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Abstract – Inspired by the practical importance of social networks, economic networks, biological
networks and so on, studies on large and complex networks have attracted a surge of attention in
the recent years. Link prediction is a fundamental issue to understand the mechanisms by which
new links are added to the networks. We introduce the method of robust principal component
analysis (robust PCA) into link prediction, and estimate the missing entries of the adjacency
matrix. On the one hand, our algorithm is based on the sparse and low-rank property of the matrix,
while, on the other hand, it also performs very well when the network is dense. This is because
a relatively dense real network is also sparse in comparison to the complete graph. According to
extensive experiments on real networks from disparate fields, when the target network is connected
and sufficiently dense, whether it is weighted or unweighted, our method is demonstrated to be
very effective and with prediction accuracy being considerably improved compared to many state-
of-the-art algorithms.

Copyright c© EPLA, 2017

Introduction. – In the past decade, the rapid
expansion of studies on complex networks has brought to-
gether different disciplines including physics, mathemat-
ics, computer science, sociology, economics, biology and
so on [1,2]. The theory of complex networks provides us
with novel insights for understanding the real-world link-
ing patterns. The real-world linked datasets are usually
dynamically changing and subjected to unobservability.
On the one hand, the datasets are growing and chang-
ing over time through the increment of new links [3]. On
the other hand, the missing or unobservable entries ex-
tensively exist in the datasets [4]. Therefore, predicting
missing links is of great importance for studying the newly
appeared and unobserved relations between data entries.

The link prediction problem essentially concerns the
knowledge discovery and topology remodeling for large
volumes of dynamic and noisy datasets [5], which also aims
at uncovering to what extent the evolution of networks
can be modeled and analyzed according to the intrinsic
features and structures of the network itself [6]. So far it
has been generally accepted as a fundamental paradigm

(a)E-mail: haodong@uestc.edu.cn
(b)E-mail: zhutou@ustc.edu

not only in physics but also in bioinformatics, sociology,
statistics and computer science.

Great effort has been made to solve the link prediction
problem [7–15] and most of the algorithms are based on
the similarity between vertex pairs since these algorithms
are designed according to the fact that similar vertices are
more likely to connect to each other. These algorithms
are called similarity-based algorithms. Roughly, the sim-
ilarity indices can be classified into three categories [8],
i.e., local [16,17], global [18,19] and quasi-local [20,21]
indices. The most popular methods are the local ones
because they are simple and applicable for very large-
scale networks. Although they are computational efficient,
the local similarity-based link prediction algorithms are
sometimes less accurate.

The global topological information can be exploited
through the adjacency matrix, where the nonzero entries
denote the connections between vertices, while missing
links and nonexisting links are both denoted by zero en-
tries. In most cases, a very small fraction of zero entries
(called hidden nonzero entries or hidden entries) repre-
sent the missing links and the rest (called null entries)
represent the nonexisting links. Essentially speaking, a
link prediction algorithm aims at recovering the hidden
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nonzero entries from the real null entries according to all
the nonzero entries in the adjacency matrix. However, for
a real-world network, the adjacency matrix is usually very
sparse (i.e., most of its entries are zeros), providing highly
limited information. How to precisely predict the miss-
ing links based on the sparse information is a challenging
issue.

In this work, we introduce the robust principal com-
ponent analysis (robust PCA) [22] method, namely low
rank (LR), into link prediction and design a novel global
information-based prediction algorithm based upon the
low-rank and sparse property of the adjacency matrix.
Then, by minimizing the nuclear norm of the matrix which
fits the training data, we reconstruct a network that is
close to the original network and accordingly identify the
missing links. It is shown that when the target network is
connected and sufficiently dense, we can find out the miss-
ing links with much higher accuracy compared to some of
the state-of-the-art algorithms.

Method. – An undirected network consists of a set
of vertices V and a set of links E. We do not consider
multiple links and self-connections. Suppose we have an
observed network represented by the adjacency matrix
A ∈ R

n×n, which is a snapshot or a subset of an original
network G∗. The sets of links in A and G∗ are denoted by
ET and E, respectively. Denote the rest of the links in E
as EP , namely E = ET ∪EP and ET ∩EP = ∅. Then ET

is the training set for learning and prediction and EP is
the probe set for verifying the prediction accuracy. With-
out loss of generality, in the experiment we dynamically
take 80%, 85%, 90%, and 95% of all the links in G∗ as the
training set and the rest as the probe set, respectively.

The objective of the link prediction is to find out the
missing links of the original network G∗, or equivalently,
to recover a network G which is sufficiently close to G∗,
based on the observed entries of A (it is worth noting that
it is generally intractable to recover exactly G∗). Assume
that i) X∗ ∈ R

n×n conveys the pattern as to how the
network evolves (how predicted links are added and some
existing links are eliminated) and we call X∗ the backbone
network; ii) X is the subset of X∗ containing only the pre-
dicted links, which can be obtained by resorting the values
of elements corresponding to nonzero entries in A to be
zero. X∗ and X have real number values. Identifying net-
work X∗ is the crucial intermediate step for recovering the
original network and predicting the missing links accord-
ingly. The observed network A is the only information we
can utilize. X∗ can be represented by subtracting an er-
ror/noise matrix E ∈ R

n×n from A and this noise matrix
should be much sparser than either A or X∗. Therefore,
X∗ can be written as

X∗ = A − E, (1)

where E is the noise matrix in which positive entries
are the spurious links and negative entries represent the
missing links that appear in X∗. The relationship among

Observation A Backbone X
*

Noise E

=

Recovered G Predicted X Observation A

+ 

=

a

b

+

Fig. 1: (Color online) (a) The relationship between the ob-
served network A, the corresponding backbone network X

∗

containing newly appearing links and some existing links and
the noise E containing spurious links in the observed net-
work A. (b) The relationship among the recovered network G,
the predicted network X containing only newly appearing links
and the observed network A. The white squares represent real
null entries with value zero, the white squares with red frames
represent the missing or likely existing links (values are also
zeros), while the other entries indicated by colored squares are
the values greater than zero.

G, A, X, X∗ and E is illustrated in fig. 1. The recovered
network G is obtained as

G = X + A. (2)

X contains only newly appeared links and it is defined as

xij =

{

x∗

ij , aij = 0.
0, aij = 1.

(3)

The principal component analysis (PCA) can be utilized
to obtain X∗ and E simultaneously by converting the
observed network A into a set of linearly uncorrelated
variables called principal components, which captures the
backbone network X∗. When the data is slightly cor-
rupted PCA can perform well, however, it cannot per-
form well with the grossly corrupted data. Therefore, a
more robust matrix completion approach against high-
dimensional noise E is required for link prediction in real
complex networks. Hence, we apply the robust principal
component analysis (robust PCA) in the matrix comple-
tion for link prediction.

Mathematically, according to the theory of robust PCA,
recovering matrix X∗ can be transformed into the follow-
ing optimization problem:

min
X∗,E

rank(X∗)+γ||E||0 subject to X∗ = A − E, (4)

where rank(X∗) denotes the rank of matrix X∗, the opera-
tor ||.||0 is the l0-norm (i.e., the number of nonzero entries
of a matrix), and γ is the parameter balancing these two
terms. Normally, a precise solution of X∗ guarantees that
G = G∗, which means that the precise solution of X∗ can
be used to perfectly recover the original network. Finding
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the precise solution of X∗ in eq. (4) is a highly nonconvex
optimization problem and its complexity is nondetermin-
istic polynomial. However, some approximate solutions
with exponential time complexity can be obtained based
on robust PCA [23]. Firstly, since a matrix with rank r
has exactly r nonzero singular values, rank(X∗) is just the
number of nonzero singular values of the matrix X∗. Sec-
ondly, according to the pioneering works [24,25], the solu-
tion of the l1-norm is also a sparse solution of the l0-norm.
Hence, the tightest relaxation of rank(X∗) and l0-norm are
the nuclear norm and l1-norm, respectively [26–28]. In a
word, the relaxed approximate solution of eq. (4) can be
written as

min
X∗,E

||X∗||∗ + λ||E||1 subject to X∗ = A − E, (5)

where ||.||∗ denotes the nuclear norm (i.e., the sum of
singular values) of the matrix, ||.||1 is the l1-norm (i.e.,
the sum of the absolute values of the matrix entries), E is
a sparse matrix (i.e., most of its entries are zeros) and λ is
the positive weighting parameter balancing the low-rank
property and sparsity.

On the one hand, the backbone network X∗ contains
the predicted links not in A; on the other hand, it also
eliminates some possible links in A. After obtaining X∗

we check only the newly appearing links and ignore the
observed links in A, as shown in eq. (3), then we merge X

with A to recover a matrix G as illustrated in eq. (2). This
matrix is recovered from the observed data A through the
above procedure, and it is supposed to be close to the
original network G∗.

Each pair of vertices (e.g., x and y) in G is bundled
with a score Sxy corresponding to nonzero entries of X.
The scores in G or X denote the likelihoods of missing or
newly emerging links such that the higher they are, the
more chances they have to be the missing or predicted
links. It is worth noting that the above approach can also
be applied to solve the link prediction problem in directed
networks [29]. Finally, we sort the score of unobserved
links in a descending order and select the top L links. In
this work, L is the cardinality of the probe set. We check
whether each of these L links really appears in the probe
set and record the number of appearing links as Lr. As we
set the L as the cardinality of the probe set, the precision
value is also equal to the recall value at this point [8] as

Pr = Lr/L. (6)

Analysis. – One crucial question is: to what extent
can we predict the missing links by utilizing the above
matrix completion method? In [26], the authors proved
that when the m observed entries of an n×n matrix with
rank r satisfy the following inequality,

m ≥ Cn1.2r log(n), (7)

where C is a positive constant, one can perfectly recover all
entries of the matrix with a very high probability through

solving a simple convex optimization problem. However,
for the real-world data, the adjacency matrix is very sparse
where the order of the number of nonzero entries is nor-
mally much less than n1.2r log(n). Fortunately, for the
link prediction problem, it is not required to recover all
the nonzero entries of the adjacency matrix, since only a
small portion of these zero entries are the missing links
and the rest of zero entries are the null links. Therefore,
we are still able to estimate that the missing and likely
existing links even with the nonzero entries are much less
than what is required for eq. (7).

The time-consuming part of the proposed algorithm
(LR) is to compute the singular value decomposi-
tion (SVD) of the adjacency matrix. By utilizing
PROPACK [30] the complexity of each iteration of the
algorithm reduces from O(n3) to O(kn2), where k is the
estimated rank of the matrix. This is due to the low-rank
property as k ≪ n which makes the LR scalable for large
networks. For instance, LR takes only about 141.986 sec-
onds to work with a router network containing 5022 nodes
and 6258 links on normal Intel(R) Core (TM) i7-6700 PC
with 8 GB of RAM1.

The LR method contains a parameter λ which plays the
role to balance the low-rank property of the recovered ma-
trix and sparsity of the noise or spurious link matrix. The
optimal value of λ can be obtained from the empirical sim-
ulation as it varies according to the sparsity and structure
of the networks. The optimal λ of LR for each network
in this study as well as the optimal parameters for other
global methods are illustrated.

As LR and other global similarity-based algorithms pre-
fer the global structures of the networks, we define a global
structure of the adjacency matrix such that

g =
D

τ
log(|V |), (8)

where D is the density of the network, τ is the ratio be-
tween the rank and the dimension value of the adjacency
matrix, and |V | is the cardinality of the node set, i.e., the
number of nodes. If D is large and τ is small, then the net-
work is homogenous, i.e., its rank is much smaller than it
dimension. The logarithmic function on |V | is to normalize
the scale of the network. Large networks have more global
information for the network structures. Hence, the perfor-
mances of the global method should have correlation with
the global structure. The Pearson correlation coefficients
between the precision and the global structure g are dis-
played in table 3.

Simulation. – We implement LR, the local similarity-
based algorithms, quasi-local, and global similarity-based
algorithms on the 18 real networks including 16 un-
weighted and 4 weighted networks in which three of the
weighted networks are the same as those in unweighted

1See supplementary material at http://labcomplex.org/data/

LR LP.
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Table 1: The topology of the twelve real networks. |V | and |E| are the number of vertices and links, respectively. C, r and

〈k〉 are cluster coefficient, assortative coefficient and average degree, respectively. H = 〈k2〉

〈k〉2
is the degree heterogeneity of the

networks computed. R, τ and D are the rank of the adjacency matrix, the ratio between rank and dimension and the network
density, respectively. LCP-corr is the correlation between CN and LCL. q is the ratio between links with at least one common
neighbor and the total number of links.

Networks |V | |E| C r 〈k〉 H R τ D LCP-corr q
Jazz 198 2742 0.618 0.02 27.697 1.395 198 1.000 0.1406 0.948 0.805
Yeast 2375 11693 0.306 0.45 9.850 3.474 1816 0.765 0.0042 0.969 0.815
Political blogs 1222 19021 0.320 −0.22 27.355 2.970 1093 0.894 0.0224 0.929 0.959
Hamster 300 2503 0.201 −0.082 16.687 1.955 281 0.937 0.0558 0.899 0.860
Router 5022 6258 0.012 −0.14 2.493 5.502 3054 0.608 0.0005 0.807 0.134
FWF 128 2106 0.335 −0.10 32.422 1.231 124 0.969 0.2553 0.912 0.993
World trade 80 875 0.753 −0.39 21.875 1.558 79 0.988 0.2769 0.994 1.000
Contact 264 2108 0.658 −0.48 15.970 3.546 82 0.311 0.0607 0.986 0.966
Metabolic 453 2025 0.646 −0.226 8.940 4.485 450 0.993 0.0198 0.956 0.991
FWM 97 1446 0.468 −0.151 29.814 1.266 95 0.979 0.3106 0.950 0.997
Macaca 94 1515 0.774 −0.151 32.234 1.238 85 0.904 0.3466 0.971 0.999
Karate 34 78 0.571 −0.476 4.588 1.693 24 0.706 0.1390 0.756 0.859
Dolphin 62 159 0.259 −0.044 5.129 1.327 60 0.968 0.0841 0.907 0.761
Email 1133 5451 0.220 0.078 9.622 1.942 1091 0.963 0.0085 0.854 0.776

USAir 332 2126 0.013 −0.21 12.807 4.915 274 0.825 0.0387 0.980 0.969
C. elegans 306 2148 0.647 −0.16 14.039 4.642 282 0.922 0.0460 0.906 0.945
FWE 69 880 0.067 −0.30 25.507 7.972 66 0.957 0.3751 0.960 0.994
Football 35 118 0.353 −0.18 6.743 1.608 35 1.000 0.1983 0.948 0.805

networks. These networks are i) jazz [31] —jazz musi-
cian network, the link denotes the relationship between
two persons if they used to play together in the same
band at least once; ii) yeast [32] —the network of protein-
protein interaction; iii) political blogs (PB) [33] —the
network of hyperlinks between weblogs on US politics;
iv) hamster [34] —the friendship network of users of the
web site hamsterer.com; v) router [35] —the router-level
topology of the Internet; vi) FWF [36] —the network of
predator-prey interactions in Florida Bay in the dry sea-
son; vii) world trade (WT) [37] —the network of miscella-
neous manufactures of metal among 80 countries in 1994;
viii) contact [38] —a contact network between people mea-
sured by carried wireless devices; ix) metabolic [39] —the
metabolic network of the nematode worm C. elegans; x) C.

elegans [39] —the neural network of worms; xi) FWM [40]
—the food web in Mangrove Estuary during the wet sea-
son; xii) macaca [41] —cortical networks of the macaque
monkey; xiii) karate [42] —the network of relationship
among the members in the karate club; xiv) football [43]
—the network of American football games consisting of
Division IA colleges during the regular season, Fall in 2000.
xv) dolphin [44] —network of bottlenose dolphins living in
Doubtful Sound (New Zealand); xvi) email [45] —the net-
work of email interchanges between the members of the
University of Rovira I Virgili; xvii) USAir [46] —the air
transportation network of airports; xviii) FWE [47] —the
network of the predator-prey interactions of Everglades
Graminoids in the wet season. The topology statistics of
the eighteen networks are shown in table 1.

We conducted 100 times the simulations of LR for
each network and only report the average values and
standard error in this paper. We compare the preci-
sion values with six popular unweigted local similarity-
based algorithms, e.g., common neighbor (CN) [16],
Adamic-Adar (AA) [48], resource allocation (RA) [17],
local community paradigm, e.g., Cannistraci-Alanis-
Ravasi (CAR), Cannistraci-Adamic-Adar (CAA), and
Cannistraci-resource-allocation (CRA) [49]. In addition,
we compare LR with the local path (LP) index [20] which
is the quasi-local method and three global methods in-
cluding Katz [18], SPM [7], and LOOP [50]. The de-
tailed results from the ten unweighted-based algorithms
and LR are shown in table 2. We can see that LOOP
outperforms the rest. The second best global method is
SPM, while LR stands as the third. Although LOOP
performs better than the others, it is not applicable to
large-scale networks. On the other hand, the structure
perturbation method (SPM) outperforms LR on 11 of
16 unweighted networks, however, SPM cannot deal with
weighted networks. LR, in addition, is better than the
hierarchical structure model (HSM) [51] and the stochas-
tic block model (SBM) [4] in terms of computational ef-
ficiency. Among the local parameter-free methods, CRA
performs best followed by CAA and RA. In terms of mean
ranking, CRA is better than LP and Katz, meanwhile
LP and Katz are better than RA and other local meth-
ods. This is not a surprise since these results have also
been reported in others works [52–54] such that they are
some of the best mechanistic parameter-free local models
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Table 2: The average predicting precision obtained by 100 independent runs on the eight real unweighted networks. The probe
set contains 10% of total connections. The methods with asterisks (*) are the global ones, except for LP which is quasi-global.
The values in the brackets are the values of optimal parameters of the methods. The highest precisions in global and local
methods are respectively shown in boldface.

Networks LR∗ SPM∗ LOOP∗ Katz∗ LP∗ RA CRA AA CAA CN CAR

Jazz 0.610(.13) 0.674 0.692 0.492(.001) 0.491(.01) 0.541 0.556 0.528 0.531 0.507 0.518
Yeast 0.526(.14) 0.558 N/A 0.246(.001) 0.166(.10) 0.259 0.162 0.163 0.145 0.146 0.141
PB 0.195(.07) 0.235 N/A 0.175(.001) 0.181(.10) 0.146 0.174 0.169 0.173 0.171 0.172
Hamster 0.440(.10) 0.462 0.472 0.064(.010) 0.070(.20) 0.058 0.060 0.063 0.060 0.062 0.057
Router 0.115(.10) 0.159 N/A 0.022(.010) 0.101(.02) 0.006 0.020 0.016 0.018 0.019 0.019
FWF 0.565(.14) 0.561 0.576 0.103(.001) 0.307(.50) 0.077 0.079 0.077 0.076 0.074 0.078
WT 0.442(.12) 0.489 0.452 0.419(.010) 0.415(.20) 0.438 0.417 0.423 0.397 0.396 0.384
Contact 0.619(.10) 0.595 0.580 0.569(.001) 0.591(.50) 0.562 0.562 0.562 0.560 0.561 0.559
Metabolic 0.215(.10) 0.355 0.365 0.143(.010) 0.153(.30) 0.264 0.207 0.193 0.151 0.140 0.137
C. elegans 0.128(.10) 0.167 0.200 0.101(.010) 0.123(.30) 0.106 0.119 0.103 0.096 0.095 0.088
FWM 0.552(.14) 0.542 0.566 0.151(.010) 0.308(.30) 0.128 0.134 0.125 0.130 0.124 0.126
Macaca 0.751(.18) 0.732 0.755 0.566(.010) 0.630(.30) 0.516 0.562 0.533 0.560 0.544 0.552
Karate 0.114(.23) 0.150 0.194 0.149(.001) 0.153(.01) 0.134 0.208 0.134 0.208 0.150 0.168
Football 0.213(.17) 0.238 0.150 0.206(.100) 0.185(.10) 0.134 0.171 0.142 0.159 0.141 0.154
Dolphin 0.069(.25) 0.120 0.125 0.099(.100) 0.133(.10) 0.111 0.143 0.120 0.145 0.143 0.154

Email 0.063(.16) 0.151 N/A 0.133(.001) 0.133(.01) 0.154 0.159 0.154 0.145 0.139 0.143

Table 3: The average predicting precision obtained by 100 independent runs on the four real weighted networks. The probe set
contains 10% of total connections. The values in the brackets are the values of parameters of the methods.

Networks LR∗ rWRA rWAA rWCN WRA WAA WCN RA AA CN

USAir 0.408(.10) 0.423 0.390 0.325 0.395 0.377 0.307 0.458 0.391 0.372
C. elegans 0.129(.10) 0.109 0.112 0.108 0.109 0.119 0.116 0.104 0.105 0.098
FWE 0.532(.10) 0.158 0.156 0.149 0.158 0.213 0.206 0.171 0.162 0.151
Football 0.220(.19) 0.058 0.050 0.042 0.058 0.058 0.025 0.083 0.100 0.117
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Fig. 2: (Color online) The precision values on the 16 real unweighted networks for different sizes of the probe sets. The results
are obtained by 100 independent runs and the short vertical lines represent standard deviations.

for link prediction in both mono-partite and bipartite
networks.

The precisions on the router network computed from all
the algorithms are very low as the network is very sparse.
The traditional algorithms do not perform well on yeast,

hamster, FWF, and FWM networks, while LR performs
much better. LR performs well on dense networks. For
sparse and small networks such as karate, and dolphin, LR
fails to predict the missing links. Email is quite large, but
it is very sparse and its rank is high, therefore, LR cannot
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Fig. 3: (Color online) The precision values on the four real weighted networks for different sizes of probe sets. The results are
obtained by 100 independent runs and the short vertical lines represent standard deviations.

Table 4: The average ranking of the different methods across all the 16 networks and Pearson correlation coefficients (CC)
between precision and global structure (g), defined as in eq. (8), of the 16 unweighted networks.

LOOP∗ SPM∗ LR∗ CRA LP∗ Katz* CAA RA AA CAR CN

Average ranking N/A 2.063 3.313 4.625 4.688 5.688 6.688 6.938 6.938 7.250 7.875
CC N/A 0.658 0.713 0.534 0.790 0.587 0.576 0.486 0.543 0.578 0.570

perform well either. The precisions of local methods on
the router are very low since the ratio between links with
at least one common neighbor and the total links, defined
as q in table 1, of this network is also low. This condition
is necessary for LCP and other local methods to predict
the missing links.

We also compare LR with other six weighted-based al-
gorithms, namely WCN (weighted CN), WAA, WRA [55],
rWCN (reliable weighted CN), rWAA and rWRA [56] on
four weighted networks. Whenever the weights become 1,
WCN, WAA and WRA are equivalent to CN, AA and RA,
respectively. Moreover, WCN, WAA and WRA take the
sum of the neighbors’ weights into consideration, while
rWCN, rWAA and rWRA take the multiplication instead
(see details in refs. [55–57]). As shown in table 3, the
proposed method outperforms the others on C. elegans,
FWE and football network. However, RA performs as the
best on USAir followed by rWRA and LR. The predictions
on C. elegans fall down when the probe sets are over
15% resulting from sparse and high-rank properties. The
precision results for different sizes of the probe set on un-
weighted and weighted networks are shown in fig. 2 and
fig. 3, respectively. The average ranking of the algorithms
on the unweighted networks and the Pearson correlation
coefficients between the precision and the global structure
g, defined in eq. (8), are displayed in table 4.

Conclusion and discussion. – In this work, we adopt
the robust principal component analysis to solve the link
prediction problem. The adjacency matrix of the target
network is decomposed into a low-rank matrix which can
be regarded as the backbone of the network containing the
true links and a sparse matrix consisting of the corrupted
or spurious links in the network. Link prediction, actually,
can be regarded as the matrix completion problem from
the corrupted or incomplete adjacency matrix. By solving
the optimization problem, we obtain the low-rank matrix
which later on plays a role as score matrix illustrating the
possible connectivity between each pair of vertices.

When the target network is sufficiently dense and
connected, the proposed method performs better than the
traditional algorithms. In other words, the local similarity-
based methods do not perform well on the dense net-
work. This indicates that the low-rank matrix recovery
can well utilize the dense information in the adjacency
matrix while the local similarity indices cannot. All of the
networks we employ in this paper are undirected, however,
the proposed method can be extended to deal with di-
rected networks.

One disadvantage of the proposed method is the param-
eter λ. This parameter plays a very important role in the
low rank and sparsity decomposition of the networks. In
this work, we tune the parameter based on the empirical
simulations to obtain the optimal values for each network.
However, in the real-world problem we do not have the
probe set to testify the parameter λ, but we can still di-
vide the existing links into training set and probe set, and
train the data to obtain a good value for this parameter.
Although, the trained optimal value of λ from the training
set may not be identical to the optimal value for the whole
set of existing links, these two values should be close to
each other if the data set is large.

Although LR can be used to predict the missing links
in both weighted and unweighted networks, some net-
works, such as neural networks and signed opinion net-
works, should be treated as special cases. Those weights
should be regularized to some positive values in advance.
After prediction, one can adjust the weights in an inverse
way. This kind of extension deserves further investigation,
and currently we do not know how LR performs. We leave
these problems to further work.
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[17] Zhou T., Lü L. and Zhang Y. C., Eur. Phys. J. B, 71

(2009) 623.
[18] Katz L., Psychometrika, 18 (1953) 39.
[19] Brin S. and Page L., Comput. Netw., 56 (2012) 3825.
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