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tetraacetic acid; ELISA, enzyme-linked immunosorbent assay; FBS, fetal bovine 

serum; H2, molecular hydrogen; HMGB1, high mobility group box-1; HO-1, heme 

oxygenase-1; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-10, interleukin-10; I/R, 
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monocyte chemoattractant protein; MIP, macrophage inflammatory protein; MTT, 

3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide; NADPH, 

nicotinamide adenine dinucleotide phosphate; Nrf2, nuclear factor erythroid 2-related 

factor 2; PMSF, phenylmethanesulfonyl fluoride; P/S, penicillin/streptomycin 

solutions; PVDF, polyvinylidene fluoride; RIPA, radioimmunoprecipitation assay; 

TBST, Tris-Buffered Saline with Tween; TNF-α, tumor necrosis factor-alpha; ZnPP, 
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Abstract. 

Background: Molecular hydrogen (H2) as a new medical gas has an 

anti-inflammatory effect. In the present study, we investigated whether heme 

oxygenase-1 (HO-1) contributes to the anti-inflammatory effect of H2 in 

lipopolysaccharide (LPS) -stimulated RAW 264.7 macrophages. Methods: RAW 

264.7 macrophages were stimulated by LPS (1 µg/ml) with presence or absence of 

different concentrations of H2. Cell viability and injury were tested by 

3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay and 

lactate dehydrogenase (LDH) release, respectively. The cell culture supernatants were 

collected to measure inflammatory cytokines [TNF-α, IL-1β, HMGB1 (high mobility 

group box-1) and IL-10] at different time points. Moreover, HO-1 protein expression 

and activity were tested at different time points. In addition, to further identify the role 

of HO-1 in this process, zinc protoporphyrin (ZnPP)-IX, an HO-1 inhibitor, was used. 

Results: H2 treatment had no significant influence on cell viability and injury in 

normally cultured RAW 264.7 macrophages. Moreover, H2 treatment 

dose-dependently attenuated the increased levels of pro-inflammatory cytokines 

(TNF-α, IL-1β, HMGB1), but further increased the level of anti-inflammatory 

cytokine IL-10 at 3 h, 6 h, 12 h and 24 h after LPS stimulation. Furthermore, H2 

treatment could also dose-dependently increase the HO-1 protein expression and 

activity at 3 h, 6 h, 12 h and 24 h in LPS-activated macrophages. In addition, blockade 

of HO-1 activity with ZnPP-IX partly reversed the anti-inflammatory effect of H2 in 

LPS-stimulated macrophages. Conclusions: Molecular hydrogen exerts a regulating 
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role in the release of pro- and anti-inflammatory cytokines in LPS-stimulated 

macrophages, and this effect is at least partly mediated by HO-1 expression and 

activation. 

Keywords: inflammatory cytokines; molecular hydrogen; macrophage; heme 

oxygenase-1 
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Introduction 

Inflammation is the instinct biological response that protects living organisms 

from harmful stimuli such as pathogens, damaged cells, or irritants [1], but excessive 

inflammatory response is the basis for the development of diseases, such as sepsis, 

ischemia-reperfusion (I/R) injury, cancer, neurodegeneration [2-5]. Recently, more and 

more researchers demonstrate that molecular hydrogen (H2) has the anti-inflammatory, 

antioxidant and anti-apoptotic effects in vivo and in vitro, and can protect against 

multiple diseases, such as stroke, sepsis, multiple organ dysfunction syndrome, 

cisplatin-induced ototoxicity, I/R injury, atherosclerosis, nigrostriatal degeneration 

diseases, etc [6-17]. Our previous studies have shown that H2 has a therapeutic effect on 

sepsis, sepsis-associated organ damage and LPS-induced acute lung injury through 

reducing inflammatory mediators, such as TNF-α, IL-1β, IL-6 and HMGB1 in serum 

and tissues [7-9]. Moreover, a recent study has reported that hydrogen saline reduces 

the TNF-α release in LPS-activated macrophages [17]. So far, however, the specific 

mechanism underlying the anti-inflammatory role of H2 is unclear.  

   Heme oxygenase (HO) catalyzes the rate-limiting step in heme degradation, which 

can produce bilirubin, iron, and carbon monoxide (CO) [18]. To date, three HO 

isoforms HO-1, HO-2 and HO-3 have been identified. HO-1, a major heat 

shock/stress response protein, is ubiquitous as well as its expression and activity can 

be increased by stimuli that induce cellular stress. HO-1 can contribute to 

accommodate the release of inflammatory cytokines in intestinal inflammation, sepsis, 

LPS-stimulated macrophages [19-21]. In addition, H2 can increase the HO-1 expression 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[22]. From above studies, we assumed that HO-1 might mediate the anti-inflammatory 

effect of H2. 

    Macrophages are the first cells to confront microbial pathogens through 

phagocytosis and cytokine secretion [23]. In the present study, using the 

LPS-stimulated RAW 264.7 murine macrophage model, we investigated the 

regulating effect of H2 on the release of inflammatory cytokines, and then the role of 

HO-1 in this process was studied. 
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Materials and Methods 

Materials 

Cell culture medium (Dulbecco Modified Eagle Medium, DMEM), fetal bovine 

serum (FBS) and penicillin/streptomycin solutions (P/S) were purchased from Life 

Technologies Corporation (Grand Island, NY, USA). Cytotoxicity Assay kit was 

obtained from Roche Applied Science (Roche, IN). HO-1 and β-actin primary 

antibodies and horseradish peroxidase-conjugated goat anti-rabbit secondary antibody 

were bought from Abcam (Cambridge, MA, USA). Enzyme-linked immunosorbent 

assay kits of TNF-α, IL-1β, IL-10 were from R&D Systems Inc (Minneapolis, MN, 

USA) and HMGB1 was from IBL (Hamburg, Germany). ZnPP-IX was obtained from 

Porphyrin Products (Logan, UT, USA). All other reagents were purchased from 

sigma-Aldrich (St. Louis, MO, USA). 

Cell culture and LPS stimulation 

RAW 264.7 macrophages were purchased from the cell Bank of Shanghai Institutes 

for Biological Science (Shanghai, China). RAW 264.7 cells were grown in DMEM 

supplemented with 10% heat-inactivated FBS and 100 U/mL penicillin, 100 µg/mL 

streptomycin, and cultured at 37 °C with 5% CO2 in a humidified atmosphere. 

Confluent cells between the 4th to 6th passages were used for these experiments. The 

cells were seeded at a density of 1×106 cells/mL.  

LPS treatment was given by adding 1 µg/mL of LPS into medium. The HO-1 inhibitor 

ZnPP-IX (20 µmol/L) was added into medium just before the application of hydrogen 

and LPS.  
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Hydrogen treatment 

According to the previously described method [6], briefly, H2 was dissolved in 

DMEM for 4 h under high pressure (0.4 MPa) to a supersaturated level. O2 was 

dissolved into the second medium by bubbling O2 gas at the saturated level, and CO2 

into the third medium by bubbling CO2 gas. 0.6 mM hydrogen medium was prepared 

by combining the three medium in the proportion of 90% H2 medium:5% O2 

medium:5% CO2 medium. The control medium was prepared by combining the two 

medium (95% O2 medium:5% CO2 medium). The 0.15 mM and 0.3 mM hydrogen 

complete media were prepared by diluting the 0.6 mM hydrogen complete medium 

with the control medium. H2, O2 and CO2 concentrations were confirmed with gas 

chromatography. 

Cell viability and cytotoxicity 

RAW 264.7 cells (104 cells/well) were seeded in a 96-well plate overnight, and then 

incubated with different concentrations of hydrogen for 24 h. According to the 

manufacturer’s guidelines, cell injury and viability were tested by measuring the LDH 

release and MTT assay, respectively. 

Enzyme-linked immunosorbent assay (ELISA) 

The supernatants were collected for measurement of inflammatory cytokines at 

baseline (0 h) as well as 3 h, 6 h, 12 h and 24 h after LPS stimulation. The 

supernatants were separated by centrifugation at 3, 000 g for 15 min at 4 °C, aliquoted, 

and stored at -80 °C until assayed. The levels of TNF-α, IL-1β, HMGB1 and IL-10 

were detected by specific ELISA kits with a microplate reader (Molecular Devices, 
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CA, USA) [8-9]. All standards and samples were run in duplicate. 

HO-1 activity assay 

HO-1 activity was determined at 0 h, 3 h, 6 h, 12 h and 24 h after LPS stimulation, as 

described previously [19]. Briefly, cells were harvested and microsomes were prepared. 

The reaction mixture contained microsomes, cytosolic fraction of rat liver as a source 

of biliverdin reductase, hemin and NADPH. The reaction mixture was incubated in 

the dark at 37 °C for 1 h and terminated by addition of chloroform. The amount of 

extracted bilirubin in the chloroform layer was determined by measuring the 

difference in absorbance between 464 and 530 nm. HO-1 activity was represented as 

picomoles of bilirubin formed per milligram of protein per hour. 

Western blot analysis 

The HO-1 expression in Raw 264.7 macrophages was performed at 24 h after LPS 

stimulation by western blot analysis, as previously described [24]. The collected cells 

were resuspended in 200 µL RIPA (25 mmol/L Tris-HCl, 150 mmol/L NaCl, 5 

mmol/L EDTA, 5 mmol/L EGTA, 1 mmol/L PMSF, 1% Triton X-100, 0.5% Nonidet 

P40, 10 mg/L aprotinin and 10 mg/L leupeptin) and placed on ice for 30 min. They 

were centrifuged at 12 000 g for 15 min, and then the supernatants were removed and 

stored at -80 °C. The protein samples were denatured at 100 °C for 5 min, separated 

on 10% acrylamide gels, and then electrotransferred to PVDF membranes. The 

membranes were blocked in a Tris-buffered saline with 0.05% Tween-20 (TBST) 

solution containing 5% fat-free milk for 2 h, and then incubated under gentle shaking 

overnight at 4 °C with primary antibodies against HO-1 and β-actin (1:2000 dilution). 
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After being washed three times with TBST (5 min each), the immunoblots were 

incubated with horseradish peroxidase-conjugated IgG (1:5000 dilution in blocking 

buffer) for 1 h at room temperature. This was followed by three 5-minute washes with 

TBST. The protein bands were detected using enhanced chemiluminescence (ECL) 

reagent, and then visualized and photographed using Gel quantitative Quantity One 

system (BIO-RAD, Tokyo, Japan). All western blot analyses were carried out at least 

three times. HO-1 levels were normalized to β-actin. 

Statistical analysis 

Differences between the groups were analyzed using one-way analysis of variance 

(ANOVA) followed by LSD comparison. Values were expressed as means ± SD of at 

least three independent experiments and differences between groups were considered 

significant at P < 0.05. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Results 

Effect of hydrogen on cell cytotoxicity and viability in RAW 264.7 macrophages 

    In the present study, we firstly investigated the effects of H2 on cell cytotoxicity 

by measurement of LDH release. The LDH assay signifies membrane integrity and is 

a direct measurement of cell death. Hydrogen treatment did not cause the damage of 

normally cultured RAW 264.7 macrophages (Figure 1A). Moreover, the MTT assay 

was performed to measure mitochondrial activity of cells, which is considered as cell 

viability. Hydrogen treatment also had no significant effect on the viability of 

normally cultured RAW 264.7 macrophages (Figure 1B). On the basis of these results, 

we can clearly find that hydrogen has no effect on cell multiply. 

Hydrogen regulates the release of pro- and anti-inflammatory cytokines in 

LPS-stimulated RAW 264.7 macrophages 

As shown in Figure 2, LPS caused the significant production of TNF-α, IL-1β, 

HMGB1 and IL-10 in macrophages at 3 h, 6 h,12 h and 24 h (P < 0.05 vs Con group). 

Hydrogen treatment attenuated the excessive release of TNF-α, IL-1β and HMGB1 in 

LPS-stimulated macrophages (P < 0.05), while the increased release of IL-10 induced 

by LPS was further elevated by hydrogen treatment from 3 h to 24 h (P < 0.05). In 

addition, we found that hydrogen treatment could concentration-dependently decrease 

the TNF-α, IL-1β, HMGB1 levels and increase the IL-10 level in LPS-stimulated 

macrophages (Figure 3). 

Hydrogen increases the HO-1 protein activity and expression in LPS-stimulated 

RAW 264.7 macrophages 
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    HO-1 is a cytoprotective enzyme that plays a critical role in inflammatory 

process. We examined the effect of hydrogen on HO-1 activity and expression in 

LPS-stimulated RAW 264.7 macrophages. As shown in Figure 4, LPS increased the 

HO-1 activity at 6 h, 12 h and 24 h (P < 0.05 vs Con group), while hydrogen 

treatment further increased the HO-1 activity of LPS-stimulated macrophages in a 

concentration-dependent manner (P < 0.05). Furthermore, hydrogen treatment 

significantly induced the HO-1 expression of LPS-stimulated macrophages in a 

concentration-dependent manner (P < 0.05, Figure 5). In addition, the HO-1 inhibitor 

ZnPP-Ⅸ at a dose of 20 µM completely inhibited the HO-1 activity in macrophages 

with LPS and hydrogen treatment (Figure 4B). 

HO-1 inhibition reverses the regulatory effect of hydrogen on inflammatory 

cytokines in LPS-stimulated RAW 264.7 macrophages 

    In addition, we further investigated whether the regulatory effect of hydrogen on 

inflammatory cytokines in LPS-stimulated macrophages was mediated through HO-1. 

Znpp-Ⅸ, an inhibitor of HO-1, significantly reversed the regulatory effect of hydrogen 

on TNF-α, IL-1β, HMGB1 and IL-10 in LPS-stimulated RAW264.7 macrophages 

(Figure 6). Therefore, HO-1 activation contributes to the regulatory effect of hydrogen 

on inflammatory cytokines in LPS-stimulated macrophages. 
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Discussion 

    In the current study, we investigated the effect of hydrogen on inflammatory 

cytokines in LPS-stimulated macrophages and the role of HO-1 in this process. Our 

results showed that 1) treatment with various concentrations of hydrogen had no 

significant effect on cell viability and injury in normal macrophages; 2) hydrogen 

could concentration-dependently suppress the release of pro-inflammatory cytokines 

TNF-α, IL-1β and HMGB1 as well as elevate the level of anti-inflammatory cytokine 

IL-10 in LPS-stimulated macrophages; 3) hydrogen treatment could increase the 

HO-1 protein expression and activity of LPS-stimulated macrophages in a 

concentration-dependent manner; 4) inhibition of HO-1 activity reversed the 

regulatory effect of hydrogen on inflammatory response in LPS-stimulated 

macrophages.  

    Inflammation triggered by noxious stimuli, such as infection and tissue injury, 

underlies a variety of physiological and pathological processes. Gram-negative 

bacteria are the main cause of hospital-acquired infections [25]. LPS is a component of 

the outer envelope of all Gram-negative bacteria. When Gram-negative bacteria 

invade into the circulation of host, it is recognized by innate immune cells, such as 

mononuclear, macrophages and neutrophils, which can then release cytokines and 

chemokines. Macrophages are important cells to confront microbial pathogens in the 

body's innate resistance to intracellular microbial pathogens through phagocytosis and 

cytokine secretion [23]. IL-1 and TNF-α are the prototypic inflammatory cytokines that 

mediate many of the immunopathological features of LPS-induced shock [26]. They 
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are released during the first 30-90 minutes after exposure to LPS and in turn activate 

the second level of inflammatory cascades including HMGB1, IL-10, etc [27]. 

Pro-inflammatory cytokines TNF-α, IL-1β and HMGB1 play an important role in the 

process of inflammation [28-31]. IL-10, as an anti-inflammatory cytokine, is a potent 

repressor of pro-inflammatory cytokine expression. Thus, host can maintain a 

homeostasis via keeping the balance of pro-inflammatory and anti-inflammatory 

cytokines. The release of pro-inflammatory cytokines outweighed the suppressive 

effect of anti-inflammatory mediator IL-10, leading to development of inflammatory 

reaction in LPS-induced macrophages. 

   Recently, a large number of animal and clinical experiments show that H2 or 

hydrogen-rich saline has the property of anti-inflammation, anti-oxidation and 

anti-apoptosis in different models of diseases [6-16]. We have reported that H2 has the 

potent protective effect on sepsis, zymosan-induced organ damage, LPS-induced lung 

injury and ouabain-induced auditory neuropathy in vivo via ameliorating the release 

of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, HMGB1, macrophage 

inflammatory protein (MIP)-1, MIP-2 and monocyte chemoattractant protein 

(MCP)-1 [7-9,32]. Recently, XU et al [33] also demonstrates that hydrogen-saline inhibits 

the secretion of TNF-α in LPS-activated macrophages. In current study, we found that 

H2 treatment could suppress the release of pro-inflammatory cytokines, as well as 

promote the level of anti-inflammatory cytokine in a concentration-dependent and 

time-dependent manner, suggesting H2 has an anti-inflammatory effect and makes 

host to regain the balance of pro- and anti-inflammatory reaction. 
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  HO-1 and its metabolites exert as valuable drug candidates for treatment of sepsis 

[34,35]. HO-1 is a cytoprotective enzyme that plays a critical role in defending the 

body against inflammation-induced organ injury [36]. Furthermore, its expression and 

activity play a significant role in mediating the anti-inflammation in LPS-stimulated 

macrophages [19]. LI et al reports that HO-1 is involved with the release of 

inflammatory cytokines, and the increase of HO-1 expression and activity can reduce 

TNF-α secretion [23,19]. Interestingly, H2 has a protective effect on injured lung tissue 

via promoting the levels of HO-1 mRNA and protein [22]. H2 reduces LPS-induced 

neuroinflammation via augmenting the expression of Nrf2 and HO-1 mRNA [37]. 

Recent studies have shown that Nrf2 may be one host factor that regulate innate 

immunity determine susceptibility to sepsis [38]. Once activated by oxidative or 

xenobiotic stimuli, Nrf2 migrates into the nucleus to induce the expression of phase 2 

enzymes, such as HO-1. The specific anti-inflammation mechanism of H2 may work 

via Nrf2 in macrophages, activate Nrf2 translocation into the nuclei, and encode the 

phase 2 enzymes HO-1 expression.  

However, there are several limitations in this study. First, we measured the changes 

of inflammatory cytokines and HO-1 for 24 h after LPS stimulation. We should check 

the expression and changes for a longer time. Second, we used the RAW 264.7 

macrophages. In the future, we might choose primary cultured macrophages. Third, 

further studies should be conducted to find the underlying mechanisms of H2 in 

inflammatory diseases. 

In summary, our study clearly provided evidence that H2 had an anti-inflammatory 
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effect in LPS-activated macrophages through inhibiting the release pro-inflammatory 

cytokines and increasing the release of anti-inflammatory cytokine, which was at least 

mediated by HO-1. 
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Figure Legends 

 

Figure 1 Effects of hydrogen treatment on cell viability and injury of RAW 264.7 

macrophages. The injury and viability of RAW 264.7 macrophages were measured 

with LDH release (A) and MTT assay (B). Cells were treated with different 

concentrations of hydrogen (0, 0.15, 0.30 and 0.60 mM) for 24 h. The relative 

absorbance is expressed as % of control, and results are presented as mean ± SD (n = 

6 each group). 

 

Figure 2. Effects of hydrogen treatment on the production of inflammatory 

cytokines in LPS-activated Raw 264.7 macrophages. Cells were stimulated with 

1µg/mL of LPS or PBS with absence or presence of hydrogen-rich medium (0.6 mM). 

The levels of TNF-α (A), IL-1β (B), HMGB1 (C) and IL-10 (D) in the culture media 

were measured at baseline (0 h) as well as 3 h, 6 h, 12 h and 24 h after LPS or PBS 

administration. Results are presented as mean ±SD (n = 6 each group at every time 

point). aP<0.05 compared with the Con group; bP<0.05 compared with the LPS 

group. 

 

Figure 3. The concentration-dependent effects of hydrogen treatment on 

inflammatory cytokines production in LPS-stimulated RAW 264.7 macrophages. 

Cells were challenged with LPS (1µg/mL) for 24 h in the absence or presence of 

different concentrations of hydrogen. The culture media were collected for 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

measurement of TNF-α (A), IL-1β (B), HMGB1 (C) and IL-10 (D). Results are 

presented as mean ± SD (n = 6 each group). aP<0.05 compared with the cells without 

hydrogen and LPS; bP<0.05 compared with the cells with LPS stimulation; cP<0.05 

compared with the cells with 0.15 mM hydrogen and LPS 

 

Figure 4. Effect of hydrogen treatment on HO-1 activity in LPS-stimulated Raw 

264.7 macrophages. (A) At the indicated time points, the HO-1 activity was detected. 

(B) Cells were challenged with 1 µg/ml of LPS or PBS in the absence or presence of 

different concentrations of hydrogen. After incubation for 24 h, HO-1 activity was 

detected. Results are presented as mean ± SD (n = 6 each group at each time point). 

aP<0.05 compared with the Con group; bP<0.05 compared with the LPS group. 

cP<0.05 compared with the cells without hydrogen and LPS; dP<0.05 compared with 

the cells with LPS stimulation. eP<0.05 compared with the cells with 0.60 mM 

hydrogen and LPS. 

 

Figure 5. Effect of hydrogen treatment on HO-1 expression in LPS-stimulated 

Raw 264.7 macrophages. Cells were challenged with 1 µg/ml of LPS or PBS for 24 

h in the absence or presence of different concentrations of hydrogen. HO-1 expression 

was assayed by western blot analysis. Results are presented as mean ± SD (n = 6 each 

group). aP<0.05 compared with the cells without hydrogen and LPS; bP<0.05 

compared with the cells with LPS stimulation; cP<0.05 compared with the cells with 

0.15 mM hydrogen and LPS stimulation. dP<0.05 compared with the cells with 0.30 
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mM hydrogen and LPS. 

 

Figure 6. HO-1 inhibitor Znpp could reverse the regulative effect of hydrogen 

treatment on inflammatory cytokines production in LPS-stimulated Raw 264.7 

macrophages. Cells were cultured with 1 µg/ml LPS or PBS under hydrogen 

treatment for 24 h in the presence or absence of 20 µM of Znpp. Culture media were 

harvested for measurement of TNF-α (A), IL-1β (B), HMGB1 (C) and IL-10 (D). 

Results are presented as mean ± SD (n = 6 each group). aP<0.05 compared with the 

cells without hydrogen and LPS; cP<0.05 compared with the cells with LPS 

stimulation. bP<0.05 compared with the cells with hydrogen and LPS. 
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