relaxation	215
	9.4.2	Identical $\omega_{\rm H}$ for Skins of Water and Ice	216
	9.4.3	Skin H-O Bond Contraction and Electron	
		Entrapment	217
	9.4.4	Skin Thermal Stability	218
	9.4.5	Skin Viscoelasticity	219
	9.4.6	Skin Hydrophobicity and Electrostatic	
		Repulsivity.	220
	9.4.7	Phononic Elasticity and Atomistic Friction	220
9.5	Solid Dr	y Friction: Elasticity and Repulsivity	223
	9.5.1	⁴ He Supersolidity: Elasticity and Repulsivity	223
	9.5.2	Superlubricity in Dry Sliding: Atomistic Friction	226
	9.5.3	Quantum Friction: Charging and Isotopic Effect	227
	9.5.4	Solid Nonbonding Electron Self-lubricancy	229
9.6	Wet Lub	pricant Superlubricity	232
	9.6.1	Acid Solutions	232
	9.6.2	Glycerol and Alcohols.	234
		· · · · · · · · · · · · · · · · · · ·	

9

	9.7	Summar	V	235	
	Appen	dix: Featu	red News	236	
	Refere	nces		238	
10	Water	Supersol	id Skin	245	
10	10.1	Challend	re: Why Is Water Skin Unusual?	245	
	10.1	Clarifica	tion: Undercoordinated Molecular Supersolidity	245	
	10.2	History	Background	240	
	10.5	10 3 1	Wonders of Water's Tough Skin	247	
		10.3.1	Known Mechanisms for Wettability	247	
		10.3.2	Selection Pulse for Wetting Interface	251	
		10.3.3	Contact Angle Manipulation	255	
	10.4	10.J.+ Quantita	tive Resolution	255	
	10.4		Segmental Length Dhonon Frequency Binding	234	
		10.4.1	Energy	254	
		10 4 2	Hydrophobicity Repulsivity and Viscoelasticity	254	
		10.4.2	Skin Curveture Dispersed T and T	255	
		10.4.5	Skin Curvature Dispersed T_m and T_N	250	
		10.4.4	and Hydrophobicity	258	
		10/1/5	T Dependent Surface Stress: Θ and E	250	
		10.4.5	Frequency Percent H \cap Bond Pelayation	201	
		10.4.0	Time	261	
		10 4 7	Supersolid Skin Rigidity	261	
	10.5	Superby	dronhobicity Superlubricity Superfluidity	205	
	10.5	and Sup	ersolidity	265	
		10.5.1	Common Attributes	265	
		10.5.1	BOLS NEP Transition Mechanism	205	
		10.5.2	Hydrophobicity Hydrophilicity Transition	260	
		10.5.5	Microchannel: How Does a Double Layer Form?	200	
	10.6	Summar		271	
	Defere	nces	y	273	
	Kultu			274	
11	Mpem	ba Parad	OX	281	
	11.1	Challeng	ge: Why Does Warm Water Freeze Quickly?	281	
	11.2	Clarification: Hydrogen Bond Memory and Skin			
		Supersol	idity	282	
	11.3	Historica	al Background	283	
		11.3.1	Mpemba Paradox	283	
		11.3.2	Latest Development	289	
		11.3.3	Notes on Existing Explanations	290	
	11.4	Numeric	al Resolution: Skin Supersolidity	292	
		11.4.1	Fourier Thermal–Fluid Transport Dynamics	292	
		11.4.2	Convection, Diffusion, and Radiation	293	

xxi

	11.5	Experimental Derivative: O:H–O Bond Memory	296
		11.5.1 O:H–O Bond Relaxation Velocity.	296
		11.5.2 Relaxation Time Versus Initial Energy Storage	297
	11.6	Heat 'Emission-Conduction-Dissipation'	
		Cycling Dynamics	298
		11.6.1 Source and Path: Heat Emission	
		and Conduction	298
		11.6.2 Source–Drain Interface: Non-Adiabatic Heat	
		Dissipation	298
		11.6.3 Other Factors: Supercooling and Evaporating	299
	11.7	Summary	300
	Appen	dix: Featured News	300
	Refere	nces	303
12	Ασμεσ	us Solutions: Quantum Specification	305
	12.1	Challenge: Why Is Salted Water so Special?	305
	12.2	Clarification: O:H–O Bond Electrification	306
	12.3	History Background	307
		12.3.1 Wonders of Hofmeister Series	307
		12.3.2 Known Facts and Mechanisms	309
		12.3.3 Acid-Base Solutions	314
	12.4	Quantitative Resolution	316
		12.4.1 Dominating Factors	316
		12.4.2 Salt Electrification—Point Polarizer	318
		12.4.3 Acid Anti-HB and Base Super-HB	320
		12.4.4 Salt Hydration Quantum Polarization	320
		12.4.5 Acid Hydration—Quantum Fragilation	335
		12.4.6 Base Hydration—Quantum Compression	345
		12.4.7 Methanol, Ethanol, and Glycerol Solutions	348
		12.4.8 Polarization Depolarization.	350
		12.4.9 O:H–O Bond Length and Energy	353
		12.4.10 Acid-Base-Salt Point Switchers.	358
	12.5	Summary	360
	Refere	nces	360
13	Hydra	tion Shells and Water Skin	365
	13.1	Challenge: Skin Stress Versus Molecular Lifetime	365
	13.2	Clarification: Acid Fragilation and Salt Polarization	366
	13.3	H-O Phonon Frequency Dependent Lifetime	366
	13.4	Lifetime Versus Diffusivity	367
	13.5	Polarization Versus Skin Stress	368
	13.6	Skin Stress Versus Viscoelasticity.	369

xxii

	13.7 13.8 Refere	Insight Extension13.7.1Water on Mars13.7.2Hydration and HypertensionSummary	370 370 370 371 372
14	Aqueo 14.1 14.2 14.3	Dus Solution Phase Transition Challenge: Salt Solution Phase Transition Clarification: Quasisolid Phase-Boundary Dispersion Quantitative Resolution 14.3.1 Principle for Solution Phase Transition 14.3.2 Mechanical Icing of Ambient Solutions 14.3.3 Salt Impact Freezing 14.3.4 Solute Type Resolved T _C Under Constant P _C 14.3.5 Gelation Time Under Identical P _C and T _C	375 375 376 377 377 378 385 388 389 390
	Refere	nces	391
15	Electr 15.1 15.2 15.3 15.4	ofreezing and Water BridgingChallenge: Why Does Water Form Bridge?Clarification: O:H–O Bond Ordered ElectrificationHistory Background: Armstrong EffectWonders of Water Electrification15.4.1Tylor Electric Cone-Jet-Spray15.4.2Electric Freezing15.4.3Water Bridge15.4.4Known MechanismsQuantitative Resolution15.5.1O:H–O Bond Deformation and Polarization15.5.2Droplet Electrofreezing: Quasisolid PhaseDispersion15.5.3Soap Film Electrification	 393 393 394 395 396 396 397 398 403 405 405 408 412
	15.6 15.7 Refere	15.5.4 Phonon Spectrometric Evidence Soil Wetting by Aqueous Solution Summary Summary Summary	413 413 415 415
16	Misce 16.1 16.2	Ilaneous IssuesMultifield Coupling.16.1.1Undercoordination Versus Heating16.1.2Compression Compensating Undercoordination.16.1.3Minimal Compressibility–Polarization16.1.4Electrification Enhancing Undercoordination.Isotope Effect on Phonon Frequency Shift	419 419 419 420 422 423 423

xxiii

	16.3	Energy Exchange: Long-Range Perturbation	424
		16.3.1 Ice Flake Formation under Perturbation	424
		16.3.2 Solution Precipitation under Compression	426
		16.3.3 Icing Solute Exclusion.	427
	16.4	Induction and Polarization	428
		16.4.1 Kelvin Water Dropper Battery	428
		16.4.2 Clouds and Fogs: Intrinsic Polarization	431
	16.5	Electromagnetic Radiation and AC Electrification	433
		16.5.1 Dipoles Moving in the Lorentz Force Field	433
		16.5.2 AC Electric Wetting	434
	16.6	Negative Thermal Expansion	436
	16.7	Dielectric Relaxation: Polarization	439
	16.8	Hydrophilic Interface: EZ Water	440
	16.9	Leidenfrost Effect	442
	16.10	Polywater—Electrification and Undercoordination	443
		16.10.1 The Story—Pathological Science	443
		16.10.2 Clarification—Density, Stability, and Viscosity	444
	16.11	H ₂ O–Cell and H ₂ O–DNA Interactions.	445
		16.11.1 Phonon Spectrometrics of H ₂ O–Cell Interaction	445
		16.11.2 Neutron Diffraction from H ₂ O–DNA	446
	16.12	X:H–O Bond	447
	Refere	nces	449
17	Annro	aching Strategies	455
17	Appro	aching Strategies	455
17	Appro 17.1	aching Strategies Numerical Approaches 17.1.1 Quantum Computations	455 455 455
17	Appro 17.1	aching Strategies	455 455 455 455
17	Appro 17.1	aching Strategies Numerical Approaches 17.1.1 Quantum Computations 17.1.2 Skin Stress and Viscosity 17.1.3 Lagrangian Mapping O'H=O Bond Potentials	455 455 455 458 458
17	Appro 17.1	aching Strategies Numerical Approaches 17.1.1 Quantum Computations 17.1.2 Skin Stress and Viscosity 17.1.3 Lagrangian Mapping O:H–O Bond Potentials 17.1.4 Fourier Thermo–Fluid Transport Dynamics	455 455 455 458 458 458
17	Appro 17.1	aching Strategies	455 455 455 458 458 458 459 460
17	Appro 17.1 17.2	aching Strategies Numerical Approaches 17.1.1 Quantum Computations 17.1.2 Skin Stress and Viscosity 17.1.3 Lagrangian Mapping O:H–O Bond Potentials 17.1.4 Fourier Thermo–Fluid Transport Dynamics Probing Strategies 17.2	455 455 455 458 458 458 459 460 460
17	Appro 17.1 17.2	aching Strategies Numerical Approaches 17.1.1 Quantum Computations 17.1.2 Skin Stress and Viscosity 17.1.3 Lagrangian Mapping O:H–O Bond Potentials 17.1.4 Fourier Thermo–Fluid Transport Dynamics Probing Strategies 17.2.1 X-ray and Neutron Diffraction 17.2.2	455 455 455 458 458 458 459 460 460 460
17	Appro 17.1	aching Strategies Numerical Approaches 17.1.1 Quantum Computations 17.1.2 Skin Stress and Viscosity 17.1.3 Lagrangian Mapping O:H–O Bond Potentials 17.1.4 Fourier Thermo–Fluid Transport Dynamics Probing Strategies 17.2.1 X-ray and Neutron Diffraction 17.2.2 Electron Spectrometrics 17.2.3 Phonon and Dielectric Spectrometrics	455 455 455 458 458 458 459 460 460 460 462
17	Appro 17.1 17.2	aching Strategies Numerical Approaches 17.1.1 Quantum Computations 17.1.2 Skin Stress and Viscosity 17.1.3 Lagrangian Mapping O:H–O Bond Potentials 17.1.4 Fourier Thermo–Fluid Transport Dynamics 17.2.1 X-ray and Neutron Diffraction 17.2.2 Electron Spectrometrics 17.2.3 Phonon and Dielectric Spectrometrics Bond–Electron–Phonon–Property	455 455 455 458 458 458 459 460 460 460 462 466 472
17	Appro 17.1 17.2 17.3	aching Strategies Numerical Approaches 17.1.1 Quantum Computations 17.1.2 Skin Stress and Viscosity 17.1.3 Lagrangian Mapping O:H–O Bond Potentials 17.1.4 Fourier Thermo–Fluid Transport Dynamics 17.1.2 Krategies 17.1.4 Fourier Thermo–Fluid Transport Dynamics 17.1.4 Fourier Thermo–Fluid Transport Dynamics 17.2.1 X-ray and Neutron Diffraction 17.2.2 Electron Spectrometrics 17.2.3 Phonon and Dielectric Spectrometrics 17.2.3 The Eventure AFL Correlation	455 455 455 458 458 458 459 460 460 460 462 466 472 472
17	Appro 17.1 17.2 17.3	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The $E_H-d_H-\Delta E_{1s}$ Correlation17.3.2X = $\omega_x - \Delta E_x$ Correlation	455 455 455 458 458 458 458 459 460 460 460 462 466 472 472 473
17	Appro 17.1 17.2 17.3	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The $E_H-d_H-\Delta E_{1s}$ Correlation17.3.2 $Y_x-\omega_X-\Delta E_{1s}$ Correlation17.3.3T_a Versus E	455 455 455 458 458 458 458 459 460 460 460 462 466 472 472 473 474
17	Appro 17.1 17.2 17.3	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The $E_H-d_H-\Delta E_{1s}$ Correlation17.3.3T _C Versus E_x Summary	455 455 455 458 458 458 459 460 460 460 460 462 466 472 472 473 474
17	Appro 17.1 17.2 17.3	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport DynamicsProbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The $E_H-d_H-\Delta E_{1s}$ Correlation17.3.3T _C Versus E_x Summaryncces	455 455 455 458 458 459 460 460 460 460 460 460 460 460 462 472 473 474 474
17	Appro 17.1 17.2 17.3 17.4 Referen	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The E_H - d_H - ΔE_{1s} Correlation17.3.3T _C Versus E_x Summarynces	455 455 455 458 458 458 459 460 460 460 460 460 462 472 472 473 474 474
17	Appro 17.1 17.2 17.3 17.4 Referen Laws 1	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The $E_H-d_H-\Delta E_{1s}$ Correlation17.3.2 $Y_x-\omega_X-\Delta E_{1s}$ Correlation17.3.3 T_C Versus E_x Summarynces	455 455 455 458 458 458 458 458 459 460 460 460 462 466 472 472 473 474 474 475 479
17	Appro 17.1 17.2 17.3 17.4 Referent 18.1	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The $E_H-d_H-\Delta E_{1s}$ Correlation17.3.3T _C Versus E_x SummaryncesKey Thrusts and General Rules	455 455 455 458 458 458 458 459 460 460 460 462 466 472 472 472 473 474 475 479 479
17	Appro 17.1 17.2 17.3 17.4 Referent 18.1 18.2	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The $E_H-d_H-\Delta E_{1s}$ Correlation17.3.3T _C Versus E_x SummaryncesKey Thrusts and General RulesWater Structure and Phase Diagram	455 455 455 458 458 458 458 459 460 460 460 462 466 472 472 472 473 474 474 475 479 480
17	Appro 17.1 17.2 17.3 17.4 Referent 18.1 18.2 18.3	aching StrategiesNumerical Approaches17.1.1Quantum Computations17.1.2Skin Stress and Viscosity17.1.3Lagrangian Mapping O:H–O Bond Potentials17.1.4Fourier Thermo–Fluid Transport Dynamics17.1.4Forbing Strategies17.2.1X-ray and Neutron Diffraction17.2.2Electron Spectrometrics17.2.3Phonon and Dielectric Spectrometrics17.3.1The E_H – ΔE_{1s} Correlation17.3.3T _C Versus E_x SummaryncesKey Thrusts and General RulesWater Structure and Phase DiagramO:H–O Bond Cooperativity	455 455 455 458 458 458 458 459 460 460 460 460 462 466 472 472 473 474 474 475 479 479 480 483

xxiv

18.5	Thermal Excitation at the Ambient Pressure	484
18.6	Mechanical Compression	485
18.7	Molecular Undercoordination	485
18.8	Interfaces Contact: Friction and Wetting	486
18.9	Salt Solutions: Hofmeister Effect	486
18.10	Acid and Base Solutions: Quantum Specification	487
18.11	Electrofreezing and Water Bridging	487
18.12	Magnetification: Dipoles Moving in the Lorentz	
	Force Field	487
18.13	Energy Absorption, Emission, Conduction,	
	and Dissipation	488
18.14	Probing Strategies: Advantages and Limitations	488
Index		489

xxv

About the Authors

Chang Q. Sun received his B.Sc. degree in 1982 from Wuhan University of Science and Technology and the M.Sc. degree in 1987 from Tianjin University, China, and served on its faculty until 1992. He earned his Ph.D. in Surface Physics at Murdoch University, Australia in 1996.

Dr. Sun has been working on the Coordination Bond and Electronic Engineering since 1990 with creation of the unique Bond Relaxation Theory that has enabled: (1) invention of the Coordination-Resolved Electron and Phonon Spectrometrics; (2) reconciliation of the behavior of bonds and electrons associated with

undercoordinated atoms of defects, skins, nanostructures of various shapes, and heterocoordinated atoms in chemisorption and interfaces; (3) formulation of the atomistic, multifield solid mechanics; (4) correlation of bond relaxation and polarization to detectable quantities of aqueous and solid specimens; and (5) resolution of multiple mysteries of water and ice.

His contribution has been featured in two monographs, the present *The Attribute* of Water and the Relaxation of the Chemical Bond (Springer, 2014; Chinese edition published by High Education Press, Beijing, 2015), and multiple treatises published in Friction (2015), Chemical Reviews (2015; 2012), Coordination Chemistry Reviews (2015), Progress in Solid State Chemistry (2015; 2007; 2006), Surface Science Reports (2013), Progress in Materials Science (2009; 2003), Energy and Environment Science (2011), Science China (2012), Nanoscale (2010), etc. Breakthroughs in water research have been featured by numerous media such as Times, The Telegraph, Daily Mails, Physics Today, IOP News, Chemical World, Chem Views, Nature Chemistry, New Scientist, etc.

Dr. Sun was conferred the First Laureate of the 25th Khwarizmi International Science Award in 2012 and the Inaugural Nanyang Award of Research in 2005, and finalist of Singapore Presidential/National Science Award in 2012 and 2003. He is currently on the Editorial Advisory Board of numerous scientific journals.

About the Authors

Yi Sun received her B.Sc. degree in Physics from University of Illinois at Urbana-Champaign (UIUC) in 2008, her M.A. in Economics and Ph.D. degree in Public Policy from the University of Chicago in 2016. Besides the current project, she has been devoted to the electron spectrometrics of binding energy shift of graphene, Ni/TiO₂, and Pt/CNT nanocrystals and interfaces and the superhydrophilicity, superfluidity, superlubricity, and supersolidity at the nanometric contacts from the perspective of undercoordinationinduced quantum entrapment and polarization. She received the Commonwealth Edison/Bristow Award in Physics and was named a Chancellor's Scholar at UIUC in 2008.

xxviii