暗物质分享 http://blog.sciencenet.cn/u/zyntiger

博文

暗物质与宇宙模型:7. 基于正反粒子偶极子理论的宇宙模型论证

已有 105 次阅读 2022-9-20 08:01 |个人分类:暗物质|系统分类:论文交流

7. 基于正反粒子偶极子理论的宇宙模型论证

7.1 引言

直到20世纪,出现了两种比较有影响的宇宙模型。一是稳态理论,一是大爆炸理论。20世纪20年代后期,爱德温·哈勃发现了红移现象,认为宇宙正在膨胀。20世纪60年代中期,阿尔诺·彭齐亚斯和罗伯特·威尔逊(Robert Wilson)发现了宇宙微波背景辐射。这两个发现给大爆炸理论以有力的支持。大爆炸宇宙模型The Big Bang Theory)是现代宇宙学中最有影响的一种学说。大爆炸宇宙模型认为宇宙是由一个致密炽热的奇点于138亿年前一次大爆炸后膨胀形成。宇宙曾有一段从热到冷的演化史,在这个时期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。然而,大爆炸宇宙模型不断出现新的质疑,矛盾不断产生,使整个体系显得越来越不自冾。因此基于暗物质正反粒子偶极子模型对大爆炸理论进行系统论证。

7.2 多普勒效应

多普勒效应(Doppler effect)是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,是于1842年首次被提出的理论。主要内容为物体辐射的波长因为波源和观测者的相对运动而产生变化。认为在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift);在运动的波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift);波源的速度越高,所产生的效应越大。根据波红()移的程度,可以计算出波源循着观测方向运动的速度。

1842年的一天,多普勒正路过铁路交叉处,恰逢一列火车从他身旁驰过,他发现火车从远而近时汽笛声变响,音调变尖,而火车从近而远时汽笛声变弱,音调变低。他对这个物理现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的现象,这就是频移现象。因为,声源相对于观测者在运动时,观测者所听到的声音会发生变化。当声源离观测者而去时,声波的波长增加,音调变得低沉,当声源接近观测者时,声波的波长减小,音调就变高。音调的变化同声源与观测者间的相对速度和声速的比值有关。这一比值越大,改变就越显著,后人把它称为多普勒效应

匀速运动的火车从远而近时汽笛声变响与音调变尖均是一个逐渐变化过程,而火车从近而远时汽笛声变弱与音调变低,也是一个逐渐变化过程。如果频率与速度相关,车速不变,那么,将只会有两个频率,火车驶向观测者一个频率,而驶离观测者为另一个频率,且由驶向观测者到驶离观测者的瞬间频率变化。但事实上,火车驶向观测者时,频率是一点一点逐渐增大,而火车驶离观测者时,频率是一点一点逐渐减小。这表明声音的频率与距离有关,并非与速度相关。火车由远及近和由近及远的所有过程都是红移的过程,蓝移是假象。实际上,所谓的蓝移就是红移的比较少。红移与距离成正比,火车由远到近,红移逐渐减小;火车由近到远,红移逐渐增加。

当观测静止机器的轰鸣声时会发现,离近时声音尖锐,而离远时声音低沉。这也表明声音的频率与距离有关,并非与速度相关。

雷远声沉,雷近声脆也是同样的道理,雷很远的时候声音会很低沉,而在很近的时候声音会响亮而尖锐。这是因为距离较远时,声音频率降低较多。这也表明声音的频率与距离有关,并非与速度相关。

在平静的水面投1颗石子,水波呈圆形向外不断传递,能量会不断地被消耗,越远波动越小,而波长也会随之增长,直至能量被消耗完。也表明水波的频率与距离有关,并非与速度相关。

试验研究表明,平面脉冲声波在多孔介质中传播时,存在频率主值向低频移动。声场中的任意位置,声波的主频偏移与介质的衰减呈线性关系,对同一介质,声波的主频偏移与场点距声源的距离成正比。

20世纪初,哈勃与助手赫马森合作,对遥远星系的距离与红移进行了大量测量工作,发现远方星系的谱线均有红移,而且距离越远的星系,红移越大,红移大小与星系距离的关系经过了大量的测量验证。然而,星系的运动速度并没有得到进一步验证,目前仍有较大争议。这也表明电磁波的频率与距离有关,并非与速度相关。

一切星系都以地球为中心向四面散开,越远的星系间彼此散开的速度越大。飞离的速度与距离成正比,这意味着,地球就是大爆炸的奇点,这不仅不和逻辑,具有主观性,且奇点位置、奇点的形成、奇点密度等问题均无法得到合理有效解释。

另外,运动的波源前面,波被压缩,波长变得较短,这是不合逻辑的,运动速度小于声速时,为什么能压缩。另外,光是横波,振动方向与能量传播方向相互垂直,这种压缩更没有任何理由。

种种自然现象、物理实验与天文观测明确表明多普勒效应为在阻尼相同的条件下红移与传播距离成正比,而非与速度成正比。红移与阻尼相关,传播距离相同,阻尼越大红移越显著。另外,红移与频率相关,传播距离相同,频率越高红移越显著。

声波的传递是可见物质作为媒介物质;而光波的传递是暗物质作为媒介物质,两者的红移机理类似。

预测与验证:

进行不同距离的声频测试,采用较高声阻材料,效果明显,材料相同,主频相同,分析传播距离与频移关系。

进行不同阻尼的声频测试,距离相同,主频相同,分析传播阻尼与频移关系。

进行不同主频的声频测试,距离相同,阻尼相同,分析主频与频移关系。

进行水波试验,确定传播距离与波长的关系。

7.3 星系红移

1929年,美国天文学家哈勃发现,在宇宙空间不仅几乎所有的星系都具有谱线红移现象,而且还存在着星系的红移量与该星系的距离成正比的关系,因此认为越远的星系正在以越快的速度飞驰而去,这被称为哈勃定律。

哈勃定律提出,天文学家通过观测星系的谱线红移量,求出星系的视向速度,进而得出它们的距离。例如,一个以1700km/秒的速度远离而去的星系,其距离约1亿光年;一个以17000km/秒的速度远离而去的星系,其距离约10亿光年。目前已观测到的最远星系,正以与光速相差无几的速度远离而去,其距离达100多亿光年。为什么星系都在远离去呢?红移的本质是什么?为什么会存在哈勃定律?这些问题已经争论了半个多世纪了,但一直未能得到圆满的解释,因而成为天文学里的无解问题。在哈勃定律发表前两年,比利时天文学家勒梅特就提出了宇宙膨胀的概念。1930年,英国天文学家爱丁顿把勒梅特的模型和哈勃定律联系起来,称宇宙为膨胀的宇宙。1932年勒梅特进一步提出现在观测到的宇宙是一个巨大的原始火球爆炸而形成的。到了1940年,在发现了太阳的巨大能源来自热核反应后,美国物理学家伽英夫把宇宙膨胀论和基本粒子的运动联系起来,提出了热大爆炸宇宙学。他认为宇宙起源于高温、高密度的,原始火球的一次大爆炸。在热大爆炸模型提出后的一段时间内,很少有人关心它。直到1965年,美国贝尔电话实验室的彭齐亚斯和威尔逊发现了3K微波背景辐射(也称宇宙背景辐射)后,才使大爆炸学说一跃成为最有影响的学说。随着其他研究者的后继测量,宇宙背景辐射已成为大爆炸模型有效性的有力见证,成为考虑宇宙中大足度流动的有用的绝对框架,还因其表现的各向同性,成为发表星系形成理论的重要约束。

另外一些天文学家不认为星系谱线红移是由它们的退行速度引起的,因此也就不存在宇宙膨胀的问题。然而,要在多普勒效应之外,再找出红移的另一种解释。有一种解释认为:发出光谱的天体因本身的物理状态不同而产生红移。例如由于星系那里引力特别大,因此发出的光谱中红移特别大,这叫做引力红移。引力红移是广义相对论的预言之一。根据广义相对论,当一个观察者从远离引力场的地方,观测处在引力场中的辐射源发射出来的光的时候,谱线会向长波方向移动,移动量与辐射源和观测者两处引力势差的大小成正比。这种效应最初是在白矮星中得到证实的。但根据引力理论计算的结果来看,引力对红移的影响很小,不足以说明观测到的星系红移现象。另一种解释则认为光线与传播途中物质相互作用产生红移。光线由星系发出之后,要经过若干万光年才能到达地球,光在长途传播中要穿透许多星系区域,光和物质发生了某种相互作用,使光谱产生红移。星系越远,途中遇到的物质就越多,因而红移也就越大,但光与物质相遇如何相互作用而产生红移,还没有令人满意的解释。

少数天文学家认为类星体红移不是宇宙学的。对某些类星体和亮星系进行抽样统计研究,发现有些互相成协(即联在一起)的星系或成协的星系和类星体彼此之间的红移量完全不同或相差很大。另外发现有些类星体的光谱中,其吸收线的红移量与发射线的红移量互不相同,而且不同的吸收线还有各不相同的红移量,即多重红移。目前,已提出的除了引力红移、光子老化、物理常数变化等红移机制外,还有一种所谓的横向多普勒效应

哈勃与助手赫马森合作发现远方星系谱线的红移与距离成正比,这是唯一被大量实验数据证实的。然而,星系的运动速度并没有得到进一步验证,目前仍有较大争议。根据暗物质正反粒子偶极子理论,电磁波由正反粒子偶极子传递,频移与传播距离、正反粒子偶极子密度有关。

预测与验证:

采用较高声阻尼物质进行测试,测量声频与距离关系。

采用较高频率的光,如γ射线在光的高阻尼介质,如金、银、铂等物质中传播。

哈勃发现星系红移量与该星系的距离成正比的关系的事实,只是越远星系正在以越快的速度飞驰而去的推论存在问题。

7.4 引力红移

引力红移,是强引力场中天体发射的电磁波波长变长的现象。广义相对论认为当从远离引力场的地方观测时,处在引力场中的辐射源发射出来的谱线,其波长会变长一些,也就是红移。只有在引力场特别强的情况下,引力造成的红移量才能被检测出来。引力红移现象首先在引力场很强的白矮星(因为白矮星表面的引力较强)上检测出来。

在爱因斯坦完成广义相对论之前,他就已经得出引力将会影响光波频率和波长的结论。由于引力的作用,当向上行进远离地表的时候光波会损失一部分能量,从而波长变长,频率下降。但是由于地球引力不是很强,这个效应并不明显。直到1960年,哈佛大学的庞德、雷布卡和斯奈德采用穆斯堡尔效应的实验方法,测量由地面上高度相差22.6的两点之间引力势的微小差别所造成的谱线频率的移动,定量地验证了引力红移。结果表明实验值与理论值完全符合。

为了测量这种光波频率的细微改变,物理学家们必须找到一个频率能够被非常精确地测定的电磁波辐射源。直到1959年穆斯堡尔效应被发现,实验的条件才具备。这种效应是由德国海德堡(Heidelberg)普朗克研究所(Max Planck Institute)的穆斯堡尔发现的。穆斯堡尔发现,如果辐射伽马射线的原子核是包含在一块高质量晶体内的大量原子核中的一个,那么每一次辐射出来的伽马射线的能量几乎完全相同。辐射出来的伽马射线可以被另外一个处于基态的同一种原子核吸收,但是这种情况只有在辐射伽马射线的原子核和吸收伽马射线的原子核之间没有相对运动的时候才有可能发生。由于存在多普勒效应,任何相对运动意味着会导致光波的频率改变,从而不能被同一种的另一个原子核吸收。

庞德等人在哈佛大学的杰弗逊物理实验室(Jefferson Physical Laboratory)的塔顶,距离地面74英尺的高度,放置了这样的一个伽马射线辐射源,并在地面设置了探测器。他们将辐射源上下轻轻地晃动,同时记录探测器测得的信号的强度。通过这种办法,他们可以确定为了补偿引力造成的频率改变所需要的相对速度差,确定了相对速度差就可以知道频率改变了多少。

然后,他们将整个实验装置反过来,辐射源放置在地表,而探测器放在塔顶,并测量频率的改变。结合上下两个方向的实验数据,他们可以消除由几个不同因素造成的实验误差。上下两个方向的实验测量结果之间的差别很小,如果把光波原来的频率分成均匀的1015份,频率的改变仅相当于占了其中的几份而已。但是这已经足够了,正是这个微小的差别体现了纯粹由引力造成的差别,这个实验在百分之十的精度内验证了爱因斯坦的理论预言。到1964年的时候,他们又改进了这个实验,使得理论和实验在百分之一的精度之内吻合。

多普勒效应为红移与阻尼相关,阻尼越大红移越显著。因此光在宇宙中传播一般是红移与传播阻尼成正比,而经过比较大的星系或多个星系,暗物质大量堆积。由于暗物质高度密集,使其暗物质振荡受到极大约束,阻尼显著提高,因此星系红移更加显著。

7.5 宇宙微波背景辐射

1934年,托尔曼(Tolman)发现在宇宙中辐射温度的演化里温度会随着时间演化而改变;而光子的频率随时间演化(即宇宙学红移)也会有所不同。但是当两者一起考虑时,也就是讨论光谱时(是频率与温度的函数)两者的变化会抵消掉,也就是黑体辐射的形式会保留下来。

1948年,美国科学家阿尔弗(Ralph Alpher)和赫尔曼(Robert Herman)预言,宇宙大爆炸产生的残系辐射,由于宇宙的膨胀和冷却,它所具有的温度约为绝对零度以上5K

1964年,美国贝尔实验室的工程师阿诺·彭齐亚斯和罗伯特·威尔逊架设了一台喇叭形状的天线,用以接受回声卫星的信号。为了检测这台天线的噪音性能,他们将天线对准天空方向进行测量。在波长为7.35cm的地方一直有一个各向同性的讯号存在,这个信号既没有周日的变化,也没有季节的变化,因而可以判定与地球的公转和自转无关。起初他们怀疑这个信号来源于天线系统本身。1965年初,他们对天线进行了彻底检查,发现天线上有一些鸟屎。清理了天线上的鸟屎后,然而噪声仍然存在,于是他们在《天体物理学报》上以《在4080兆赫上额外天线温度的测量》为题发表论文正式宣布了这个发现。不久狄克、皮伯斯、劳尔和威尔金森在同一杂志上以《宇宙黑体辐射》为标题发表了一篇论文,对这个发现给出了解释,即:这个额外的辐射就是宇宙微波背景辐射。他们认为这些来自宇宙的波长为7.35厘米的微波噪声相当于3.5K,并在1965年又订正为3K

微波背景辐射的另一特征是具有极高的各向同性。这具有两方面的含义:小尺度上的各向同性:在小到几十弧分的范围内,辐射强度的起伏小于0.2%大尺度上的各向同性:沿天球各个不同方向,辐射强度的涨落小于0.3%

正反粒子偶极子是电磁场物质,不仅是电磁辐射介质,而且本身也进行着一定的热运动。而这种热运动会产生所谓的宇宙微波背景辐射。只要有正反粒子偶极子的地方就会有这种宇宙微波背景辐射;而这种热运动的程度与正反粒子偶极子的密度和温度相关,密度不同则波长不同。另外,如果是来自宇宙的辐射,那么这种辐射是可以进行电磁屏蔽的,而正反粒子偶极子充满整个宇宙,渗透进任何物质,在任何位置都会进行热运动,因此只有这个频率是无法屏蔽的。

预测与验证:

将测试的整个空间进行电磁屏蔽,进行测试,检验是否仍能接收到相同的宇宙微波背景辐射。

随着离地高度的变化,正反粒子偶极子密度会逐渐降低,那么所谓的宇宙微波背景辐射波长将会产生变化。

7.6 暗能量

1917年,爱因斯坦提出广义相对论导出的一组引力方程式,方程式的结果都预示着宇宙是在做永恒的运动,这个结果与爱因斯坦的宇宙是静止的观点相违背,为了使这个结果能预示宇宙是呈静止状态爱因斯坦又给方程式引入了一个项,这个项称之为的宇宙常数

后来人们经过哈勃空间望远镜观测发现,星系红移大小与星系距离呈比例关系。但却由于多普勒相应的误解而误认为河外星系的视向退行速度与距离成正比,即距离越远,视向速度越大。

然而,种种自然现象、物理实验与天文观测明确表明宇宙并没有不断膨胀。暗能量的概念与构思与不断膨胀的宇宙相关的思想就需要调整。另外,宇宙中充满着暗物质,且其总重量是可见物质的6倍左右,暗物质不仅是一种万有引力物质,也是电场、磁场和引力场的载体。暗物质不仅因本身的热运动而具有大量热能,而且由于是各种场的载体,蓄积了大量的场势能,在这种意义上,暗物质蓄积大量的能量,影响着整个宇宙的运动与演化。

7.7 宇宙半径论证

目前,宇宙可观测的最大直径有930亿光年,以地球为中心的可观测宇宙半径有465亿光年。所观测的光线是465亿年前来自于465亿光年处的星系所发出的光。也就是说,在465亿年前,它已经就在距离地球465亿光年的位置上。这里存在大量的矛盾需要考察与严密论证。

首先,在宇宙可观测半径以外是没有空间还是没有物质?这个需要严密的论证。

其次,宇宙的边界的构成需要严密论证。宇宙的边界到底是什么,为什么就成为了边界?

再者,边界处的星体运行规律是怎样的?也需要严密的考察,会跨越边界吗,会与边界发生碰撞吗?

另外,在边界处的星体发光只照向宇宙的内部吗?会跨越宇宙边界吗?

最后,为什么地球位于可观测的宇宙中心,这明显具有主观性。

总之,宇宙的半径、边界的形态与构成,边界的星体运行规律,以及边界星光的传递方向等问题存在大量矛盾,均需要严密的论证。

宇宙的观测一直不断地发展,宇宙可观测半径随着技术的发展也不断扩大。而实际上,宇宙可观测半径是人类观测能力范围的半径,并不是宇宙真正的半径。

7.8 宇宙年龄论证

欧洲航天局2013321公布了普朗克太空探测器传回的宇宙微波背景辐射全景图,并且把宇宙的精确年龄修正为138.2亿年。然而,宇宙的年龄存在着大量矛盾值得深入讨论和严密论证。

138.2亿年以前,宇宙的状态需要严密论证,这里必须存在宇宙进化经历着生死循环。否则在此次宇宙诞生之前时间为无限长,诞生前的宇宙已经存在了无限长,这种无限长意味着大爆炸发生前为穏恒态宇宙,为什么这种穏恒态宇宙在138.2亿年以前发生了宇宙大爆炸,这里的机理需要严格的论证,另外前一次的大爆炸时间与下一次的大爆炸时间需要严格地论证与周密地计算。但目前还没有任何关于上一次爆炸的时间与下一次大爆炸的时间报道。

7.9 大爆炸触发条件论证

大爆炸之处,体积无限小、密度无限大、温度无限高、时空曲率无限大的奇点。空间和时间诞生于某种超时空——部分宇宙学家称之为量子真空,其充满着与海森堡不确定性原理相符的量子能量扰动。然而,奇点的形成过程至今无法得到合理说明与解释。

首先,物质都同时具有引力和斥力,物质体积不能被无限压缩。这种无限大的压力来自于哪里?即使存在着无限大的压力,物质的斥力增加速度远远大于引力增加速度,随着不断压缩,物质间的斥力会急速增加,物质也无法被无限压缩,体积也不能无限小,密度也不能无限大。物质体积无限小,意味着这种无物质没有体积,即不占有空间,体积为零的物质不存在。

其次,能量只会从能量高物质传向能量低的物质,或从温度高的物质传递给能量低的物质。温度无限高意味着能量无限大,能量来自于什么物质,来自于哪里?这需要系统的讨论和严密的计算。

最后,至于时空曲率无限大,也需要系统的讨论和严密的计算。时间和空间的变化,以及时间与物质的作用力,空间与物质的作用力均缺少严密的论证。实际上,宇宙奇点不会产生,仅仅是一个理论的假设。总之,自然情况下无法达到大爆炸的触发条件。

7.10 大爆炸演化过程论证

爆炸之初,物质只能以中子、质子、电子、光子和中微子等基本粒子形态存在。宇宙爆炸之后的不断膨胀,导致温度和密度逐渐下降。随着温度降低、冷却,逐步形成原子、原子核、分子,并复合成为通常的气体。气体逐渐凝聚成星云,星云进一步形成各种各样的恒星和星系,最终形成如今所看到的宇宙。大爆炸理论需要一个完美的循环机制,然而目前来看,大爆炸是一个无法循环的宇宙模型。

首先,大爆炸整体循环的机制仍不完备,究竟大爆炸循环需要经历哪些阶段仍不明确,因此至今也没有估算出下一次大爆炸的时间与过程。

其次,具体的阶段形成过程与触发机制仍不健全。例如,大爆炸的奇点的形成的有效机制仍缺乏,违背了现有的力学机理、能量传递机理等。

因此,大爆炸需要提出一个完整的循环过程,并对整个过程进行不同步骤的细化,以及对不同步骤的触发条件与发展过程进行严密的论证。

7.11宇宙大爆炸后星系运动轨迹论证

目前,星系均为成团成系分布,个星系均具有各自的中心,且围绕这各种的中心运动,这致使各星系呈现为扁平化。宇宙爆炸后星系运动轨迹无法合理解释。

哈勃与助手赫马森合作发现远方星系谱线的红移与距离成正比,这是唯一被大量实验数据证实的。所有星系均加速远离地球并没有得到进一步验证。

另外,所有星系()均加速远离地球的证据不仅不充分,而且地球是大爆炸的奇点明显具有主观性。为什么地球是大爆炸的奇点,加速离开的速度和加速度是否明确确定,速度与加速度与什么因素有关,这里的力学机理是否完备?这个都需要进行完备而严密的论证。

7.12 奥伯斯佯谬

奥伯斯佯谬由德国天文学家奥伯斯于1823年提出,并于1826年修订。若宇宙是穏恒态而且无限的,则晚上应该是光亮而不是黑暗的。在此之前,类似的想法已由开普勒于1610年及夏西亚科斯于十八世纪提出。奥伯斯佯谬又称夜黑佯谬或光度佯谬。

1781年,哲学家伊曼努尔·康德在他的里程碑式的著作《纯粹理性批判》中深入的辨析了宇宙在时间上有无开端、空间上有无极限的问题,他称这个问题是纯粹的二律背反(即矛盾)。他论证道:如果宇宙没有开端,则任何事件前都必有无限的时间,这是荒谬的;而如果宇宙有一个开端,那么宇宙开端前是什么时间呢?康德认为正反两方面都存在令人信服的论据。事实上他的论证基于了一个隐含的假设,即不管宇宙是否存在了无限久,时间都可以无限地倒溯回去。

1826年,奥伯斯指出,一个静止、均匀、无限的宇宙模型会导致如下结论:黑夜与白天一样亮。但实际上夜空却是黑的。理论同观测的这种矛盾称为奥伯斯佯谬。采用天体之间有吸光物质、天体寿命有限或天体有演化、引力常数随距离而变化等都难以解决奥伯斯佯谬。在现代的膨胀宇宙模型里,奥伯斯佯谬不存在。这个矛盾是从观测和理论相联系的角度考虑宇宙的大尺度性质时提出来的。它标志著科学的宇宙学的萌芽。

假如宇宙是穏恒态而无限,而且有无数平均分布的发光星体,则无论望向天上哪一位置都应该见到一粒星体的表面,星与星之间便不应有黑暗的位置,黑夜时整个天都会是光亮的。更确切的表述是,如果宇宙是稳恒,无限大,时空平直的,其中均匀分布着同样的发光体,由于发光体的照度与距离的平方成反比,而一定距离上球壳内的发光体数目和距离的平方成正比,这样就使得对全部发光体的照度的积分不收敛,黑夜的天空应当是无限亮的。

首先,在于光线的传播距离存在严重问题,该理论认为光线能传递无限远,这是错误所在,目前人类能观测的最远光线465亿光年,在光线传播的过程中,会不断地遇到各种星云、尘埃物质,大部分能量被这些物质吸收,然后转变为波长更长的电磁波辐射。星云、尘埃物质时时刻刻吸收可见光,但也时时刻刻以不可见光的形式辐射能量,就像地球一样,一定周期内吸收热量与释放能量相等,不会自主发射可见光。一束光能够传播的距离是有限的,几乎大多数能量会在传递途中被吸收,并以转化为不可见光。

其次,这种观点是将物质、能量和空间混淆,如果没有可见物质,无论光线多强,都是不可见的,空中大多空间是没有可见物质的,因此一片黑暗。

再者,任何的恒星发射光,无论是空间上还是时间上都是非连续的,即在球面上发的光是不连续的,在同一个点发射的光也不会连续的。即在空间上和时间上都是不连续的,因此,任何一个恒星的发光都不能分布在整个宇宙空间。

另外,由于万有引力作用,恒星等星体均是成团成系存在,整个广袤的宇宙空间,恒星相当于整个空间很小,释放的能量也是有限的。而且,远处星光会被宇宙间黑暗的星体,尘埃和气体阻隔,能量被星云等物质吸收,而星云等物质温度极低。星云等物质能量也很难积累,温度很难升高,一直以极低的温度存在,只能通过不可见光向外辐射能量,只有部分折射、散射或反射的光线才是可见的,然而这些物质极其稀疏,达到一定距离后很难可见。

最后,恒星所发的光能量经过长距离传递,能量损失,并且被各种不同星体或星际物质吸收,而这些星体或物质温度较低,只能通过不可见光的形式向外辐射能量。

总之,光线的传播无限远的假定存在问题。光学仪器可观测宇宙930亿光年;而肉眼可观测最远的星系——仙女星系距离地球不到300万光年。因此即使宇宙是穏恒态、无穷大的,夜空也会是一片黑暗。

7.13 小结

(1) 种种自然现象、物理实验与天文观测明确表明多普勒效应为在阻尼相同的条件下红移与传播距离成正比,而非与速度成正比,且阻尼越大红移越大,频率越高红移越大。光经过星体时,由于暗物质大量堆积,使其暗物质振荡受到极大约束,阻尼显著提高,红移更加显著。正反粒子偶极子是电磁场物质,不仅是电磁辐射介质,而且本身也进行着一定的热运动。而这种热运动会产生所谓的宇宙微波背景辐射。

(2) 多普勒效应、星系红移和宇宙微波背景辐射的分析表明宇宙并没有不断膨胀。暗能量概念及其与不断膨胀宇宙相关的思想需要调整。宇宙中充满着暗物质,暗物质不仅是一种万有引力物质,也是电场、磁场和引力场的载体。暗物质不仅本身的热运动而具有大量热能,而且由于是各种场的载体,蓄积了大量的场势能,在这种意义上,暗物质蓄积大量的能量,影响着整个宇宙的运动与演化。

(3)宇宙膨胀缺乏实际观测数据,唯一得到证明的是红移与距离成正比。宇宙要是膨胀,那么一定要有一个半径和中心,那么半径外还会存在空间与物质。如果宇宙膨胀,那么一定有生死循环,但是生死循环没有任何讨论,如果没有生死循环,一定会落入到稳恒态宇宙模型。138.2亿年以前,宇宙的状态需要严密论证,这里必须存在宇宙进化经历着生死循环。前一次的大爆炸时间与下一次的大爆炸时间需要严格地论证与周密地计算。但目前还没有任何关于上一次爆炸的时间与下一次大爆炸的论证。膨胀机理至今没有解释,仅仅是说暗能量,但暗能量没有观测证据。宇宙膨胀后的系统运动规律不自冾,宇宙还是成团成系分布。薄片化的星系仍是主导。运动轨迹得不到论证,没有确定的膨胀中心与膨胀边界。宇宙背景辐射实际上是正反粒子偶极子的自身热运动,不是膨胀的指标性证据。膨胀的起始地点,时间,收缩的起始时间和地点无法能确定。物质都同时具有引力和斥力,物质体积不能被无限压缩。体积无限小、密度无限大的条件无法形成。能量只会从能量高物质传向能量低的物质,或从温度高的物质传递给能量低的物质。温度无限高意味着能量无限大,这需要系统的讨论和严密的计算。至于时空曲率无限大,也需要系统的讨论和严密的计算。总之,大爆炸整体循环的机制仍不完备,究竟大爆炸循环需要经历哪些阶段仍不明确,因此至今也没有估算出下一次大爆炸的时间与过程。具体的阶段形成过程与触发机制仍不健全。例如,大爆炸的奇点的形成的有效机制仍缺乏,违背了现有的力学机理、能量传递机理等。大爆炸需要提出一个完整的循环过程,并对整个过程进行不同步骤的细化,以及对不同步骤的触发条件与发展过程进行严密的论证。

 (4) 奥伯斯佯谬的光线传播距离存在严重问题,在光线传播的过程中,会不断地遇到各种星云物质,能量不断被吸收,因此不会传递无限远。各种星际物质吸收可见光会以波长更长的不可见电磁波辐射能量,能量不会积累到可以发射可见光的温度。因此即使宇宙是穏恒态、无穷大的夜空也会是一片黑暗。





全书下载:

链接:https://pan.baidu.com/s/1saeswH_469N-qGaGH0CaVg?pwd=3qr0

提取码:3qr0 







https://m.sciencenet.cn/blog-225458-1356063.html

上一篇:暗物质与宇宙模型:8有序无限循环时空宇宙模型
下一篇:暗物质与宇宙模型:6. 基于正反粒子偶极子理论的量子力学理论论证

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2022-11-30 12:04

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部