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Gaucher’s disease (GD), an inherited metabolic disorder caused 
by mutations in the glucocerebrosidase gene (GBA), is the most 
common lysosomal storage disease1. Heterozygous mutations 
in GBA are a major risk factor for Parkinson’s disease2. GD is 
divided into three clinical subtypes based on the absence  
(type 1) or presence (types 2 and 3) of neurological signs.  
Type 1 GD was the first lysosomal storage disease (LSD) 
for which enzyme therapy became available, and although 
infusions of recombinant glucocerebrosidase (GCase) 
ameliorate the systemic effects of GD, the lack of efficacy for 
the neurological manifestations, along with the considerable 
expense3 and inconvenience of enzyme therapy for patients, 
renders the search for alternative or complementary therapies 
paramount. Glucosylceramide and glucosylsphingosine 
accumulation in the brain leads to massive neuronal loss in 
patients with neuronopathic GD (nGD)4 and in nGD mouse 
models5–7. However, the mode of neuronal death is not known. 
Here, we show that modulating the receptor-interacting protein 
kinase-3 (Ripk3) pathway markedly improves neurological 
and systemic disease in a mouse model of GD. Notably, Ripk3 
deficiency substantially improved the clinical course of GD 
mice, with increased survival and motor coordination and 
salutary effects on cerebral as well as hepatic injury.

We previously demonstrated elevation of proinflammatory cytokines, 
including interleukin-1β and tumor necrosis factor-α (Tnf-α)6, in  
a mouse model of GD: Gbaflox/flox; nestin-Cre mice. These mice7  
recapitulate many features of human nGD, although their Gba  
deficiency is restricted to neural and macroglial lineages5,7. To 
determine the mechanism of neuronal cell death, we examined brain 
pathology in two independent GD models: Gbaflox/flox; nestin-Cre 
mice7 and a chemically induced model in which an irreversible GCase 
inhibitor, conduritol B epoxide (CBE)8, was injected intraperitoneally 
(i.p.) daily into C57BL/6 mice. Although both Nissl5 and Fluoro-
Jade C staining (Fig. 1a) detected profound levels of cell death in the  
cerebral cortex of 16- and 21-d-old Gbaflox/flox; nestin-Cre mice and 
27-d-old CBE-treated mice, we observed no TUNEL-positive cells 
(Fig. 1b). Similarly, there was no elevation in the activity of caspase-9,  
caspase-3/7 (Fig. 1c) (with the exception of a modest elevation in  

caspase-3/7 at the terminal disease stage in Gbaflox/flox; nestin-Cre 
mice) or caspase-8 (Fig. 1c) and no cleavage of caspase-8 (Fig. 1d) or 
poly (ADP-ribose) polymerase (Parp1) (Fig. 1e), suggesting that neu-
ronal cell death in nGD is caspase independent and nonapoptotic.

Recent work has demonstrated the existence of a form of pro-
grammed ne crosis (termed necroptosis) that is dependent on the  
protein serine-threonine kinases RIPK1 and RIPK3 (ref. 9). Necroptosis  
can be triggered upon activation of TNF receptors9 or Toll-like  
receptors10, in response to genotoxic stress11 and during virus  
infection 12. Cleavage of these kinases by caspase-8 prevents necropto-
sis and is associated with apoptosis13. However, when caspase-8 is 
inactive, RIPK1 and RIPK3 are not cleaved but rather engage the 
effector mechanisms of necroptosis14. Recently, the antiapoptotic pro-
tein c-FLIP (also known as CFLAR (short for CASP8 and FADD-like 
apoptosis regulator)), a catalytically inactive homolog of caspase-8, 
was shown to have an essential role in the regulation of necroptosis15.  
Caspase-8 maintains sufficient proteolytic activity when found in 
a heterodimer with c-FLIP long (c-FLIPL) to prevent the associa-
tion of RIPK1, RIPK3 and FADD (Fas-associated protein with death 
domain)16, thus inhibiting necroptosis; in contrast, a heterodimer 
of caspase-8 and c-FLIP short (c-FLIPS) has no proteolytic activity, 
permitting the assembly of RIPK1 and RIPK3 and thus promoting 
necroptosis10. In both GD mouse models, we detected (by mRNA  
levels, Fig. 1f, and by western blotting, Fig. 1g) elevated levels of  
c-FlipS in the brains of symptomatic mice, suggesting the presence  
of a caspase 8–c-FlipS heterodimer, which would explain the lack 
of caspase-8 activity (Fig. 1c) in the brains of mice with nGD. We 
detected an elevation in c-FlipL mRNA levels only at the terminal 
stage of the disease in Gbaflox/flox; nestin-Cre mice (Fig. 1f).

Increased expression of RIPK1 and RIPK3 and the contribution of 
these proteins to various pathological conditions such as detachment 
of the retina17, macrophage necrosis in atherosclerosis development18, 
regulation of virus-induced inflammation19, systemic inflammatory 
response syndrome20 and ethanol-induced liver injury21 have been 
reported. All of these pathological states involve necrotic cell death, 
suggesting that the contribution of RIPK1 and RIPK3 to these patho-
logical states can be attributed to their role in necrosis. To elucidate 
the role of necroptosis in nGD brains, we analyzed levels of Ripk1 and 
Ripk3, both of which were markedly elevated (determined by analysis 
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of mRNA levels (Fig. 2a) and by western blotting (Fig. 2b,c)) in the 
brains of symptomatic Gbaflox/flox; nestin-Cre mice. Crucially, levels 
of RIPK1 were also elevated in the one available brain of a human 
patient who succumbed to type 2 GD compared to an age-matched 
control brain (Supplementary Fig. 1).

An additional role of RIPK1 and RIPK3 in inflammatory processes 
has recently been suggested22; RIPK1 and RIPK3 may contribute  
to inflammation independent of cell death by activating the NLRP3 
inflammasome22. The role of RIPK3 in proinflammatory processes  
is also supported by the fact that epidermis-specific elimination of 
caspase-8 leads to chronic inflammation23,24 that can be suppressed by 
deletion of Ripk3 (ref. 25). To elucidate the role of Ripk3, we analyzed 
whether Ripk3 abundance was increased in microglia, neurons or 
astrocytes. In brains of Gbaflox/flox; nestin-Cre mice, Ripk3 expression 
was increased in all Mac-2–positive (i.e., activated) microglia (Fig. 2d),  
consistent with a neuroinflammatory role for Ripk3. Ripk3 was mainly 
expressed in the nuclei of neurons from Gbaflox/flox; nestin-Cre mice, in 
contrast to control mice where it was located in the cytoplasm (Fig. 2e),  
which implies a possible role for Ripk3 in neuronal cell death. 
Translocation of RIPK3 to the nucleus has been observed in HeLa 

cells upon treatment with leptomycin B26, but RIPK3 translocation 
in the central nervous system has not been reported. However, Ripk3 
was undetectable in glial fibrillary acidic protein (Gfap)-positive  
astrocytes, suggesting a lack of involvement of this pathway in  
activated astrocytes (Fig. 2d). A direct correlation was observed 
between the brain regions that are affected in nGD5 and the pres-
ence of the immunoreactive Ripk3 signal (data not shown). Notably, 
expression of Ripk1 and Ripk3 were unaltered in brains obtained from 
mouse models of other LSDs, such as Niemann-Pick type C1, GM1 
gangliosidosis and Sandhoff ’s disease (data not shown). However, 
Ripk1 and Ripk3 expression was markedly elevated (approximately 
fivefold and threefold, respectively) in the brains of twitcher mice, 
which lack β-galactocerebrosidase and are an authentic mouse 
model of Krabbe’s disease27 (Fig. 2f). This indicates that although 
brain inflammation and microglial activation are shared features of 
many LSDs28,29, different pathways of neuroinflammation occur in 
specific LSDs.

To further explore the role of RIP kinases in GD pathology,  
we induced GD in Ripk3-deficient mice. In contrast to Ripk1-null 
mice, which die 1–3 d after birth30 and are thus unsuitable for in vivo 
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Figure 1 Neuronal cell death in mice with GD is nonapoptotic. Data were obtained  
from Gbaflox/flox; nestin-Cre mice (−/−) and their respective Gbaflox/+; nestin-Cre  
littermate controls (+/−) or from C57BL/6 mice injected i.p. with either  
50 mg per kg body weight (mg kg−1) per day CBE or PBS starting at 8 d of age.  
(a) Fluoro-Jade C staining (green) indicates dying neurons in cortical layer V of  
21-d-old Gbaflox/flox; nestin-Cre mice (n = 5) and 27-d-old CBE-treated mice  
(n = 2); for CBE-treated mice, a further 6 biological replicates were performed in  
other mouse strains using different doses of CBE with similar results. (b) TUNEL  
staining of cortical layer V in 21-d-old Gbaflox/flox; nestin-Cre mice (n = 3) and in 27-d-old CBE-treated (n = 2) mice. Sections were counterstained  
with DAPI (blue). No TUNEL staining (red) can be seen. Scale bar for a and b, 100 µm. (c) Activity of caspase-8, caspase-9 and caspase-3/7 in  
cortical homogenates of 16-d-old (top) and 21-d-old (middle) Gbaflox/flox; nestin-Cre mice and in 27-d-old CBE-treated mice (bottom). Activities were 
normalized to 100% of the values of control mice. Values are mean ± s.e.m. (n = 2 for CBE-treated mice, n = 7 for 21-d-old Gbaflox/flox; nestin-Cre  
mice and n = 5 for all others). *P < 0.05. (d) Western blots of caspase-8 showing full-length caspase-8 (procaspase 8), the cleaved intermediate 
p43/p41 and the caspase-8 active fragment p18 in homogenates (100 µg protein) from the brains of 27-d-old CBE-treated mice (n = 2) and of  
21-d-old Gbaflox/flox; nestin-Cre mice (n = 4). Gapdh served as a loading control. A liver homogenate from C57BL/6 mice treated with a Fas-activating 
antibody (Jo2) acted as a control for caspase-8 cleavage. (e) Western blots of the cleavage product of Parp1 (Mr of 89 kDa) in homogenates  
(100 µg protein) from brains of 27-d-old CBE-treated mice (n = 2) and 21-d-old Gbaflox/flox; nestin-Cre mice (n = 4). Gapdh served as a loading  
control. A liver homogenate from mice treated with Jo2 acted as a control for Parp1 cleavage. (f) RT-PCR of c-FlipL and c-FlipS in cortical homogenates 
from 21-d-old CBE-treated mice (n = 3) and 16- and 21-d-old Gbaflox/flox; nestin-Cre mice (n = 4). Results are expressed as fold change versus 
untreated or littermate control mice and are mean ± s.e.m. Cycle threshold (Ct) values were normalized to levels of TATA box–binding protein (Tbp).  
*P < 0.05, **P < 0.01, ***P < 0.001, between Gbaflox/flox; nestin-Cre versus littermate control mice and between mice treated with CBE versus  
PBS. (g) Western blots of c-FlipL and c-FlipS in homogenates (150 µg protein) from brains of 21-d-old Gbaflox/flox; nestin-Cre mice (n = 4) and  
21-d-old CBE-treated mice (n = 5). Gapdh served as a loading control.
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studies, Ripk3-deficient mice do not show adverse effects in develop-
ment or in overall health31. We induced GD by daily CBE injection8,32. 
We chose the CBE model because GCase activity is inhibited in all cell 
types and organs upon CBE treatment, in contrast to the Gbaflox/flox; 
nestin-Cre mouse model in which GCase deficiency is restricted to 
cells of neuronal lineage. Moreover, the latter model is very severe in 
disease progression, with mice not surviving beyond 3–4 weeks of age, 
limiting the available window of therapeutic intervention. Levels of 
Ripk1 and Ripk3 (determined by analysis of mRNA levels (Fig. 2g)  
and by western blotting (Fig. 2h)) and mRNA levels of c-FlipS (Fig. 2i)  
were markedly elevated in the brains of Ripk3+/− CBE-treated mice, 
which is similar to what is observed in the Gbaflox/flox; nestin-Cre 
mouse model. Notably, whereas Ripk3+/− mice (control mice) injected 
with CBE displayed typical manifestations of mouse GD5,8 (i.e., weight 
loss (Fig. 3a) and loss of motor coordination (Fig. 3b)), the signs of  
disease in Ripk3−/− mice injected with CBE were considerably amelio-
rated (Fig. 3a,b). The lifespan of Ripk3−/− mice injected with CBE was 

significantly extended to >100 d, with survival to 180 d in some animals,  
whereas no Ripk3+/− mice survived beyond 40 d of age (Fig. 3c).  
We observed improvements in motor coordination (Fig. 3b)  
and lifespan (Fig. 3c) before appearance of neuronal loss but after 
appearance of neuroinflammation (Fig. 3d) that were accompanied by 
markedly fewer activated microglia in layer V of the cortex (Fig. 3d). 
These results directly implicate the Ripk3 pathway in neuroinflam-
mation and indicate that this pathway might be a molecular target  
for therapeutic intervention in nGD.

Moreover, liver injury was also ameliorated in CBE-treated Ripk3−/− 
mice, which showed fewer CD68-positive Kupffer cells (Fig. 3e) and a 
decrease in serum alanine aminotransferase (ALT) activity, suggesting 
that CBE-induced hepatocyte injury was also attenuated (Fig. 3f).  
Finally, the ratio of spleen weight to body weight, an indicator of 
GD progression in CBE-treated mice8, was also improved (Fig. 3g). 
Improvement in the outcome of visceral symptoms, as well as in central  
nervous system pathology after CBE administration, supports the 
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Figure 2 Elevation of Ripk1 and Ripk3 in brains from mice with GD and Krabbe’s disease.  
For a–e, data were obtained from 21-d-old Gbaflox/flox; nestin-Cre mice (−/−) and their respective  
littermate controls (+/–). (a) RT-PCR of Ripk1 and Ripk3 in cortical homogenates from 21-d-old Gbaflox/flox;  
nestin-Cre mice. Results are expressed as fold change and are mean ± s.e.m. (n = 3 for littermate control mice and n = 6  
for Gbaflox/flox; nestin-Cre mice). Ct values were normalized to levels of TBP. *P < 0.001. (b) Western blot of homogenates  
(150 µg of protein) from the brains of 16- and 21-d-old Gbaflox/flox; nestin-Cre mice (n = 5). Full-length Ripk1 and cleaved  
Ripk1 are indicated by arrows, and unidentified cleavage products of Ripk1 are indicated by asterisks. Mr (molecular weight)  
markers are shown. Gapdh was used as loading control. (c) Western blot of homogenates (150 µg of protein) from the brains of  
16- and 21-d-old −/− mice. Full-length Ripk3 is indicated by an arrow, and an unidentified band is indicated by an asterisk.  
A homogenate from the brain of a Ripk3-null (Ripk3−/−) mouse was used as a control; the top band, indicated by the arrow, is  
absent in the Ripk3−/− mouse, confirming the identity of this band in the mice with GD. Mr markers are shown. Gapdh was used as  
loading control. (d) Double immunofluorescence of 16-d-old Gbaflox/flox; nestin-Cre mice using either anti-Ripk3 and anti–Mac-2 (top) or anti-Ripk3  
and anti-Gfap (bottom) antibodies. Ripk3 is in red, Mac-2 and Gfap are in green and areas of overlap indicated on the right. Scale bar, 10 µm.  
Results are representative of three biological replicates. (e) Double immunofluorescence of 16-d-old littermate control (control, top) and Gbaflox/flox; 
nestin-Cre mice (bottom) using DAPI (blue) and anti-NeuN (green) and anti-Ripk3 (red) antibodies; areas of overlap are indicated on the right  
(merged). Arrows indicate nuclear staining of Ripk3. Scale bar, 10 µm. Results are representative of three biological replicates. (f) Western blot of 
homogenates (150 µg of protein) from the brains of 5-week-old mice with Krabbe’s disease (twitcher mice). Blots were probed with anti-Ripk1 or  
anti-Ripk3 antibodies. Full-length Ripk1, cleaved Ripk1 and Ripk3 bands are indicated by arrows, and unidentified bands on the Ripk1 and Ripk3  
blots are indicated by asterisks (*). Results are representative of two biological replicates. A homogenate from the brain of a Ripk3−/− mouse was used 
as a control and Gapdh as a loading control. (g) RT-PCR of Ripk1 and Ripk3 in cortical homogenates from 28-d-old Ripk3+/− (control) and Ripk3−/−  
mice treated with either CBE (25 mg kg−1 per day) or PBS from 8 d of age. Results are expressed as fold change and are mean ± s.e.m. (n = 3).  
Ct values were normalized to levels of TBP. *P < 0.05, **P < 0.01, between Ripk3+/− and Ripk3−/− mice treated with CBE versus PBS. (h) Western blot 
of homogenates (150 µg of protein) from the brains of 28-d-old Ripk3+/− (+/–) and Ripk3−/− mice (−/−) treated with either CBE (25 mg kg−1 per day) 
or with PBS from 8 d of age. Top, full-length Ripk1. Bottom, full-length Ripk3 is indicated by an arrow and an unidentified band is indicated by an 
asterisk. Results are representative of three biological replicates. Mr markers are shown. Gapdh was used as loading control. (i) RT-PCR of c-FlipL and  
c-FlipS in cortical homogenates from 28-d-old Ripk3+/− (control) and Ripk3−/− mice treated with either CBE (25 mg kg−1 per day) or with PBS from  
8 d of age. Results are expressed as fold change and are mean ± s.e.m. (n = 3). Ct values were normalized to levels of TBP. *P < 0.05, between 
Ripk3+/− and Ripk3−/− mice treated with CBE versus PBS.
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hypothesis that Ripk3 is critical for a specific mode of microglia and 
macrophage activation in the inflammatory response. Notably, we 
observed no phenotypic difference in the disease induced by CBE in 
Tnf-deficient mice (Fig. 4a), and disease progression in these mice 
was accompanied by elevated Ripk1 (Fig. 4b) and Ripk3 (Fig. 4c) 
levels, which suggests that the experimentally induced GD pathology 
is Ripk3 dependent but Tnf independent.

In conclusion, our results show that Rip kinases are directly 
involved in the pathway of pathological events in severe forms 
of GD and also appear to be involved in the acute neuropatho-
logical changes in Krabbe’s disease. Ripk3 elevation in microglia, 
together with the improvement in symptoms before neuronal loss 
and the attenuation of the pathological injury in peripheral organs 
in Ripk3−/− mice with GD, also supports the notion22,33 that Ripk3 
not only is a key activator of necrotic cell death but also orches-
trates inflammatory engagement independent of necrosis. The role  
of Ripk3 in activated microglia and macrophages clearly merits 
further investigation.

Hitherto, no suitable inhibitors of the Rip kinase pathway dis-
playing in vivo activity in brains of mice or humans have been 
identified. The Ripk1 inhibitor necrostatin-1 has been used to 
demonstrate the importance of Ripk1 in mediating acute tissue 
injury17,34–36, but although necrostatin-1 crosses the blood-brain 
barrier, it has a half-life of ~1h, which means it is unsuitable for 
treatment of chronic diseases such as GD37,38. A Ripk3 inhibitor39 
and an inhibitor of necrosis downstream to RIPK3 (ref. 40) have 
demonstrable effects on mouse and human cell lines, but have  
not been shown, to date, to display efficacy in vivo or to cross the 

blood-brain barrier. Development of such inhibitors may pave the 
way for alternative therapeutic approaches for all three subtypes of 
GD and potentially also for Krabbe’s disease, for which innovative 
treatment is urgently required.

MeTHoDS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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20 d. Results are mean ± s.e.m. *P < 0.05.
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Figure 4 The clinical course of mice with GD 
is Tnf independent. (a) Body weight of Tnf+/− 
(control, n = 4) and Tnf−/− (n = 3) mice treated 
with either CBE (50 mg kg−1 per day) or PBS 
(n = 3 for Tnf+/− and n = 4 for Tnf−/− mice) 
from 8 d of age. Results are mean ± s.e.m. 
(b,c) Western blot of homogenates (150 µg of 
protein) from the brains of 22-d-old Tnf+/− (+/–) 
and Tnf−/− (−/−) mice treated with either CBE 
(50 mg kg−1 per day) or PBS from 8 d of age. 
Full-length Ripk1 and cleaved Ripk1 are indicated by arrows, and unidentified cleavage products of Ripk1 are indicated by asterisks (b). Full-length 
Ripk3 is indicated by an arrow, and an unidentified band is indicated by an asterisk (c). Results are representative of three biological replicates.  
Mr markers are shown. Gapdh was used as loading control.
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Animals and brain tissues. Gbaflox/flox mice were crossed with Gbaflox/+;  
nestin-Cre mice to generate Gbaflox/flox; nestin-Cre mice7 and Gbaflox/+;  
nestin-Cre mice, which served as healthy controls. Genotyping was performed 
by PCR using genomic DNA extracted from mouse tails or embryonic brains41. 
Both male and female mice were used. The colony was maintained in the 
experimental animal center of the Weizmann Institute of Science. All animal 
experiments were approved by the Weizmann Institute Institutional Animal 
Care and Use Committee. Mice deficient in galactocerebrosidase (twitcher 
mice) were used as a model of Krabbe’s disease27, and mice deficient in the 
β subunit of β-hexosaminidase A and B were used as a model of Sandhoff ’s 
disease42. Brains from a mouse model of the GM1 gangliosidosis43, defective  
in lysosomal β-galactosidase, and from Niemann-Pick disease type C1 (ref. 44)  
mice, defective in the Npc1 gene, were also used. Mice deficient in Tnf 
(strain B6; 129S6–Tnftm1Gkl/J, The Jackson Laboratory) were provided by 
D. Wallach. C57BL/6 mice (The Jackson Laboratory) were injected daily i.p. 
with 50 mg CBE per kg body weight per day8 or with PBS from 8 d of age. 
Ripk3−/− mice31 were provided by Genentech (South San Francisco, CA) and 
backcrossed with C57BL/6 mice to generate Ripk3+/− mice. Ripk3+/− mice 
were crossed with Ripk3−/− mice to generate Ripk3+/− and Ripk3−/− littermates. 
Ripk3+/− and Ripk3−/− mice were injected daily i.p. with 25 mg CBE per kg body 
weight per day8 or with PBS from 8 d of age. No animals were excluded from 
the study, the sample size was chosen so as to validate statistical analyses, no 
randomization was used and the investigator was not blinded.

Human brain tissue. A control human brain from an infant who died at 
birth was provided by the University of Miami Brain and Tissue Bank for 
Developmental Disorders. The control brain was frozen within 6–26 h of 
death. A brain sample from a type 2 GD patient, who died at 1 year of age, 
was obtained with informed consent.

Histochemistry. Tissue was prepared as described29. Paraffin sections were 
incubated with an antibody to Ripk3 (ref. 45) (1:100, ProSci, 2283), an anti-
body to NeuN6 (1:50, Chemicon, MAB377), an antibody to Mac-2 (ref. 5) 
(1:250, Cedarlane, CL8942AP) and an antibody to Gfap5 (1:100, Dako, Z0334). 
Counterstaining was performed with DAPI (Molecular Probes, Eugene, OR, 
USA) (1:2,000, 1 min). Apoptotic cells were detected using TUNEL (ApopTag 
Red in situ kit, Chemicon, Temecula, CA). Kupffer cells were stained with  
a rat antibody to CD68 (ref. 46) (1:1,000, Serotec, MCA1957) on floating  
sections. Degenerating neurons were stained with the anionic fluores-
cein derivative, Fluoro-Jade C, according to manufacturer’s instructions 
(HistoChem, Jefferson, AR).

Caspase activity. Caspase-3/7 (caspase 3 and 7 share the same substrate),  
caspase-8 and caspase-9 were assayed using a Caspase-Glo assay kit (Promega).

RNA extraction and quantitative PCR. Cortical tissues were used for  
total RNA extraction. Total RNA isolation, cDNA synthesis and quanti-
tative RT-PCR were performed as described29. The relative amounts of  
mRNA were calculated from the cycle threshold (Ct) values using TBP for  
normalization. Quantitative PCR was performed using the SYBR Green method 
with the following primers: TBP forward 5′-TGCTGTTGGTGATTGTTGGT-3′  
and TBP reverse 5′-CTGGCTTGTGTGGGAAAGAT-3′; Ripk1 forward 5′-AG 
TCGAGACTGAAGGACACAGCACT-3′ and Ripk1 reverse 5′-TCCAGCA 

GGTCACTGGATGCCAT-3′; Ripk3 forward 5′-CTTGAACCCTCCGCT 
CCTGC-3′ and Ripk3 reverse 5′-AATCTGCTAGCTT GGCGTGG-3′; c-FlipL  
forward 5′-ACATGTGTGCTCTGTGGAGG-3′ and c-FlipL reverse 5′-TGCCTG 
GCTGATTCTGTCTC-3′; and c-FlipS forward 5′-ACCTCACGGAACTCA 
TGTCC-3′ and c-FlipS reverse 5′-TGGGTAGATTCTCTGTGCATGG-3′.  
P values were calculated using a one-tailed two–independent sample Student’s 
t-test. A P value ≤0.05 was considered statistically significant.

Protein extraction and western blotting. Homogenates were prepared 
as described29. Blots were incubated with the following antibodies: rabbit 
antibody to RIP1 (ref. 47) (1:1,000, Cell signaling, 3493), rabbit antibody 
to cleaved PARP48 (1:1,000, Cell Signaling, 9544), rabbit antibody to RIPK3 
(ref. 45) (1:1,000, ProSci, 2283), rat antibody to caspase-8 (ref. 23) (1:2,000, 
Enzo Biochem, ALX–804–448), rabbit antibody to FLIP49 (1:1,000, Cell 
Signaling, 3210) and a mouse antibody to GAPDH6 (1:10,000, Chemicon, 
MAB374), followed by incubation with a horseradish peroxidase–conjugated 
secondary antibody (anti-rabbit 111-035-003, anti-rat 112-035-003 and anti-
mouse 115-035-003, 1:10,000, Jackson ImmunoResearch). Bound antibodies 
were detected using the SuperSignal West Pico chemiluminescent substrate 
(Thermo Scientific).

Serum alanine aminotransferase. ALT was detected using Spotchem II strips 
(Arkray, Japan).

Behavioral testing. A rotarod test (Harvard equipment) was used to evaluate 
rotarod behavior in 31-d-old mice using an accelerating paradigm (4 min on 
the rotarod at 40 r.p.m.).

Statistical analyses. All data are shown as mean ± s.e.m. Comparisons between 
two samples were performed using a two-tailed Student’s t-test. P < 0.05 was 
considered statistically significant.
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