解密暗物质分享 http://blog.sciencenet.cn/u/zyntiger 暗物质是连接宏观世界与微观世界的纽带,也是低速物理通向高速物理的桥梁,更是跨越经典物理与现代物理巨大鸿沟的有效工具!

博文

宇宙模型

已有 2218 次阅读 2022-11-18 16:36 |个人分类:暗物质|系统分类:观点评述

宇宙模型

1 牛顿宇宙模型

1781年,哲学家伊曼努尔康德辨析了宇宙在时间上有无开端、空间上有无极限的问题。事实上该论证基于一个隐含的假设,即不管宇宙是否存在已经无限久,时间都可以无限地倒溯回去。

19世纪末以前,牛顿的经典力学体系在物理学和天文学上取得了极为辉煌的胜利。在宇宙学问题的研究上,牛顿的天体学理论与先前的理论存在本质区别在于哥白尼原则只提出地球在宇宙里没有特殊地位,而牛顿进一步指出天体和地球皆遵守着相同的物理法则。这一点对宇宙物理学的进展起到重要作用。牛顿认为宇宙存在于欧几里得平直空间。如果宇宙是有限的,就有边界和中心,由于各种部分之间的相互吸引,物质必然落向中心,并形成中心巨大的物质球。显然这与观测事实不符。而在一个无限的宇宙中,无边界也无中心,不存在某一个特殊的方向。在绝对的时空中每一团物质受到来自各方向的相等的引力作用而停留在原地,但物质可以局部地各自聚集成团,彼此相隔很大的距离,散布在无限的空间内。在总体上宇宙是稳定的,而在有限的局部区域内是不稳定的,天体有生有灭形成丰富而多样的天体。这就是牛顿的无限宇宙模型。

1823年亨利希·奥伯斯提出了奥伯斯佯谬 奥伯斯佯谬于1826年被修订,若宇宙是穏恒态而且无限的,则晚上应该是光亮而不是黑暗的。奥伯斯佯谬又称夜黑佯谬或光度佯谬。如果宇宙是无限静止和均匀的,那么观察者每一道视线的终点必将会终结在一颗恒星上。那么不难想象,整个天空即使是在夜晚也会象太阳一样明亮。有人提出反驳:远处恒星的光线被它经过的物质所吸收而减弱。但被认为吸收光线的物质将最终被加热到发出和恒星一样强的光为止。远处星光会被宇宙间黑暗的星体,尘埃和气体阻隔,令极远处的光线只可以传播一段有限的距离而不能到达地球。然而这并不能解决问题,因为根据热力学第一定律,能量必定守恒,故此中间的阻隔物会变热而开始放出辐射,结果导致天上有均匀的辐射,温度应当等于发光体表面的温度,也即天空和星体一样亮。然而这种论证是错误的,实际上,任何物质都时时刻刻吸收并辐射能量,宇宙间黑暗的星体,尘埃和气体将吸收可见光的能量,以不可见光的形式时时刻刻向四周辐射。因此这些星体,尘埃和气体在很低的温度时,吸收和释放的能量平衡,一直维持在很低的温度,只能以不可见光的形式释放能量。

牛顿宇宙模型是建立在绝对时空观的基础上的。由于这个模型当时无法克服奥伯斯佯谬,因而早已被放弃。但实际上,采用热辐射原理很容易解释奥伯斯佯谬。任何物体都具有不断辐射、吸收电磁波的性质。辐射出去的电磁波在各个波段不同,并具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关。这就很好地解释了光不能传递无限远,目前采用最灵敏的仪器才能接受到465亿光年以内的光,因此,宇宙中很多可见光被星际物质吸收,且以不可见光的形式向外传递。这就合理地解释了奥伯斯佯谬问题。

2 相对论宇宙模型

19世纪末由于牛顿力学和麦克斯韦电磁理论趋于完善,一些物理学家认为物理学的发展实际上已经结束,但当人们运用伽利略变换解释光的传播等问题时,发现一系列尖锐矛盾,对经典时空观产生疑问。

1905年,爱因斯坦发表的题为《论动体的电动力学》一文中提出的区别于牛顿宇宙模型的新的平直时空理论。建立了可与光速相比拟的高速运动物体的规律,创立相对论。狭义相对论提出两条基本原理。(1) 光速不变原理:在任何惯性系中,“真空”中光速c都相同,与光源及观察者的运动状况无关。(2) 狭义相对性原理:物理学的基本定律乃至自然规律,对所有惯性参考系来说都相同。爱因斯坦曾经一度试图把万有引力定律纳入相对论的框架,几经失败后,他终于认识到,狭义相对论容纳不了万有引力定律。

1915年,爱因斯坦将狭义相对性原理推广到广义相对性,又利用在局部惯性系中万有引力与惯性力等效原理建立了用弯曲时空的黎曼几何描述引力的广义相对论。广义相对论认为引力是由时空弯曲的几何效应的畸变引起的,因而引力场影响时间和距离的测量。

狭义相对论只适用于惯性系,它的时空背景是平直的四维时空,而广义相对论则适用于包括非惯性系在内的一切参考系,它的时空背景是弯曲的黎曼时空。广义相对论是一种关于万有引力本质的理论。

广义相对论的两个基本原理是:(1) 等效原理:惯性力场与引力场的动力学效应是局部不可分辨的;(2) 广义相对性原理:所有的物理定律在任何参考系中都取相同的形式。

在广义相对论中,引力作用被几何化,狭义相对论的闵氏空间背景加上万有引力的物理图景在广义相对论中变成了黎曼空间背景下不受力的自由运动的物理图景,其动力学方程与自身质量无关而成为测地线方程。按照广义相对论,在局部惯性系内,不存在引力,一维时间和三维空间组成四维平坦的欧几里得空间;在任意参考系内存在引力,引力引起时空弯曲,因而时空是四维弯曲的非欧空间。爱因斯坦找到了物质分布影响时空几何的引力场方程。时空的弯曲结构取决于物质能量密度、动量密度在时空中的分布,而时空的弯曲结构又反过来决定物体的轨道。在引力不强、时空弯曲很小情况下,广义相对论的预言同牛顿万有引力定律和牛顿运动定律的预言趋于一致;而引力较强、时空弯曲较大情况下,两者有区别。

由于牛顿引力理论对于绝大部分引力现象已经足够精确,广义相对论只提供了一个极小的修正,人们在实用上并不需要它,因此,广义相对论建立以后的半个世纪,并没有受到充分重视,也没有得到迅速发展。到20世纪60年代,情况发生变化,发现强引力天体(中子星)3K宇宙背景辐射,使广义相对论的研究蓬勃发展起来。中子星的形成和结构、黑洞物理和黑洞探测、引力辐射理论和引力波探测、大爆炸宇宙学、量子引力以及大尺度时空的拓扑结构等问题的研究不断深入,广义相对论成为物理研究的重要理论基础。

广义相对论提出以来,预言了水星近日点反常进动、光频引力红移、光线引力偏折以及雷达回波延迟,都被天文观测或实验所证实。关于脉冲双星的观测也提供了有关广义相对论预言存在引力波的有力证据。在水星近日点的进动中,每百年43秒的剩余进动长期无法得到解释,被广义相对论完满地解释清楚了。光线在引力场中的弯曲,广义相对论计算的结果比牛顿理论正好大1倍,爱丁顿和戴森的观测队利用1919529的日全食进行观测的结果,证实了广义相对论是正确的。按照广义相对论,在引力场中的时钟要变慢,因此从恒星表面射到地球上来的光线,其光谱线会发生红移,这也在很高精度上得到了证实。从此,广义相对论的正确性得到了广泛地承认。从1922年开始,研究者们就发现场方程式所得出的解答会是一个膨胀中的宇宙,而爱因斯坦在那时自然也不相信宇宙会涨缩,所以他便在场方程式中加入了一个宇宙常数来使场方程式可以解出一个稳定宇宙的解。

3 弦理论宇宙模型

宇宙弦理论也叫宇宙鞭子理论,是近代以及现代的一些科学家在关于宇宙的形成和发展的问题上,引进的假想量理论。就像光线一样,宇宙弦是不存在的。但为了更好地研究和阐释宇宙的各种情况,科学家利用宇宙的规律,形象地引进了宇宙弦的概念。而宇宙弦理论就是根据这个假想量分析得到的宇宙情况的理论。弦理论是理论物理的一个分支学科,认为自然界的基本单元不是电子、光子、中微子和夸克之类的点状粒子,而是很小的线状的。弦的不同振动和运动就产生出各种不同的基本粒子,能量与物质是可以转化的,故弦理论并非证明物质不存在。弦理论中的弦尺度非常小,操控它们性质的基本原理预言,存在着几种尺度较大的薄膜状物体,后者被简称为

在弦理论中,基本对象不是占据空间单独一点的基本粒子,而是一维的弦。这些弦可以有端点,或者它们可以自己连接成一个闭合圈环。弦理论中支持一定的振荡模式,或者共振频率,其波长准确地配合。

弦理论的雏形是在1968年由维尼齐亚诺提出。虽然弦理论最开始是要解出强相互作用力的作用模式,但后来的研究发现所有的最基本粒子,包含正反夸克,正反电子,正反中微子等,以及四种基本作用力粒子都是由一小段的不停抖动的能量弦线所构成,而各种粒子彼此间的差异只是弦线抖动的方式和形状的不同而已。

目前,描述微观世界的量子力学与描述宏观引力的广义相对论在根本上有冲突,广义相对论的平滑时空与微观下时空剧烈的量子涨落相矛盾,这意味着二者不可能都正确,它们不能完整地描述世界。而除了引力之外,量子力学很自然的成功描述了其它三种基本作用力:电磁力、强力和弱力。弦理论也可能是量子引力的解决方案之一。超弦理论还包含组成物质的基本粒子之一的费米子。至于弦理论能不能成功的解释基于目前已知的所有作用力和物质所组成的宇宙以及应用到黑洞等需要同时用到量子力学与广义相对论的极端情况,这还是未知数。

弦理论认为所有的亚原子粒子都并非是小点,而是类似于橡皮筋的弦。与粒子类型的唯一区别在于弦振动的频率差异。弦理论主要试图解决表面上不兼容的两个主要物理学理论——量子力学和广义相对论。并欲创造性的描述整个宇宙的万物理论。然而这项理论非常难测试,并需要对所描绘的宇宙进行一些调整,也即宇宙一定存在比所知的四维时空更多维度。科学家认为这些隐藏的维度可能卷起到非常小以至于无法发现它们。

弦理论的进步也推动着宇宙弦理论的发展。目前,宇宙弦理论已经有了完整的体系,相关的还有超弦理论大一统理论等。

由于任何弦理论所作出与其它理论都不同的预测均未经实验证实,该理论的正确与否尚待验证。为了看清微粒中弦的本性所需要的能量级,要比目前实验可达到的高出许多。因为弦理论在可预知的未来可能难以被实验证明,一些科学家问,弦理论是否应该被作为一个科学理论。它现在还不能被证伪,但这也暗示了弦理论更多地被看做建设模型的框架。在同样的形式中,量子场论也是一个框架。

4 标准宇宙模型

标准宇宙模型是指以弗里德曼宇宙模型为基础,伽莫夫将其运用于早期宇宙演化而形成的一种宇宙模型;标准宇宙模型是一种结合核物理、粒子物理、相对论、量子力学知识对宇宙起源和演化的解释;标准宇宙模型是目前主流的宇宙模型。

标准模型包含费米子及玻色子。费米子为拥有半整数的自旋并遵守泡利不兼容原理的粒子;玻色子则拥有整数自旋而并不遵守泡利不兼容原理。简单来说,费米子就是组成物质的粒子,而玻色子则负责传递各种作用力。

标准宇宙学模型认为宇宙目前正在膨胀。得出宇宙目前正在膨胀的理论基础是从广义相对论的引力方程推导出来的宇宙学方程,观测基础则是哈勃定律。因为宇宙学家认为哈勃定律中星系红移是由星系的退行速度产生的多普勒效应产生的,星系的退行速度和距离成正比表明,宇宙目前是在不断膨胀的。哈勃定律的发现虽然迫使爱因斯坦放弃了宇宙学常数和静态宇宙学模型,承认宇宙可能是在膨胀。可是哈勃定律的作者哈勃本人,对哈勃定律可以得出宇宙膨胀这个结论似乎并不认可。

哈勃之所以怀疑宇宙膨胀的存在,是因为他在得出哈勃定律时,并没有对观测数据进行充分必要的改正。哈勃定律中星系的红移可以精确测定,但星系的距离是利用星系的视亮度和距离平方成反比的关系来得到。如果星系的谱线发生红移,星系的视亮度和距离平方成反比的关系就有问题,因为星系辐射的红移会使星系的视亮度变小,因此星系的视亮度随距离增加而下降的速度要比和距离平方成反比的下降还要快。因此要正确建立星系的红移和距离的关系,就要对用来确定星系距离的星系视亮度进行必要的改正,天文学中把这种对星系视亮度的改正称之为K-改正。哈勃发现,不做K-改正结果还好,进行了K-改正后,星系的红移和距离的关系反而不是成正比关系。

虽然现在宇宙学家认为,让哈勃感到困惑的原因是他在进行K-改正时假设的星系光谱不准确,观测时用的定标星等也不太准确,因此导致距离测定的不准确。实际上天体距离的测定一直是宇宙学研究中的一个难题。由于天体距离的确定标尺变化,哈勃常数的数值也一直在变化。有些天文学家认为,天体距离的测定难题现在已经可以解决,但实际上问题并没有那么简单。1998年以后所谓宇宙正在加速膨胀现象的发现,导致维护标准宇宙学模型的天文学家认为宇宙中存在暗能量。但也有些天文学家就认为,导致宇宙加速膨胀这个结论的关键也是天体距离测定的精确度问题。宇宙学研究中天体距离的准确地确定仍然是一个没有完全解决的难题。

5 大爆炸宇宙模型

大爆炸宇宙模型认为宇宙是由一个致密炽热的奇点于138亿年前一次大爆炸后膨胀形成的。1927年,比利时天文学家和宇宙学家勒梅特首次提出宇宙大爆炸假说。1929年,美国天文学家哈勃根据假说提出星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互相远离的宇宙膨胀说。

大爆炸宇宙模型认为宇宙曾有一段从热到冷的演化史。在这个时期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。1946年美国物理学家伽莫夫正式提出大爆炸宇宙模型。爆炸之初,物质只能以中子、质子、电子、光子和中微子等基本粒子形态存在。宇宙爆炸之后的不断膨胀,导致温度和密度很快下降。随着温度降低、冷却,逐步形成原子、分子,并复合成为通常的气体。气体逐渐凝聚成星云,星云进一步形成各种各样的恒星和星系,最终形成如今所看到的宇宙。

大爆炸理论的建立基于两个基本假设:物理定律的普适性和宇宙学原理。宇宙学原理是指在大尺度上宇宙是均匀且各向同性的。这些观点起初是作为先验的公理被引入的,现今已有相关研究工作试图对它们进行验证。例如对第一个假设而言,已有实验证实在宇宙诞生以来的绝大多数时间内,精细结构常数的相对误差值不会超过10-5。此外,通过对太阳系和双星系统的观测,广义相对论已经得到了非常精确的实验验证;而在更广阔的宇宙学尺度上,大爆炸理论在多个方面取得的成功也是对广义相对论的有力支持。

假设从地球上看大尺度宇宙是各向同性的,宇宙学原理可以从一个更简单的哥白尼原理中导出。哥白尼原理是指不存在一个受偏好的观测者或观测位置。

大爆炸提出的初始阶段,西方科学界普遍坚持宇宙和物质是恒定不变、无始无终的。因此对于所有涉及宇宙和万物有一个起点的理论一概不予承认。爱因斯坦在总结引力场方程时发现公式将推导出宇宙其实是一个有着从未停止的物质变化的动态宇宙,于是在该公式中又强加了一个宇宙常数,以维持静态宇宙的计算结果。

1922年,美国天文学家埃德温·哈勃观测到红移现象后,宇宙膨胀的观点开始形成。1929年,埃德温·哈勃总认为不管你往哪个方向看,远处的星系正急速地远离地球而去。换言之,宇宙正在不断膨胀。事实上,似乎在大约100亿年至200亿年之前的某一时刻,它们刚好在同一地方,所以哈勃的发现暗示存在一个叫做大爆炸的时刻,当时宇宙处于一个密度无限的奇点。

根据大爆炸宇宙模型,早期的宇宙是一大片由微观粒子构成的均匀气体,温度极高,密度极大,且以很大的速率膨胀着。这些气体在热平衡下有均匀的温度。这统一的温度是当时宇宙状态的重要标志,因而被称为宇宙温度。气体的绝热膨胀将使温度降低,使得原子核、原子乃至恒星系统得以相继出现。

1964年,美国贝尔电话公司的彭齐亚斯和威尔逊,在调试巨大的喇叭形天线时,出乎意料地接收到一种无线电干扰噪声,各个方向上信号的强度都一样,而且历时数月而无变化。他们把天线拆开重新组装,依然接收到这种无法解释的噪声。这种噪声的波长在微波波段,对应于有效温度为3.5K的黑体辐射出的电磁波(它的谱与达到某种热平衡态的熔炉内的发光情况精确相符,这种辐射就是物理学家所熟知的黑体辐射)。他们分析后认为,这种噪声肯定不是来自人造卫星,也不可能来自太阳、银河系或某个河外星系射电源,因为在转动天线时,噪声强度始终不变。后来,经过进一步测量和计算。得出辐射温度是2.7K,一般称之为3K宇宙微波背景辐射。这一发现,使许多从事大爆炸宇宙模型研究的科学家获得了极大的鼓舞。因为彭齐亚斯和威尔逊等人的观测与理论预言的温度接近,正是对宇宙大爆炸模型的一个非常有力的支持。这是继1929年哈勃发现星系谱线红移后的又一个重大的天文发现。宇宙微波背景辐射的发现,为观测宇宙开辟了一个新领域,也为各种宇宙模型提供一个新的观测验证,它因此被列为20世纪60年代天文学四大发现之一。

知道某时刻的热辐射温度,由热大爆炸理论很容易计算出宇宙诞生后约1秒时各处的温度约为100亿度,这对现有的原子核的合成来说也是太高了。那时物质必定被撕裂成最基本的成分,诸如质子、中子和电子等。但是,随着变冷,核反应就可能出现了。采用大爆炸模型可以计算氦-4、氦-3、氘和锂-7等轻元素相对普通氢元素在宇宙中所占含量的比例。所有这些轻元素的丰度都取决于一个参数,即早期宇宙中光子与重子的比例,而这个参数的计算与微波背景辐射涨落的具体细节无关。宇宙大爆炸模型所推测的轻元素比例(这里是元素的总质量之比而非数量之比)大约为:氦-4/=0.25,氘/=10-3,氦-3/=10-4,锂-7/=10-7。实际测量到的各种轻元素丰度和从光子重子比例推算出的理论值加以比较,可以发现它们是粗略符合的。其中理论值和测量值符合最好的是氘元素,氦-4的理论值和测量值接近但仍有差别,锂-7则是差了两倍,对于后两种元素的测算存在着较大的系统随机误差。尽管如此,宇宙大爆炸模型所预测的轻元素丰度与实际观测可以认为是基本符合的,这是对宇宙大爆炸模型的强有力支持。到目前为止,还没有其它理论能够很好地解释并给出这些轻元素的相对丰度。同时,由大爆炸理论所预言的宇宙,其中可被调控的氦元素含量为现有丰度的20%30%。事实上,很多观测结果现今也只有大爆炸理论可以解释,例如为什么早期宇宙中氦的丰度要高于氘,而氘的含量又要高于氦-3,而且比例又是常数等。

2014317日,美国物理学家宣布首次发现了宇宙原初引力波存在的直接证据。原初引力波是爱因斯坦于1916年发表的广义相对论中提出的,它是宇宙诞生之初产生的一种时空波动,随着宇宙的演化而被削弱。科学家认为原初引力波如同创世纪大爆炸的余响 原初引力波可以帮助人们追溯到宇宙创生之初的一段极其短暂的急剧膨胀时期,即所谓暴涨。广义相对论提出近百年来,源于它的其它重要预言如光线弯曲、水星近日点进动以及引力红移效应等都被一一证实,而引力波却始终未被直接探测到,问题就在于其信号极其微弱,技术上很难测量。美国哈佛-史密森天体物理学中心等机构物理学家利用架设在南极的BICEP2望远镜,观测宇宙大爆炸的余烬”——微波背景辐射。计算表明,原初引力波作用到微波背景光子,会产生一种叫做B模式的特殊偏振模式,其它形式的扰动,都产生不了这种B模式偏振,因此B模式偏振成为原初引力波的独特印记。观测到B模式偏振即意味着引力波的存在。南极是地球上观测微波背景辐射的最佳地点之一。研究人员在这里发现了比预想中强烈得多B模式偏振信号,随后经过3年多分析,排除了其它可能的来源,确认它就是原初引力波导致的。2016年年初,美国激光干涉引力波天文台(LIGO)和欧洲引力波天文台(VIRGO)的科学家联合宣布,他们探测到了两个约为30倍太阳质量的黑洞在13亿年前的合并产生的引力波。

然而,对于大爆炸后最初的几分钟,相关的观测严重缺乏,最早期宇宙物质——能量的实际形式很大程度上仍只是猜测。大一统理论预测了特定类型的粒子,而超弦、超对称、超引力以及其它多维理论都预测了各自原初粒子及作用力。物质对反物质的绝对优势也是一个需要透彻说明的经验性事实。

6 等级式宇宙模型

等级式宇宙模型是法国天文学家沃库勒等倡导的一种宇宙学说。这种学说认为宇宙在结构上是分层次的,如恒星、星系、星系团、超星系团以至更大的集团。

随着尺度的变化,集团的性质也在变化。所谓宇宙的均匀性与各向同性,对不同层次有不同涵义。18世纪中期,德国物理学家朗伯特曾提出过天体逐级成团分布的概念。第一级是太阳系;第二级是比太阳系大得多的所谓星团;第三级是银河系。1908年,瑞典天文学家沙利叶提出了等级式宇宙模型,并且指出,根据这种模型可以克服奥伯斯佯谬的困难,即当第n+1级与n级的半径比大于n+1级所包含的n级天体的个数的平方根时天体到达地面的总光通量就是有限的,或者说远处天体对光通量的贡献可以是任意小的数值,因而不会发生黑夜和白天一样亮的所谓奥伯斯佯谬现象。

由现代观测知道天体的分布是成团的。星系计数现可达 100兆秒差距范围。沃库勒认为即使在这样大的尺度,天体分布的起伏也不是随机性的,而是存在更高级的团聚现象。他不同意宇宙学原理认为宇宙在大尺度上是均匀的和各向同性的。既然在直到目前星系计数所及的尺度上,星系的分布都有明显的非随机成团现象,不能设想一旦大于这一计数的总尺度,成团性就会消失而表现为均匀分布。根据等级式宇宙模型推出,平均密度随观测距离加大而减小,这已为20多个量级的半径范围和45个量级的密度范围观测资料所证实,不能设想一旦超过这个范围,这种关系就不复存在而代之以某一均匀密度。沃库勒认为宇宙学原理是由于美学上的偏见和数学上的简化而提出来的。如果天体分布是成团的,则宇宙膨胀要受这种成团影响而出现起伏,哈勃常数要因不同密度的起伏而改变,因而宇宙模型不能作统一处理。

等级式宇宙模型目前还没有精确的数学表述和确切的理论预言,兹威基和奥尔特等许多人也不同意沃库勒的结论。他们认为成团性终止于星系团一级,至多终止于超星系团一级。

7 稳恒态宇宙模型

1948 年英国邦迪,霍伊尔和戈尔德等人提出完全宇宙学原理,即宇宙在空间上均匀各向同性,在时间上稳恒不变;宇宙各处不断从虚无中产生物质,以保证宇宙膨胀中物质密度维持不变。克服了宇宙年龄困难和光度徉谬。哈勃常数不仅对空间各点是常数,而且不随时间变化。所以宇宙空间的膨胀在时间和空间上都是均匀的。宇宙空间在膨胀,而物质的分布又与时间无关,这样就必须有物质不断产生出来以填补真空,也就是填补宇宙膨胀所产生出来的空间。通过完全宇宙学原理和爱因斯坦场方程可以求出宇宙的时空结构,可以得到宇宙的三维曲率为零,也就是三维空间是平直的。

物质不断地产生在理论上违背了物质守恒定律,更缺乏物质产生的具体途径和机制;在观测上得不到星系、射电源计数的支持,也无法解释背景辐射和元素丰度等事实。这条原理必须承认标准大爆炸模型,假若宇宙以一种极不规则的方式演化,即不会有生命及人类进化出现了,其无法承载所有物理定律。

小结

人类对宇宙的观测不断进步,时空观也得到不断发展,新的宇宙模型不断出现,各种宇宙模型均有其合理性,并且也得到了不断地发展。然而,仍没有一个较为完善的宇宙模型令众人信服。因此,宇宙模型仍需要不断发展与完善。


《暗物质与宇宙模型》全书下载

链接:https://pan.baidu.com/s/1saeswH_469N-qGaGH0CaVg?pwd=3qr0

提取码:3qr0

 

《和平与发展》全书下载

链接:https://pan.baidu.com/s/1cgCYm0EEaYOzNzylsrAtuA?pwd=cxkq

提取码:cxkq 




https://m.sciencenet.cn/blog-225458-1364307.html

上一篇:时空观的发展
下一篇:暗物质发现历程

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-25 17:27

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部