柯志新分享 http://blog.sciencenet.cn/u/zooplankton

博文

关于“鲢鳙控藻”的文献笔记

已有 2086 次阅读 2015-11-26 11:34 |系统分类:科研笔记|关键词:学者

 

看到刘老师“鲢鳙控藻”的微博,翻出自己以前的文献笔记,表明也曾关注过

 

鲢鳙能消除蓝藻水华这种表观现象,但水质改善和不发生水华好像应该是两码子事,减少氮磷输入应该还是最最根本的。至于生物操纵嘛,保持水体生物多样性应该得到重视。

 

Kajak et al. (1975 looked at the potential use of omnivorous silver carp, to overcome algae blooms and thus to improve water quality. Kajak (1977) emphasized that the fish impact may different according to the environmental conditions.

 

Smith D.W 1985认为综合利用浮游动物和白鲢可以更好的控制浮游植物。具体措施就是将鱼类限制在一定区域,另外的区域作为浮游动物的避难所,最大限度减少鱼类对浮游动物的捕食影响。

 

Spataru & Gophen (1985), silver carp feed mostly on phytoplankton from February through August. From September to January, sampled gut contents contained predominantly. It is recommended to stop the stocking of silver carp in Lake Kinneret. It was found that for several individuals intestines were 10 times longer than body length, typical of phytoplanktivorous fishes. To estimate the degree of satiation (F=index of fullness), the following formula was used: F=w*100W where w is the weight of the gut contents and W is the weight of the fish. Condition factor = w*105L3 Where L = standard length, w = weight of fish. All of these contradictory results were collected under different conditions.

 

Swar & Gurung (1988) Considering the food habits of these fishes, further stocking should be limited to bighead and silver carp to limit the adverse effects on the indigenous species. Considering the fish size and climatic and trophic conditions of the lake these two species are probably the suitable fish for the open water fishery in Lake Begnas.

 

Beveridge, M.C.M. et al. 1993 比较研究了鲢和罗非鱼对有毒PC7820和无毒微囊藻的滤食率。Journal of Fish Biology, 43, 901-907.

Both strains grew primarily as suspensions of paired cells of equivalent size, the particle diameter of M. aeruginosa strain 7820 was 3.33 ± 0.47 µm and that of M. aeruginosa strain CYA 43 was 3.47 ± 0.45 µm (both, mean ± S.D.). The implication here is that mucus-bound ‘toxic’ cells can be detected and rejected as food items.有毒的微囊藻显著抑止了鱼类的摄食活动。

 

Drenner.R.W et al 1996滤食性鱼类(gizzard shad)放养促进了小型浮游植物的发展,促进了营养盐从底泥向水体的释放。放养量越高富营养化程度更严重。

 

Dong S.L. and Li, D.S., 1994.比较学习鲢鳙的摄食选择能力。Journal of Fish Biology, 44, 621-626.Size-selection 对颗粒大小有选择,但是对饵料种类没有选择;有选择摄食区域的能力。鲢对小颗粒滤食的能力大于鳙,鳙对大颗粒的摄食能力大于鲢,直径为70um的颗粒两者滤食能力差不多。

 

Lieberman D.W 1996 花白鲢在小池塘的环境中能有效的控制藻类,但是作为一个生物控制的工具要慎重,因为同时减少了水体的透明度、增加了小型藻类的比重、减少了浮游动物。

 

Lorenzen, K. 1997模型分析鳙鱼的群落结构组成。Aquaculture Research, 28, 867-880. The population model incorporates explicit submodels for density-dependent growth and size-dependent mortality, and allows the assessment of stocking density, seed fish size, fishing mortality (fishing effort), and gear selectivity. The population dynamics of fish in extensive culture are determined by the management actions of stocking and harvesting, in interaction with the natural processes of individual growth and mortality. 密度限制的生长模型:The individual growth of fish is described by a density-dependent version of the von Bertalanffy growth function (VBGF), described in Lorenzen (1996). W = (Wr1/3 – c (B – Br))3  重量限制的死亡率:Mortality is described by a power function of weight in accordance with theoretical and empirical studies of fish mortality. Mw = Mr (W/Wr)b

 

Wu Lin Xie P et al 1997在东湖的围隔实验,不同的白鲢密度(081225485/m2)。总的浮游动物密度和枝角类的体长在低密度(081)时于在高密度时(225485)。降低当前东湖鲢鳙的放养密度(190)有利于大个体枝角类群体的建立,有利于水质改善。其没有发现密度的不同对叶绿素和营养盐有什么显著效果。

 

Datta, S. and Jana, B.B., 1998 India. 鲢,鳙,罗非鱼的原位围隔控藻试验。强调了ichthyoeutrophication的作用。Nearly 6-180% nutrient enrichment of the limnocorrals was attributable to the defaecation of test fishes suggesting their ichthoyeutrophication potentials, which were in the following order: tilapia>bighead>silver carp. It is concluded that silver carp is most suitable for clearing Microcystis in the lake because of its minimal ichthoyeutrophication effect.

 

Horppila J. et al 1998 认为成功的食物网生物操纵并不一定依靠浮游动物的牧食,鱼类活动引起的营养盐的循环可能是更加重要的。应该控制鱼类放养,减少上行作用。他提出因湖泊的特点不同生物操纵的效果往往不一样,成功的生物操纵依靠对湖泊生物及理化因子的了解。

 

Domaizon, I. 1999 不同放养密度的鲢的生物操纵的效果。提倡较低的放养量。Our results showed that the use of low silver carp biomass (<200 kg/ha) would allow us to minimize these negative effects. 围隔实验(036g)研究认为小于8g m-3的密度可以使白鲢对大型浮游动物的负影响达到最小。尽管放养量是非常重要的,浮游生物的群落结构组成对白鲢能否成功的对浮游植物的控制更为重要。当小型浮游动物占绝对优势时,白鲢对他们的摄食就不显著,对蓝藻水华的减少就更为重要一点。

 

Domaizon, I. and Devaux, J. 1999围隔试验学习不同放养密度的鲢对浮游植物和水质的影响。Biomass levels (0, 8, 16, 20, and 32 g m-3),讨论了浮游植物,浮游动物,营养盐的变化。More importantly, however, the suppression of herbivorous cladocrans resulted in the increase of small size algae which were relieved from grazing and benefit from high nutrient concentrations. 高密度的情况,营养盐更容易转化为颗粒状。In high fish biomass treatments, nutrients were more efficiently accumulated into particulate fractions compared with no-fish and low-fish biomass treatments that were characterized by higher dissolved nutrients concentrations. 尽管高密度的情况水华略有减轻,鲢不适合于减少蓝藻水华。

 

Fukushima M et al 1999 进行了两次白鲢的密度的梯度实验。一次在夏季,在没有白鲢的围隔内发生了蓝藻水华。一次在秋季,都没有水华发生,在对浮游植物的影响上浮游动物扮演了比白鲢生物量更加重要的角色。浮游动物结构是由有没有白鲢决定的,而不是鲢的放养量。浮游植物的结构在蓝藻水华发生前由鱼的生物量决定,在蓝藻水华发生后由有没有白鲢存在决定。白鲢适合于控制水华的环境。

 

Johal, M.S. et al. 2001 通过鲢的体长和鳞片半径、匙骨、舌骨的线性回归比较,哪种接近显著性。body proportional methods; scale proportional hypotheses

 

Lu min, Xie P 2001 长期的滤食性鱼类的放养会导致桡足类的比例升高。

 

Abdelghany, A.E. and Ahmad, M.H., 2002.混养施肥鱼塘的投饵率对罗非鱼、鲤鱼和鲢的生长的影响。介绍了养殖试验的操作控制过程。At the beginning of the experiment, each pond was stocked with 1000 Nile tilapia, 1000 silver carp and 200 common carp of average initial weights of 13.7 g, 1.9 g and 10.9 g respectively. The low stocking density of common carp relative to Nile tilapia or silver carp is traditionally common in fish farms in Egypt as well as in other countries and was adopted according to the low preference of the consumers, the low price of the species in the market, the relatively high trophic niche of the species in the food chain and its vigorousness of feed consumption.

 

Hambright K.D et al 2002通过不同组对各种种类的清除率的研究和滤食性鱼类(Saotherodon galilaeus)的摄食成分的分析,认为滤食性鱼类在减少大型藻华的同时增加了小型藻的发生,不能改善水质。

 

Radke, R.J. and Kahl, U., 2002 Germany. 围隔试验鲢对浮游动物和浮游植物的影响。Freshwater Biology, 47, 2337-2344. 试验的密度10 g m-3。认为在只有环境中存在大量大型浮游植物水华的情况下,白鲢才适合作为一种生物操纵的工具。这种情况一般适合于生产力高而又缺少大型枝角类的热带湖泊。

The presence of fish led to a fast and significant decrease in the size at maturity of Daphnia. The moderate biomass of silver carp had a stronger negative effect on cladoceran zooplankton than on phytoplankton. 只有大型水华占优势时(浮游动物无法摄食)才可以用鲢控藻。Stocking of silver carp appears to be most appropriate in tropical lakes that are highly productive and naturally lack large cladoceran zooplankton. Daphnia成熟个体的规格测量方法:size at maturity (SAM) of Daphnia was determined as the smallest egg carrying female in a sample.

 

Hambright, K.D. et al. 2002 通过一种滤食性的鱼类的摄食量来估算对藻类的清除效果。藻类因摄食造成的死亡率和藻类本身的最大增长率有2个数量级的差别。通过对藻类的摄食对改良水质的贡献是很少的。Estimates of instantaneous plankton mortality caused by ingestion were two orders of magnitude lower than maximum potential plankton growth rates. Thus the potential for the S.galilaeus population in Lake Kinneret to positively affect water quality through algal suppression is low. Taxon-specific grazing rates ranged from 0 to 17 mg gfish day-1, with mean total consumption of 1.6% fish body weight per day.

 

Starling, F. et al., 2002罗非鱼促进了水库的富营养化。Freshwater Biology, 47, 2443-2452. 加强捕捞是个改良水质的好方法,P,减少internal P-loading

Tilapia could contribute to the eutrophication of a tropical reservoir by enhancing P-loading. We chose a statistical approach called BACI (Before, After, Control and Impact), which is suited for detecting effects in non-replicated situations. This approach uses t-tests to compare the differences between the ‘Impact’ and ‘Control’ sites of variables measured before and after an incidence. P-excretion laboratory trials (P排泄的实验室试验)

 

Wouter J.Van De Bund. et al 2002对新西兰的一个湖的15年的研究。对浮游动物食性的鱼类(bream)的去除可以使蓝藻水华的水体快速向大型水生植物主导的清水环境转变。长期来说减少NP负荷对水质的改善是重要的,短期来说重复的清除浮游动物食性的鱼类也是必须的,可以为水体向清水稳定环境转变提供条件。

 

Hunt R.J et al 2003 浮游动物的生物量和群落结构受到鱼的放养量的强烈影响。Australian gudgeon, a planktivorous fish. 我估计是一个zooplanktivorous鱼类。高小鱼密度(12/m-33.6g/ m-3)使桡足幼体和无节幼体比例增加,浮游植物的结构和鱼的捕食关系不大,但是和NP有关。这种小鱼的密度和蓝藻水华的生物量密切相关,该情况适合利用控制食物网来进行生物操纵。消灭这种小鱼。

 

Talling J.F 2003对英国四个湖区20年的春季清水期的采样,每周一次。春季的清水期由于枝角类对小型浮游植物的有效摄食造成的。早夏的藻生物量的最小值是由于daphnia的高强度的摄食(>30ind/L),大型枝角类的群体经常是突然崩溃的,由于食物的缺乏with more non-edible phytoplankton。而桡足类的减少是由于竞争(食物)。

 

Santiago, B.C.B. et al. 2004. 线虫喂养鳙幼鱼的试验,确定了最佳的投喂密度。Results show that bighead carp larvae should be fed 100 free-living nematodes per ml at each feeding time.

 

Xie, L.Q. et al. 2004.鲢的藻毒素试验。Environmental Pollution, 127, 431-439.

The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters.

 

Danny Rejas et al 2005南美洲玻利维亚。两个实验,第一个证实上行作用在浮游生物食物网占主导作用,鱼类对浮游甲壳动物的促进作用。第二个表明浮游植物主要由上行控制的,浮游动物主要是由下行控制的,浮游动物的出生率在各密度组没有区别,但死亡率在有鱼的围隔内要高。在热带湖泊营养级链关系是弱的,浮游动物对藻的控制有限。

 

Figueredo C.C et al 2005滤食性的罗非鱼通过排泄增加了NP的含量,促进了营养物质的循环,加强了上行作用促进了藻类的发展。通过选择性的摄食作用促进了小型浮游植物的发展,影响藻类的群落结构。养殖罗非鱼应该注意带来的负面的环境影响。

 

Milstein, A., et al. (2006,以色列)研究了外来滤食性鱼鲢和底栖食性的mrigal对池塘土著鰕鯱科小鱼的影响。鲢的生长没有受到底栖鱼类的影响,鲤鱼的生长没有受到鲢的影响。底栖的mrigal存活率没有受到鲢的影响,但是生长率和产出减少了。添加鲢有利于增加渔民的收入,在鲤鱼池塘套养鲢的效果比在mrigal池塘中套养的好。

 

 

Persson and Svensson (2006)学习了底栖食性鱼类对湖泊沉淀物的生物地球化学作用的影响。一个普遍的现象就是鱼类结构的改变可以导致湖泊营养水平的变化(沉淀物的再悬浮、营养物的排泄)。野外围隔试验,不同的放养模式,底栖生物附着生物水化学的变化,沉淀物的氮磷的变化和迁移等。鱼类对底栖无脊椎动物的影响强烈,能显著增加水体的氮磷。总结这些效果都是由鱼类的直接排泄和搅动作用造成的。(Persson, A., Svensson, J.M., 2006. Effects of benthivorous fish on biogeochemical processes in lake sediments. Freshwater Biology, 51: 1298-1309.

 

Prokopkin, I.G. et al. (2006)通过模型学习了在一个水库中清除浮游食性鱼类(Carassius auratus)对蓝藻生物量的影响,发现通过鱼类的清除使水华停止发生。浮游食性鱼类的存在能导致微囊藻水华的二次高峰的发生,但是对由颤藻为主的水华不起影响。

 

鲁开宏、金春华、董双林等 (2006)在实验室学习了罗非鱼的摄食和控藻能力,结合宁波月湖的利用滤食性鱼类控藻的实践,发表在Hydrobiology上。罗非鱼在25时对微囊藻的消化效率是58.6%-78.1%,摄食能力随水温和鱼的体重增长。(Lu, K.H., Jin, C.H., Dong, S.L., Gu, B.H., Browen, S.H., 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hybrobiologia, 568: 111-120.)

 



https://m.sciencenet.cn/blog-602331-938724.html


2 吴世凯 Participant

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2022-6-27 07:37

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部