科学网

 找回密码
  注册

tag 标签: 一维

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

大地电磁自适应正则化反演及其一维源代码
热度 6 陈小斌 2014-6-8 03:45
大地电磁自适应正则化反演(Adaptive Regularized Inversion Algorithm, ARIA)是本人的代表性成果之一,其意义与正演领域的有限元直接迭代算法差不多。在这项研究成果中,本人在国内电磁测深领域较早地系统性阐述正则化反演算法理论并加以具体实现。而此前国内的大部分原创性电磁测深反演算法程序都不考虑模型约束这一项,反演目标函数中也少有考虑数据误差的影响的。因为这个原因,在CNKI中相关论文的引用率接近80次,这在我们这个小学科还是相当高的。 正演更多的是求解一个物理问题,而反演则更倾向于是一个数学问题。对于正演而言,一维、二维或者三维等问题,解决的数学手段和技巧可能差异很大,而且引起这种差异的主要原因一般都是物理因素;而对于反演而言,更倾向于是一个纯数学问题——一个最优化问题的解,故其基本理论、技巧跟所面对的维数没有关系,甚至跟正演本身关系很少。不同维的问题,反演中的技术手段也会有所差异,但这种差异的主要原因在于数学问题本身,而非来自于物理问题。比如,在一维模型下,采用摄动法直接计算雅可比矩阵,不是什么问题,因为当前的计算机速度已经足够快速;但在二维模型下,再去采用摄动法计算雅可比矩阵,基本不太可能,因为那样计算量太大。于是,发展了鸟佐夫方法,直接从分解后的正演方程求解雅可比矩阵。这还是比较慢,于是又发展了互易法。但这些反演方法都还是需要计算和存储巨型的雅可比矩阵的,不管怎么弄,速度还是不够快,内存消耗也很大,于是人们又搞出非线性共轭梯度算法,通过计算雅可比矩阵与模型向量的乘积的方式而避开了雅可比矩阵的直接计算,使得计算耗时和内存需求都很小,从而成为当前大地电磁业界应用最为广泛的二维反演程序。 扯远了,回头再来看大地电磁自适应正则化反演算法(ARIA)。ARIA反演改进了OCCAM反演中对正则化因子的处理方式,同时还包含另外两项创新性的内容。一项是对数据误差规范化的使用。这项措施的好处是避免了因为数据误差的使用而破坏了反演目标函数中数据拟合部分和模型约束部分之间的比例关系,从而使得正则化因子的取值基本不受数据观测误差的影响,同时又不损害数据误差在反演中的应用。这一技巧的好处似乎没有受到后续研究者的重视。事实上,国内能够从数据目标函数和模型约束目标函数的关系来考虑正则化因子取值的人并不多。另一项改进是模型粗糙度核矩阵的定义。这是与基本结构有限元理论直接关联的技术改进。也就是从基本结构有限元出发,可以得到模型约束目标函数的直接计算公式,从而将反演与正演的内部计算过程直接耦合在一起了。由于基本结论有限元理论的独创性,ARIA反演中这一技巧基本没有引起后续研究者的响应而完全忽视了。国内自身创新性的成果得不到持续性的研究并发扬光大,与强调国际接轨的SCI价值导向体系脱离不了干系。 由于反演本身是一个数学问题,因而本人发展的这个方法适用于所有的维数,尽管本人只实现了大地电磁一维连续介质反演程序(ARIA1D)。这个一维反演程序(ARIA1D),经过本人和诸多朋友以及MTP用户的验证对比,尽管反演速度较慢(因为采用基本结构有限元来做正演而非直接采用解析解做正演),但结果非常稳定,且分辨率高,在反演效果上优于著名的OCCAM一维反演程序,是目前一维反演程序中最好的程序之一。 那么既然一维效果这么好,为什么不继续做二维、三维的反演呢?这跟本人的经历和科研环境也很大的关系。我自从05年底以来一直到现在,连拿出一个月的时间来持续做一件事情都不可能,而要做好二维反演,至少需要持续半年的时间集中精力做好这一件事情,三维反演那就更甭提了。 那么我为什么能够长达十年之久去坚持开发MT-Pioneer软件呢?这就是MT—Pioneer这种可视化集成软件在研发思路和时间安排上与二维、三维反演程序研发的不同之处。对于集成软件而言,在大的框架搭建好以后,剩下的就是在里面搭积木,今天做一点,明天做一点,隔几天再做一点,这都是可以的。而高维反演算法程序却不一样,它是属于高智能密集型的技术,思维和行动必须连续到底,中间如果出现一定时间的中断,思维被打断,那么整个研发过程就可能夭折。几十年来,中国国内还没有出现一个得到公认并推广使用的大地电磁二维反演程序,表明我们连这样的核心技术都还没完全掌握,这是我们这个SCI大国的悲哀。 (大地电磁一维连续介质自适应正则化反演源代码: http://blog.sciencenet.cn/home.php?mod=spaceuid=39148do=blogquickforward=1id=855762 ) 大地电磁自适应正则化反演算法.pdf 初步的控制边网格尺度自适应——有点像MT模型了吧?
个人分类: 专业探讨|12414 次阅读|10 个评论
数组下标转换一维坐标索引函数:array_indices_reverse
dongyanqing 2011-10-30 12:43
首先看下 Array_Indices 的功能:将数组的一维下标转换到数组的对应维上: IDL void = where(arr eq 14) IDL idx = where(arr eq 14) IDL print,idx 14 IDL print,array_indices(arr,idx) 4 1 IDL print,arr 14 那么反过来呢,比如 arr = indgen(4,5,6) 和索引数组 inxarr = 能否快速求 arr 的值呢? 直接用变量下标的方式是不通的, IDL 会认为是三个单独的下标,即: IDL arr = indgen(4,5,6) IDL idx = IDL print,arr 94 IDL print,arr 2 3 4 解决方法有下面两个: 1) 利用 Execute 函数,示例代码 IDL arr = indgen(4,5,6) IDL idx = IDL str = 'result=arr )+',' IDL void = execute(str+'0]') IDL print,result 94 2) 利用函数 array_indices 的反函数 array_indices_reverse, 示例代码 IDL dirIdx = array_indices_reverse(arr,idx) IDL print,arr 94 附 array_indices_reverse 函数代码: ; 函数名 : ; array_indices_reverse ; ; 说明 : ; 输入一个数组和多维下标,返回其一维下标索引 ; 可以看作是 Array_indices 的反函数 ; ; ; 调用方法 ; Result = array_indices_reverse (Array, Index) ; ; 返回值 ; 返回索引下标数组对应的一维下标值 ; ; 调用示例 : ;IDL arr = indgen(7,8,4,5) ;IDL print,arr ; 23 ;IDL print,array_indices_reverse(arr, ) ; 23 ;IDL print,arr ; 138 ;IDL print,array_indices_reverse(arr, ) ; 138 ; ; 版本历史 : ; Written by: DYQ 2011 年 10 月 29 日 ;- function array_indices_reverse, array, indexArr, DIMENSIONS=dimensions compile_opt idl2 ON_ERROR, 2 ; 错误检测 if (N_PARAMS() ne 2) then $ MESSAGE, 'Incorrect number of arguments.' ; 数组的下标 arrDims = size(array,/dimen) ; 下标个数 idxNum = N_Elements(indexArr) if idxNum GT 1 then return,long(indexArr *product(arrDims )+array_indices_reverse(array,indexArr )) $ else return,indexArr end
个人分类: IDL技术|7172 次阅读|0 个评论
“三维”的特性
热度 1 readnet 2011-2-4 15:57
“三维”的特性
二维世界与三维世界又有什么不同呢? 二维世界是一个面,如前面所介绍的,这上面可以有三角形、四边形和圆等具有面积的各种图形(平面图形)。 上升到三维空间,则又有了体积的“立体” 平面图形有各种不同的形状,立体,也是有立方体、球、三角锥、圆锥、正四面体等等各式各样的形状。 立体有一个在二维不可能有,必须是在三维才具有的特性,那就是,立体可以具有“贯通的孔洞(管子)”。 轮胎的形状(环)就是具有贯通孔洞的一个立体。 有手柄的茶杯,也是一个有贯通孔洞(穿进手指的部分)的立体。 二维世界的图形是绝不可能有贯通孔洞的。 例如正方形,你可以从它的上边向下剜去一部分,得到一个“凹”字的图形。但是若向下剜得太深,穿过了正方形的下边,你得到的经不会是一个图形,而是把原来的正方形分割成了两个长方形。 在三维可以有“环”和“扭结” 立体“有体积”,此外还具有二维所没有的其他特性。 比如说,三维中的具有贯通孔洞的图形(环,如轮胎的形状), 还有通过穿插所形成的扭结图形(例如,国人过年过节时所喜爱的立体穿插的红色【中国结】), 这些都是在二维中所不可能有的。 由此可见,立体要比平面图形复杂得多。 在三维空间,不仅有【立体】,同时也可以有【二维的面】、【一维的线】和【零维的点】。 事实上, 维数较多的空间内部总是包含了维数比它要低的空间 。 “立体”,比平面图形复杂得多 三维的这个特性对于我们人类实在是太重要了。 要知道,我们人体就是一个“具有贯通孔洞的立体”。 这个贯通的孔洞——你当然马上就可以想到,那就是从口向下直延伸至肛门的消化道。 从受精卵到形成胎儿的身体,这个过程叫做“发育”。 在人体发育过程中有一件非常重要的事情,那就是在大量细胞聚集形成的胚胎上向开出一个孔洞(肛门),然后逐渐向内延伸,直到在贯通处形成口。 如果是二维世界的话,这个孔洞一贯通,人体就会被分为两半。 在这种意义上,人的诞生还要多亏三维世界有这样一个特性呢。 小结 三维世界中的“立体” 长方体、球、环、圆锥、 有扭结(立体穿插)的立体 人体与“维” 人是身体有贯通的消化道的生物(也有像海葵那样的没有贯通消化道的生物)。 贯通身体的消化道,这只能是在三维世界可以有,而在二维世界不可能有的结构。 这是因为,在二维身体上开一个贯通消化道的话,身体就会被分割成两半。 二维人 无法形成消化道(人体会被消化道分割成两半) 三维人 形成消化道 扩展阅读: “二维”的特性 辅助资料:     克莱因瓶     莫比乌斯带 Soliton 【注:本文所用图片均取自网络,仅用于科普,非商业用途】 扩展阅读:   “二维”的特性     = ★ =   三维立体与二维投影 科学松鼠会:季候风撰写的“拓扑学简介” 拓扑学简介(一) 拓扑学简介(一) Comments | Tags 标签: 原创 , 拓扑学 , 莫比乌斯带 季候风 发表于 2008-09-29 13:19 拓扑学是现代数学的一个重要分支,同时是渗透到整个现代数学的思想方法。“拓扑”一词是音译自德文 topologie ,最初由高斯的学生李斯亭引入 ( 1848 年),用来表示一个新的研究方向,“位置的几何”。中国第一个 拓扑学家是 江泽涵 ,他早年在哈佛大学师从数学大师 莫尔斯,学成后为中国带来了这个新学科( 1931 年)。 拓扑学经常被描述成 “橡皮泥的几何”,就是说它研究物体在连续变形下不变的性质。比如, 所有多 边形和圆周在拓扑意义下是一样的,因为多边形可以通过连续变形变成圆周,右边这个图上,一个茶杯可以连续地变为一个实心环,在拓扑学家眼里,它们是同一个对象。而圆周和线段在拓扑意义下就不一样,因为把圆周变成线段总会断裂(不连续)。为什么要研究这种性质呢?这就要追溯到几百年以前先贤们的遐想了。好在拓扑学比微积分还是新得多,用不着 “言必称希腊”,只要从莱布尼兹开始就行。 莱布尼兹作为微积分的主要奠基者之一,对抽象符号有特殊的偏好。经过他深思熟虑以后的微积分符号系统,比如微商符号 dy/dx ,不久就把牛顿的符号系统比下去了。在 1679 年的时候,莱布尼兹突发奇想,尝试用抽象符号代表物体的几何性质,用以将几何性质代数化,通过符号的代数运算,由已有的几何性质产生新的几何性质。他不满意笛卡尔的坐标系方法,认为有些几何性质是跟几何体的大小无关的,从而不能直接在坐标系中予以体现。可能是由于这个想法太超前了,在他自己的脑子里也还只是混沌一片,而当年听到他这个想法的很多人,比如惠更斯,干脆就不予理睬。 莱布尼兹在三百多年前想要建立的,是现在称为“ 代数拓扑 ”的学问,中间经过欧拉,柯西,高斯,李斯亭,莫比乌斯,克莱因,特别是 黎曼 和贝迪的思考和尝试,终于在 19 , 20 世纪之交,由法国天才数学家 庞卡莱 悟到了。在这些先驱中,高斯名气最大,被称为数学王子;大家可能不太熟悉黎曼,其实他同高斯在数学史上的地位是相当的,他在19世纪中叶的很多想法直到现在还有着巨大的影响;莫比乌斯,他在数学上有很多贡献,不过他为世人所知还多半是因为用他的名字命名的奇怪曲面:莫比乌斯带。左边这个图就是莫比乌斯带,它的重要特性是,虽然在每个局部都可以说正面反面,但整体上不能分隔成正面和反面。这种曲面叫做 “单侧曲面”。在这样的曲面上散步一定很别扭,哈哈。 拓扑学简介(二) 拓扑学简介(二) Comments | Tags 标签: 原创 , 拓扑学 , 数学 季候风 发表于 2008-10-07 10:55 这次来谈谈拓扑学中有代表性的一个课题, 扭结分类问题。所谓扭结,顾名思义就是一根绳子 首尾相接,它可能打 了结。更一般的,可以是几根绳子,除了自身打结以外,还互相打结。对具体的一个扭结,也许可以通过做实验的办法判断它是否打结,但是数学家希望找一个普适的,定量的办法。比如说,任意画一个扭结 (它实际上是一个空间扭结的平面 投影),比如这个有点复杂的,怎样不动手做实验就能 判断它到底有没有打结? 这个问题后来证实是非常复杂的问题。在有了计算机以后,才能找到一种时间代价很高的算法让计算机帮助我们判断一个扭结投影到底有没 有打结。直到 2006 年,才找到一种真正快速的计算机算法来判断这件事。 扭结分类的问题比判断是否打结更困难。比如,以下两个扭结都打了结,它们是否本质上是同一种结? 所谓 “分类”, 就是要找一个(可计算的)判据,使得当两个扭结满足这个判据时就是同一种结;当它们不满足这个判据时就不是同一种结。到现在为止,也还只能找到一些非常复杂的判据,同样要借助计算机才能大致判断两个扭结是否本质上为同一种结。 扭结理论有一段很有趣的早期历史。 1867 年,著名物理学家开尔文勋爵,就是那个号称物理学已经接近终结,只剩 “两朵乌云”的开尔文,突然产生了关于化学元素表的新看法(那时候还没有发现原子,所以化学元素表还是一个谜)。开尔文认为,不同的化学元素其实是 “以太”的涡旋在空间中的扭结形态。“以太”是 19 世纪的物理学家们发明的概念,它被想象成充满整个空间,是电磁波传播的载体(或媒质)。开尔文是很严肃的物理学家,当然不能凭空想象,实际上他提出了几个即使从现在的观点看来也很合理的证据: ( 1 )元素很稳定,这可以用扭结的拓扑性质来解释,微小的形变不改变扭结的 “扭法”。 ( 2 )元素很多样,这可以用扭结的多样性来解释,不同的 “打结方式” 实在太多了。 ( 3 )不同的元素发出不同的光谱,这可以用 “以太扭结” 的各种 “振动方式” 来解释。 有时候我们不得不佩服一些大师,他们虽然偶尔有点信口开河,不过极富原创力想象力。开尔文这个想法可以算是 “弦论” 的原生态。虽然后来化学周期表更好地被理解为原子内部结构,但开尔文列举的这几个证据都能在新兴的弦论中依稀找到一点影子。 请原谅我不能在这里具体给出任何判断两个扭结不同的方法。任何这样一个方法,都需要很多图解和文字说明。有兴趣的网友可以读姜伯驹的《绳圈的数学》或者英文书 《 An introduction to knot theory 》, 作者 Lickorish, 属于系列 GTM (graduate texts in mathematics) 175. 再贴几个扭结: 然后是一个问题:下面三个扭结中,哪两个本质上是同一种结? 拓扑学简介(三) 拓扑学简介(三) Comments | Tags 标签: 原创 , 拓扑学 季候风 发表于 2009-02-08 09:01 拓扑学简介(一) , 拓扑学简介(二) 庞卡莱是 19 世纪末 20 世纪初法国最伟大的数学家,他与德国的希尔伯特领衔当时的数学界,分别继承了黎曼和高斯的衣钵:庞卡莱对物理世界的深刻洞察给了他天马行空般的想象力,一如当年的黎曼;希尔伯特严谨,博学,细致入微地思考,为 20 世纪前半叶数论和代数几何的发展指明了方向。庞卡莱的 拓扑学 和希尔伯特的 代数几何 ,就像普朗克的量子论和爱因斯坦的相对论,完全革新了整个学科的基本观念。 这一帖就试试介绍庞卡莱引入的两个概念:“同调群” 与 “基本群”。它们都是几何体内在性质的 “代数体现”。 庞卡莱 意识到,描述一个几何体 抽象性质 的关键在于 这个几何体本身有没有边界,以及它是不是其它几何体的边界 。比如,一个圆盘和一个球面为什么不同,就是因为圆盘有边界而球面没有边界;球面为什么跟轮胎面不同,就是因为球面上的任何一个圈都是球面某一部分的边界,比如赤道就是北半球面的边界,而轮胎面上有的圈并不是轮胎面任何一部分的边界。 在第 一篇里说过,莱布尼兹梦想用符号来表述一些抽象的几何性质。 200 多年后 庞卡莱 终于实现了这个梦,他 把跟边界有关的性质数量化。先把几何体剖分成基本组成部分(点,边,三边形,四面体, …) ,比如,一个球面上可以画四个点,然后把它们两两相连 (不允许连线相交) ,有六条边,这些边把球面分成四个三边形 ,这就是球面的一个 “剖分”(见左图)。剖分的 基本 组成成份 叫做 “ 单形 ” , “ 点 ” 是 0 维单形, “ 边 ” 是 1 维单形, “ 三 边 形 ” (包括内部)是 2 维单形,等等 ( 试想一下 3 维单形是什么 ) 。 拿之前已经剖分的球面做例子,顶点 A, B, C, D 是 0 维单形,边 AB, AC, AD, BC, BD, CD 是 1 维单形,三边形 ABC, ABD, ACD, BCD 是 2 维单形 (如果 ABC, ACD 是东半球的区域,那 ABD, BCD 就包括了西半球) 。因为考察的是球面,而不是球体,所以没有三维以上的单形。 庞卡莱在 单形 前面放上系数 (整数) ,假设它们能够相加,以及做同类项合并。这种表达式称为一个 “ 链 ” , 比如 (3 AB – 2 BC) + (AC – 5 BC) = 3 AB – 7 BC + AC. 单形前面的加号减号具有几何意义,“定向”。在 1 维的时候就是边的方向,比如, AB 是从 A 到 B 的边, -AB 就是从 B 到 A 的边,也就是 BA ,所以 BA = – AB. 三边形的定向复杂一些,不过本质上就是跟顶点的排列顺序有关,对换两个顶点就会改变定向, ACB = – ABC. 由于每一个 n 维 单形的边界由若干 n-1 维 单形组成,所以 “ 求边界 ” 可以作为一种运算,作用在 “ 链 ” 上,得到 另一个 “ 链 ” ,其每一项都比原来链里对应项的维数低一维 。 在求边界的过程中,定向也是一个重要因素,虽然 AB 的边界是两个点 A 和 B, 但为了体现定向性质,规定 AB 的边界是 ( B – A ). 这种约定可以推广到高维的链,大家不妨自己试试。 如果用 d 记求边界运算,在跟定向相容的约定下,它在球面剖分的各单形上作用如下 d (A) = d (B) = d (C) =d (D) =0; d (AB) = B-A, d (BA) = A-B, d (BC) = C-B, …… d (ABC) = BC-AC+AB, d (BCD) = CD-BD+BC, …… 在 “链” 上的作用, d (3 AB – 2 BC) = 3 d (AB) – 2 d (BC) = 3 (B-A) – 2 (C-B) = -3 A + 5 B – 2 C. 边界运算有一个很好的性质。直观上容易看到,“物体的边界没有边界”。比如,三边形的边界是三条边组成的闭合链。生活中我们说 “闭合” 的意思就是没有边界。代数上体现为, 连续两次求边界一定是零 , d = d = d(CD) – d(BD) + d(BC) = (D-C) – (D-B) + (C-B) = 0 现在 把剖分后的几何体的所有这样的 “ 链 ” 放在一起,它们之间有加减法 (合并同类项) ,可以用系数乘,还可以 “ 求边界 ” 。这就得到了一个代数对象,叫做这个剖分后的几何体的 “ 链群 ”。 这个代数对象跟我们开始的剖分方法有关。 在链群中,可以由求边界运算得到的链叫做 “边缘链”,比如, 2 AB + 2 BC + 2 CA = d ( 2 ABC ) 说明等式左边这个链是一个边缘链。没有边界的链叫做 “闭链”。 边缘链一定是闭链,而闭链 不一定 是边缘链 。 庞卡莱 发现,“有多少闭链不是边缘链” 这个性质与剖分无关,从而是几何体某种本性的代数体现。怎样代数地描述这个性质? 考虑所有闭链 , 它们之间的加减,数乘,结果还是闭链,在其中 把边缘链等同于 0 ,这样得到的代数对象将 不依赖于剖分几何体的方法 ,庞卡莱叫它 “同调群”。 现在来算球面的同调群。顶点都没有边界,但是两个顶点的差一定是一条边的边界, A-B = d (BA) 按照庞卡莱的语言, A-B 是边缘链,将被等同于 0, 也就是说,在同调群中 A-B = 0, 或者说 A = B. 这样,本质上只有一个 0 维对象, A = B = C = D, 它可以被整数乘,这样我们得到球面的 0 维同调群 { … , -3A, -2A, -A, 0, A, 2A, 3A, …} 这个代数对象的加法,数乘,跟全体整数的加法,数乘是一样的,用数学的语言来说,球面的 0 维同调群 “同构于” 整数集。 1 维的链是六条边的组合,用代数运算(解线性方程组)或者几何直观都可以看到,没有边界的 1 维链总是由三边形的边界 ( AB + BC + CA ), ( BC + CD + DB), ( AB + BD + DA) 组成,按照庞卡莱的语言,球面上所有的 1 维闭链都是边缘链,都应该在同调群中等同于 0 ,所以 1 维同调群是 0. 2 维的链是四个面的组合, x ABC + y ABD + z ACD + w BCD, 它是闭链的条件 d ( x ABC + y ABD + z ACD + w BCD ) = 0. 有兴趣的朋友可以动手算一算上面这个方程,比如第一项 d ( x ABC ) = x ( BC – AC + AB ) = x BC – x AC + x AB, 然后合并每条边的系数,令它等于零,就得到 6 个关于 x, y, z, w 的线性方程。这个方程组的解是 x = z = -y = -w. 这个结果说明球面上的每个二维闭链都可以写成 w ( BCD – ACD + ABD – ABC ), 也就是说,总是括号中闭链的整数倍。如果把括号里的闭链叫做 s, 那么球面的二维同调群就是 { … , -3s, -2s, -s, 0, s, 2s, 3s, … } , 同构于整数集。 综上所述,球面的 0 维同调群和 2 维同调群都同构于整数集, 1 维同调群为 0. 再引入一个概念,同调群内含有多少个整数集,就说同调群的 “秩” 是多少。把不同维同调群的 “秩” 交错加减 ,即, 0 维同调群的秩减去 1 维同调群的秩再加上 2 维同调群的秩再减去 3 维同调群的秩 ……, 得到一个整数。在简单例子里稍作计算,就会发现这个整数实际上是 0 维单形个数减去 1 维单形个数再加上 2 维单形个数再减去 3 维单形个数 …… ,即, 各维数单形个数的交错和 。这个数大家其实颇为熟悉,在高中立体几何最后应该提到过,叫做 “欧拉示性数”,对凸多面体的表面,它就是 V – E + F, 而且总是等于 2. 实际上,所有凸多面体的表面在拓扑上都是球面,这个 “ 2 ” 就是球面的各维数同调群的 “秩” 的交错和, 1 – 0 + 1 = 2. 显然,欧拉示性数是最容易计算的拓扑不变量,只需要找一个剖分,然后数数几个顶点几条边几个面……,再加加减减就行了。 同调群告诉我们哪些闭链不是边缘链,通俗一点说,告诉我们几何体里面 哪些封闭的 对象 是 “ 中空 ” 的。 它显然是比欧拉示性数更精细的拓扑不变量。有兴趣的朋友可以自己算算两个几何体的同调群:圆圈,轮胎面。(提示:先把它们剖分成单形。) 庞卡莱发现了同调群以后,拿它来区分了一些三维的对象 。 后来他发现,同调群不够精 细 。比如,跟三维球面(二维球面的高一维推广)具有相同同调群的几何对象 不一定 就是三维球面。这促使他寻找更精 细 的拓扑性质。这次他想到几何体里头还有东西是可以运算的,就是道路。两条道路如果 首尾相接 , 就 组成一条新的道路,这就是 道路的乘法 。这里有两个问题需要处理,首先,不是任何两条道路都能相乘 (必须首尾相接才可以) ,然后,即使能相乘,乘法也不满足结合律,运算起来不方便。庞卡莱想到了办法解决这两个问题。他在几何体内取一个基点,只考虑那些从这个点出发再回到这个点的道路,这些道路当然 互相 首尾相连;然后他规定,如果一条道路 能在几何体内经过连续变形 到另一条道路 (见下图) ,这两条道路就被看作在同一个 “ 道路类 ” 中,这样规定后, “ 道路类 ” 之间的乘法就满足结合律了。这些 “ 道路类 ” 也组成一个代数对象,有乘法运算,这个对象叫做几何体的 “ 基本群 ” ,或者 “ 1 维同伦群 ” 。 来点感性认识。线段的基本群只有一个元素,就是静止在基点的道路。线段里的其他任何从基点出发回到基点的道路都可以在线段内连续变形到静止在基点的道路。我们把只包含一个元素的基本群称为 “ 平凡的 ” 。再看圆周,它的基本群是所有整数组成的。绕圆周 n 圈的道路不能在圆周上连续变形到绕圆周 m 圈的道路,而把它们首尾相接的结果就是绕圆周 n+m 圈的道路,这里道路类之间的乘法体现为整数间的加法。第三个例子,球面,它的基本群是平凡的,因为球面上所有由基点出发的回路都可以在球面上连续变形(滑缩)为静止在基点的道路 (见左图)。 具有平凡 基本群的几何体称为 “ 单连通的 ” 。 基本群的计算涉及到更深入的细节,比如拓扑的具体定义,拓扑空间之间的映射,等等,无法在这里详加解释。有兴 趣进一步了解 的朋友请参阅 《 基础拓扑学 》, 阿姆斯特朗( M.A.Armstrong )著;孙以丰译。 发明了 基 本群以后,庞卡莱 觉得 这个更加精确的拓扑性质 应该足以 把三维球面 从其它三维几何体中 区分出来 ,但他自己无法证明。 这就是举世闻名的庞卡莱猜想:单连通的三维封闭几何体一定是三维球面。这个猜想及其推广主导了代数拓扑学一百年的发展,最终在 2004 年由俄罗斯数学家裴若曼给出证明。 裴若曼因此在 2006 年获得数学界最高荣誉 —— 菲尔兹奖。 (待续) 拓扑学简介(四)—— 流形 Comments | Tags 标签: n 维流形 , 原创 , 拓扑学 , 黎曼 季候风 发表于 2009-12-30 13:20 拓扑学简介(一) 拓扑学简介(二) 拓扑学简介(三) 1854年,28岁的黎曼在哥廷根大学发表就职演讲。这个职位是所谓无薪讲师,他的收入完全来自于听课的学生所缴纳的学费。即使是争取这样一个职位, 也需要提供一篇就职论文以及发表一个就职演讲。1853年他提交了就职论文,其中讨论了什么样的函数可以展开成三角级数的问题,并导致对定积分的第一个严 格数学定义。 之后的就职演讲要求候选人准备三个演讲课题,委员会从中挑选一个作为正式演讲题目。黎曼选了两个思虑多时的课题,外加一个还未及考虑的课题 ——关于几何学的基本假设。他几乎确信委员会将挑选前面两个题目之一。然而,委员会的高斯偏偏就看中了第三个题目。当时黎曼正沉浸于电、磁、光、引力之间 的相互关系问题,从这样的深沉思考中抽身转而研究新的问题无疑是一种巨大的压力,再加上长期的贫穷,一度让黎曼崩溃。但不久他就重新振作起来,用 7 个星期时间准备了关于几何学基本假设的演讲。为了让数学系以外的委员会成员理解他的演讲,黎曼只用了一个公式,并且忽略了所有计算细节。尽管如此,估计在场鲜有人能理解这次演讲的内容。只有高斯为黎曼演讲中蕴含的深邃思想激动不已。 黎曼在演讲中提出了 “弯曲空间” 的概念,并给出怎样研究这些空间的建议。 “弯曲空间” 正是后世拓扑学研究的主要对象。在这些对象上,除了可以运用代数拓扑的工具,还可以运用微积分工具,这就形成了 “微分拓扑学”。 回到黎曼的演讲。黎曼认为,几何学的对象缺乏先验的定义,欧几里德的公理只是假设了未定义的几何对象之间的关系,而我们却不知道这些关系怎么来的, 甚至不知道为什么几何对象之间会存在关系。黎曼认为,几何对象应该是一些多度延展的量,体现出各种可能的度量性质。而我们生活的空间只是一个特殊的三度延展的量,因此欧几里德的公理只能从经验导出,而不是几何对象基本定义的推论。欧氏几何的公理和定理根本就只是假设而已。但是,我们可以考察这些定理成立的可能性,然后再试图把它们推广到我们日常观察的范围之外的几何,比如大到不可测的几何,以及小到不可测的几何。接着,黎曼开始了关于延展性,维数,以及将延展性数量化的讨论。他给了这些多度延展的量(几何对象)一个名称,德文写作 mannigfaltigkeit, 英文翻译为manifold,英文字面意思可以理解为 “多层”,中国第一个拓扑学家江泽涵把这个词翻译为 “流形”,取自文天祥《正气歌》,“天地有正气,杂然赋流形”,而其原始出处为《易经》,“大哉乾元,万物资始,乃统天。云行雨施,品物流形。”这个翻 译比英文翻译更加符合黎曼的原意,即多样化的形体。 黎曼定义的 “n 维流形” 大概是这个样子的:以其中一个点为基准,则周围每个点的位置都可以用 n 个实数来确定。后人将这种性质总结为:流形的局部与 n 维欧氏空间的局部具有相同的拓扑性质。如果进一步要求在流形的不同局部做微积分的结果可以互相联系起来,成为 “整体微积分”,则称此流形为 “微分流形”。一个简单的例子就是二维球面。我们都知道,二维球面上没有整体适用的坐标。经度和纬度是一组很好的坐标,但是在南北两极,经度无从定义。尽管如此,球面的每个局部都可以画在平面上,这就是地图。把各个区域的地图收集在一起,重叠的部分用比例尺协调一下,就得到整个球面。这样,坐标(或地图) 只存在于每个局部,而整个球面其实是地图之间的重叠关系。球面是二维流形,因为球面的局部同平面(二维欧氏空间)的局部具有相同的延展性质。球面的整体结构显然跟平面不同。沿着球面的某个方向往前走,比如,从赤道某点出发往东走,最终会回到出发点。而如果在平面上沿某个方向往前走则永不回到出发点。研究流形的整体结构,以及整体结构与局部结构之间的关系,就是 “拓扑学” 的核心课题。微分流形上可以使用微积分的工具,再辅之以前面介绍过的代数工具(同调群,同伦群),就形成了威力强大的 “微分拓扑学”。这门学问的发展使我们对 5 维以上的单连通微分流形(回忆先前介绍的 “单连通” 概念,即每条曲线可于流形内滑缩为一点)有了比较彻底的认识。 到了80年代,数学家对 4 维单连通 “拓扑流形” 也有了彻底的认识,然而 4 维 “微分流形” 却是无比复杂的对象。比如,直观上最简单的四维流形,四维欧氏空间,也就是所有 (x,y,z,t) 这样的数组组成的空间,有无穷多个“微分结构”,通俗一点说,这个流形上有无穷多种 “整体微积分” 可做,而我们通常做的四元微积分只是其中一种。这是 4 维的特殊性,因为其他维数的欧氏空间都跟我们的常识相符。也许 “4” 就是传说中的上帝之数,我们的宇宙就是用 4 个参数来描述的(3个参数表示空间,1 个参数表示时间),我们的时空是一个四维流形。 如果我们忘掉时间,只考察我们生活的空间。它的形态会是怎样?这是黎曼在演讲结尾提出的问题。这个问题到现在还没有答案。这个答案需要物理学家、天文学家、宇宙学家去寻找。宇宙空间会不会是一个三维球面?如果是三维球面,那我们沿着一个方向往前飞行,最终总会回到起点。 拓扑学简介(五)—- 爬虫的世界 Comments | Tags 标签: 原创 , 拓扑学 , 爬虫几何 季候风 发表于 2010-01-17 10:35 黎曼所描述的几何经常被形容为 “爬虫的几何”,因为黎曼假设观察者处于流形内部。对人类来说,二维流形是非常直观的对象,它们通常被称为“曲面”。而三维流形却难以想象,正因为我们处于宇宙空间这个三维流形内部。 爬虫几乎是二维的生物,它们靠爬行来感知周围世界。1884年英国小说家 E. A. Abbott 的科幻小说《平面国》描述了真正的二维爬虫,以及它们对额外维(仅仅是第三维)的恐惧不安。 现在让我们体会一下二维爬虫的世界。假设这个世界是一个二维球面,任何事件都发生在这个球面上。最重要的是,光线沿着球面传播。而我们人类可以从外部观察这个二维球面世界。古希腊数学家就已经知道,球面上连接两点的所有曲线段中存在最短者,即以球心为圆心的弧(称为“大圆弧”)。爬虫通过测量也能发现这个最短线段,但在爬虫的世界里,“球心”并不存在。我们假设爬虫的光学定律也要求光线沿短程线传播,所以二维球面上的光线,即短程线,在人类看来是一些大圆弧。一个处于球面上 P点处的光源发出的所有光线沿着大圆传播,它们将汇聚于 P 的“对极点” P’ (人类倾向于定义对极点 P’ 为三维空间中连接 P 和球心的直线与球面的另一交点;而爬虫将定义对极点为离 P 最远的那个点)。爬虫们实际上看到两个发光点 P 和 P’,一个是真实的,另一个是像(按高中物理的说法,P’ 处的发光点是 P 处光源的“实像”)。这是因为光线在 P’ 汇聚之后再次散开,眼睛将告诉大脑这些光线是从 P’ 发出来的。有延展的物体,比如一个四边形爬虫,不妨设它的眼睛长在“前边”。那么它往前看将看见自己的“后边”,往左看将看见自己的“右边”。它看到了自己在“远方”成的像。有多远?圆周率乘以这个二维世界的半径。有趣的是,对于正好处在此爬虫对极点的观察者而言,爬虫“无处不在”,往任何一个方向看都能看到爬虫,非常恐怖的景象。这个世界的另一个显著特点是,它“有限无边”。如果爬虫认定一个方向往前爬,它可以永远爬下去,不会碰到“世界的边缘”,此即“无边”;而如果爬虫会丈量面积,那么它发现这个世界的总面积是有限的,如果它一直往前爬,它会一次又一次地回到起点,此即“有限”。 有限无边的二维流形当然不必是球面。比如,爬虫的世界完全可以是我们人类所谓“轮胎面”,数学家叫它“环面”。在这样一个世界里,房地产开发商将是一个危险的职业,因为有时候画了一个圈来圈地,结果什么都没有圈进去。比如轮胎上的经线圈和纬线圈。脑满肠肥的开发商们应该庆幸我们人类脚下正好是一个球面,随便画个圈都会有收获。言归正传,数学家们发现我们人类观察到的轮胎面并非其最自然的形式。 这个二维流形更自然的模型是把一个正方形的对边等同起来。这是一个奇怪的世界,光线在正方形内沿直线传播,当你疑惑光线到达正方形的上边缘以后将往何处去时,你忘记了这个世界是“有限无边”的,上边缘和下边缘是同一条线,所以光线又从下边缘射上来。这个世界里,点光源不会成像,因为它发出的光走的是平面上(正方形内)的直线,正常发散,永不重聚。但是爬虫仍然会看到远方的自己。与球面世界不同的是,爬虫会看到无穷多个自己:朝任何一个斜率为有理数的方向看,就会从某个角度看到自己。怎么理解这个现象?可以用这个正方形的无穷多个复制品地板砖式地铺满整个平面,每一个这样的正方形都被解释为同一个环面世界。光线在环面世界里的传播就可以从光线在平面上的传播读出来:在平面上画一条无限延伸的直线,这条直线在某个正方形 S 中划出一条线段 C,然后进入到另一个正方形 S1,划出另一条线段 C1,我们按照 C1 在 S1 中的位置将它复制到 S 中,同线段 C 一起构成环面世界里光线的一段轨迹。这种“地板砖”式构造在拓扑学中称为“泛复叠”,其目的是用一个具有高度对称性的简单拓扑空间来研究一个比较复杂的拓扑空间。对环面而言,平面就是这个简单拓扑空间,而其对称性就是左右平移和上下平移。我们看到,在这个“泛复叠”里,一个爬虫被复制成了无穷多个,处于每个正方形的相同位置。连接任意两个复制品,得到一条斜率为有理数的线段,根据我们刚才关于光线的分析,平面上的这条线段代表环面上一条起于爬虫而止于爬虫的光线。所以,沿着这个方向爬虫将看到自己的某个侧面。数学家设计了一些环面上的小游戏,比如迷宫、台球、象棋等等,有兴趣的朋友可以到 http://www.geometrygames.org/ 去下载体验一下。 其它的二维流形称为“多环面”。(这里我们只谈论有限无边的,而且“可定向”的二维流形,像莫比乌斯带那种“单侧”的流形不在我们考虑之列。)这些流形也有最自然的模型,由“双曲平面”上的多边形粘合而成。这样的世界里,光线传播得更奇怪一些,它们发散得特别厉害。光线的发散性质不是拓扑性质,它依赖于我们所选的模型,即数学家所谓“黎曼度量”。发散性质反映了黎曼度量的“曲率”,弯曲程度。如果光线从某一点向周围“线性发散”,即光强随距离线性减弱,则流形在这一点是“平直的”。球面上光强减弱得比较慢,因为相对于平直空间(欧氏空间)来说球面上的光线倾向于“汇聚”,这是“正曲率”的标志;而多环面上的光强减弱非常快,这是“负曲率”的标志。黎曼度量和曲率是另外一个话题,跟爱因斯坦的广义相对论有关,就不赘述了。之前考虑二维世界的时候引进拓扑之外的结构——黎曼度量,是因为度量可以更好地帮助我们想象比较奇怪的拓扑结构,比如环面及其“泛复叠”。 充分地理解了可怜的爬虫以后,我们可以“顾影自怜”了。我们的宇宙是什么样子的?是不是一个“三维球面”?宇宙中某个光源发出的光线是否汇聚到对极点,那最遥远的地方?或者是一个“三维环面”?四面八方都应该是我们自己,而我们看不到无穷多个自己只不过是因为宇宙太宽广而光线在传播过程中消耗殆尽?或者,宇宙根本就不是“有限”的,这似乎更符合大多数人的信仰。即使是有限宇宙,由于维数更高,其可能形态比二维流形更多,至今数学家还未能将它们穷尽。 拓扑学简介(六)——结语 Comments | Tags 标签: 原创 , 拓扑学 , 柯尼斯堡七桥 , 欧拉 季候风 发表于 2010-04-13 09:16 前面几篇简要涉及了代数拓扑、微分拓扑、低维拓扑,如果大伙儿还不知道这些是啥,请复习拙著 :) 。其实,拓扑的概念和方法已经渗透到整个数学,而不仅限于拓扑学研究本身。 很多文献会提到,拓扑学起源于柯尼斯堡七桥问题,以及与此相关的一笔画问题。欧拉解答了这个问题。同样是欧拉,给出了第一个拓扑不变量,多面体表面的欧拉数(点数-边数+面数)。可以认为欧拉是第一个研究代数拓扑学的人(虽然莱布尼兹曾经臆想过)。 传说中高斯当年是德国国土局的领导,负责丈量土地。他由此观测到山脊附近的地面弯曲性质可以用内在的测量方法得到(所谓曲面的内蕴几何),他还定义了度量曲率大小的量(高斯曲率),并且将这个局部定义的、可以用微积分计算的量同整体定义的欧拉数联系起来(高斯-博内定理),所以他可以被追认为研究微分拓扑的第一人。当然,高斯的主业其实是政府工作、开创现代数论、以及电磁学。业余时间研究一下各种误差的分布啊,欧几里德的几何原本有什么错误啊之类的小问题作为消遣。 第二尊菩萨,黎曼同学,除了开创流形的几何学、发展了傅立叶分析和积分理论、研究了一下素数分布提出世界第一难题黎曼猜想之外,他不到40岁的短暂一生的其余时间基本上都在思考复变函数的问题。为什么有的复变函数是多值的?比如平方根和对数。能否把它们以某种方式变成单值函数?人们的思维定势是,既然函数是多值的,就像一条横着的抛物线,一个 x 对应到两个 y, 要变成单值很容易啊,砍掉抛物线的一半就行了。黎曼不这么看。他觉得,如果把函数图像本身作为定义域,每个点当然只对应到一个 y. 这样函数就变成单值的了,而且没有丢掉任何信息。如果是复变函数,其图像就是一个二维曲面,这就是黎曼曲面。黎曼曲面上有很多复杂的现象,这些现象催生了诸如连通性、单连通性、复叠空间这些拓扑概念,以及奇点、除子、函数域等等一些代数几何的概念。抛开代数几何不说,黎曼也许可以被屈尊为研究低维拓扑的第一人。 牛顿莱布尼兹发明了微积分之后,大家对无穷小无穷大这两个概念很不放心。为了让我们用得更安心,柯西和威尔斯特拉斯等人后来把无穷小解释得非常透彻,基本上就是说两个东西越来越近。“离得近”这个概念从而成为分析中最核心的概念。它正是所有拓扑学分支的共同基础——“点集拓扑”的起源。拓扑学在现实生活中的应用多数跟点集拓扑有关,即,通过分析“收敛性”体现在应用数学中。所以,最牛的牛顿被屈尊为研究点集拓扑第一人(有好事者不以为然,一定要扯到古希腊的阿基米德,这就见仁见智了。) 总而言之,拓扑学有着高贵的血统。当然,好汉不提当年勇,拓扑学的现在和将来如何?20世纪中叶,代数拓扑学朝着高度抽象的方向发展,两位名不见经传的数学工作者(艾伦伯格-麦克雷恩)突发奇想,从中总结出一套抽象语言。为了体现这套语言之形而上,他们重载了先贤亚里士多德的概念——范畴。继解析几何与微积分以来人类数学又一次在概念上经历了大变革。范畴论诞生了。20世纪数学的上帝——格罗登迪克,用7000页的数学圣经将拓扑学和范畴论全面而深遂地渗透到代数几何和数论研究中,改变了整个数学的风貌。与此呼应,世纪之交的物理学也在经历变革,量子场论和弦论呈现出绚丽多姿的数学结构。20世纪物理学的耶稣(上帝被爱因斯坦附身了)爱德华.威顿,身负绝世的拓扑神功,一经施展,整个理论物理学为之色变。拓扑学三位一体,必须要像生物学一样将21世纪纳入自己的势力范围。所以,在这个系列的结尾,让我骄傲地替拓扑学宣称:21世纪是拓扑的世纪!!
个人分类: 科学八卦|9789 次阅读|25 个评论
一维小蚁与切割的金字塔
yanghualei 2010-10-10 16:32
1.一维白蚁 一小白蚁在一维的线路上径走去看它叔,哇,差点晕乎其下,原来前面一穴涯,路在前方噶然间断,白蚁没辙只有原路返回,打道回府,忽想起挚交上帝老儿,何不为寻其求援,启动无限通讯设施,滴滴接通,喂,上帝老儿白蚁小弟路前方一穴,无法通行故恳请设法过路, 白蚁老弟何不拓宽下维度,生成二维的径面,譬如架桥或者乘坐神雕小贤之背? 噢,还是上帝老儿阅历丰富,白蚁老弟先谢过了。 2.切割的金子塔 蓝天白云的映衬下,缓缓流淌的尼罗河旁,一片石山林的吉萨高地,清幽宁静且风水甚好,古埃及的帝王们为延续龙脉并求的3000年后的轮回复归人间,在此打造子孙和自己的寝陵群,其选择技术精湛的工人和石匠, 对山林进行切割打磨以及抛光等多重工序,进而生成底面为正方形的正四棱锥型的金字塔 ,进而破解因未知了赋予埃及人们利用杠杆、滑轮以及绳索的建筑智慧的神话。
个人分类: 生活随笔|2758 次阅读|0 个评论
[转载]数组一维2维3维动态申请及用Vector的表示方法
eaglezxw 2010-2-5 15:14
变长一维数组 这里说的变长数组是指在编译时不能确定数组长度,程序在运行时需要动态分配内存空间的数组。实现变长数组最简单的是变长一维数组,你可以这样做: #includeiostream using namespace std; int main() { int len; cinlen; //用指针p指向new动态分配的长度为len*sizeof(int)的内存空间 int *p=new int ; ........... delete ;这一句,你不能这样做: int p ; C++编译器会报错说len的大小不能确定,因为用这种形式声明数组,数组的大小需要在编译时确定。而且这样也不行: int p ;编译器会说不能把int*型转化为int ; 以上程序实现了一个变长的一维数组,但是要养成一个好习惯,就是注意要注销指针p,使程序释放用new开辟的内存空间。 当然使用C++标准模版库(STL)中的vector(向量)也可以实现变长数组: #includeiostream #includevector using namespace std; int main() { int len; cinlen; vectorint array(len);//声明变长数组 for(int i=0;ilen;i++) { array =i; coutarray \t; } return 0; } 2.变长二维数组 用C++实现变长二维数组时可以采用两种方法:双指针方法和使用STL中vector(向量)的方法。 首先介绍一下双指针方法,在这里双指针就是指像指针的指针,比如你可以这样声明一个数组: int **p = new int* ; 而对每一个*p(一共num1个*p)申请一组内存空间: for(int i=0; inum1; ++i) p = new int ; 其中,num1是行数,num2是数组的列数。测试的源程序如下: #include iostream #include iomanip using namespace std; int main() { int num1;//行数 int num2;//列数 coutPlease enter the number for row and column: endl; cin num1 num2; //为二维数组开辟空间 int **p; p= new int* ; for(int i=0; inum1; ++i) p = new int ; for(int j=0;jnum1;j++) { for(int k=0;knum2;k++) { p =(j+1)*(k+1); coutsetw(6)p ':'setw(8)p ; } coutendl; } //释放二维数组占用的空间 for(int m=0;mnum1;m++) delete ; delete = i*j; for (i = 0; i m; i++) { for (j = 0; j n; j++) coutsetw(5)vecInt :setw(9)vecInt ; coutendl; } return 0; } 3.变长三维数组 根据以上一、二维数组,可以推出三维数组的实现。以下是指针实现代码: #include iostream using namespace std; void main() { int ***p3; intx=3,y=2,z=2; p3=new int ** ; for (i=0;ix;i++) { p3 =new int* ; for (int j=0;jy;j++) { p3 =new int ; for (int k=0;kz;k++) { p3 =i*j*k; } } } for (int k=0;kz;k++) { for (int i=0;ix;i++) { for (int j=0;jy;j++) coutp3 ; coutendl; } coutendl; } for (int i=0;ix;i++) { for (int j=0;jy;j++) { delete ; } delete ; } delete =4; coutv endl; } 4.用一维动态数组表示二维、三维动态数组 以下是程序代码: #include iostream using namespace std; void main() { int m=3,n=4,l=2; int *p2; //将表示二维数组 p2=new int ; int i,j,k; for (i=0;im;i++) for(j=0;jn;j++) { p2 =i+j; } cout二维数组endl; for (i=0;im;i++) { for(j=0;jn;j++) { coutp2 ; } coutendl; } delete ; for (k=0;kl;k++) for (i=0;im;i++) for (j=0;jn;j++) { p3 =i+j+k; } cout三维数组endl; for (int k=0;kl;k++) { for (int i=0;im;i++) { for (int j=0;jn;j++) coutp3 ; coutendl; } coutendl; } delete []p3; } 自:http://blog.sina.com.cn/s/blog_436fe8b10100dkzd.html
个人分类: 开发经验|1708 次阅读|0 个评论
推荐我们组的网站
zxc508 2009-10-25 13:42
博士毕业不久,幸运地加入到宁波工程学院的大家庭中。作点广告,我感觉这个学校虽然小了点,但发展潜力还是比较大的,特别是对真正想作出些工作的青年学者,学校是大力支持。最主要的是,校领导特别开明。有意思的是,与许多国内高校不同的事,这个学校作出决定的都是校长。校长是科研出身。最近,学校开展了聚英一百,说通俗一点就是招聘海外优秀人才。当然了给的待遇比我们这些国产的博士好的多。 来到这个学校,又有幸的加入到了杨为佑博士的创新团队当中。当然了,杨老师的学术和人品也是吸引我来这里的一个最主要的原因,其次是这里的待遇。我们这个团队,现在还比较小,还处在发展的阶段,不过学校大力支持。现在实验室处于基本建设期间,相应的仪器买了不少,也陆续地到位。如果全部仪器都安装起来,那么我们实验室将有接近千万元的仪器设备,理应能作出一些工作。相应的实验条件在国内也会接近中上等。接下来,就是我们挥洒汗水的时候。当然了,由于学校没有硕士点,所以对我们这些青椒要求就比较高了。一方面要上课,另一方面还要搞科研。我现在忙的是一团乱。谁有好的介意,可以分享一下。 接下来简单地介绍一下,我们的实验室。我们实验室的名字为微纳米结构与器件研究室,名字起的有点大,我们主要研究的还是SiC纳米线,随着人员的不断加入,方向也 有所展开。我呢,主要是向着石黑烯的方向发展,具体其他人的方向,大家浏览下面的网址 http://ime.nbut.cn/news_more.asp?lm=58 。如网站上所说,我们愿意在基础和应用研究以及成果转化等方面与各大学研究室和企业单位开展各种形式的交流与合作。 最后,发点感慨。作为年青人,搞科研对自己和家庭要求都很高。感谢老婆和儿子对我的支持和理解。我爱你们。顺祝我的父母健康如意。祝所有朋友开心,梦想成真。
个人分类: 碳化硅及一维半导体材料|4644 次阅读|0 个评论
碳的零维一维二维材料
zuozw 2009-8-7 23:05
碳,作为一种非常常见的元素,对有机物有着重要的意义。单质碳材料有零维,一维,二维和三维。这里主要介绍一下富勒烯,碳纳米管和石墨烯这三种材料。 富勒烯(巴基球,足球烯,Fullerene,C60): 作为零维材料,在1985年英国H. W. Kroto和美国R. E. Smalley等人在氦气流中以激光汽化蒸发石墨实验中发现C60。由五元环、六元环等构成的封闭式空心球形或椭球形结构的共轭烯。 1985年文章 C60 Buckminsterfullerene 。 在碳纳米管发现之前,它是研究的热点,在生物和医学有着重要的意义。此外还有C78、C82、C84、C90、C96等。 碳纳米管(carbon naotubes) 作为一维纳米材料,自1991年被S. Iijima发现以来一直是研究的热点。根据层数可分为单壁(single-wall carbon nanotubes)和多壁(multiwall carbon nanotubes)。根据手性可分为非手性(armchair和zigzag)和手性(chiral)结构。中空结构,一般可认为是单层石墨卷曲而成。它在很多领域都有着广泛的应用和前景。正如美国Alex Zettl 教授说,就应用前景对C60和碳纳米管进行全面的比较,C60可以用一页纸概括,而碳纳米管需要一本书来完成。推荐一本书Physical properties of carbon nanotubes(R. Saito, G. Dresselhaus, and M.S. Dresselhaus 1998,Imperial College Press ,世图有卖:39元)。 The field of nanotubes is still rapidly growing. As emphasized, many questions are still unanswered. The dynamics of hot electrons (and electron-hole pairs) in optical experiments, the nature of the contact resistance at metallic electrode interfaces, the effect of an out-of- equilibrium phonon distribution on inelastic scattering, and the domain of existence of the Luttinger-liquid, charge-density-wave, and superconducting phases are still subjects which require a considerable amount of work and understanding. Further, and beyond the intrinsic properties of nanotubes, the physics of functionalized, chemisorbed, doped, or excited CNTs is driven by potential applications in molecular electronics, optoelectronics, and sensors. Such themes are still largely unexplored areas for theorists: while early theoretical papers preceded experiments on the discussion of the basic electronic properties of pristine tubes, such complex systems and applications have now been demonstrated experimentally and theory is lagging behind. The field of nanotubes has fostered much interest in related systems such as graphene or semiconducting nanowires.(摘自Rev. Mod. Phys., Vol. 79, No. 2,667-732,2007.见下面RMP文章). Iijima91年Natrue文章 07年RMP综述文章 Electronic and transport properties of nanotubes 石墨烯(单层石墨,graphene) 作为二维材料,一般厚度方向为单原子层或双原子层碳原子。完美的石墨烯包括六角元胞(等角六边形)。2004年被英国A.K.Geim发现。石墨烯有众多优异的物理性质,在很多现象中有很多异常的行为如整数量子霍尔效应,准粒子激发谱可用2+1维无质量的相对论Dirac方程描述等等。近几年研究的特别热。 Graphene is a unique system in many ways. It is truly 2D, has unusual electronic excitations described in terms of Dirac fermions that move in a curved space, is an interesting mix of a semiconductor (zero density of states) and a metal (gaplessness), and has properties of soft matter. The electrons in graphene seem to be almost insensitive to disorder and electron-electron interactions and have very long mean free paths. Hence, graphene's properties are different from what is found in usual metals and semiconductors. Graphene has also a robust but flexible structure with unusual phonon modes that do not exist in ordinary 3D solids. In some sense, grapheme brings together issues in quantum gravity and particle physics, and also from soft and hard condensed matter. Interestingly enough, these properties can be easily modified with the application of electric and magnetic fields, addition of layers, control of its geometry, and chemical doping. Moreover, graphene can be directly and relatively easily probed by various scanning probe techniques from mesoscopic down to atomic scales, because it is not buried inside a 3D structure. This makes graphene one of the most versatile systems in condensed-matter research。(摘自Rev. Mod. Phys., Vol. 81,No. 1,109-162,2009.文章见下面). 09年RMP综述文章 The electronic properties of graphene
个人分类: 科研心得|6558 次阅读|1 个评论
地震学基本知识学习(二):走时数据的一维速度结构反演
热度 2 陈小斌 2008-12-15 03:11
反演是一门实践性很强的课程。如果对反演的实际过程了解甚少,那么要真正理解一门新领域的反演一定会有些困难。反演的真正难学之处不在于其数学理论这通常易于推导和理解,而在于对这门学科本身的专业知识的了解。由于反演的需要,正演响应哪些问题需要特别注意,哪些却无关紧要;观测数据应当做什么预处理,为什么需要这样处理;反演的各种方法的异同及其出发点;反演结果的可靠性和模型分辨率如何分析。说到底,是正问题的知识深度制约了对反问题的理解的深入程度。近来我越来越有这样的认识:正问题才是属于专业本身的问题,而反问题却是把统一的反演理论应用到具体的正演过程上。因此,尽快大家都认为,正演是地球物理的基础,而反演是地球物理的核心,但我觉得,对于专业研究者而言,对正演的全面、深入的理解或许更重要。 对于反演理论,我自认为已经有一定的深度,因为自己不仅有长期的大地电磁反演实践,而且还探索过新的反演算法,编制过很好的反演程序,并将自己的程序和理论应用到自己专业以外的领域,如石油试井等,也获取了成功。在学习本节内容以前,我自认为不会有什么大的问题。然而,当我开始学习的时候,问题一个接一个地来了。 l赫格劳兹-维谢尔-贝德曼公式(HWB) 赫格劳兹-维谢尔-贝德曼公式(HWB)很有意思。这是一种直接反演方法,表明依据走时数据可以解析求解地下深度和速度的信息。然而,这个看起来完美的解析公式在实践中用得很少。因为其对数据有着过于严格的要求,适用于精确的充足的数据,但这在实际情况下不可能得到。对于不完善的观测数据,数据是离散的,而且包含有误差,直接套用HWB公式往往会出现矛盾的结果。这个现象揭示了地球物理反演领域中一个非常重要的认识:一般说来,地球物理反问题不存在精确解,只有最优解,强行求解精确解,很难获得有意义的反演结果。 lI线性拟合方法 从这一节开始我的疑惑就慢慢地多了。 看完这一节的内容后,我感觉到这个题目有些奇怪。因为反演的主流方法就是线性反演,即使是非线性反演问题,目前用得最多的依然是线化反演方法。而线性反演,其本身就是一个线性拟合过程。但是这里介绍的不是一般意义上的线性反演方法,而是用一系列直线来拟合走时数据,可能称作走时数据的分段直线拟合会更切合题意。 这个方法按以下方式进行。根据观测的走时曲线(T-X曲线)判断其分段情况,每一段用一条直线进行拟合,直线的斜率确定了地震波的速度,然后将每个线段转换为时差t(p)的点,依据均匀层状介质的时差t(p)的表达式,进而利用剥皮法(这是我起的名字)反演求解每一层的厚度和深度值。 这里,我不能理解的地方很多。1)直线的斜率确定了地震波的速度。按照昨天的学习,走时曲线的斜率确定的是射线参数p而非介质速度,二者只是在射线转折处相同(此时入射角=90度),难道这里确定的就是转折处的速度?但这里根本没有提到这个事啊。2)剥皮法的过程我也不能理解,首先是速度的确定存在1)的疑问,其次,层厚度的确定过程也不清楚其具体的操作过程。3)书中提到的走时曲线的第一个分支和第二个分支不知何指。 我想上述三个问题对于地震学专家来说应该是常识性问题,等明天去向地震组的人请教。 III时差数据反演和正则化约束 按照我的理解,上述线性拟合方法只用了一步最优化技术,就是第一步的走时数据的直线拟合,而后续剥皮法却是精确的解析求解得到的。由于反演中,各层之间可能存在相互依赖的情况,越到深部,这个问题越严重。观测误差的直接代入运算可能会造成某些参数的求解出现严重失真,导致反演的总体目标函数值很大。 时差数据反演这一部分开始利用线性反演理论,以反演目标函数极小作为反演的控制条件。理论本身非常成熟,教科书也表明反演本身没有什么问题。问题主要出现在走时曲线向时差曲线转变的这个过程。我以为,如果撇开三次往返的特殊情况不说,通过对走时曲线的拟合或者样条插值,然后求导获取射线参数和时差的方法应该不是很大的问题。但是,教科书上却为此提出了几种方法:如包络线法、曲线倾斜叠加法等。这两种方法我都不了解,书上也未作进一步的阐述。 关于时差t(p)上、下限的确定很有意思,由此可确定一个速度结构的上、下限。当然,如书上所分析,这个条件往往过于宽松而使得反演的速度结构失去了应有的意义。因为过宽的速度变化范围意味着分辨率极低,很可能难于用于实际结构的解释中。但这种分析方法可在大地电磁测深的一维反演中借鉴,或许会有一定的应用价值。 此外,由于反演的稳定性和多解性问题,引入正则化约束,施加先验约束条件对反演结果加以限制,这是地球物理反演中的一种通用有效的办法。单纯的拟合数据是不行的,大多数情况下难以获得稳定有效的反演结果。正则化约束的引入也表明基于最优化理论的反演算法较上述直接法(HWB公式)、剥皮法更为优越,因为在那里基本上没有办法施加先验约束信息。 主要参考书:《地震学引论》 Peter M. Shear著, 陈章立译,赵翠萍、王勤彩、华卫校。
个人分类: 读书积累|10229 次阅读|2 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-23 12:00

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部