科学网

 找回密码
  注册

tag 标签: 知识棋谱

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

中英文信息处理之三棋初期示例回顾:语言棋盘-知识棋谱-原创棋魂
geneculture 2020-1-29 19:13
个人分类: 双语信息处理|0 个评论
语言棋盘和知识棋谱结合再抽取思维导图既好理解又好用
geneculture 2018-4-19 17:12
今天上午和几位老师面对面的交流,加上今天下午(刚才)与北京大学教育学院林建祥教授林老的远程交流,明确了语言棋盘和知识棋谱结合再抽取思维导图就更容易发挥双字棋盘及其蕴含的思维科学规律的重要作用了!
个人分类: 双语信息处理|2135 次阅读|0 个评论
回顾2012年北航演讲后的一段简论和对话
geneculture 2017-12-22 15:08
邹晓辉Geneculture的汉字棋盘原理及其使用方法或途径 2012-10-18 09:24 阅读: 104 1.背景 ZouXiaohui 8:42:29 索绪尔曾用棋理比喻文法的。对此,我是很认同的,因此,可以说,我的汉字棋盘原理就是从“索绪尔曾用棋理比喻文法”这个思想直接继承过来的。 2.分析 ZouXiaohui 8:45:06 在我看来,困扰着索绪尔的问题是语言学的研究对象不明确——也就是说语言学没有像数学和物理学以及化学等自然科学那样精准描述的研究对象。 ZouXiaohui 8:46:41 词素(语素),词,词组(短语),句子,似乎都是,因而,也就都不是。这就是问题所在!。 3.拓展 ZouXiaohui 8:54:05 在我看来,造成这个问题的一个重要原因是索绪尔没有办法区分语言的形式和内容——这不能怪他,因为他那个时代还没有我们现在驾轻就熟的现代数字计算机,更没有融智学基于语言哲学的语义三角而提炼出来的融智三棱(即信息四面体)的哲学观点和相应的可做到集人类知识之大成的系统科学方法论,所以,他虽把语言视为了价值系统,却没有一个适合的融智方法论(即“可做到集人类知识之大成的系统科学方法论”)来指导其继续前进!。 4.进一步拓展 ZouXiaohui 9:12:17 必须指出:索绪尔把语言视为价值系统这样的思想,也是我很认同的。因此,我也是沿着这个思路继续往下走的。我的幸运在于:我从弗雷格和维特根斯坦的语言哲学之语义三角提炼出了融智三棱(即信息四面体)的哲学观点——这正好与我从克莱尼的小字符串形式理论(直接形式化方法)发展出来的理想集合划分或分类而发展出来的间接形式化方法和从图灵的直接计算模型而发展起来的间接计算模型是相相呼应的,从而也就为解决弗雷格等人的数理逻辑蕴含的悖论提供了一个很好的形式化基础和相应的可做到集人类知识之大成的系统科学方法论基础。这样,就可能把我的哲学宏观框架和科学微观分析之间的桥梁建立在这个很好的形式化基础以及系统科学方法论基础之上。而言和语的关系这个广义文法的基础也就自然而然地被推到了很关键的一个地位,它不仅是以汉语为例阐述的普通语言学之明确的研究对象,而且还是以汉语(中位)为例阐述的形式语言学(同时也是普通信息学即形式信息学的一个典型实施例)之最为简洁的形式理论(可由我发现的两个信息基本 定律加以清晰地表达)。 附录:对话之二(一对一交流) 煌罗德修 9:12:35 汉语形字和义字可以继续拆分,音字则是不可拆分的可独立存在的最小结构单位。为研究及表述之方便(规避非学术性义项),笔者将其命名为“言”,将由“言”组成的线串诸如词,词组(短语),句子(即二字组、三字组、四字组、……n字组)统称为“语” 煌罗德修 9:13:25 汉语即为由“言”组成的“语”之棋盘 ZouXiaohui 9:15:24 于是,语言和信息两个领域的研究者们也就必然同时遭遇语言学和语言哲学与信息学和信息哲学的四重迭交困惑!。这就给我预留了千载难逢的发现创新和发明创造的契机。 煌罗德修 9:15:57 每一个语言主体分别持“言”依循主观意愿(意)与一定走棋规则(义)走棋(语言或言语) ZouXiaohui 9:16:03 表扬:你的思考是积极而有意义的。 提示: 煌罗德修 9:16:39 每一次对话即为一次对弈 ZouXiaohui 9:17:12 我明确地指出过:词兼有言和语双重属性。 煌罗德修 9:17:35 每一个保存的棋局即为著作 煌罗德修 9:18:05 呵呵 煌罗德修 9:18:22 这些都是我所消化的您的想法 煌罗德修 9:19:29 我知道您是怎么想的了,我希望完善您的棋局之喻 ZouXiaohui 9:20:15 语言(例如汉语理论系统)就是由“言”组成的“语”的弈棋法则系统;言语(例如汉语实际情形)则是由“言”组成的“语”的具体弈棋过程及其各种状态的记录。 ZouXiaohui 9:22:28 棋理是语言(例如汉语理论系统)遵循的原理;棋路乃至棋局则是言语(例如汉语实际情形)表现形态。 ZouXiaohui 9:24:01 表扬,你已经真正地开始理解我的汉字棋盘原理及其使用方法或途径了。 煌罗德修 9:25:51 只是我对语言和言语的理解处于常识性义项阶段呵呵 ZouXiaohui 9:26:50 再进一步就可以达到专识性义项层面了
个人分类: 语言学基础研究|1842 次阅读|0 个评论
远程教学与学术交流一点通(一幅图胜过千言万语): ...
热度 1 geneculture 2017-12-8 19:56
远程教学与学术交流一点通(一幅图胜过千言万语): 三点(语言点+知识点+原创点)和三棋(语言棋盘+知识棋谱+原创棋魂) 远程教学与学术交流一点通(一幅图胜过千言万语): 三点(语言点+知识点+原创点)和三棋(语言棋盘+知识棋谱+原创棋魂)
个人分类: 双语信息处理|2330 次阅读|4 个评论
由11月中文示例拓展延伸至12月英文示例
geneculture 2017-12-1 11:51
用双字棋盘的英文棋盘示例讲解语言点、知识点和原创点,即:示范如何用语言棋盘自动提取语言点,进而再以列菜单的方式 找出知识点,接着,分析知识棋谱,然后,再从中进一步寻找原创点,可采用软件截图的方式固定其特色、风格和主题等原创棋魂。-邹晓辉Geneculture 提示:这是在 用双字棋盘的中文棋盘示例 讲解语言点、知识点和原创点非常成功的基础之上,进一步由语文课(中文示例)拓展延伸至英语课(英文示例)的第一个专为青少年学生及其家长们做的示范课(in pku)。 e.g. for student by Xiaohui Zou Geneculture Exploring our world: A famous explorer, Sir Ernest Shackleton wanted to cross Antarctica. In 1914 he started the expedition but ice closed round the ship. They took smaller boats and made a camp on the snow. They lost their ship when it went down under the ice and water. They couldn't move because the weather was terrible. They caught fish and drank water which they got from the snow. Later, they had to eat their dogs. Shackleton and some of his men climped over mountains of ice, found help and went back for the other men. Everybody came home two years after the start of their expedition. They didn't cross Antarctica. http://kben.koderx.com/article/99/board
个人分类: 双语信息处理|3486 次阅读|0 个评论
语文棋盘,知识棋谱,原创棋魂:智力形成可计量
geneculture 2017-8-21 02:26
语文棋盘,知识棋谱,原创棋魂:智力形成可计量。
个人分类: 学术研究|354 次阅读|1 个评论
矩阵与度量及其指标可帮助简化问题及其分析和计算
geneculture 2017-6-24 10:22
矩阵与度量及其指标可帮助简化问题及其分析和计算。 双字棋盘(孪生图灵机或双胞胎矩阵)十分巧妙地把图灵测试与塞尔的中文房间及其被邹晓辉间接形式化的中文字屋联系到一起来了,由此就引出了知识棋谱即精神食粮摄入者的菜单 附录: Measuring the Progress of AI Research This pilot project collects problems and metrics/datasets from the AI research literature, and tracks progress on them. You can use this Notebook to see how things are progressing in specific subfields or AI/ML as a whole, as a place to report new results you've obtained, as a place to look for problems that might benefit from having new datasets/metrics designed for them, or as a source to build on for data science projects. At EFF, we're ultimately most interested in how this data can influence our understanding of the likely implications of AI. To begin with, we're focused on gathering it . Original authors: Peter Eckersley and Yomna Nasser at EFF . Contact: ai-metrics@eff.org . With contributions from: Gennie Gebhart and Owain Evans Inspired by and merging data from: Rodrigo Benenson's Who is the Best at X / Are we there yet? collating machine vision datasets progress Jack Clark and Miles Brundage's collection of AI progress measurements Sarah Constantin's Performance Trends in AI Katja Grace's Algorithmic Progress in Six Domains The Swedish Computer Chess Association's History of Computer Chess performance Qi Wu et al. 's Visual Question Answering: A survey of Methods and Datasets Eric Yuan's Comparison of Machine Reading Comprehension Datasets Thanks to many others for valuable conversations, suggestions and corrections, including: Dario Amodei, Miles Brundage, Breandan Considine, Owen Cotton-Barrett, Eric Drexler, Ottavio Good, Katja Grace, Anselm Levskaya, Clare Lyle, Toby Ord, Michael Page, Anders Sandberg, Daisy Stanton, Gabriel Synnaeve, Stacey Svetlichnaya, Helen Toner, and Jason Weston. EFF's work on this project has been supported by the Open Philanthropy Project . Table of Contents ¶ Taxonomy Source code for defining and importing data Problems, Metrics and Datasets Game Playing Abstract Strategy Games Real-time Video Games Vision and image modelling Image recognition Visual Question Answering Video recognition Generating images Written Language Reading Comprehension Language Modelling Conversation Translation Spoken Language Speech recognition Scientific and Technical Capabilities Solving constrained, well-specified technical problems Reading technical papers Solving real-world technical problems Generating computer programs from specifications Learning to Learn Better Generalization Transfer Learning One-shot Learning Safety and Security Adversarial Examples and Manipulation of Classifiers Safety for Reinforcement Learning Agents Automated Hacking Systems Pedestrian Detection for self-driving vehicles Transparency, Explainability Interpretability Fairness and Debiasing Privacy Problems Taxonomy and recorded progress to date Breakdown of Problems and Metrics by Type/Category How to contribute to this project Notes on importing data Exporting / building on this data License Taxonomy It collates data with the following structure: problem \ \ \ metrics - measures \ - subproblems \ metrics \ measure s Problems describe the ability to learn an important category of task. Metrics should ideally be formulated in the form software is able to learn to do X given training data of type Y. In some cases X is the interesting part, but sometimes also Y. Measurements are the score that a specific instance of a specific algorithm was able to get on a Metric. problems are tagged with attributes: eg, vision, abstract-games, language, world-modelling, safety Some of these are about performance relative to humans (which is of course a very arbitrary standard, but one we're familiar with) agi -- most capable humans can do this, so AGIs can do this (note it's conceivable that an agent might pass the Turing test before all of these are won) super -- the very best humans can do this, or human organisations can do this verysuper -- neither humans nor human orgs can presently do this problems can have subproblems, including simpler cases and preconditions for solving the problem in general a metric is one way of measuring progress on a problem, commonly associated with a test dataset. There will often be several metrics for a given problem, but in some cases we'll start out with zero metrics and will need to start proposing some... a measure is a score on a given metric, by a particular codebase/team/project, at a particular time The present state of the actual taxonomy is at the bottom of this notebook . https://www.eff.org/files/AI-progress-metrics.html
个人分类: 生活点滴|715 次阅读|0 个评论
融智过程:知识获取模块化与语言理解格式化
geneculture 2017-5-29 10:07
序位逻辑、双语数学、广义翻译,三类信息基本定律隐藏在其中。软件、知识、语言,三大测序定位系统,不仅是专家知识获取,而且,还是知识大生产的超傻编程开发环境。这里看到的仅仅是很初步的示例,更丰富的实例还在近期未来的研究型大学蕴藏着。中国不仅是人口大国,而且还是高等教育大国。一旦开启了人类知识大生产的先河,其不可限量的智慧能力也必将随着其世界知识中心的建立而得以凸显,其高等教育强国梦想的实现也就随着其人际交流效果的顺畅和人机协作能力的剧增而指日可待。因为,母语为汉语的国家首次有机会在融智学理论与文化基因系统工程实践的建构过程中引领世界的未来发展。2017-05-20邹晓辉于北京
个人分类: 双语信息处理|465 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-16 13:06

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部