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a b s t r a c t

An algorithm for identification of single-input single-output Box–Jenkins models is presented. It consists
of four steps: firstly a high order ARXmodel is estimated; secondly, the input–output data is filtered with
the inverse of the estimated disturbance model; thirdly, the filtered data is used in the Steiglitz–McBride
method to recover the system dynamics; in the final step, the noise model is recovered by estimating
an ARMA model from the residuals of the third step. The relationship to other identification methods, in
particular the refined instrumental-variablemethod, are elaborated upon. AMonte Carlo simulation study
with an oscillatory system is presented and these results are complementedwith an industrial case study.
The algorithm can easily be generalized tomulti-input single-outputmodels with common denominator.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In system identification, the prediction error method (PEM) is
well established (Ljung, 1999). If correct model orders are used,
a quadratic cost function yields consistent and asymptotically ef-
ficient estimates for both open-loop and closed-loop data when
the noise is Gaussian. However, all these nice properties rely
on the precondition that the global minimum of the cost func-
tion is found in the parameter estimation. With the exception of
models with a linear regression structure such as ARX and FIR
models, most model structures need (local) nonlinear numerical
optimization routines for the parameter estimation. Thus, un-
less there are no non-global local minima, convergence to a
global minimum cannot be guaranteed and the nice asymp-
totic properties may be lost. There are some asymptotic (in the
sample-size) results for when there are no ‘‘false’’ minima: For
ARMA-models this is always the case (Åström&Söderström, 1974).
For Box–Jenkins models this holds when only one system pole is
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estimated (Söderström, 1975a). For output error models this holds
for general orders when the input is white (Söderström, 1975a).
Necessary conditions on the input for this to hold are provided in
Goodwin, Agüero, and Skelton (2003) (ARMAX-models), Zou and
Heath (2009) (output-error models) and Eckhard, Bazanella, Rojas,
and Hjalmarsson (2012). While experience is that the prediction-
error method based on local non-linear optimization works well
for many problems, there are also a range of examples when it gets
stuck in local minima (Eckhard et al., 2012; Goodwin et al., 2003;
Zou & Heath, 2009). It is also of general interest to develop alter-
native methods that can providemodels that such non-linear opti-
mization methods can use as initial estimates. As a consequence, a
range of methods complementing PEM have been developed over
time. Subspace identification (Van Overschee & De Moor, 1994;
Verhaegen, 1994) and instrumental variable methods (Stoica &
Söderström, 1983; Young, 1976) are two such families of methods.

The so-called Box–Jenkins model is a flexible and useful model
structure (Box & Jenkins, 1970; Ljung, 1999). The model has com-
pact rational descriptions for both the process model and the
disturbance model. Zhu (Zhu, 2011) proposed an algorithm for
Box–Jenkins model estimation and has outlined a proof of its con-
vergence for open loop data. The idea was inspired by the anal-
ysis of the Steiglitz–McBride method in Stoica and Söderström
(1981). We will continue this work in several aspects. We pro-
vide a detailed presentation of the algorithm and how it relates
to other methods, in particular the Refined Instrumental Method
(RIV) (Young, 2008). Theoretical justification of the algorithm is
provided by way of results on convergence and asymptotic ef-
ficiency. Finally, we provide a simulation study complemented
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with an industrial case study. The paper covers single-input single-
output (SISO) models.

The outline of the paper is as follows. Section 2 introduces
assumptions regarding the data generation mechanism, outlines
the prediction-error method for Box–Jenkins models and reviews
the Steiglitz–McBridemethod andARX-model estimation. Thenew
algorithm is presented in Section 3 where we also relate it to
existing methods. Some of its asymptotic properties are presented
in Section 4. Practical issues are briefly covered in Section 5. In
Section 6, a simulation example and an industrial case study is
used to demonstrate the accuracy and robustness of the algorithm.
Section 7 contains conclusions.
Notation. q−1 is the time-shift operator: q−1xt := xt−1. E[x] de-
notes the expectation of x and E[x|F ] is conditional expectation
with respect to the σ -algebra F . Convergence with probability 1
is abbreviated w.p.1.

2. Preliminaries

2.1. Assumptions

We will make the following assumptions about the model and
the true system.

Assumption 2.1 (Model and True System). The system has scalar
input ut , scalar output yt and is subject to the scalar noise et . The
model for the relationships between these signals is given by

yt = G(q, θ)ut + vt , vt = H(q, γ )et , (1)

where G(q, θ) and H(q, γ ) are rational functions in q−1:

G(q, θ) =
L(q, θ)

F(q, θ)
=

l1q−1
+ · · · + lnlq

−nl

1 + f1q−1 + · · · + fnf q
−nf

,

H(q, γ ) =
C(q, γ )

D(q, γ )
=

1 + c1q−1
+ · · · + cnc q

−nc

1 + d1q−1 + · · · + dndq−nd
.

For ease of notation, we will in the following assume nl = nf =

nc = nd = m for some positive integer m. We will also
drop the second argument in L, F , C and D. The model param-
eters are collected in θ =


f1 · · · fm l1 · · · lm

T , and γ =
c1 · · · cm d1 · · · dm

T .
We will assume that there is θ = θo and γ = γo such that (1)

describes the true system. The polynomials Lo(q) := L(q, θo) and
F o(q) := F(q, θo) do not share common factors. The same is true
for Co(q) := C(q, γo) and Do(q) := D(q, γo). It is further assumed
that the transfer functions Go

:= G(q, θo) and Ho
:= H(q, γo) are

stable, i.e. F o(z) = 0 ⇒ |z| ≤ 1, Do(z) = 0 ⇒ |z| ≤ 1, and that
Ho has a stable inverse.

The input {ut} will be assumed to be a realization of a stochastic
process generated by a random sequence {wt}. Let Ft−1 be the σ -
algebra generated by {es, ws, s ≤ t − 1}. Then the following
assumption is in force.

Assumption 2.2 (Input). The sequence {ut} is defined by

ut = Fu(q)wt ,

where Fu(q) is a stable and inversely stable finite dimensional filter,
where {wt} is independent of {et} satisfying

E[wt |Ft−1] = 0, E[w2
t |Ft−1] = 1, |wt | ≤ C, ∀t,

for some positive finite constant C .

Assumption 2.2 implies that the system is operating in open-
loop as the input and the noise are independent. Notice that the
assumption that Fu is inversely stable implies that Fu cannot have
any zeros on or outside the unit circle. It can be interpreted as the
stable minimum phase spectral factor of the input spectrum. The
noise satisfies the following assumption.

Assumption 2.3 (Noise). {et} is a stochastic process satisfying

E[et |Ft−1] = 0, E[e2t |Ft−1] = σ 2
o , E


|et |10


≤ C, ∀t.

2.2. The prediction error method

The prediction-error of the Box–Jenkins model (1) is given by

εt =
D(q)
C(q)


yt −

L(q)
F(q)

ut


.

In the prediction error method, using a quadratic loss function,
the parameter estimates are determined by minimizing the loss
function

VN =
1
N

N
t=1

ε2
t , (2)

where N is the number of data samples, with respect to the
parameters in θ and γ .

It is well known (Ljung, 1999) thatwhen the data set is informa-
tive and collected in open-loop, and the prediction-errormethod is
applied to the model (1), the asymptotic covariance matrix of the
parameter estimate θ̂PEM

N of the systemparameters θ is under some
mild technical assumptions given by

lim
N→∞

NE

(θ̂PEM

N − θo)(θ̂
PEM
N − θo)

T


= σ 2
o M

−1
CR , (3)

where

MCR =
1

2πσ 2
o

 π

−π

−
Go

HoF o
Γm

1
HoF o

Γm


−

Go

HoF o
Γm

1
HoF o

Γm


T

|Fu|2dω, (4)

where in turn Γm(q) =

q−1

· · · q−mT . For brevity we have
omitted the argument ejω in the integrand above; a practicewewill
employ hereafter. The positivity of MCR follows from the assump-
tion that the pairs {Lo, F o

} and {Co,Do
} do not share common fac-

tors (identifiability) if it is assumed that the input spectrum |Fu|2 is
strictly positive on the unit circle (persistence of excitation), except
possibly for a finite number of points, see Ljung (1999). When {et}
is Gaussian, MCR/σ

2
o is the per sample Fisher Information Matrix,

and hence PEMwith a quadratic cost function is asymptotically ef-
ficient, reaching the Cramér–Rao lower bound (Ljung, 1999).

Under the same assumptions it follows that the estimates of the
parameters in the disturbancemodel C(q)/D(q) are asymptotically
independent of the estimate of θ (Pierce, 1972).

2.3. The Steiglitz–McBride method

The Steiglitz–McBride (SM) method is an iterative method for
estimating the system dynamics. Consider an output-error model,
i.e. when C(q) = D(q) = 1, and that an estimate F̂ k of F is available.
Then (2) is given by

VN =
1
N

N
t=1

yt −
L(q)
F(q)

ut

2
≈

1
N

N
t=1

F(q)
1

F̂ k(q)
yt − L(q)

1

F̂ k(q)
ut

2
=

1
N

N
t=1

F(q)ykt − L(q)uk
t

2 ,
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where uk
t and ykt are ut and yt , respectively, prefiltered with

1/F̂ k(q). The last expression is quadratic in the elements of F and
L and can therefore be minimized explicitly, giving a new estimate
F̂ k+1 of F as well as an estimate L̂k+1 of L. Given an initial estimate
F̂ 0, this procedure of prefiltering the data and solving for new
estimates can be iterated for k = 0, 1, . . . .

In the limitN → ∞ andwhen the true system is also of output-
error type, the method is known to converge locally to the true
parameter vector under standard persistence of excitation condi-
tions, and also globally if the signal-to-noise ratio is sufficiently
large (Stoica & Söderström, 1981). It is also known that themethod
is not asymptotically efficient. Furthermore, when the noise is col-
ored, the true parameter vector θo is in general not a possible con-
vergence point.

2.4. ARX modeling

Alternatively, the true system can be represented as

Ao(q)yt = Bo(q)ut + et , (5)

where

Ao(q) =
1

Ho(q)
= 1 +

∞
k=1

aokq
−k,

Bo(q) =
Go(q)
Ho(q)

=

∞
k=1

bokq
−k

are stable transfer functions (by Assumption 2.1). This suggests the
use of an ARX-model for estimating the system transfer functions
Go and Ho. Therefore, let ηn

=

a1 · · · an b1 · · · bn

T and
define

A(q, ηn) = 1 +

n
k=1

akq−k, B(q, ηn) =

n
k=1

bkq−k. (6)

Consider the following ARX-model

A(q, ηn)yt = B(q, ηn)ut + et ,

which we can write as

yt = (ϕn
t )

Tηn
+ et , (7)

where

ϕn
t =


−Γ T

n (q)yt Γ T
n (q)ut

T
. (8)

A regularized least-squares estimate of ηn in the model (7) is
given by

η̂n
N =


ân,N1 . . . ân,Nn b̂n,N1 . . . b̂n,Nn

T
:=

Rn
reg(N)

−1 rn(N), (9)

where

rn(N) =
1
N

N
t=n+1

ϕn
t yt , Rn(N) =

1
N

N
t=n+1

ϕn
t (ϕ

n
t )

T ,

Rn
reg(N) =

Rn(N) if ∥Rn(N)−1
∥2 < 2/δ,

Rn(N) +
δ

2
I2n, otherwise,

for some small δ > 0. The reason for using the regularized
Rn
reg(N) rather than Rn(N) as in standard least-squares, is that it

facilitates the statistically analysis, see Ljung andWahlberg (1992).
Asymptotically (in the sample-size N), the first and second order
properties of η̂n

N do not depend on δ.
While ARX-models have the attractive property that the

parameter estimate is given by the closed form expression (9),
it is in general not consistent when the underlying system is of
Box–Jenkins type (1). This can, however, be remedied by allowing
the model order n to depend on the sample size, i.e. n = n(N). For
our theoretical results we will use the following assumption.

Assumption 2.4 (ARX Model Order). It holds that

n(N) → ∞ and n(N)3+δ/N → 0, as N → ∞,

for some δ > 0.

Introduce the notation

η̂N := η̂
n(N)
N , (10)

ηn
o :=


ao1 . . . aon bo1 . . . bon

T
,

ηo :=

ao1 ao2 . . . bo1 bo2 . . .

T
.

The asymptotic properties of η̂N are established in Ljung and
Wahlberg (1992). We will need the following result.

Lemma 2.1. Assume that Assumptions 2.1–2.4 hold. Then with
probability 1,

sup
ω

|A(ejω, η̂N) − Ao(ejω)| = O(m(N)) → 0, N → ∞,

where m(N) = n(N)
√
logN/N(1 + d(N)) + d(N), where

d(N) :=

∞
k=n(N)+1

|aok| + |bok| ≤ C̃ρn(N), (11)

for some C̃ < ∞, ρ < 1.

Proof. See Appendix A. �

The lemma shows that by allowing themodel order n to depend
on the sample size N in a suitable manner, consistency of the
inverse noise model estimate A(ejω, η̂N) follows. However, this
comes at a cost, namely that the transfer function estimates are
not asymptotically efficient (Ljung & Wahlberg, 1992).

3. The Box–Jenkins Steiglitz–McBride algorithm

In the previous section we have discussed two different ways
to overcome the problem of local minima of PEM: the Stei-
glitz–McBride method and (high-order) ARX-model estimation.
However, none of these two methods are asymptotically efficient,
and furthermore the Steiglitz–McBride method is not even consis-
tent unless the measurement noise is white, see Section 2.3. The
idea in this paper is to combine the twomethods to alleviate these
problems.

3.1. Outline of algorithm

The algorithm comprises the following four steps:

(1) Estimate an ARX model using the input–output data {ut , yt},
t = 1, 2, . . . ,N , using (9). Denote the corresponding A(q) and
B(q) estimates by Â(q) and B̂(q), respectively.

(2) Filter the input and output signals using Â(q), the inverse of the
disturbance model obtained in Step 1:

yft = Â(q)yt , uf
t = Â(q)ut .

From (1) it follows that yft and uf
t are related by

yft =
Lo(q)
F o(q)

uf
t + Â(q)

Co(q)
Do(q)

et . (12)
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If Â(q) is a good estimate of the inverse of the disturbance
dynamics, it holds that the noise term in (12) approximately
equals et so that

yft ≈
Lo(q)
F o(q)

uf
t + et ,

which is the setting for which the Steiglitz–McBride method
applies.

(3) The third step is therefore to apply the Steiglitz–McBride
method to the pre-filtered data yft and uf

t , yielding estimates
L̂(q) and F̂(q) of Lo(q) and F o(q), respectively.

(4) In the last step a disturbance model Ĉ(q)/D̂(q) is obtained by
estimating anARMAmodel of the output error residual v̂t given
by

v̂t = yt −
L̂(q)

F̂(q)
ut . (13)

Using PEM in this step, requires nonlinear optimization.
Alternatively, an instrumental variable method can be used in
this step (Young, 2006).

The above algorithm will be referred to as BJSM (Box–Jenkins
Steiglitz–McBride). Note that the process model estimation in Step
3 will not be affected by the disturbance model estimation in
Step 4.

3.2. A formal expression

Wewill nowprovide a formal expression for the estimate of θ in
iteration k+1 of the Steiglitz–McBride step of the BJSM algorithm.
Let

θ̂ k
N =


f̂ N,k
1 · · · f̂ N,k

m l̂N,k
1 · · · l̂N,k

m

T
denote the estimate at iteration k. For any signal xt define

xt(ηn, θ) =
A(q, ηn)

F(q, θ)
xt , xt(ηo, θ) =

Ao(q)
F(q, θ)

xt . (14)

The same definition applies to vector valued signals such as (8).
Also define

et(ηn, θ, F o) := F o(q)vt(η
n, θ) =

F o(q)
F(q, θ)

A(q, ηn)

Ao(q)
et .

From (1) we have

F o(q)yt = Lo(q)ut + F o(q)vt ,

which implies

F o(q)yt(η̂N , θ̂ k
N) = Lo(q)ut(η̂N , θ̂ k

N) + F o(q)vt(η̂N , θ̂ k
N)

= Lo(q)ut(η̂N , θ̂ k
N) + et(η̂N , θ̂ k

N , F o),

which can be written in regression form as

yt(η̂N , θ̂ k
N) = [ϕm

t (η̂N , θ̂ k
N)]T θo + et(η̂N , θ̂ k

N , F o). (15)

Given θ̂ k
N , θ̂

k+1
N is now defined as the least squares estimate of θo in

the linear regression (15), i.e.

θ̂ k+1
N = [Rm(N, η̂N , θ̂ k

N)]−1rm(N, η̂N , θ̂ k
N), (16)

where

Rm(N, ηn, θ) =
1
N

N
t=m+1

ϕm
t (ηn, θ)(ϕt(η

n, θ))T ,

rm(N, ηn, θ) =
1
N

N
t=m+1

ϕm
t (ηn, θ)yt(ηn, θ).
3.3. Relation to other methods

Many researchers have proposed to use high order ARXmodels
and then to apply model reduction; see, e.g., Söderström (1975b,
Chapter 7) in Hsia (1977), Wahlberg (1989) and Zhu (1998). The
first author has used high-order ARX-models in developing the
so-called asymptotic (ASYM) method which has been successfully
applied to many industrial processes; see Zhu (1998, 2009).

Furthermore, BJSM bears some resemblance to the refined in-
strumental variable (RIV)method and the closely relatedmultistep
algorithm presented in Stoica and Söderström (1983). Below we
will point out similarities and differences. The RIVmethodwas de-
veloped by Young and co-workers; see Jakeman and Young (1979)
and Young (1976, 2008). For the Box–Jenkins model (1), RIV uses
an iterative scheme as follows:

At iteration k, given the estimate yt = (L̂k(q)/F̂ k(q))ut +

(Ĉk(q)D̂k(q))ε̂t , calculate the next estimate as follows

θ̂ k+1
=


1
N

N
t=1

ϕ̂t(θ̂
k)ϕt(θ̂

k)T

−1
1
N

N
t=1

ϕ̂t(θ̂
k)yf ,kt . (17)

Here yf ,kt =
D̂k(q)

Ĉk(q)F̂k(q)
yt is the pre-filtered output,

ϕt(θ̂
k) =

D̂k(q)

Ĉk(q)F̂ k(q)
[−yt−1, . . . ,−yt−m, ut−1, . . . , ut−m]

T

is the prefiltered input–output data vector and

ϕ̂t(θ̂
k) =

D̂k(q)

Ĉk(q)F̂ k(q)
[x̂kt−1, . . . , x̂

k
t−nf , u

k
t−1, . . . , u

k
t−nl ]

T

is the prefiltered instrument vector, where x̂kt = (L̂k(q)/F̂ k(q))ut is
the simulated model output at iteration k. Comparing RIV above,
with BJSM in Section 3.2, we see that there is a similarity between
the methods in that the methods are iterative, with the data pre-
filters of both methods being conceptually the same: they are the
products of the disturbance model inverses and 1/F̂ k(q). The two
main differences are: (1) after the prefiltering, RIV is an instrumen-
tal variable method and BJSM is a least-squares method; (2) in RIV,
the inverse disturbancemodel is re-estimated in each iteration and
based on a low order (ARMA) model of the model residuals, while
in the BJSM algorithm, the inverse disturbance model is the same
in all iterations and based on a high-order (ARX) estimate.

In the classification in Ljung (1999), Step 3 corresponds to the
family of methods (7.110), where prefiltered prediction errors are
correlatedwith past data, also hosting pseudo linear regression and
instrumental variable methods. In BJSM, the prefilter is Â(q)/F̂ k

and the correlation vector is (Â(q)/F̂ k)ϕm
t . In RIV, the prefilter is

D̂k(q)/(ĈkF̂ k) and the correlation vector is ϕ̂t(θ̂
k).

4. Asymptotic properties

In this section we will study convergence and asymptotic
variance of the BJSM method.

4.1. Convergence

We will follow the mean-value approach of Stoica and
Söderström (1981) and analyze the limit case when N has reached
infinity. As in Stoica and Söderström (1981), we begin the analysis
by considering possible convergence points. For this we will first
derive an equation that defines these points.

Suppose that the limit θ̂N := limk→∞ θ̂ k
N exists. Due to (16) it

must hold for this limit that

θ̂N = [Rm(N, η̂N , θ̂N)]−1rm(N, η̂N , θ̂N). (18)
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Due to (15),

yt(η̂N , θ̂N) = [ϕm
t (η̂N , θ̂N)]T θo + et(η̂N , θ̂N , F o). (19)

Using (18)–(19) gives

0 = rm(N, η̂N , θ̂N) − Rm(N, η̂N , θ̂N)θ̂N . (20)

Generalizing Theorem 1 in Stoica and Söderström (1981), our first
result concern solutions to the equation

0 = rm(N, η̂N , θ) − Rm(N, η̂N , θ)θ, (21)

as the sample size tends to infinity.

Theorem 4.1. Let Assumptions 2.1–2.4 be in force. Then as N →

∞, (21) converges with probability 1 to

0 = E

ϕm
t (ηo, θ)yt(ηo, θ)


− R̃(θ)θ, (22)

where

R̃(θ) = E

ϕm
t (ηo, θ)(ϕm

t (ηo, θ))T

. (23)

The unique solution to (22) is given by θ = θo.

Proof. See Appendix B. �

In Stoica and Söderström (1981), the authors proceed with
analyzing the behavior of the recursion

0 = E

ϕm
t (ηo, θk)yt(ηo, θk)


− R̃(θk)θk+1. (24)

This equation corresponds to the Steiglitz–McBride iterations in
the limit that the sample-size N → ∞. The analysis in Stoica
and Söderström (1981) provides local convergence (Theorem 2)
and global convergence (Theorem 3). Both these results also apply
to our setting since (24) is the same as the relation (5) analyzed
in Stoica and Söderström (1981). The global convergence result
requires a sufficiently high signal to noise ratio. Here we will in
addition to these results present a new result where we trade this
condition for a condition that the initial parameter estimate and θo
both belong to a convex subset of the stability domain.

Following Stoica and Söderström (1981) we write (24) as

θk+1 − θo = R̃−1(θk)

E

ϕm
t (ηo, θk)


yt(ηo, θk) − (ϕm

t (ηo, θk))
T θo


= R̃−1(θk)E

ϕm
t (ηo, θk)

Fo(q)
F(q, θk)

et


= R̃−1(θk)E


ϕm
t (ηo, θk)


−

F(q, θk) − Fo(q)
F(q, θk)

et


= R̃−1(θk)D(θk)(θk − θo), (25)

where

D(θ) =

E


1
F(q, θ)

Γm(q)et
1

F(q, θ)
Γ T
m (q)et


0m×m

0m×m 0m×m

 . (26)

In (25) we have used (19) in the second equality, and that et is
uncorrelated with ϕm

t (ηo, θk) in the third.
The system description (5) gives

ϕm
t (ηo, θ) =

Ao(q)
F(q, θ)

ϕm
t = ξ u

t (θ) + ξ e
t (θ),

where

ξ u
t (θ) :=

1
F(q, θ)


−Bo(q)Γm(q)
Ao(q)Γm(q)


ut ,

ξ e
t (θ) :=

1
F(q, θ)


Γm(q)
0m×1


et .
Using that {ut} and {et} are mutually independent, and Parseval’s
formula, gives

R̃(θ) = M(θ) + D(θ), (27)

where

M(θ) =
1
2π

 π

−π


−BoΓm
AoΓm

 
−BoΓm
AoΓm

∗
|Fu|2

|F(θ)|2
dω. (28)

We notice thatM(θ) > 0 whenever θ is in the stability domain for
the coefficients of polynomials of degreem

S̃ := {θ : F(z, θ) = 0 ⇒ |z| < 1} ⊂ Rm. (29)

This follows from thatwe have assumed that Lo and F o do not share
common factors. The proof is omitted as it is almost identical to
the proof of the well known result that the per sample information
matrix for a Box–Jenkins model is positive definite if the input is
informative.

When θk ∈ S̃, we can thus write (25) as

θk+1 − θo = (M(θk) + D(θk))
−1D(θk)(θk − θo). (30)

We now have the following theorem.

Theorem 4.2. Let Fu be defined in Assumption 2.2. Assume that there
exist a compact and convex set S ⊂ Rm which is a subset to the
stability domain (29), i.e. S ⊂ S̃, and that contains both θo and the
initial point θ1. Then {θk}

∞

k=1, defined by (30), converges linearly to θo,
i.e.

|θk+1 − θo| ≤ λk
|θ1 − θo| → 0, k → ∞, (31)

for some 0 < λ < 1.
Proof. Firstly, as discussed before Theorem 4.2, M(θ) > 0 on S
so the inverse of M(θ) + D(θ) is well defined on this set. Now,
since 1/|F(z, θ)| is continuous on S, the elements of (M(θ) +

D(θ))−1D(θ) are continuous onS. Hence themaximumeigenvalue,
λmax(θ) say, of (M(θ) + D(θ))−1D(θ) is continuous on S (Horn &
Johnson, 1985) and attains a maximum λmax on this compact set.
Since

(M(θ) + D(θ))−1D(θ)

= (I + M−1(θ)D(θ))−1M−1(θ)D(θ) < I, ∀θ ∈ S,

it follows that λmax(θ) < 1 ∀θ ∈ S and hence, using the com-
pactness of S, λmax < 1. This implies that (30) is a contraction and
hence, since S is convex, θk ∈ S ⇒ θk+1 ∈ S. Furthermore, iter-
ating (30) backwards k steps gives (31) with λ =max, which proves
the result. �

4.2. Asymptotic accuracy

Regarding the asymptotic accuracy, we have the following
theorem.

Theorem 4.3. Let θ̂N be defined by (20). Assume that Assump-
tions 2.1–2.4 hold. Suppose that θ̂N → θo, w.p.1 as N → ∞. Then

lim
N→∞

NE

(θ̂N − θo)(θ̂N − θo)

T


= σ 2
o M

−1
CR . (32)

Furthermore,
√
N(θ̂N − θo) ∼ AsN(0, σ 2

o M
−1
CR ).

Proof. See Appendix C. �

As MCR/σ
2
o is the Fisher information for Gaussian distributed

noise, see Section 2.2, Theorem 4.3 shows that BJSM is asymptoti-
cally efficient for such noise.

We also remark that one reason for why Theorem 4.3 requires
open-loop operation (see Assumption 2.2) is that then the esti-
mates of system and disturbance dynamics become asymptotically
uncorrelated. While we do not prove this, we conjecture that also
the BJSM disturbance model estimate has the same asymptotic ac-
curacy as the PEM.
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4.3. Comparison with other methods

PEM. Even though restrictive, Theorem 4.2 indicates that there is
a region in the parameter space where BJSM will converge. For
PEM, as mentioned in the introduction, the cost function is only
guaranteed to have no false local minima when only one system
pole is estimated (Söderström, 1975a), and therefore unless this
condition holds it cannot be guaranteed that this method ends up
in the global minimum.

Comparing (32) with (3), we see that BJSM has the same
asymptotic accuracy as PEM. In particular it is asymptotically
efficient when the noise distribution is Gaussian.
The Steiglitz–McBride method. It is well known that the
Steiglitz–McBride method is not asymptotically efficient. For
output-error system and model, its asymptotic variance is given
by (24) in Stoica and Söderström (1981):

PSM := σ 2
o M

−1(θo)(M(θo) + D(θo))M−1(θo)

= σ 2
o M

−1(θo) +
1
σ 2
o

σ 2
o M

−1(θo)D(θo)σ
2
o M

−1(θo)

≥ σ 2
o M

−1(θo).

Theorem 4.3 also applies to the output-error case and shows
that BJSM is superior to SM also in this case. This may appear
paradoxical for the following reason: Themain difference between
BJSM and SM lies in the filtering that takes place in each iteration.
In BJSM, all the signals used to compute the estimate at the next
iteration are prefiltered with A(q, η̂N)/F(q, θ̂ k

N), see (16), whereas
SM uses 1/F(q, θ̂ k

N). Now, as the sample-size N grows the inverse
noise model estimate A(q, η̂N) will converge to the true inverse
noise model, which in the output-error case is 1, i.e. the very one
that is being used in SM. Thus, using a noisy estimate of the inverse
noise model (BJSM) instead of the known true one (SM) gives better
asymptotic accuracy. To understand the reason for this let us first
observe that the reason for that SM is not asymptotically efficient
can be traced to that the method does not take into account that
the prefilter 1/F(q, θ̂ k

N) is a noisy estimate of the optimal prefilter
1/F(q, θo). Very interestingly, in BJSM this uncertainty is accounted
for by the error that is induced by the inverse noisemodel estimate
A(q, η̂N). This can be seen from the proof in Appendix C. The
(normalized) estimation error in BJSM is given by (C.16) and
consists of two terms T1(N) and T2(N) in (C.17)–(C.18). The second
term T2(N) is due to the error in the (ARX) inverse noise model
estimate and is what distinguishes the error in BJSM from that
in SM. The analysis in Appendix C.4 shows that the size of this
term corresponds exactly to the excess error that prevents SM
from being asymptotically efficient. Moreover Appendix C.5 shows
that T2(N) is perfectly negatively correlated with T1(N) and so this
term, i.e. the error due to the ARX-model estimate, asymptotically
cancels out the excess error that SM suffers from.
Instrumental variable methods.

For Box–Jenkins models, the multistep algorithm in Stoica and
Söderström (1983) is limited to three steps: Firstly a IV-step to
estimate Lo/F o, secondly an ARMA noise model estimation step,
and finally an optimal IV-step, i.e. (17), using the IV-estimate
from the first step, and the noise model estimate from the second
step, in the prefilter. Hence, as opposed to BJSM, for this method
convergence is not an issue. For the multistep IV method, a critical
issue for asymptotic efficiency of the estimate of the system
dynamics Lo/F o is that an efficient estimate of the ARMA noise
model is obtained in the second step. As PEM is asymptotically
efficient, and its cost function for ARMA models has no false local
minima (Åström& Söderström, 1974), PEM can be used in this step
(although for finite data there is always the risk of local minima).
For BJSM, the asymptotic efficiency of the system dynamics Lo/F o
does not at all hinge on the properties of the estimate of the noise
term Co(q)/Do(q). In fact Step 4 in the BJSM algorithm can be
omitted if no noise model is required.

For RIV there are no convergence results for Box–Jenkins mod-
els. However, practical experience, e.g. Young (2008), indicate good
convergence properties. It follows from Stoica and Söderström
(1983) that asymptotically, it is sufficient with the three steps out-
lined above for the multistep method. In Young (2008) it is sug-
gested to use the IVARMA method (Young, 2006) in the ARMA
noise model step. Simulations in Young (2008) indicate good per-
formance of thismethod but asymptotic efficiency has not yet been
established for the IVARMA method.

5. Practical aspects

5.1. ARX-model order selection

In the previous section we have shown that BJSM has some de-
sirable asymptotic properties as the sample size grows, and when
the order of the ARX-model grows with a rate satisfying Assump-
tion 2.4. For a given data set, this theory does not help much in
terms of how the order of the ARX-model should be selected. A
guiding principle is that the order n should be sufficiently high
that A(q) is able to model the inverse of the disturbance dynam-
ics. By taking the order of the ARX-model which results in the
Box–Jenkins model estimate having the smallest loss function (2),
the ARX-model order can be optimized.

5.2. Initialization of model denominator

In the third step, the Steiglitz–McBride step, an initial estimate
of F o(q) is required. When a convex subset of the stability set, as
required by Theorem 4.2, is not known it is common, as in the SM
method, to use F(q) = 1 as initial estimate.

5.3. Stopping criteria for Steiglitz–McBride iterations

In the Steiglitz–McBride step, the iterations can be terminated
when some norm of the change of the parameter estimate is less
than a pre-specified tolerance, or when a maximum number of
iterations is reached.

5.4. Initialization of the ARMA estimate

The ARMA optimization routine can be initialized by a least-
squares estimate of C and D in the ARX-model D(q)v̂t = C(q)ε̂t ,
where v̂t is the output error residual in (13) and where ε̂t is the
residual of the ARX model.

6. Numerical studies on simulation and industrial data

Two methods are included in the study:

(1) the prediction error method for Box–Jenkins model structures
as implemented in the System Identification Toolbox ofMatlab
R2011b; this algorithm will be called PEM. Options Tolerance
andMaxIter have been set to 1e − 4 and 50, respectively.

(2) the BJSM where the ARX-model is estimated using the ARX
command of the System Identification Toolbox of Matlab; the
number of iterations in the Steiglitz–McBride step is fixed
to 50 unless mentioned separately. The stopping criterion in
Step (3) is that the relative change of the parameters in the
F-polynomial is less than 0.0001, or that 50 iterations have
been performed. In both examples, the Steiglitz–McBride
iterations are initialized using F(q) = 1 as initial estimate.

The hardware used was a PC equipped with an Intel Core i3-
2350M CPU running at 2.30 GHz, and having 4 GB RAM. Matlab
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Fig. 1. The loss functions of the PEM method (x) and that of the BJSM method (o)
for process (33), Example 1. The PEMmethod fails to converge in 21 simulations.

R2011b running under Windows 7 Home was used as software
platform.

6.1. Example 1—a 4th order process with oscillation

The process is strongly oscillatory and given by

yt =
q−1

+ 0.5q−2
− 2q−3

+ q−4

1 − 1.5q−1 + 0.7q−2 + 0.3q−3 − 0.2q−4
ut

+
1 − 0.6q−1

+ 0.4q−2

1 − 1.95q−1 + 0.9506q−2
et . (33)

The variance relative the variance of the noise free output is
20%. Models with correct orders are estimated for both methods;
the order of the ARX model in the BJSM algorithm is 45. 200
simulations were performed with independent noise realizations.

For this process, BJSM seems to have converged to the global
optimum in all 200 simulations as there are no big outliers in
the loss function plot shown in Fig. 1, while from the same plot
it is clear that PEM has failed to find the global optimum in
21 simulations as there are 21 outliers. When these 21 outliers
are excluded, PEM and BJSM have almost identical accuracy. This
is indicated by Fig. 1 in that the two methods have nearly the
same loss functions, except for the outliers. The sum of the Mean-
Squared Errors of the parameter estimates equals 0.0020 for both
methods. The computation times are 6.894 s for PEM and 0.791 s
for BJSM.

6.2. Example 2—an industrial case study

This process is a crude unit at a European refinery which has
been studied in Zhu (1998). The data set is obtained from an
identification test of themain distillation column of the crude unit.
The identifiedmodel was used inMPC control. Two open loop tests
were carried out. The data set contains the inputs (MVs) and four
outputs (CVs) of one test. Output 1 is the temperature difference
of two trays; outputs 2–4 are product qualities measured by
online analyzers. There are 7 inputs. Inputs 1–3 are temperature
setpoints; input 4 is a flow setpoint; inputs 5 and 6 are flow ratio
setpoints; input 7 is a flow measurement which is the measured
disturbance in the MPC controller. The sampling time is 1 min.
Interested researchers on system identification can contact the
corresponding author to obtain the data.
Fig. 2. Inputs of one test of the main distillation column.

Fig. 3. Four outputs of the main distillation column.

The data were pre-processed using the following operations:
(1) The means of all the input–output signals are removed. (2) The
standard deviations of all the input–output signals are scaled to
1. (3) There are very large delays in the second output. This output
signal is forward shifted by80 samples,whichmeans that 80delays
are removed (see Figs. 2 and 3).

6.2.1. Process delays
According to process knowledge there are considerable delays

between process inputs and outputs. So different delays are used
in model estimation using ARMAX models and the delays are
determined so that the model simulation errors are minimal.
To keep it simple the same delay is used for each output. The
determined delays for the four outputs are: 4, 20, 20 and 20
samples.

Note that 80 delays have been removed for output 2, which
means that the total delay for output 2 is 100 samples.

6.2.2. The BJSM algorithm
For BJSM, multi-input single-output (MISO) models are used.

This means that for each output a common denominator polyno-
mial is used for all the inputs. The high order ARX model is also of
MISO type with diagonal denominator. The order of the high order
ARX model is set to 100, and the number of iterations is fixed to
100.
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Fig. 4. FOE of the BJSM models in Example 6.

Table 1
Identification results of the two methods using the crude
unit data in Example 6. SO denotes orders that provided
stable models, BO denotes the best model order according
to FOE.

Method, output SO BO Best FOE

PEM, y1 [1, 2] 2 0.1608
PEM, y2 – – –
PEM, y3 [1] 1 0.3147
PEM, y4 [1] 1 0.7846
BJSM, y1 [1:20] 17 0.1467
BJSM, y2 [1:20] 8 0.2196
BJSM, y3 [1:20] 18 0.0729
BJSM, y4 [1:20] 2 0.2296

For order selection, models from order 1 to order 20 (the same
order for all polynomials in the model, including the noise model)
are estimated and the final output error (FOE) criterion (Zhu, 2001)
is used to determine the best order. Given a MISO process model
in a prediction error structure

yt = Ĝ(q)ut + Ĥ(q)ε̂t , (34)

where ut is now a vector of input signals. The FOE is defined as

FOE =
N + d
N − d

N
t=1

(yt − Ĝ(q)ut)
2, (35)

whereN is the number of testing data and d is the number ofmodel
parameters. The test is evaluated on estimation data but notice that
since it is not the prediction error criterion, FOE does not decrease
monotonically with themodel order. It is argued that this criterion
is more control relevant than FPE (final prediction error) criterion;
see Chapter 5 in Zhu (2001) for motivations and comparisons.

No numerical problem occurred during the estimation for BJSM
and the FOE’s are plotted in Fig. 4.

6.2.3. The PEM method
For MISO PEM models estimated using the MATLAB command

bj, the obtainedmodelswere unstable formost of themodel orders
tried.1 This happened even when the parameter ‘Focus’, was set
to ‘Stability’. A difference between PEM and BJSM is that different
denominator polynomials are used for the different inputs in
PEM, meaning that more parameters are estimated for the same
order.

Table 1 summarizes the performance of the two methods.

1 As for BJSM the order was the same for all polynomials.
7. Conclusions

An algorithm for identification of SISO Box–Jenkins models
has been presented. It consists of ARX-model estimation followed
by Steiglitz–McBride iterations, and an ARMA-estimation step for
the noise model. Theoretical justification is provided in terms
of results on convergence and asymptotic efficiency for data
collected in open loop. These results show that the BJSM also has
better accuracy than the Steiglitz–McBride method for output-
error models.

In the two numerical examples, the BJSMmethod proved more
robust than PEM. However, being based on a (high-order) ARX-
modeling step, BJSMmay be expected to have limitations for short
data records. For slowly decaying impulse responses, very high
ARX-orders may be required, increasing computational burden.
Before concluding, we remark that while derived for SISO BJ
models, it is very easy to extend the method to MISO BJ models
(we actually used this in Section 6.2).
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Notation used in appendices

We will consider vector valued complex functions as row
vectors and the inner product of two such functions f , g : C →

C1×m is defined as ⟨f , g⟩ =
1
2π

 π

−π
f (ejω)g∗(ejω)dω where g∗

denotes the complex conjugate transpose of g . When f and g are
matrix-valued functions, we will still use the notation ⟨f , g⟩ to
denote 1

2π

 π

−π
f (ejω)g∗(ejω)dω.

The L2-norm of f : C → Cn×m is given by ∥f ∥2 =
√
Tr ⟨f , f ⟩.

The space Ln×m
2 consists of all functions f : C → Cn×m such that

∥f ∥2 < ∞ and when n = 1, the notation is simplified to Lm
2 . The

subspace of Lm
2 spanned by the rows of Ψ ∈ Ln×m

2 is denoted SΨ .

Appendix A. Proof of Lemma 2.1

The result follows from Theorem D.1. Next, we verify the
conditions of that theorem. Assumption 2.1 and the finite
dimensionality of Go and Ho implies that

max(|ak|, |bk|) ≤ Cρk, (A.1)

for some C < ∞ and 0 < ρ < 1. This implies that Condition
S1 in Appendix D holds. Furthermore, the bound (A.1) implies the
inequality in (11) for some C̃ < ∞. Assumption 2.3 clearly implies
Condition S2 (for any p ≤ 5). Assumption 2.4 implies Conditions
D1 and D3. Thus all conditions in Theorem D.1 have been verified
and the result in the lemma follows from this theorem. �

Appendix B. Proof of Theorem 4.1

We have

Rm(N, η̂N , θ) =
1
N

N
t=m+1

ϕm
t (η̂N , θ)(ϕt(η̂N , θ))T

=
1
N

N
t=m+1


A(q, η̂N)

F(q, θ)
ϕm
t


A(q, η̂N)

F(q, θ)
ϕm
t

T

= Rm(N, ηo, θ)
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+
1
N

N
t=m+1


A(q, η̂N) − Ao(q)

F(q, θ)
ϕm
t


Ao(q)
F(q, θ)

ϕm
t

T

+
1
N

N
t=m+1


Ao(q)
F(q, θ)

ϕm
t


A(q, η̂N) − Ao(q)

F(q, θ)
ϕm
t

T

. (B.1)

Theorem 2B.1 in Ljung (1999) gives

sup
θ∈DM

Rm(N, ηo, θ) − E

ϕm
t (ηo, θ)


ϕm
t (ηo, θ)

T
→ 0, w.p. 1 as N → ∞. (B.2)

Lemma 2.1 together with that both {et} and {ut} are uniformly
bounded (see Assumptions 2.2 and 2.3) imply

∥(A(q, η̂N) − Ao(q))ϕm
t ∥1 = O(m(N)), (B.3)

with m(N) given in Lemma 2.1. Since {1/F(q, θ) : θ ∈ DM} is
uniformly stable, it follows that

sup
θ∈DM

 1
N

N
t=m+1


A(q, η̂N) − Ao(q)

F(q, θ)
ϕm
t


Ao(q)
F(q, θ)

ϕm
t

T


→ 0, w.p. 1 as N → ∞. (B.4)

Now (B.1)–(B.4) gives

sup
θ∈DM

Rm(N, η̂N , θ) − E

ϕm
t (ηo, θ)


ϕm
t (ηo, θ)

T
→ 0, w.p. 1 as N → ∞. (B.5)

Analogously it follows that

sup
θ∈DM

rm(N, η̂N , θ) − E

ϕm
t (ηo, θ)yt(ηo, θ)


→ 0, w.p. 1 as N → ∞. (B.6)

Combining (B.5)–(B.6) gives the first claim in the theorem.2 Next,
(22) is the same as (8) in Stoica and Söderström (1981). Theorem 1
in this reference then applies and sincewe assume themodel order
to be equal to the system order, there is according to this theorem
only one solution.

Appendix C. Proof of Theorem 4.3

Denote the right-hand side of (20) by Q (N, η̂N , θ̂N). A first
order Taylor expansion of Q (N, η̂N , θ̂N) around θo gives (partial
derivatives are interpreted as row vectors)

0 = Q (N, η̂N , θo) +
∂

∂θ
Q (N, η̂N , θ)


θ=ξN

(θ̂N − θo), (C.1)

for some ξN between θo and θ̂N . Thus
√
N(θ̂N − θo)

= −


∂

∂θ
Q (N, η̂N , θ)


θ=ξN

−1 √
NQ (N, η̂N , θo). (C.2)

In the following sections we will analyze ∂
∂θ

Q (N, η̂N , θ)


θ=ξN

and
√
NQ (N, η̂N , θo).

2 Actually, we have proved a stronger result taking the supremum over θ .
C.1. ∂
∂θ

Q (N, η̂N , θ)|θ=ξN

We have

∂

∂θ
Q (N, η, θ) = Q ′

1(N, η, θ) + Q ′

2(N, η, θ) + Q ′

3(N, η, θ), (C.3)

where

Q ′

1(N, η, θ) := −
1
N

N
t=m+1

ϕm
t (η, θ)[ϕm

t (η, θ)]T ,

Q ′

2(N, η, θ) :=
1
N

N
t=m+1

∂

∂θ
ϕm
t (η, θ)(yt(η, θ) − [ϕm

t (η, θ)]T θ),

Q ′

3(N, η, θ) :=
1
N

N
t=m+1

ϕm
t (η, θ)


∂

∂θ
yt(η, θ) − θ T

o
∂

∂θ
ϕm
t (η, θ)


.

(C.4)

We observe that Q ′

1(N, η, θ) = −Rm(N, η, θ), and thus (B.1)–(B.5)
in the proof of Theorem 4.1 imply

sup
θ∈DM

Q ′

1(N, η̂N , θ) + E

ϕm
t (ηo, θ)


ϕm
t (ηo, θ)

T
→ 0, w.p. 1 as N → ∞. (C.5)

Similar calculations give

sup
θ∈DM

Q ′

2(N, η̂N , θ)

− E


∂

∂θ
ϕm
t (ηo, θ)(yt(ηo, θ) − ϕm

t (ηo, θ))


→ 0, w.p. 1 as N → ∞, (C.6)

sup
θ∈DM

Q ′

3(N, η̂N , θ)−

− E

ϕm
t (ηo, θ)


∂

∂θ
yt(ηo, θ) − θ T ∂

∂θ
ϕm
t (ηo, θ)


→ 0, w.p. 1 as N → ∞. (C.7)

Since by assumption θ̂N → θo w.p.1 as N → ∞, ξN → θo w.p. 1. In
view of this, it follows, c.f. (9A.29) in Ljung (1999), from (C.3), and
(C.5)–(C.7) that as N → ∞ (below ∂

∂θ
ϕm
t (ηo, θo),

∂
∂θ

yt(ηo, θo) is
shorthand for ∂

∂θ
ϕm
t (ηo, θ)|θ=θo ,

∂
∂θ

yt(ηo, θ)|θ=θo ) w.p. 1

∂

∂θ
Q (N, η̂N , θ)


θ=ξN

→

− E

ϕm
t (ηo, θo)


ϕm
t (ηo, θo)

T
+ E


∂

∂θ
ϕm
t (ηo, θo)(yt(ηo, θo) − (ϕm

t (ηo, θo))
T θo)


+ E


ϕm
t (ηo, θo)


∂

∂θ
yt(ηo, θo) − θ T

o
∂

∂θ
ϕm
t (ηo, θo)


. (C.8)

Observing that (15) implies

yt(ηo, θo) − [ϕm
t (ηo, θo)]

T θo = et , (C.9)

and that et is independent of ϕm
t gives

E


∂

∂θ
ϕm
t (ηo, θo) (yt(ηo, θo) − [ϕm

t (ηo, θo)]
T θo)


= E


∂

∂θ
ϕm
t (ηo, θo) et


= 0. (C.10)
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Furthermore, withWm(q) =

Γ T
m (q) 01×m

T ,

∂

∂θ
yt(ηo, θo) − θ T

o
∂

∂θ
ϕm
t (ηo, θo) = −

1
F o(q)


W T

m(q)yt(ηo, θo)

− θ T
o



−yt−1−1(ηo, θo) · · · −yt−1−m(ηo, θo) 01×m
...

. . .
... 0(m−2)×m

−yt−1−m(ηo, θo) · · · −yt−1−2m(ηo, θo) 01×m
−ut−1−1(ηo, θo) · · · −ut−1−m(ηo, θo) 01×m

...
. . .

... 0(m−2)×m
−ut−1−m(ηo, θo) · · · −ut−1−2m(ηo, θo) 01×m




= −

1
F o(q)

W T
m(q)et . (C.11)

From (C.10) and by noticing that

ϕm
t =


−GoΓm

Γm


ut +


−

1
Ao

Γm

0m×1


et ,

with {ut} independent of {et} (by assumption) it follows

E

ϕm
t (ηo, θo)


∂

∂θ
yt(ηo, θo) − θ T

o
∂

∂θ
ϕm
t (ηo, θo)


= −E


Ao(q)
F o(q)

ϕm
t

1
F o(q)

W T
m(q)et


= D(θo), (C.12)

with D(θ) defined in (26). Inserting (23), (C.10) and (C.12) in (C.8),
and using (27), gives

lim
N→∞

∂

∂θ
Q (N, η̂N , θ)


θ=ξN

= −R̃(θo) + D(θo)

= −M(θo) w.p. 1. (C.13)

C.2.
√
NQ (N, η̂N , θo)

Returning to (C.2), we will now establish the asymptotic
distribution and variance of

√
NQ (N, η̂N , θo). We have

Q (N, η̂N , θo) =
1
N

N
t=m+1

ϕm
t (η̂N , θo)et(η̂N , θo, F o)

=
1
N

N
t=m+1

A(q, η̂N)

F o(q)
ϕm
t
A(q, η̂N)

Ao(q)
et . (C.14)

It is straightforward to show that themean-squared error between
√
NQ (N, η̂N , θo) and

1
√
N

N
t=m+1

Ao(q)
F o(q)

ϕm
t
A(q, η̂N)

Ao(q)
et (C.15)

tends to zero as N → ∞. Thus these two quantities have the same
asymptotic distribution and the same asymptotic covariance. We
will thus proceed and study the asymptotic properties of (C.15)
instead of those of (C.14).

We split (C.15) into two terms which will be analyzed
separately:

1
√
N

N
t=m+1

Ao(q)
F o(q)

ϕm
t
A(q, η̂N)

Ao(q)
et = T1(N) + T2(N), (C.16)
where

T1(N) :=
1

√
N

N
t=m+1


Ao(q)
F o(q)

ϕm
t


et , (C.17)

T2(N) :=
1

√
N

N
t=m+1


Ao(q)
F o(q)

ϕm
t


A(q, η̂N) − Ao(q)

Ao(q)
et


=

1
N

N
t=m+1

Ao(q)
F o(q)

ϕm
t W T

n(N)(q)
1

Ao(q)
et

√
N(η̂

n(N)
N − η̄N).

(C.18)

It is also straightforward to show that the mean-squared error
between T2(N) and

T̃2(N) := Zn(N)
√
N(η̂

n(N)
N − η̄n(N)),

where

Zn
= E


Ao(q)
F o(q)

ϕm
t W T

n (q)
1

Ao(q)
et


= −

E


1
F o

Γmet Γ T
n

1
Ao

et


0m×n

0m×n 0m×n

 , (C.19)

tends to zero as N → ∞ and we will analyze T̃2(N) rather than
T2(N).

C.3. Asymptotic variance of T1(N)

Since et is independent of ϕt it follows that

lim
N→∞

E

T1(N)T T

1 (N)


= σ 2
o R̃(θo). (C.20)

C.4. Asymptotic variance of T̃2(N)

In the proof of Lemma 2.1 Conditions S1, S2 (for p ≤ 5),
and D1 were verified under Assumptions 2.1–2.4. Furthermore D4
follows directly from Assumption 2.4. The bound in (11) implies
that

√
Nd(N) → 0, N → ∞ under Assumption 2.4, which

establishes D2. This means that all conditions in Theorem D.2 are
valid. Noticing that {∥Zn

∥2} is a bounded sequence, this theorem
gives

lim
N→∞

E

T̃2(N)T̃ T

2 (N)


= σ 2
o lim

N→∞

Zn(N)

R̄n(N)

−1
(Zn(N))T , (C.21)

where R̄n
= E


ϕn
t (ϕ

n
t )

T

provided the right-hand side limit exists.

This will be shown next.
We start the analysis of (C.21) by considering the inverse in the

middle. Using the open loop assumption, we obtain

R̄n
= E


−GoΓnut

Γnut

 
−GoΓnut

Γnut

T

+ E

 1
Ao

Γnet

0n×1

 1
Ao

Γnet

0n×1

T
=


−GoFuΓn

σo

Ao
Γn

FuΓn 0n×1


,


−GoFuΓn

σo

Ao
Γn

FuΓn 0n×1


. (C.22)

For (C.19) we have

Zn
== −

0m×1
1
F o

Γm

0m×1 0m×1

 ,


−GoFuΓn

σo

Ao
Γn

FuΓn 0n×1


. (C.23)
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Let now Sn be the subspace in L2
1×2 spanned by the rows of

−GoFuΓn
σo

Ao
Γn

FuΓn 0n×1


. (C.24)

Then Lemma E.3, with F1 = −Go, F2 = σo/Ao (which has an
exponentially stable inverse by Assumption 2.1), F3 = Fu and γ

being an arbitrary row of

0m×1

1
Fo

Γm

0m×1 0m×1


, gives that

∥γ − PSn [γ ] ∥2 ≤ C̃ λ̃n, for some C̃ < ∞, λ̃ < 1.

But then Lemma E.2 immediately gives

lim
n→∞

Zn R̄n−1
(Zn)T =


0m×1

1
F o

Γm

0m×1 0m×1


,


0m×1

1
F o

Γm

0m×1 0m×1


= D(θo), (C.25)

and hence, using (C.21), we have that as n → ∞,

lim
N→∞

E

T̃2(N)T̃ T

2 (N)


= σ 2
o D(θo). (C.26)

C.5. Cross-correlation between T1(N) and T̃2(N)

Wenow turn to the cross-correlation between T1(N) and T̃2(N).
Firstly we observe that the mean-squared error between T̃2 and

T̄2 := Zn(N)

R̄n(N)

−1 1
√
N

N
t=n(N)+1

ϕn
t et (C.27)

tends to zero as N → ∞. We will thus consider

E

T̄2(N)T T

1 (N)


= NZn(N)

R̄n(N)

−1

E

 1
N

N
t=n(N)+1

ϕn
t et


1
N

N
s=m+1

Ao

F o
ϕs es

T
 . (C.28)

But

NE

 1
N

N
t=n(N)+1

ϕn
t et


1
N

N
s=m+1

Ao

F o
ϕs es

T


= σ 2
o E

−GoΓn
Γn


ut

−
Ao

F o
GoΓm

Ao

F o
Γm


T

ut


+ σ 2

o E

−
1
Ao

Γn

0n×1

 et

−
1
F o

GoΓm

0m×1

T

et


= σ 2

o X
n
− σ 2

o (Zn)T , (C.29)

where

Xn
= E

−GoΓnut
Γnut

−
Ao

F o
GoΓmut

Ao

F o
Γmut


T

=


−FuGoΓn
FuΓn


,

−
Ao

F o
FuGoΓm

Ao

F o
FuΓm



=

−FuGoΓn
1
Ao

Γn

FuΓn 0n×1

 ,

−
Ao

F o
FuGoΓm 0m×1

Ao

F o
FuΓm 0m×1

 , (C.30)
so that (C.27) can be written as

E

T̄2(N)T T

1 (N)


= σ 2
o Z

n(N)

R̄n(N)

−1
(Xn(N)

− (Zn(N))T ). (C.31)

As in Appendix C.4 denote by Sn the span of the rows of (C.24).
Then Lemma E.3, with F1 = −Go, F2 = σo/Ao (which has an
exponentially stable inverse by Assumption 2.1), F3 = Fu and γ
being an arbitrary row of0m×1

1
F o

Γm

0m×1 0m×1

 ,

gives that

∥γ − PSn [γ ] ∥2 ≤ C̃ λ̃n, for some C̃ < ∞, λ̃ < 1.

But then Lemma E.2 immediately gives

lim
n→∞

Zn R̄n−1
Xn

=

0m×1
1
F o

Γm

0m×1 0m×1

 ,

−
Ao

F o
FuGoΓm 0m×1

Ao

F o
FuΓm 0m×1



= 02m×2m. (C.32)

Using (C.26) and (C.32) in (C.31) gives

lim
N→∞

E

T̄2(N)T T

1 (N)


= −σ 2
o D(θo). (C.33)

C.6. Asymptotic normality

Consider
T1(N)

T̄2(N)


=

1
√
N

N
t=m+1

ζt(N)et , (C.34)

where

ζt(N) =

 Ao(q)
F o(q)

ϕm
t

Zn(N)

R̄n(N)

−1
ϕ

n(N)
t

 . (C.35)

As already observed at the beginning of Appendix C.4, all
conditions of Theorem D.3 are satisfied. Asymptotic normality of
(C.34) now follows as in the proof of Theorem D.3 (the reader is
referred to Ljung andWahlberg (1992) for details). The asymptotic
covariance matrix is obtained from (C.20), (C.26) and (C.33). In
summary
T1(N)

T̄2(N)


∼ AsN


0
0


, σ 2

o


R̃(θo) −D(θo)

−D(θo) D(θo)


. (C.36)

C.7. Summing up

Using that (C.15) is equivalent to (C.14), the split (C.16), and
(C.20), (C.26) and (C.33), we have that

lim
N→∞

NE

Q (N, η̂N , θo)Q T (N, η̂N , θo)


= σ 2

o

(R̃(θo) − D(θo) − D(θo) + D(θo)) = σ 2
o M(θo). (C.37)

Using (C.13) and (C.36) in (C.2) gives

lim
N→∞

NE

(θ̂N − θo)(θ̂N − θo)

T


= σ 2
o M

−1(θo). (C.38)
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which in view of that M(θo) = MCR, cf. (4) with (28), proves
(32). The asymptotic normality of

√
N(θ̂N − θo) follows from

(C.2) and (C.36), together with that
√
NQ (N, η̂N , θo) has the same

asymptotic distribution as T1(N) + T̄2(N).

Appendix D. Results from Ljung and Wahlberg (1992)

We first state some conditions that will be used.

Condition S1. The filters Ao and Bo satisfy


∞

k=0 k
1
2 |aok| <

∞,


∞

k=0 k
1
2 |bok| < ∞. The term bo0 is always assumed to be 0.

Condition S2. {et} is a stochastic process such that

E[et |Ft−1] = 0, E[e2t |Ft−1] = σ 2
o , E[e2pt ] ≤ C < ∞,

for some p to be specified. Here Ft−1 is the σ -algebra generated by
{es, us, s ≤ t − 1}.

Condition D1. n(N) → ∞, N → ∞.

Condition D3. n2(N) log(N)/N → 0, N → ∞.

Condition U1. We need the following lemma.

Lemma D.1. Assumption 2.2 implies Condition U1 in Ljung and
Wahlberg (1992).

Proof. Theorems 4.1 and 4.2 in Ljung and Wahlberg (1992) give
that Assumption 2.2 implies that {ut} is fN -quasi-stationary with
fN = (logN/N)1/2. Furthermore, {ut} is uniformly bounded and
since Fu does not have zeros on the unit circle its spectral density
is bounded from below by some δ > 0. �

The next result is a part of Theorem 3.1 in Ljung and Wahlberg
(1992).

Theorem D.1. Assume Conditions S1, S2 (with p = 2 + δ, δ >
0), D1 and D3 to hold, as well as Assumption 2.2. Let the estimate
A(ejω, η̂N) be defined by (6), (9), and (10). Then with probability 1,

sup
ω

|A(ejω, η̂N) − Ao(ejω)| = O(m(N)), (D.1)

where m(N) = n(N)
√
logN/N(1 + d(N)) + d(N), where

d(N) :=

∞
k=n(N)+1

|aok| + |bok|. (D.2)

The next result is Theorem 7.1 in Ljung and Wahlberg (1992).

Theorem D.2. Assume Conditions S1, S2 (with p ≥ 5), D1, D2
and D4 to hold, as well as Assumption 2.2. ThenE N(η̂N − η̄n(N))(η̂N − η̄n(N))T


− σ 2

o


R̄n−1


2

→ 0,

as N → ∞.

The final result from Ljung and Wahlberg (1992) that will be used
is Theorem 7.3.

Theorem D.3. Assume Conditions S1, S2 (with p ≥ 4), D1, D2
and D4 to hold, as well as Assumption 2.2. Let {Υ n

} be a sequence
of deterministic 2m × 2m matrices and assume that {∥Υ n

∥2} is a
bounded sequence. Then
√
NΥ n(N)(η̂N − η̄n(N)) ∼ AsN(0,Q ),

where Q = limn→∞ Υ n

R̄n
−1

(Υ n)T .
Appendix E. Orthogonal projections

We will make use of the following lemma, which is Lemma II.3
in Hjalmarsson and Mårtensson (2011).

Lemma E.1. Let γ ∈ L
q×m
2 and Ψ ∈ Ln×m

2 . Then the orthogonal
projection of the rows of γ on SΨ (the subspace of Lm

2 spanned by
the rows of Ψ ) is given by

ProjSΨ
{γ } = ⟨γ , Ψ ⟩⟨Ψ , Ψ ⟩

ĎΨ , (E.1)

where AĎ is the pseudo-inverse of A.
Furthermore,

⟨γ , Ψ ⟩⟨Ψ , Ψ ⟩
Ď
⟨Ψ , γ ⟩ = ⟨ProjSΨ

{γ }, ProjSΨ
{γ }⟩. (E.2)

Lemma E.2. Let γi ∈ L2
qi×m, i = 1, 2, and Ψn ∈ Ln×m

2 , n =

1, 2, . . . . Furthermore, let Sn denote the subspace of Lm
2 spanned by

the rows of Ψn.
Suppose that

∥γi − PSn [γ ]∥2 → 0 as n → ∞, (E.3)

for i = 1 or/and i = 2. Then

lim
n→∞

⟨γ1, Ψn⟩ ⟨Ψn, Ψn⟩
Ď

⟨Ψn, γ2⟩ = ⟨γ1, γ2⟩. (E.4)

Proof. A slight extension of Lemma E.1 gives

⟨γ1, Ψn⟩⟨Ψn, Ψn⟩
Ď
⟨Ψn, γ2⟩ = ⟨ProjSn{γ1}, ProjSn{γ2}⟩. (E.5)

Using that ⟨PSn [γi], γj − PSnγj⟩ = 0 for i = 1, j = 2 and vice versa,
gives

0 ≤⟨γ1, γ2⟩ − ⟨ProjSn{γ1}, ProjSn{γ2}⟩

= ⟨γ1 − ProjSn{γ1}, γ2 − ProjSn{γ2}⟩. (E.6)

Now consider the absolute value of the klth element, 1 ≤ k ≤ q1,
1 ≤ l ≤ q2, of the q1 × q2 matrix in the right-most expression
of (E.6). Applying Cauchy–Schwarz inequality and using (E.3) to-
gether with that ∥γi − ProjSn{γi}∥2 is bounded since γi ∈ L2

qi×m

gives that this element converges to zero as n → ∞. Com-
bining this with (E.5) now proves the lemma since k and l are
arbitrary. �

Lemma E.3. Let Sn be the subspace of L2
2 spanned by the rows of

F1F3Γn F2Γn
F3Γn 0


,

where Γm(q) =

q−1

· · · q−mT , Fi(q) =


∞

k=0 f
i
kq

−k. Suppose
that Fi, i = 1, 2, 3 are exponentially stable, i.e.

|f ik| ≤ Cλk, for some C < ∞, λ < 1,

and that there is a causal exponentially stable inverse F̃2 for F2,
i.e. F̃2(q)F2(q) = 1 where

F̃2(q) =

∞
k=0

f̃ 2k q
−k, |f̃ 2k | < Cλk.

Let γ (q) =

0


∞

k=1 dkq
−k

be exponentially stable. Then

∥γ − PSn [γ ] ∥2 ≤ C̃ λ̃n, for some C̃ < ∞, λ̃ < 1.

Proof. We will construct an explicit approximation to γ that
belongs to Sn. First we obtain an approximation to


0 z−kF2(z)


by (below k = 1, . . . , n)

bn,k(z) =


z−kF3(z)

∞
l=n−k+1

f 1l z
−l z−kF2(z)


∈ Sn.
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We will now use {bn,k}nk=1 to approximate γ . To this end consider
the expansion F̃2(z)γ (z) =


0


∞

l=1 αlz−l

, where |αl| ≤ Cαλl

α

for some Cα < ∞ and λα < 1 since both F̃2 and γ are assumed to
be exponentially stable. As approximation of γ we take

γ̂n(z) :=

n
k=1

αlbn,k(z)
≈

∞
k=1

αkz−k [0 F2(z)] ≈ γ (z)F̃2(z)F2(z) = γ (z)


which according to its construction belongs to Sn. Hence

∥γ − PSn [γ ] ∥2 ≤ ∥γ − γ̂n∥2 (E.7)

since PSn [γ ] has the smallest approximation error of γ of all
functions in Sn.

We introduce the notation γ − γ̂n = [δn,1 δn,2]. Using the
exponentially decaying bounds on |f 1l | and |αk|,

∥δn,1∥2 =

F3(z) n
k=1

αk

∞
l=n−k+1

f 1l z
−l


2

≤ ∥F3∥2

 n
k=1

αk

∞
l=n−k+1

f 1l z
−l


2

= ∥F3∥2

 n
l=1

f 1l


n

k=n−l+1

αk


z−l

+

∞
l=n+1

f 1l


n

k=1

αk


z−l


2

= ∥F3∥2

 n
l=1

|f 1l |2


n

k=n−l+1

αk

2

+

∞
l=n+1

|f 1l |2


n

k=1

αk

2

≤ C1λ
n
1, C1 < ∞, 0 < λ1 < 1. (E.8)

For δn,2 we have

δn,22 =

γ (z) −

n
k=1

αkz−k F2(z)


2

=

F2(z)

F̃2(z)γ (z) −

n
k=1

αkz−k


2

≤ ∥F2∥2

 ∞
k=n+1

αkz−k


2

≤ C4 λn
4, (E.9)

for some C4 < ∞ and λ4 < 1, since F2 and F̃2γ are exponentially
stable. Combining (E.7) and (E.8)–(E.9) gives

∥γ − PSn [γ ] ∥2 ≤ ∥γ − γ̂n∥2 = ∥δn,1∥2 + ∥δn,2∥2 < C̃ λ̃n,

for some C̃ < ∞ and λ̃ < 1. This concludes the proof. �
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