科学网

 找回密码
  注册

tag 标签: 基因

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

肿瘤与衰老---P53基因的两重性
热度 1 jacky2008 2008-9-17 17:32
研究发现,不带 p53 基因的实验鼠很容易得癌症;在幼年时就形成肿瘤,而带 p53 基因的实验鼠都不容易得癌症,但它们的寿命无一例外地会缩短。这一意外发现开创了有关肿瘤抑制基因研究的新时代,因为这种基因也能修改衰老过程。 衰老和癌症是有关系的,随着年龄的增长,患癌症的几率会提高。这可能是一个硬币的两面。换句话说,皮肤起皱、骨质疏松和器官衰老,可能是我们长期抑制肿瘤必须付出的代价 。 现在对癌症的治疗方法通常都是提高肿瘤抑制基因的活性,这种治疗方法会不会加速患者的衰老、导致痴呆等老年疾病?另外,抗衰老药物会不会增加患癌症的风险 ? 这种肿瘤抑制基因被称作 p53 基因,因为这种基因激活时产生的蛋白质的分子量为 53000 。 作为 肿瘤的克星,当细胞核中的 DNA 受损时, p53 或者阻止非正常细胞复制,直到 DNA 被修复,或者引导 细胞自杀 。大部分癌症都是缺陷基因引起的, p53 变异是常见的基因缺陷。 认识到 p53 基因的重要作用,全世界数以百计的分子生物学家抛开原来的项目转而研究 p53 基因,希望以此作为攻克癌症的突破口 。 研究发现,缺氧、营养不良、阳光和放射线过量以及 DNA 受损等条件都会发出激活 p53 的报警信号。激活的 p53将 进一步激活一系列 下游 基因,阻止细胞分裂或引发细胞自杀 。 然而,变异以外的其他途径也能使 p53 基因失去作用,这就有助于解释为什么这种重要的肿瘤抑制基因在大约一半癌症中似乎不起作用。例如,在上世纪 70 年代用猴子病毒进行的试验中首次发现 p53 时,蛋白质被病毒所包围和破坏。研究人员还发现,在人类乳头瘤病毒引起的宫颈癌病例中, p53 被病毒所吞食,根本就没有抑制基因来抑制癌细胞 。 后来的研究发现, p53 基因实际上受另一种基因 mdm2 的严格控制。 它们之间就好像是警察和他的警犬,警察(mdm2基因)决定什么时候把警犬(p53 基因)放出去对付威胁、什么时候把它拉回来。如果警察放松管理,警犬就会制造混乱。 mdm2 就是警察,它不会让 p53 杀死所有细胞。 同时,有些人的 mdm2 基因比较活跃,对 p53 看得比较紧,因此癌症的发病率比较高。从事乳腺癌研究的莱文说: 绝经前妇女 ( 她们的雌激素水平比较高 ) 身上的 mdm2 最活跃。 实际上, mdm2 过分活跃对吸烟者也是坏消息。吸烟会使患肺癌的几率增加 1-2 倍,如果再遇到 mdm2 过分活跃,患肺癌的危险性就增加 10 倍 。 研究发现,阳光中紫外线照射过多会引起 p53 基因变异,从而引起皮肤癌。科学家们相信,利用 p53 基因发现和治疗癌症的前景非常广阔。目前正在研制的几种药物模仿病毒入侵细胞的途径,采用同样的机制达到治疗的目的。有一种方法就是让正常的 p53 基因进入癌细胞,重新激活癌细胞里 p53 基因的功能。另一种方法是改变病毒的基因,使它只能感染带变异 p53 基因的细胞,病毒在这些细胞中生长和复制,直到细胞破 裂。 此外 ,研究人员正在寻找可以用来影响 p53 基因上游或下游各基因的小分子。例如,罗氏制药公司开发的一种叫 nutlins 的小分子化合物,能够干预 p53 基因和 mdm2 基因之间的互动关系,成为一种很有效的抗癌药物。能任意激活和休眠 p53 基因,是研究人员长期追求的目标。 虽然,生产利用 p53 基因来抵抗癌症和延缓衰老的药物仍然是很遥远的事情,已经有了一些重要的发现。 抑制肿瘤可能会加速衰老的理论认为,由于基因相互影响,在抑制肿瘤时,补偿组织和器官的干细胞会被杀死或停止分裂。有了 nutlins 等小分子化合物,科学家们就能用以前不可能的方式控制 p53 基因,从而取得所需要的治疗效果。 研究认为,重新确定我们身体抑制癌症和衰老的相互关系是完全可能的,但风险很大,如果搞得合适,我们就能长寿和健康,如果搞不好,我们就会陷入细胞快速凋亡的过程,因为 p53 基因会像失去控制的警犬,对我们全身的细胞胡 作 非为 。
个人分类: 它山之石|9375 次阅读|5 个评论
分子遗传学阅读文献:基因表达调控之六
Bobby 2008-9-3 17:40
Conservation of transgene-induced post-transcriptional gene silencing in plants and fungi Conservation of transgene-induced post-transcriptional gene silencing in plants and fungi Current perspectives on mRNA stability in plants: multiple levels and mechanism of control Gutirrez RA, MacIntosh GC, Green PJ. Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends Plant Sci. 1999 Nov; 4 (11): 429-438. The control of mRNA stability plays a fundamental role in the regulation of gene expression in plants and other eukaryotes. This control can be influenced by the basal mRNA decay machinery, sequence-specific decay components, and regulatory factors that respond to various stimuli. Important progress has been made towards the identification of some of these elements over the past several years. This is true particularly with respect to cis-acting sequences that control mRNA stability, the identification of which has been the focus of much of the initial work in the field. Characterization of mRNA fragments associated with post-transcriptional gene silencing and two plant transcripts that give rise to detectable decay intermediates have provided insight into the mRNA decay pathways. These, and other studies, are indicative of similarities, as well as of interesting differences between mRNA decay mechanisms in plants and yeast - the system that has been used for most of the pioneering work. Future studies in this area, particularly when enhanced by emerging genetic and genomic approaches, have tremendous potential to provide additional knowledge that is unique to plants or of broad significance. Current perspectives on mRNA stability in plants-multiple levels and mechanism of control Regulation of short-distance transport of RNA and protein Kim JY. Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol. 2005 Feb; 8 (1): 45-52. The intercellular trafficking of proteins and RNAs has emerged as a novel mechanism of cell-cell communication in plant development. Plasmodesmata (PD), intercellular cytoplasmic channels, have a central role in cell-cell trafficking of regulatory proteins and RNAs. Recent studies have demonstrated that plants use either a selective or a non-selective PD trafficking pathway for regulatory proteins. Moreover, plants have developed strategies to regulate both selective and non-selective movement. Recent work has focused especially on integrating the recent understanding of the function and mechanisms of intercellular macromolecule movement through PD. Regulation of short-distance transport of RNA and protein Systemic transport of RNA in plants Systemic transport of RNA in plants The complex language of chromatin regulation during transcription Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007 May 24; 447 (7143): 407-12. An important development in understanding the influence of chromatin on gene regulation has been the finding that DNA methylation and histone post-translational modifications lead to the recruitment of protein complexes that regulate transcription. Early interpretations of this phenomenon involved gene regulation reflecting predictive activating or repressing types of modification. However, further exploration reveals that transcription occurs against a backdrop of mixtures of complex modifications, which probably have several roles. Although such modifications were initially thought to be a simple code, a more likely model is of a sophisticated, nuanced chromatin 'language' in which different combinations of basic building blocks yield dynamic functional outcomes. The complex language of chromatin regulation during transcription Regulatory mechanism of plant gene transcription by GT-elements and GT-factors Zhou DX. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci. 1999 Jun; 4 (6): 210-214. GT-elements are regulatory DNA sequences ususally found in tandem repeats in the promoter region of many different plant genes. Depending on promoter structure, GT-elements can have a positive or a negative transcription function. The cognate GT-element binding factors contain one or two trihelix DNA binding motifs, which have so far been identified in plant transcription factors only. GT-factors are ubiquitously expressed; in Arabidopsis they belong to a small family of transcription factors. The functioning of plant GT-elements and GT-factors shows complex regulatory features of plant gene transcription. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors Regulation of translational initiation in plants Kawaguchi R, Bailey-Serres J. Regulation of translational initiation in plants. Curr Opin Plant Biol. 2002 Oct; 5 (5): 460-5. The abundance of cytosolic mRNA does not necessarily correspond to the quantity of polypeptide synthesized in plant cells. The initiation of mRNA translation is regulated at the global and message-specific levels. mRNAs compete for discriminatory initiation factors that couple the 5'-( 7m )GpppN-cap and the 3'-poly(A) tail of the RNA message. The resultant circularization of the mRNA promotes the association of the 43S pre-initiation complex that scans the 5'-leader for the initiation codon of the protein coding sequence. The physiological and developmental regulation of these events governs the level of polypeptide synthesis from endogenous and viral transcripts. Regulation of translational initiation in plants
个人分类: 科学感想|9451 次阅读|1 个评论
分子遗传学阅读文献:基因表达调控之五
Bobby 2008-9-3 17:24
RNA in control Blencowe BJ, Khanna M. Molecular biology: RNA in control. Nature. 2007 May 24; 447 (7143): 391-3. RNA in control Compartmentalization of the splicing machinery in plant cell nuclei Lorkovi? ZJ, Barta A. Compartmentalization of the splicing machinery in plant cell nuclei. Trends Plant Sci. 2004 Dec; 9 (12): 565-8. The cell nucleus is a membrane-surrounded organelle that contains numerous compartments in addition to chromatin. Compartmentalization of the nucleus is now accepted as an important feature for the organization of nuclear processes and for gene expression. Recent studies on nuclear organization of splicing factors in plant cells provide insights into the compartmentalization of the plant cell nuclei and conservation of nuclear compartments between plants and metazoans. Compartmentalization of the splicing machinery in plant cell nuclei Pre-mRNA splicing in higher plants Lorkovi? ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W. Pre-mRNA splicing in higher plants. Trends Plant Sci. 2000 Apr; 5 (4): 160-7. Most plant mRNAs are synthesized as precursors containing one or more intervening sequences (introns) that are removed during the process of splicing. The basic mechanism of spliceosome assembly and intron excision is similar in all eukaryotes. However, the recognition of introns in plants has some unique features, which distinguishes it from the reactions in vertebrates and yeast. Recent progress has occurred in characterizing the splicing signals in plant pre-mRNAs, in identifying the mutants affected in splicing and in discovering new examples of alternatively spliced mRNAs. In combination with information provided by the Arabidopsis genome-sequencing project, these studies are contributing to a better understanding of the splicing process and its role in the regulation of gene expression in plants. Pre-mRNA splicing in higher plants Plant serine/arginine-rich proteins and their role in pre-mRAN spicing Reddy AS. Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends Plant Sci. 2004 Nov; 9 (11): 541-7. Pre-messenger RNA (pre-mRNA) splicing, a process by which mature mRNAs are generated by excision of introns and ligation of exons, is an important step in the regulation of gene expression in all eukaryotes. Selection of alternative splice sites in a pre-mRNA generates multiple mRNAs from a single gene that encode structurally and functionally distinct proteins. Alternative splicing of pre-mRNAs contributes greatly to the proteomic complexity of plants and animals and increases the coding potential of a genome. However, the mechanisms that regulate constitutive and alternative splicing of pre-mRNA are not understood in plants. A serine/arginine-rich (SR) family of proteins is implicated in constitutive and alternative splicing of pre-mRNAs. Here I review recent progress in elucidating the roles of serine/arginine-rich proteins in pre-mRNA splicing. Plant serine/arginine-rich proteins and their role in pre-mRAN spicing Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged Kazan K. Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends Plant Sci. 2003 Oct;8(10):468-71. Alternative splicing has recently emerged as one of the most significant generators of functional complexity in several relatively well-studied animal genomes, but little is known about the extent of this phenomenon in higher plants. However, recent computational and experimental studies discussed here suggest that alternative splicing probably plays a far more significant role in the generation of proteome diversity in plants than was previously thought. Alternative splicing and proteome diversity in plants Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep. 2006 Dec; 7 (12): 1216-22. Many genomic loci contain transcription units on both strands, therefore two oppositely oriented transcripts can overlap. Often, one strand codes for a protein, whereas the transcript from the other strand is non-encoding. Such natural antisense transcripts (NATs) can negatively regulate the conjugated sense transcript. NATs are highly prevalent in a wide range of species--for example, around 15% of human protein-encoding genes have an associated NAT. The regulatory mechanisms by which NATs act are diverse, as are the means to control their expression. Here, we review the current understanding of NAT function and its mechanistic basis, which has been gathered from both individual gene cases and genome-wide studies. In parallel, we survey findings about the regulation of NAT transcription. Finally, we hypothesize that the regulation of antisense transcription might be tailored to its mode of action. According to this model, the observed relationship between the expression patterns of NATs and their targets might indicate the regulatory mechanism that is in action. Genome-wide natural antisense transcription-coupling its regulation to its different regulatory mechanisms Plant snoRNAs: functional evolution and new models of gene expression Brown JW, Echeverria M, Qu LH. Plant snoRNAs: functional evolution and new modes of gene expression. Trends Plant Sci. 2003 Jan; 8 (1): 42-9. Small nucleolar RNAs (snoRNAs) are a well-characterized family of non-coding RNAs whose main function is rRNA modification. The diversity and complexity of this gene family continues to expand with the discovery of snoRNAs with non-rRNA or unknown targets. Plants contain more snoRNAs than other eukaryotes and have developed novel expression and processing strategies. The increased number of modifications, which will influence ribosome function, and the novel modes of expression might reflect the environmental conditions to which plants are exposed. Polyploidy and chromosomal rearrangements have generated multiple copies of snoRNA genes, allowing the generation of new snoRNAs for selection. The large snoRNA family in plants is an ideal model for investigation of mechanisms of evolution of gene families in plants. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function David P. Bartel. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell Volume 116, Issue 2, 23 January 2004, Pages 281-297 MicroRNAs (miRNAs) are endogenous 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes. Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs Ligang Wu and Joel G. Belasco Let Me Count the Ways: Mechanisms of Gene Regulation by miRNAs and siRNAs. Molecular Cell. Volume 29, Issue 1, 18 January 2008, Pages 1-7 The downregulation of gene expression by miRNAs and siRNAs is a complex process involving both translational repression and accelerated mRNA turnover, each of which appears to occur by multiple mechanisms. Moreover, under certain conditions, miRNAs are also capable of activating translation. A variety of cellular proteins have been implicated in these regulatory mechanisms, yet their exact roles remain largely unresolved. MicroRNAs: Genomics, Biogenesis, Mechanism, and Fu Let Me Count the Ways: Mechanisms of Gene Regulati
个人分类: 科学感想|8841 次阅读|0 个评论
分子遗传学阅读文献:基因表达调控之四
Bobby 2008-9-3 17:13
the expanding world of small RNAs Grosshans H, Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature. 2008 Jan 24; 451 (7177): 414-6. the expanding world of small RNAs Impact of small RNAs Obernosterer G, Meister G, Poy MN, Kuras A. The impact of small RNAs. Microsymposium on small RNAs. EMBO Rep. 2007 Jan; 8 (1): 23-7. Epub 2006 Dec 15. Impact of small RNAs Small RNAs as big players in plant abiotic stress response and nutrient deprivation Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007 Jul; 12 (7): 301-9. Epub 2007 Jun 18. Abiotic stress is one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms, particularly in the identification of stress responsive protein-coding genes. In addition to protein coding genes, recently discovered microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) have emerged as important players in plant stress responses. Initial clues suggesting that small RNAs are involved in plant stress responses stem from studies showing stress regulation of miRNAs and endogenous siRNAs, as well as from target predictions for some miRNAs. Subsequent studies have demonstrated an important functional role for these small RNAs in abiotic stress responses. This review focuses on recent advances, with emphasis on integration of small RNAs in stress regulatory networks. Small RNAs as big players in plant abiotic stress response and nutrient deprivation RNA silencing: small RNAs as ubiquitous regulators of gene expression Voinnet O. RNA silencing: small RNAs as ubiquitous regulators of gene expression. Curr Opin Plant Biol. 2002 Oct; 5 (5): 444-51. 'RNA silencing' is the suppression of gene expression through nucleotide sequence-specific interactions that are mediated by RNA. Initially identified as an immune system that is targeted against transposons and viruses, RNA silencing is emerging as a fundamental regulatory process that is likely to affect many layers of endogenous gene expression in most, if not all, eukaryotes. RNA silencing-small RNAs as ubiquitous regulators of gene expression Specialization and evolution of endogenous small RNA pathways Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet. 2007 Nov; 8 (11): 884-96. The specificity of RNA silencing is conferred by small RNA guides that are processed from structured RNA or dsRNA. The core components for small RNA biogenesis and effector functions have proliferated and specialized in eukaryotic lineages, resulting in diversified pathways that control expression of endogenous and exogenous genes, invasive elements and viruses, and repeated sequences. Deployment of small RNA pathways for spatiotemporal regulation of the transcriptome has shaped the evolution of eukaryotic genomes and contributed to the complexity of multicellular organisms. Specialization and evolution of endogenous small RNA pathways Targets of RNA-directed DNA methylation Matzke M, Kanno T, Huettel B, Daxinger L, Matzke AJ. Targets of RNA-directed DNA methylation. Curr Opin Plant Biol. 2007 Oct; 10 (5): 512-9. Epub 2007 Aug 16. RNA-directed DNA methylation contributes substantially to epigenetic regulation of the plant genome. Methylation is guided to homologous DNA target sequences by 24 nt 'heterochromatic' small RNAs produced by nucleolar-localized components of the RNAi machinery and a plant-specific RNA polymerase, Pol IV. Plants contain unusually large and diverse populations of small RNAs, many of which originate from transposons and repeats. These sequences are frequent targets of methylation, and they are able to bring plant genes in their vicinity under small RNA-mediated control. RNA-directed DNA methylation can be removed by enzymatic demethylation, providing plants with a versatile system that facilitates epigenetic plasticity. In addition to subduing transposons, RNA-directed DNA methylation has roles in plant development and, perhaps, stress responses. Targets of RNA-directed DNA methylation Signaling in gene silencing Signaling in gene silencing Nucleolar dominance and silencing of transcription Pikaard CS. Nucleolar dominance and silencing of transcription. Trends Plant Sci. 1999 Dec; 4 (12): 478-483. Nucleolar dominance is a phenomenon in plant and animal hybrids whereby one parental set of ribosomal RNA (rRNA) genes is transcribed, but the hundreds of rRNA genes inherited from the other parent are silent. The phenomenon gets it name because only transcriptionally active rRNA genes give rise to a nucleolus, the site of ribosome assembly. Nucleolar dominance provided the first clear example of DNA methylation and histone deacetylation acting in partnership in a gene-silencing pathway. However, the sites of chromatin modification and the ways in which one set of rRNA genes are targeted for repression remain unclear. Another unresolved question is whether the units of regulation are the individual rRNA genes or the multi-megabase chromosomal domains that encompass the rRNA gene clusters. Nucleolar dominance and silencing of transcription Small RNAs and transposon silencing in plants Hidetaka Ito. Small RNAs and transposon silencing in plants. Develop. Growth Differ., 2011. doi: 10.1111/j.1440-169X.2011.01309.x Transposons are highly conserved in plants and have created a symbiotic relationship with the host genome. An important factor of the successful communication between transposons and host plants is epigenetic modifications including DNA methylation and the modifications of the histone tail. In plants, small interfering RNAs (siRNAs) are responsible for RNA-directed DNA methylation (RdDM) that suppresses transposon activities. Although most transposons are silent in their host plants, certain genomic shocks, such as an environmental stress or a hybridization event, might trigger transposon activation. Further, since transposons can affect the regulation mechanisms of host genes, it is possible that transposons have co-evolved as an important mechanism for plant development and adaptation. Recent new findings reveal that siRNAs control not only transcriptional activation, but also suppress transgenerational transposition of mobile elements making siRNAs critically important towards maintaining genome stability. Together these data suggest host-mediated siRNA regulation of transposons appears to have been adapted for controlling essential systems of plant development, morphogenesis, and reproduction. Small RNAs and transposon silencing in plants.pdf
个人分类: 科学感想|9279 次阅读|0 个评论
分子遗传学阅读文献:基因表达调控之三
Bobby 2008-9-3 14:35
The silence of genes Hunter P. The silence of genes. Is genomic imprinting the software of evolution or just a battleground for gender conflict? EMBO Rep. 2007 May; 8 (5): 441-3. The silence of genes Return to the RNAi world: rethinking gene expression and evolution Mello CC. Return to the RNAi world: rethinking gene expression and evolution. Cell Death Differ. 2007 Dec; 14 (12): 2013-20. Thanks to the Nobel Foundation for permission to publish this Lecture. Here we report the transcript of the lecture delivered by Professor Craig C Mello at the Nobel Prize ceremony. Professor Mello vividly describes the years of research that led to the discovery of RNA interference and the molecular mechanisms that regulate this fundamental cellular process. The turning point of discoveries and the role played by all his colleagues and collaborators are described, making this a wonderful report of the adventure of research. The lecture explains in simple language the importance of this discovery that has added a great level of complexity to the way cells regulate protein levels; moreover, it points out the beauty and importance of Caenorhabditis elegans as a model organism and how the use of this model has greatly contributed to the advance of science. Finally, Professor Mello leaves us with a number of questions that his research has raised and that will require years of future research to be answered. Return to the RNAi world-rethinking gene expression and evolution RNAi: a defensive RNA-silencing against viruses and transposable elements Buchon N, Vaury C. RNAi: a defensive RNA-silencing against viruses and transposable elements. Heredity. 2006 Feb; 96 (2): 195-202. RNA silencing is a form of nucleic-acid-based immunity, targeting viruses and genomic repeated sequences. First documented in plants and invertebrate animals, this host defence has recently been identified in mammals. RNAi is viewed as a conserved ancient mechanism protecting genomes from nucleic acid invaders. However, these tamed sequences are known to occasionally escape this host surveillance and invade the genome of their host. This response is consistent with the overall idea that parasitic sequences compete with cells to systematically counter host defences. Using examples taken from the current literature, we illustrate the dynamic move-countermove game played between these two protagonists, the host cell and its parasitic sequences, and discuss the consequences of this game on genome stability. RNAi-a defensive RNA-silencing against viruses and transposable elements Chromatin-based silenceing mechanism Bender J. Chromatin-based silencing mechanisms. Curr Opin Plant Biol. 2004 Oct; 7 (5): 521-6. Eukaryotic genomes are organized into regions of transcriptionally active euchromatin and transcriptionally inactive heterochromatin. In plant genomes, heterochromatin is marked by methylation of cytosine and methylation of histone H3 at lysine 9. Heterochromatin formation is targeted to transposons as a means of defending the host genome against the deleterious effects of these sequences. Heterochromatin is directed to transposon sequences by transposon-derived aberrant RNA species and functions to prevent unwanted transcription and movement. Formation of heterochromatin at rRNA-encoding genes and centromere-associated repeats might also involve an RNA-based mechanism that is designed to stabilize these potentially labile structures. Chromatin-based silenceing mechanism Role of histone and DNA methylation in gene regulation Vaillant I, Paszkowski J. Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol. 2007 Oct; 10 (5): 528-33. Epub 2007 Aug 9. Transcription is known to be regulated by given chromatin states, distinguished as transcriptionally active euchromatin and silent heterochromatin. In plants, silencing in heterochromatin is associated with hypermethylation of DNA and specific covalent modifications of histone H3. Several lines of evidence have suggested that maintenance of DNA methylation patterns at CG sequences is responsible for the formation of stable and thus heritable activity states termed epialleles. By contrast, histone modification and DNA methylation outside CGs confer the flexibility of transcriptional regulation necessary for plant development and adaptive responses to the environment. Recent studies have refined our understanding of the biological significance of and the molecular mechanisms involved in the interplay between DNA and histone H3 methylation. Role of histone and DNA methylation in gene regulation DNA-RNA-protein gang together in silence Stokes T. DNA-RNA-protein gang together in silence. Trends Plant Sci. 2003 Feb; 8 (2): 53-5. Two recent reports demonstrate interdependence between DNA and histone methylation in Arabidopsis. ddm1 (decrease in DNA methylation 1) mutants switch histone methylation from a form associated with inactive chromatin to a form connected to actively transcribed genomic regions. The loss of DNA methylation and shift in histone methylation cause transcriptional derepression of heterochromatic regions. In a related report, small RNAs in Schizosaccharomyces pombe mark histone methylation to form heterochromatin, suggesting that methylation systems work alongside RNA metabolism. DNA-RNA-protein gang together in silence RNA interference against viruses: strike and counterstrike Haasnoot J, Westerhout EM, Berkhout B. RNA interference against viruses: strike and counterstrike. Nat Biotechnol. 2007 Dec; 25 (12): 1435-43. RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA. RNAi holds great promise as a novel nucleic acid-based therapeutic against a wide variety of diseases, including cancer, infectious diseases and genetic disorders. Antiviral RNAi strategies have received much attention and several compounds are currently being tested in clinical trials. Although induced RNAi is able to trigger profound and specific inhibition of virus replication, it is becoming clear that RNAi therapeutics are not as straightforward as we had initially hoped. Difficulties concerning toxicity and delivery to the right cells that earlier hampered the development of antisense-based therapeutics may also apply to RNAi. In addition, there are indications that viruses have evolved ways to escape from RNAi. Proper consideration of all of these issues will be necessary in the design of RNAi-based therapeutics for successful clinical intervention of human pathogenic viruses. RNA interference against viruses-strike and counterstrike RNA silencing and antiviral defence in plants Wang MB , Metzlaff M. RNA silencing and antiviral defense in plants. Curr Opin Plant Biol. 2005 Apr; 8 (2): 216-22. Much progress has been made recently in identifying the molecular components of RNA silencing in plants, and in understanding their roles in the biogenesis of small interfering RNAs and microRNAs, in RNA-directed DNA methylation, and in RNA-mediated antiviral defense. However, many crucial questions remain unanswered. What are the molecular bases of sense and antisense transgene-mediated silencing? Why does silencing only appear to spread through transgenes? Plant viruses encode silencing suppressors to counteract host RNA silencing, and some of these suppressors affect microRNA accumulation and function and hence normal plant development. Is viral pathogenicity determined, partly or entirely, by their silencing suppressor activity? RNA silencing and antiviral defence in plants RNA silencing bridging the gaps in wheat extracts Voinnet O. RNA silencing bridging the gaps in wheat extracts. Trends Plant Sci. 2003 Jul; 8 (7): 307-9. In plants, RNA silencing plays important roles in antiviral defence, genome integrity and development. This process involves nucleotide sequence-specific interactions that are mediated by small RNA molecules of 21-25 nucleotides. Although the core biochemical reactions of RNA silencing have been well characterized in animals, such information was crucially missing in plants. Recent work now addresses this question and reveals an overall similarity between the plant and animal RNA-silencing pathways, as well as some intriguing plant-specific aspects. RNA silencing bridging the gaps in wheat extracts RNA silencing in plants-defense and counterdefense Vance V, Vaucheret H. RNA silencing in plants--defense and counterdefense. Science. 2001 Jun 22; 292 (5525): 2277-80. RNA silencing is a remarkable type of gene regulation based on sequence-specific targeting and degradation of RNA. The term encompasses related pathways found in a broad range of eukaryotic organisms, including fungi, plants, and animals. In plants, it serves as an antiviral defense, and many plant viruses encode suppressors of silencing. The emerging view is that RNA silencing is part of a sophisticated network of interconnected pathways for cellular defense, RNA surveillance, and development and that it may become a powerful tool to manipulate gene expression experimentally. RNA silencing in plants-defense and counterdefense Strategies for silencing human disease using RNA interference Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007 Mar; 8 (3): 173-84. Since the first description of RNA interference (RNAi) in animals less than a decade ago, there has been rapid progress towards its use as a therapeutic modality against human diseases. Advances in our understanding of the mechanisms of RNAi and studies of RNAi in vivo indicate that RNAi-based therapies might soon provide a powerful new arsenal against pathogens and diseases for which treatment options are currently limited. Recent findings have highlighted both promise and challenges in using RNAi for therapeutic applications. Design and delivery strategies for RNAi effector molecules must be carefully considered to address safety concerns and to ensure effective, successful treatment of human diseases. Strategies for silencing human disease using RNA interference Role of short RNAs in gene silencing Waterhouse PM, Wang MB, Finnegan EJ. Role of short RNAs in gene silencing. Trends Plant Sci. 2001 Jul; 6 (7): 297-301. Recent research has revealed the existence of an elegant defence mechanism in plants and lower eukaryotes. The mechanism, known in plants as post-transcriptional gene silencing, works through sequence-specific degradation of RNA. It appears to be directed by double-stranded RNA, associated with the production of short 21-25 nt RNAs, and spread through the plant by a diffusible signal. The short RNAs are implicated as the guides for both a nuclease complex that degrades the mRNA and a methyltransferase complex that methylates the DNA of silenced genes. It has also been suggested that these short RNAs might be the mobile silencing signal, a suggestion that has been challenged recently. Role of short RNAs in gene silencing
个人分类: 科学感想|9811 次阅读|0 个评论
分子遗传学阅读文献:基因表达调控之二
Bobby 2008-9-3 13:13
Functions of microRNAs and the related small RNAs in plants Mallory AC, Vaucheret H. Functions of microRNAs and related small RNAs in plants. Nat Genet. 2006 Jun;38 Suppl: S31-6. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs), 20- to 27-nt in length, are essential regulatory molecules that act as sequence-specific guides in several processes in most eukaryotes (with the notable exception of the yeast Saccharomyces cerevisiae). These processes include DNA elimination, heterochromatin assembly, mRNA cleavage and translational repression. This review focuses on the regulatory roles of plant miRNAs during development, in the adaptive response to stresses and in the miRNA pathway itself. This review also covers the regulatory roles of two classes of endogenous plant siRNAs, ta-siRNAs and nat-siRNAs, which participate in post-transcriptional control of gene expression. Functions of microRNAs and the related small RNAs in plants microRNA regulation of gene expression in plants Dugas DV, Bartel B. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol. 2004 Oct; 7 (5): 512-20. It has only been a few years since we began to appreciate that microRNAs provide an unanticipated level of gene regulation in both plants and metazoans. The high level of complementarity between plant microRNAs and their target mRNAs has allowed rapid progress towards the elucidation of their varied biological functions. MicroRNAs have been shown to regulate diverse developmental processes, including organ separation, polarity, and identity, and to modulate their own biogenesis and function. Recently, they have also been implicated in some processes outside of plant development. microRNA regulation of gene expression in plants The evolution of gene regulation by transcription factors and microRNAs Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007 Feb; 8 (2): 93-103. Changes in the patterns of gene expression are widely believed to underlie many of the phenotypic differences within and between species. Although much emphasis has been placed on changes in transcriptional regulation, gene expression is regulated at many levels, all of which must ultimately be studied together to obtain a complete picture of the evolution of gene expression. Here we compare the evolution of transcriptional regulation and post-transcriptional regulation that is mediated by microRNAs, a large class of small, non-coding RNAs in plants and animals, focusing on the evolution of the individual regulators and their binding sites. As an initial step towards integrating these mechanisms into a unified framework, we propose a simple model that describes the transcriptional regulation of new microRNA genes. The evolution of gene regulation by transcription factors and microRNAs Mechanisms of post-transcriptional regulation by microRNAs: are the answer in sight? Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008 Feb; 9 (2): 102-14. MicroRNAs constitute a large family of small, approximately 21-nucleotide-long, non-coding RNAs that have emerged as key post-transcriptional regulators of gene expression in metazoans and plants. In mammals, microRNAs are predicted to control the activity of approximately 30% of all protein-coding genes, and have been shown to participate in the regulation of almost every cellular process investigated so far. By base pairing to mRNAs, microRNAs mediate translational repression or mRNA degradation. This Review summarizes the current understanding of the mechanistic aspects of microRNA-induced repression of translation and discusses some of the controversies regarding different modes of microRNA function. Mechanisms of post-transcriptional regulation by microRNAs MicroRNAs: something important between the genes Mallory AC, Vaucheret H. MicroRNAs: something important between the genes. Curr Opin Plant Biol. 2004 Apr; 7 (2): 120-5. Non-coding small endogenous RNAs, of 21-24 nucleotides in length, have recently emerged as important regulators of gene expression in both plants and animals. At least three categories of small RNAs exist in plants: short interfering RNAs (siRNAs) deriving from viruses or transgenes and mediating virus resistance or transgene silencing via RNA degradation; siRNAs deriving from transposons or transgene promoters and controlling transposon and transgene silencing probably via chromatin changes; and microRNAs (miRNAs) deriving from intergenic regions of the genome and regulating the expression of endogenous genes either by mRNA cleavage or translational repression. The disruption of miRNA-mediated regulation causes developmental abnormalities in plants, demonstrating that miRNAs play an important role in the regulation of developmental decisions. MicroRNAs-something important between the genes MicroRNA biogenesis: coordinated cropping and dicing Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005 May; 6 (5): 376-85. The recent discovery of microRNAs (miRNAs) took many by surprise because of their unorthodox features and widespread functions. These tiny, approximately 22-nucleotide, RNAs control several pathways including developmental timing, haematopoiesis, organogenesis, apoptosis, cell proliferation and possibly even tumorigenesis. Among the most pressing questions regarding this unusual class of regulatory miRNA-encoding genes is how miRNAs are produced in cells and how the genes themselves are controlled by various regulatory networks. MicroRNA biogenesis-coordinated cropping and dicing Prediction of plant microRNA targets Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell. 2002 Aug 23;110(4):513-20. We predict regulatory targets for 14 Arabidopsis microRNAs (miRNAs) by identifying mRNAs with near complementarity. Complementary sites within predicted targets are conserved in rice. Of the 49 predicted targets, 34 are members of transcription factor gene families involved in developmental patterning or cell differentiation. The near-perfect complementarity between plant miRNAs and their targets suggests that many plant miRNAs act similarly to small interfering RNAs and direct mRNA cleavage. The targeting of developmental transcription factors suggests that many plant miRNAs function during cellular differentiation to clear key regulatory transcripts from daughter cell lineages. Prediction of plant microRNA targets Developmental role of microRNA in plants Kidner CA , Martienssen RA. The developmental role of microRNA in plants. Curr Opin Plant Biol. 2005 Feb; 8 (1): 38-44. MicroRNAs (miRNAs) are single-stranded RNA molecules of around 22 nucleotides (nt) in length that are associated with the RNA-induced silencing complex (RISC). They play an important role in plant development, either by targeting mRNA for cleavage or by inhibiting translation. Over the past year, the list of known miRNAs, confirmed targets and developmental effects has expanded, as has the realization that they are conserved during evolution and that small RNAs can play a direct role in cell-cell signaling. Developmental role of microRNA in plants Encountering microRNAs in cell fate signalling Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science. 2005 Nov 25; 310 (5752): 1288-9. Encountering microRNAs in cell fate signalling
个人分类: 科学感想|10294 次阅读|2 个评论
生命谋略之李代桃僵
songshuhui 2008-9-3 12:14
liunianlong 发表于2008-05-12 星期一 16:06 分类: 生物 | | 《宋书》记载的一首乐府诗,向我们讲述了一个动人的故事。说是桃树长在没有盖的井旁,身侧还有一株李树,虫子来吃桃树的根,李树居然舍身相代。于是引出一个大道理,树木尚且如此,何况兄弟乎?在我看来,这个故事与其说是文学作品,毋宁说是农学笔记。桃李同属蔷薇科,为害桃树的害虫完全有可能感染李树,在古人不具备现代分类学知识的前提下,有理由相信这是一篇纪实笔记,只不过古人一厢情愿地把这事当成了李树的自愿献身。这才是真正的动人之处。 李树分散了害虫的火力,桃树或许不能就此得救,至少能够缓口气。自然界中,要想让生命自愿断送传递基因的的机会,去拯救别的生命,除非它可以因此而获得好处。也就是说,基因的自私性决定生物并不会轻易放弃生命,除非这种牺牲可以更有效地传递基因。 舐犊情深? 行有性生殖的生物,子女是与其共有最多基因的生命,相当于半个自己。所以在各类伟大奉献的故事中,父母为子女献身是最为常见的类型。 在荒芜海岛上讨生活,不仅需要高超的生存技能,巨大的勇气的奉献精神同样必不可少。狐狸们四处游荡,寻找美味蛋白。鸟巢则是最佳餐盘,或者有新鲜鸟蛋,或者有嗷嗷幼鸟,无不入口极爽,营养丰富。可是鲣鸟并不会束手就擒,母鸟虽然可以做得一手好菜,却从来也舍不得奉献给小狐狸。鲣鸟母亲一旦发现地面巢穴有暴露在血盆大口中的危险,就会突然跳出来,引开狐狸。为了使骗局更加有效,她会假装翅膀断裂,不时还举起翅膀,仿佛在说: 嘿,快看,我受伤了,比较好吃。 待把北极狐引到安全区域后,鲣鸟母亲振翅逃离,只剩下北极狐的满嘴口水。 鲣鸟的做法在其它动物身上也可以觅到踪影,只是没这么夸张而已。鹧鸪伏在巢上以身体隔离野火,母鸡抖擞双翅恐吓入侵者甚至连长相愚蠢的野猪,也会假装诱饵把狼只引开。 未必! 只要能够拯救两个以上的后代,父母的死亡就是划得来的,在人们心目中堪称伟大的举措,其实只是基因经济学上的考量。更何况,大多数时候,充当诱饵并不需要真的断送生命。即便如此,父母也并不会随意冒险,毕竟后代只有其一半的基因,它们其实更愿意让子女来做那颗李树。蚁后会分泌激素,阻碍女儿的性发育,使她们成为自己的免费保姆,蜜蜂也有同样的把戏。 手足情长? 同样的道理,儿女为多产的妈咪服务,多少还能获得一些好处。兄弟姊妹之间至少有1/4的共同基因 相当于半个儿女。如果妈咪的产量超过自己的两倍,那么就算没有性生活,也是值得的。蜂群为了保卫内部的肥嫩幼虫,会倾尽全力,以蜇针攻击敌人。对于工蜂来说,这蜇针等同于生命,受到保护的子侄,同样流动着自己的血脉。 非洲白蚁不仅是杰出的建筑师,而且擅长军事,深明舍车保帅的大道理。它的天敌并非黑猩猩等食蚁动物,反而是享有同种生活资源的同门马塔贝利蚁。前者为了保持食物的持久供应,绝不会对蚁群赶尽杀绝,后者却只想置竞争对手于死地。 马塔贝利蚁以白蚁为食,它们用腹部毒蜇致白蚁瘫痪,切成大块分而食之。和其它白蚁爱好者的区别在于,马塔贝利蚁从不留活口,似乎认定这广袤大陆上的蚂蚁肯定杀之不绝。这种斩草除根的政策,必定会遇到最顽强的抵抗。白蚁们认识到马塔贝利蚁的入侵意味着全军覆灭,整个家族都将即刻沦为刀俎肉,为了延续自身基因,自然会拼死抵抗。白蚁前哨在发现马塔贝利蚁后,一部分坚守阵地,用血肉铸起长城,另一部分赶回巢穴报警。虽然前线总是战败,却可以赢得宝贵时间。在这期间,后方白蚁排兵布阵,把守入口处的狭隘通道,甚至将洞口完全封死,让铁骑不得其门而入。 毫无疑问,遗留在外的白蚁必定横尸郊外,不过替兄弟挡子弹,在道义和基因方面都能获得利益,也算死得其所。 或许。 不论是为父母接生,还是替兄弟两肋插刀,都出于心甘情愿。倒是有些吃里扒外的阴谋分子,不经意间成了别人的替罪羔羊,能够充当桃树固然幸运,不幸成为李树却是它父母所始料未及的。 一番舞蹈和低沉的鸣声,就是鸵鸟的结婚宣言。雌鸵鸟在巢内不断产卵,总数可达十余个,其后的日子,安心地孵化这二十多个硕大无朋的蛋就是生活的全部。咦,这多出的几个蛋从何而来?其实是懒惰的邻居想让别人替自己干孵卵育雏的苦差事,万料不到却给人送去了一棵李树。 主人似乎对外来者并不见外,多孵几个卵只是举手之劳,却可获得别样的好处。虽然没有采用礼品盒包装,不过这些竞争者的后代,的确能有效分散敌人火力。作为世界上最大的蛋,鬣狗吃饱喝足后就会扬长而去,多一个蛋就多保有一分希望。不过这种策略在鸟类中并不具有普遍性,如果鸵鸟蛋只有鹌鹑蛋般大小,增加数量则徒增被发现的机会,此后定被敌害一扫而光,那可就得不偿失了。更何况巢中总归自己的孩子占多数,所以假装傻冒继续孵卵其实是件好差事。 分布于东、南亚的水雉,凭借长趾在漂浮的水生植物上行走捕食。和其它鸟类不同的是,雌性水雉的体型稍大,羽色更鲜亮,禀性更风流。一个交配季节中,雌鸟会有十多次婚外情,而雄鸟则负责孵化抚育幼鸟。这样的结果是,雄鸟很难保证自己窝中的后代都有自己的基因,不过还是照样尽心抚育。它疯了吗?如此冒昧地培养竞争对手的孽种。 不,或许他比滥情配偶更加清醒。雌鸟的滥交对象,除了那些假正经的居家男保姆,还能有谁?别看他总是呆在巢中假装贤惠,外来的雌鸟也会自动上门的,他的基因不在自己腹下,总归会在某一位男同志的巢中。反正大家处于同一片水域,没有阶级区分,到底在哪个家庭成长其实区别不大。所有雄性水雉全都尽心抚育,大家互相假装一下就好。万一被敌害扫荡一空,至少不必眼看着骨肉尽毁,悲伤之情或许会减弱很多。 李代桃僵的美事,其实是基因在其中作祟;在人类社会中,价值观和文化似乎起着类似的作用。如果我们对陌生人的困难视若无睹,则与禽兽何异?若是连兄弟的援手都不肯施与,岂非禽兽不如 标签: 基因 , 策略 , 行为 , 鸵鸟
个人分类: 地震|2055 次阅读|0 个评论
人造生命,一步之遥?
songshuhui 2008-9-3 12:02
BOBO 发表于2008-05-18 星期日 8:10 分类: 医学 , 生物 | | 1932年,赫胥黎在《美丽的新世界》一书中,曾描绘科学家在实验室以人工方式制造婴儿,制造一些专门从事特定劳动的人。而今,这或许不再仅是存留在小说中的幻想。英国《观察家报》4月20日报道,全球生物学家将齐聚伦敦,制订初步计划,以促进人造生物这一二十一世纪最大胆、最富争议、最具科学性设想的研究。 人造生命三步曲 提到人造生命,首当其冲要数美国人类基因组研究带头人、人类基因组研究先锋、塞莱拉公司前总裁克雷格文特尔。目前,文特尔的研究团队在人造生命领域走在最前。他们已经宣告,成功地合成了首个人造染色体,实现了活有机体的整基因组移植,更大胆地预告,不久就可合成人造生命。 人造生物作为合成生物学中最具野心的分支,其基本设想便是通过剥离生物体细胞的各个部分,使其只剩下基本的遗传构成,随后把他们重新组合,进而创造出新的生命体。其最终目标是利用人工合成的遗传物质,在实验室里制造一种在自然界中并不存在的新物种。 2008年初,文特尔将研究结果发表在《科学》杂志,并宣称他们已人工成功制造了一种支原体的基因组,完成人造生物的最关键一步,人造生命形态很快就要诞生。他们研究的这种支原体拥有485个基因、58万对碱基,是已知的基因组最小、最简单的生命形态。 合成人造染色体是人造生命的第一步。染色体是遗传信息的载体,文特尔合成人造染色体是以一种名为生殖枝原体的细菌作为研究对象的。这种细菌寄生在人体内却不引发疾病,它只有一条染色体,简单到不能再简单。染色体中包含517个基因,也是已知的基因组最小的生物。 文特尔等人在1999年时就曾发现,如果将一些多余基因去除,对生殖枝原体细菌生存真正起关键作用的基因大概只有300个。成功地合成含有细菌生存所需最少基因数目的染色体后,他们又把天然生殖枝原体细胞内的遗传物质全部去除,然后将人造染色体注入到去除了遗传物质的中空生殖枝原体细胞内。 第二步,整基因组移植。文特尔的研究团队把两种相近的单细胞支原体作为实验对象。首先从一种支原体内提取整个基因组,再植入另一种易让山羊感染肺炎的支原体亚种中。 结果有一些支原体亚种发生显著变化:新植入的基因组开始取代原基因组运作,并且使这一支原体亚种的运作功能与原支原体功能完全吻合。这就相当于通过装入一个新的软件,就把一台苹果电脑转变成了普通电脑,文特尔介绍说。 简单地说,这一步就是在现有单细胞生命体的壳里注入新的基因组,从而仿造出一个生命体。这项创造类似借壳生蛋。虽然科学家近年来已经多次成功实施将单个基因或者基因群从一个生物个体移植到另一个体,但文特尔的实验首次对一个有机体的整个基因组实施了一次性地打包移植。 设想中的第三步,就应该是把完全人造的基因组植入空壳中,创造出一种自然界本不存在的生命形式。文特尔曾在2007年接受采访时称,这一步指日可待。 量身定制人造生命 与人们常听说的转基因技术相比,人造生命有着根本的不同。比如,在转基因领域,科学家在某种天然存在的细菌或植物中植入新基因、或者使其中的某个基因变异或沉默,改变生命的性状。相比之下,人造生命领域,使用的是完全人工合成的遗传物质,借细胞等为壳,创造出一种自然界压根没有的新生命形式。 对人造生命持积极态度的科学家们包括文特尔等人都认为,人造生命将大有作为。待到技术成熟的那一天,实验室就可根据人们提出的不同需求,量身定制细菌等人造生命,用以完成各种各样的任务。例如,用人造生命制造药物和燃料,把这些特殊设计出来的人造生命植入体内,用作生物传感器。未来,世界的能源需求、污染治理、某些废物的处理等等,都可以由实验室中制造出来的人造细菌来处理,文特尔5月1日在美国堪萨斯大学的一场演讲中这样大胆地放言。 伦敦帝国学院的基特尼更展望说,它(人造生命)把我们带到了一个新的工业革命的开端,在那里,新的燃料、药物、传感器等等都将由生物材料制成。 伦理之虞 人造生命领域的先锋人物们日前在伦敦召开的名为设计生命的会议,探讨如何促进合成生物学的发展,当然,更重要的是讨论如何控制风险和伦理问题。 科学界把人造生命界定到一个新的学科合成生物学。这是21世纪最为大胆、最有争议、也最具科学性的领域,英国《观察家报》如此评价。 但假如成事不足,这些具有不可知潜力的新奇生命也可能败事有余。有科研人员就担心,现在合成DNA(脱氧核糖核酸)已经实现,比如人们能从互联网上购买合成DNA片段。这从另一方面看,实际上也为未来的新型生物恐怖主义提供了原材料,恐怖分子能利用合成DNA片段蓄意制造出一些致命病原体,例如脊髓灰质炎(即小儿麻痹症)、天花等病毒。将来,通过这样的方式还能够制造一些全新的、但却是高度危险的微生物来。生化危机,可能就从科幻电影真的降临到现实世界了。 随着合成生物学不断取得新的进展,人们对于它背后隐藏的安全和伦理问题表示了极度关切,且不说恐怖分子蓄意制造生物恐怖,单说科学家们在实验室里炮制所谓的新型微生物时,也很可能某些环节出错,造出一些意想不到的怪胎来。 目前,针对合成生物学,还没有任何的国际公约或监管机制,来评估合成生物体的安全性。据悉英国皇家学会已经开始就合成生物技术向公众征集意见,考虑出台相关的监管条例。 人造人? 假如文特尔们在合成生命的道路上继续前进,最终会到人造人的地步吗?未来世界的父母们难道可以向科学家口述具体想要合成出一个什么样的小baby?金发碧眼?音乐天才?超级聪明? 简单回答这种情况几乎不可能发生。且不说伦理问题,单从技术角度讲,目前的人造生命还仅仅局限于最最初级的生命阶段:只有一条染色体的细菌,只有一个细胞的支原体文特尔本人也分析得很清楚,人造生命造的是微生物,而不是人,至少在可预见的未来是这样。 不谈人造人,即便是目前流行的设计婴儿理念,从理论分析和技术实现来看,也还只是海市蜃楼。举例来说,一对忙于事业的年轻夫妇,想生一个运动天才出来。这就需要某些特定的与运动能力相关的基因。目前医学研究已知的运动基因中,有一种名为ACTN3。研究发现,95%的赛跑选手都携带ACTN3基因的某个变异版本,能合成一种蛋白质,使肌肉更能帮助选手有速度爆发力。但问题是,这个基因只是可能与运动能力相关的数以百计基因中的一个,而实际上,对于其他的大多数的基因,科学家们还没鉴别出来。所以,即便试管授精的婴儿被植入了这个跑得快基因,也并不能保证将来它就是个运动健将,更不用寄希望于奥运金牌了。 简言之,改变一个基因,可不是像在word文档中改一个字符那么简单。 注:已刊发于近期《环球》,与另一作者合著 标签: 医学 , 基因 , 生物学 , 科普
个人分类: 医学|1068 次阅读|0 个评论
好了伤疤忘了痛?
songshuhui 2008-9-3 11:49
DNA 发表于2008-05-26 星期一 18:43 分类: 生物 | | 俗话说:吃一堑,长一智;但是也有俗语说:好了伤疤忘了痛。这两句似乎矛盾的俗语代表了两类人一类是善于从错误中汲取教训而避免再次犯同样错误的人,而另一类人似乎总是在同一个地方摔倒,严重的可能摔得粉身碎骨也不知道悬崖勒马。 我们常常欣赏前一类人,以为这是作为理性的人的典范在实践中根据不断积累的经验判断什么是好的选择和不好的选择,并总是选择有利的选项,因为可以避免痛苦;对于后一类人,我们却常常嗤之以鼻,他们可能总是犯同样的错误,总是经受同样的或类似的错误选择所带来的痛苦,更有甚者可能走上自我毁灭的道路我们说:可怜者必有可恨之处,大概就是恨其不能自我反省,自我学习,避开错误。 Science最近的一篇研究报道却告诉我们,那些好了伤疤忘了痛的人,可能是有基因基础的。德国的科学家发现,多巴胺(dopamine)的受体表达水平与人的自我反省错误的能力相关。科学家将参与实验的自愿者分为两组,一组是携带多巴胺受体突变基因的自愿者(他们的多巴胺受体表达水平低于正常人),另一组是携带正常基因的志愿者。给志愿者看两组符号,A组代表好的选择,B组代表不好的选择(其实就是两个不同的汉字,德国人不认得中文,所以对他们来说就是完全陌生的符号)。当他们选择A字符时,会跳出一个灿烂的笑脸,以资鼓励;而当他们选择B字符时,会出现皱眉头的苦瓜脸,以示惩罚。在接下来的测试中,携带正常基因的自愿者大都选择了A字符,而携带多巴胺受体突变基因的自愿者则忘了笑脸和苦瓜脸,胡乱选择他们对表示错误和惩罚的苦瓜脸的敏感度似乎比正常人低。 以往的研究也发现多巴胺受体表达水平的降低与人的成瘾行为和强迫症行为相关,例如吸毒、酗酒和强迫症赌博。这一研究则告诉我们这些瘾君子们可能是因为比正常人少了一些多巴胺受体,从而导致对带来惩戒的选择敏感度低,对毒品、酒精、赌博这类必然导致痛苦和不幸的事物毫无免疫力,一次又一次陷入自我毁灭的轮回。 精神分析说:欲望决定命运,童年的经历决定性格我们的行为和选择逃脱不了性欲和父母的阴影;人本主义心理学说:性格决定命运命运的好坏在于自己能不能提升和锤炼性格;如今,生命科学家们正在绘制另外一张图谱基因决定命运,一个基因的突变可能让你陷入沉沦的深渊。接下来的问题是:是否有可能通过基因治疗来纠正命运呢? 相关链接: http://jingliumm.spaces.live.com/ http://www.sciencemag.org/cgi/content/full/318/5856/1642?maxtoshow=HITS=10hits=10RESULTFORMAT=an 标签: 命运 , 基因 , 多巴胺 , 自我反省 , 选择
个人分类: 生物|1141 次阅读|0 个评论
分子遗传学阅读文献:基因表达调控之一
热度 2 Bobby 2008-9-3 06:52
Perceptions of epigenetics Bird A. Perceptions of epigenetics. Nature. 2007 May 24; 447 (7143): 396-8. Geneticists study the gene; however, for epigeneticists, there is no obvious 'epigene'. Nevertheless, during the past year, more than 2,500 articles, numerous scientific meetings and a new journal were devoted to the subject of epigenetics. It encompasses some of the most exciting contemporary biology and is portrayed by the popular press as a revolutionary new science--an antidote to the idea that we are hard-wired by our genes. So what is epigenetics? Perceptions of epigenetics Epigenetic inheritance in plants Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. Nature. 2007 May 24; 447 (7143): 418-24. The function of plant genomes depends on chromatin marks such as the methylation of DNA and the post-translational modification of histones. Techniques for studying model plants such as Arabidopsis thaliana have enabled researchers to begin to uncover the pathways that establish and maintain chromatin modifications, and genomic studies are allowing the mapping of modifications such as DNA methylation on a genome-wide scale. Small RNAs seem to be important in determining the distribution of chromatin modifications, and RNA might also underlie the complex epigenetic interactions that occur between homologous sequences. Plants use these epigenetic silencing mechanisms extensively to control development and parent-of-origin imprinted gene expression. Epigenetic inheritance in plants Passing the message on: inheritance of epigenetic traits Bond DM, Finnegan EJ. Passing the message on: inheritance of epigenetic traits. Trends Plant Sci. 2007 May; 12 (5): 211-6. Epub 2007 Apr 16. Epigenetic modifiers play an important role in genome organization, stability and the control of gene expression. Three research groups that are exploring the transfer of epigenetic information between generations have recently published papers. Mary Alleman et al. have shown that RNA-directed chromatin changes mediate paramutation in maize, and Minoo Rassoulzadegan et al. have demonstrated that RNA also plays a role in paramutation in mice. A new aspect of epigenetic regulation has been revealed by Jean Molinier et al. - they have demonstrated that the memory of exposure to stress is transferred through several generations. Passing the message on-inheritance of epigenetic traits Epigenetics: regulation through repression Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999 Oct 15; 286 (5439): 481-6. Epigenetics is the study of heritable changes in gene expression that occur without a change in DNA sequence. Epigenetic phenomena have major economic and medical relevance, and several, such as imprinting and paramutation, violate Mendelian principles. Recent discoveries link the recognition of nucleic acid sequence homology to the targeting of DNA methylation, chromosome remodeling, and RNA turnover. Although epigenetic mechanisms help to protect cells from parasitic elements, this defense can complicate the genetic manipulation of plants and animals. Essential for normal development, epigenetic controls become misdirected in cancer cells and other human disease syndromes. Epigenetics-regulation through repression Inherited epigenetic variation: revisting soft inheritance Richards EJ. Inherited epigenetic variation--revisiting soft inheritance. Nat Rev Genet. 2006 May; 7 (5): 395-401 Phenotypic variation is traditionally parsed into components that are directed by genetic and environmental variation. The line between these two components is blurred by inherited epigenetic variation, which is potentially sensitive to environmental inputs. Chromatin and DNA methylation-based mechanisms mediate a semi-independent epigenetic inheritance system at the interface between genetic control and the environment. Should the existence of inherited epigenetic variation alter our thinking about evolutionary change? Inherited epigenetic variation-revisting soft inheritance Nucleosome destabilization in the epigenetic regulation of gene expression Henikoff S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet. 2008 Jan; 9 (1): 15-26. Assembly, mobilization and disassembly of nucleosomes can influence the regulation of gene expression and other processes that act on eukaryotic DNA. Distinct nucleosome-assembly pathways deposit dimeric subunits behind the replication fork or at sites of active processes that mobilize pre-existing nucleosomes. Replication-coupled nucleosome assembly appears to be the default process that maintains silent chromatin, counteracted by active processes that destabilize nucleosomes. Nucleosome stability is regulated by the combined effects of nucleosome-positioning sequences, histone chaperones, ATP-dependent nucleosome remodellers, post-translational modifications and histone variants. Recent studies suggest that histone turnover helps to maintain continuous access to sequence-specific DNA-binding proteins that regulate epigenetic inheritance, providing a dynamic alternative to histone-marking models for the propagation of active chromatin. Nucleosome destabilization in the epigenetic regulation of gene expression Arabidopsis epigenetics: when RNA meets chromatin Gendrel A, Colot V. Arabidopsis epigenetics: when RNA meets chromatin. Curr Opin Plant Biol. 2005 Apr; 8 (2): 142-7. Recent work in plants and other eukaryotes has uncovered a major role for RNA interference in silent chromatin formation. The heritability of the silent state through multiple cell division cycles and, in some instances, through meiosis is assured by epigenetic marks. In plants, transposable elements and transgenes provide striking examples of the stable inheritance of repressed states, and are characterized by dense DNA methylation and heterochromatin histone modifications. Arabidopsis is a useful higher eukaryotes model with which to explore the crossroads between silent chromatin and RNA interference both during development and in the genome-wide control of repeat elements. Arabidopsis epigenetics-when RNA meets chromatin Transposable elements and the epigenetic regulation of the genome Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007 Apr; 8 (4): 272-85. Overlapping epigenetic mechanisms have evolved in eukaryotic cells to silence the expression and mobility of transposable elements (TEs). Owing to their ability to recruit the silencing machinery, TEs have served as building blocks for epigenetic phenomena, both at the level of single genes and across larger chromosomal regions. Important progress has been made recently in understanding these silencing mechanisms. In addition, new insights have been gained into how this silencing has been co-opted to serve essential functions in 'host' cells, highlighting the importance of TEs in the epigenetic regulation of the genome. Transposable elements and the epigenetic regulation of the genome Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation Zemach A, Grafi G. Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation. Trends Plant Sci. 2007 Feb; 12 (2): 80-5. Epub 2007 Jan 8. The effect of DNA methylation on various aspects of plant cellular and developmental processes has been well documented over the past 35 years. However, the underlying molecular mechanism interpreting the methylation signal has only recently been explored with the isolation and characterization of the Arabidopsis methyl-CpG-binding domain (MBD) proteins. In this review, we highlight recent advances and present new models concerning Arabidopsis MBD proteins and their possible role in controlling chromatin structure mediated by CpG methylation. Methyl-CpG-binding domain proteins in plants-interpreters of DNA methylation Imprinting-a green variation Berger F. Plant sciences. Imprinting--a green variation. Science. 2004 Jan 23; 303 (5657): 483-5. Imprinting-a green variation
个人分类: 科学感想|11742 次阅读|0 个评论
基因有“好”“坏”,种族无优劣
songshuhui 2008-9-2 15:41
DNA 发表于2008-06-2 星期一 13:52 分类: 生物 | | (注:这篇文章已被39健康网等网站擅自转载,标题被改为《基因有好坏,种族无优劣,科学不是工具》。所以如果有恰巧已经读过的同学别误会,我可不是抄袭,是如假包换的原作者。) 去年诺贝尔炸药奖得主DNA之父James Watson放出黑人不如白人聪明的政治错误言论,遭到各界猛烈抨击,逼得Watson不得不公开道歉。但恐怕还是有不少人会暗自困惑黑人平均智商比白人低的说法不是有科学依据的吗?这其中顺带的还扯出东亚人智商最高的论调,估计咱们时时举着民族大义旗帜的爱国青年很高兴这个调调。 这个说法的始作俑者是个有种族偏见的英国科学家,他将各国的智商测试结果比较了一下,就得出这么轻率的结论。其实一般人不需要专业知识也能判断但凡做过智商测试的同学都会知道,无非就是搞一些有潜在规律的图片字母数字之类的东西,让你选出符合规律的选项。这样的智力题不能说不科学,大概是测试所谓的逻辑推理能力、演算能力、理解能力等等;但其局限性也是十分明显。对于经常做类似题目的人和从未接触过的人来做同一套题,其熟练度肯定不一样;那些从未受过教育的人可能连题目都看不懂,又如何来演算推理这奇奇怪怪的图案呢?方舟子说得对,其实智商测验本身一定程度上就是反应了应试能力,也难怪中国人得分最高。 虽然我也对同一地球上不同人种的文明历程的巨大差异存在很大疑惑,但我是坚决反对危言耸听的本质论将不同人种分为三六九等,尤其是打着科学的名义。 有趣的是,最近发表在世界上最牛B的学术杂志《自然》上的一篇研究论文声称白人基因组比黑人基因组携带了更多有害基因变异。研究者对比了20个白人和15个黑人基因组的单核苷酸多态性(英文简称SNP)这个东西就是在基因组里特定位点单个核苷酸的可遗传变异,在遗传疾病和进化研究中有重要作用。这一研究再次证实了人类起源于非洲,也就是说黑人的基因更古老,黑人是最早出现的人类,也就是说非洲大地上已经有了直立行走的人类时,欧亚大陆上还是猴子在树上爬呢。最引人注目的是这项研究结果表明白人总体基因组多态性低于黑人,然而白人基因组里潜在有害的变异的比例高于黑人。科学家们比较了两组基因组中的3万9千多个SNP,以黑猩猩基因组中相对应的SNP做为祖先SNP,与祖先SNP不同的SNP变异带来的蛋白质的改变就被视为潜在有害的变异(基因变异通常都是有害的,例如癌症和遗传性疾病;但是基因变异也是物种进化的基础)。虽然白人基因组中的很可能有害变异(15.9%)比黑人(12.1%)仅高出3.8%,但是这点差异具有统计学意义。所谓统计学意义(statistically significance)是所有自然科学要用到的数学方法,差异再大没有统计学意义就没有意义,相反差异再小有统计学意义就有意义虽然我个人对这百分之三点几的差异不以为然。 说到这里,大概一直对白人不服气的同学要拍手鼓掌了看来白人的基因不健康啊,气死你丫的白人(我曾认识一位爱国青年,此人称白人为直肠白猿,我被震撼得不轻,这与一些白人对有色人种的蔑视和偏见又有什么本质不同?);但是别着急,学术界又有科学家批评这个研究了。 批评者认为研究者对有害SNP的计算方法有问题。研究者将有害SNP分为可能有害(possibly damaging)和很可能有害(probably damaging),事实上从他们发表的数据来看,白人和黑人总的有害SNP比例是基本相同的,而研究者只强调了很可能有害SNP的差异。而且研究者的论文标题有误导读者的嫌疑,暗示白人比黑人有更多潜在有害的遗传负荷。当然,研究者马上进行了辩解和表态,目前这些SNP变异对健康的影响并不知晓 ,更不能以此作为种族歧视的依据,这项研究也不能说明白人就比黑人有更多的遗传疾病的风险。 科学本身就是一个内部存在争议的体系;在每一个学术领域内,每年都会成千上万的结论相反的学术论文发表。但是科学又是一个开放的自我修正的体系,在月积年累中能够被不断重复和证明的结论逐渐成为共识,那些不可重复的结论也就被摒弃。然而,即使是如此,科学依然有其致命的弱点由于科学(尤其是实验科学)所运用的数学方法是不完全归纳法,因此不管多么牛B的科学结论从理论上来说并不能代表绝对事实和规律。就好比上文中那个智商测试,各个国家百十个参加测验的人的智商平均值就能绝对代表了种群种族的智商了吗?即使上千上万的测试者也不能绝对代表几十亿人群之间的差异。还有这个SNP变异的分析,难道仅仅20个白人15个黑人就能代表了白人与黑人两个庞大群体?科学只是一种较为客观中立的认识世界的方法,然而具体的科学方法却有各种各样的局限;另外,采用不同的实验方法在不同的条件环境下可能得到很不一样甚至完全相反的结论。偏偏这些尚不成熟的片面的局部的科学结论容易被心怀偏见的人所误读,甚至是被有偏见的科学家故意误导。 基因也许有好坏之分,比如令所有人头疼的癌症基因(其实这个说法也不科学);但是妄图将不同人群(比如黑人白人,东方人西方人,男女)各方面的差异归结于基因的优劣之分,由此为种族(性别)歧视找到科学的依据,其实是甚为阴险的伪科学。 相关链接: http://jingliumm.spaces.live.com/ http://www.nature.com/news/2008/080220/full/451876a.html http://dx.doi.org/10.1038/nature06611 《智商的傲慢与偏见》方舟子, http://scitech.people.com.cn/GB/25509/43690/43694/4305171.html 标签: 五香松仁 , 伪科学 , 基因 , 种族主义 , 科学
个人分类: 生物|1456 次阅读|0 个评论
科学魔鬼词典
songshuhui 2008-9-2 15:33
liunianlong 发表于2008-06-6 星期五 10:16 分类: 八卦 | | 纯供玩乐,定期更新。欢迎大家一起添加。 001交通工具 贵为皇妃的玉环姐姐虽然肥肉丰腴,但丝毫不怕上火,每到荔枝时节,她就望着南方流口水。于是驿马们屁股上就多了两个竹筐,荔枝们一路闻着马屁,昼夜兼程送往贵妃檀口。可惜荔枝的薄命堪比贵妃,即便动用了当时最快的驿马,贵妃所见的美妙荔枝也早已变味。所以,当安禄山揭竿而起时,可能在枕边风的吹拂下,明皇选择了往南逃窜。待到抵达蜀中,已是半年之后,贵妃也早已香消玉殒。 002电 电的历史是一个逻辑学笑话。在电动机飞扬跋扈十年之后,发电机才姗姗来迟。还有人把电归功于爱迪生,或许因为他用电灯开创了午夜生活,借助电灯的照度,爱迪生不仅攫取了电的最大光环,他还大方地为竞争对手交流电开拓新领域--电椅。电流电在焦肉味和恶臭中收获威严,并以对直流电的全面胜利证明自己的威力。 003 温室栽培 温室就是植物的情侣酒店,人们毫不害羞地提供这种透明温室,催促情侣们在高温下宽衣解带、开花结果。赤裸裸的生殖活动让人们大呼过瘾,于是决定把整个地球都变成大温室--现在看来,成效显著。地球的温室效应不仅是植物的伟哥,更使温暖浅滩成了鲨鱼乐园,人鲨共泳,一派祥和。 004杂交 一种血腥的基因组合方法。取长补短的同时常常制造出更多的严重问题,而后者当然被无情地淘汰掉了,这一切做得理所当然。万里挑一的良品率给人以杂交优势的错觉,不过杂种却一直是个极具侮辱性的词汇。 005中医 一个历史悠久的词汇,具备成为热门词汇的两个基本要素:人所共知却含义模糊。面对中医时,似乎人人都颇有心得,而且十分神经质。围绕中医掐架的所有人都缺乏中医所倡导的中庸精神,甚至连韩国人都参与进来,将这场争论隆重地推向国际舞台。 006手机 这是一部人人害怕却又不可或缺的小机器,它是浪漫的死对头,因为人手一部而得名。从此,临时通知代替了待到重阳日的浪漫约定,人们脑海中不再有代表承诺的脑电波形态,而被无处不在的无线电波取而代之。移动基站之间通过电波编织了一张无形大网,人们就是被手机卡住腮帮子的小鱼,挂在网上甩着叫做隐私的水珠。如果没有完全晒干的话,还有机会做垂死挣扎。 007电灯 爱迪生肯为一个小灯泡做上几千次实验,足以证明他是一个怕黑的家伙。电灯开创了午夜新时代,从此让松果体饱受折磨--虽然人们似乎更喜欢在霓虹灯的暗角里搞小名堂。如果爱迪生知道现代人每年有个熄灯一小时的活动,而且将大楼灯光用于示爱,不知他会有何感想。 008基因 没有比这个更新潮的词汇了。而且和所有新潮词汇一样,每个人都言必谈基因,却没个人知道它的确切含义。基因有很多奇怪的属性,它是跨越空间尺度的锥子,是沟通微观和宏观的桥梁。什么?你不懂什么意思?那就对了,可见基因确实是一个新潮词汇。 009纳米 没有比这个更新潮的词汇了。而且和所有新潮词汇一样,每个人都言必谈纳米,却没个人知道它的确切含义。纳米有很多奇怪的属性,它是跨越空间尺度的锥子,是沟通微观和宏观的桥梁。什么?你不懂什么意思?那就对了,可见纳米确实是一个新潮词汇。你还觉得这个词条似曾相识了?没错,事实上,又有多少人知道纳米和基因的区别呢。 010DNA 最具有葛朗台精神的空间利用者。它清楚地知道局促的细胞容不下自己的修长身材,于是不仅盘旋自己节省空间,还常常卷曲成染色体的形态。DNA由一些核苷酸盘旋而成,其排列顺序蕴含着指导细胞前线作战的指令。为了增加这种密文的神秘感,科学家们用四个字母来代表四种核苷酸,这使得DNA看上去就像刻着一连串某某到此一游的斑驳青竹。 标签: DNA , 中医 , 交通 , 基因 , 手机 , 杂交 , 温室 , 电 , 电灯
个人分类: 八卦|1569 次阅读|0 个评论
天赋体能?--体育·种族·文化·基因的是与非(连载之一)
songshuhui 2008-9-2 11:03
liunianlong 发表于2008-08-7 星期四 1:15 分类: 奥运 | | 这是一个关于关于体育社会学和体质人类学的综述,涉及到体育、种族、文化和基因、兴奋剂的多个方面,共20000余字,将分4-5部分连载完毕。引用的文献资料列于文后的拓展阅读部分,基本上按照在文中出现的顺序排列,但因为作者对资料数据有所编排,故未注明标号。作者已经确保所有引述的资料来源可靠,如有疏漏,敬请谅解并指出。 引子 日薄西山时,在起伏的山丘间,不时可见结伴而行的长跑队伍,余晖洒在黝黑的肌肤上,拉出一道修长的影子,时而拖在身后草尖,时而投射在峡谷对面的崖壁上。 这是肯尼亚西北小镇埃腾的经典场景。一个只有区区4000居民的弹丸之地,却因为诞生了大批长跑世界冠军而蜚声体坛。坐落在附近的圣帕特里克高中更是被誉为冠军摇篮,从这里走出过40多位世界冠军。 很多的长跑好手来自冠军之乡的贫苦人家,他们亲眼看到邻居因为体育而家境好转,遂而走上了长跑之路。对于他们来说,长跑几乎是改变贫穷的唯一出路,而发生在身边的鲜活事例,也不断给他信心和激励。自古以来,埃腾人的 交通基本靠跑 ,跑步早已融入他们的生活,成为必需的那部分。 在肯尼亚,长跑和人类的历史等长。作为人类祖先最早的聚居地之一,600万年前的肯尼亚高地已经活跃着双足动物的矫健身影。他们在高地草原简单求生,鬣狗可能是最大的竞争对手,因为两者都以长跑和耐力竞争猎物。当都市人等待上二楼的电梯时,可能难以想像人类远祖的耐力极限,更难以置信的是,这种能力可能仍然隐藏在我们的骨髓之中。墨西哥的拉拉木里人可以奔跑上百英里,追逐野鹿直到对方疲惫;肯尼亚高地部落的长跑才能至今仍然令人惊叹。 斗转星移,肯尼亚凭借得天独厚的自然条件和深厚的长跑文化,成了炙手可热的长跑圣地。独特的非洲风情也吸引了无数的游客,一路陪伴着这些游客的,总有挥之不去的两个要素:壮观的峡谷景观、以及无处不在的长跑选手。 散布在东非大裂谷两侧的几十个训练基地规模不等,设施简陋是最大的共同点,但是世界各地的长跑运动员仍然趋之若鹜。2007年2月,中国田径队就曾在此集训,备战当年的大坂田径世锦赛。在山间随处可见的矫健身姿中,不乏周身名牌的欧洲人士,更多的则是赤脚上阵的本地青年。 他们中的很多都还不是专业运动员,但追逐世界冠军的梦想却从未动摇。在等待伯乐慧眼识珠的过程中,一切设施都只能就地取材,不过在他们看来,现有的一切都恰到好处:时隐时现的山间小路就是跑道;松软适中的泥土就是绝佳的运动跑鞋,踩上去温软而富有弹性。 面对竞争对手的奢华装备,他们从未有过妄自菲薄,他们知道:这些运动员千里迢迢赶来这里训练,肯定是在这里找到了他们所需要的东西。虽然说不出肯尼亚的具体优势,但他们显然已经意识到,土生土长的自己早已占尽先机。和可以共享的自然环境不同的是,他们坚信自己拥有任何名牌鞋履所不能赋予的优势--东非血统。 如果足球是黄色 这股看似狂妄的自信力并非夜郎自大,几十年来东非运动员在长跑领域的杰出成就铸就了他们的民族自信,同时也是动力之源。不包括障碍赛和公路赛,男子室外3000米以上的中长跑世界纪录共有15个,埃塞俄比亚和肯尼亚这两个东非国家囊括了其中的11项。2004年男子3000米障碍赛的前20名有13名是肯尼亚选手;他们同时也囊括了2007年的大坂世锦赛该项目的前三名;毫无意外地,该次世锦赛上男女马拉松赛的冠军头衔也未旁落。虽然同样受过东非高原的洗礼,却只能在30名之后才能见到中国选手的身影。今年4月结束的柏林半程马拉松赛上,肯尼亚选手再次包囊男女冠军,保罗科斯盖创造了今年男子的第二好成绩,最好成绩则归属早前的埃塞俄比亚选手。 运动场上的荣誉不仅限于东非,在为数不少的体育项目中,黑色都位于成绩的顶峰。男子百米跑道是最不缺乏注意力的项目,而这里已经被黑人把持多年。1984-2004年的六届奥运会上,男子百米决赛起跑线上的48名选手,都是清一色的黝黑皮肤。2007年在安曼举行的第17届亚洲田径锦标赛,给全亚洲人们送来了一份大礼:卡塔尔选手弗朗希斯成为首位男子百米跑进10秒的亚洲运动员--可惜,他也是黑人。 黑色旋风掀起的运动狂潮,早已突破了跑道的限制。拳击项目一直被视为最具男性魅力的活动之一,从1937年到1964年之间,8位重量级拳王中有6位是黑人,拳击几乎成了黑人拳王的友谊赛--虽然只是拳头下的友谊。如果说拳击场上的个人英雄主义尚不具有足够的代表性,请移步球场。在以团队精神著称的大球项目中,黑人的成就同样令人叹为观止,他们不仅占据了现役NBA球员的七成以上,而且为我们奉献了最伟大的乔丹和数不胜数的精彩画面。篮球场上的空中技巧让人炫目,黑色礼花不断绽放;足球场上,黑人同样呼风唤雨,足底生花。绿茵场上黑人的驰骋宣威,只有白人足以与之比肩,难道这就是足球由黑白两色组成的原因?如果把足球改成黄色,黄种人可以有更大的作为吗? 巧合的是,在黄色的乒乓球项目中,黄种人恰恰占据了绝对优势。他们也在羽毛球、射击、举重、体操等项目上占得一席之地--如果不是占据绝对优势的话。在很多人心目中,体育版图被清晰地分成了三大色块,各有阵地,互相渗透。分析过大量竞赛数据后,我们不得不承认,不同人种的竞赛成绩确实存在明显差别,不过情况和我们的直观感受有所差异。在大局面上占据绝对优势的是白人,他们是大多数竞技运动的中流砥柱;黑人和蒙古人选择性地参加一些项目,并在某些项目中拔得头筹。问题是,体育项目的种族优势,在多大程度上由肤色决定?对于这个问题,人类学家的好奇心并不亚于芸芸众生。 人种正是人类学一以贯之的研究课题。人类学命运多舛,更曾误入歧途:在诞生之初,西方研究者着眼于原始部落,只为证明本族群的优秀。这种研究理念如今早已如弃敝履,但族群间的差异仍然是重要的研究课题,这些组成了人类多样性的重要部分。 肤色似乎是种族间最明显(虽然并非最大)的生物差异,以致成了我们名片上一个抹不去的重要头衔。因此体育场上的肤色差异,很自然地在人们心中烙下了深刻的烙印。关于如何认识这种差异,华南师范大学体育学院教授胡小明说:在早期以体能为主的竞技项目中,黑人和白人占据绝对优势;黄种人则主要在侧重技能的竞技项目中取得较好成绩。体质人类学家试图以数据为基础,揭开这些体育项目的种族优势之谜。 人类学和运动生理指标足以牵起体育和种族之间的红线吗?毫无疑问,运动员个体的竞技成绩显然和体质有关,而体质可以通过若干检测指标来量化,似乎是一个含义确定的研究对象。很多体质人类学家认为,种族之间的多项平均生理指标差别颇大,种族体质正是体育项目中种族优势的重要原因,或者至少是部分地。 新生儿提供了最直接的证据,他们本是一张种族的白纸,被认为是说明种族之间先天体质差异的有利证据。弗里德曼Freedman早在上世纪七十年代就注意到,新生儿的运动力、肌肉弹性、情绪反应存在显著种族差异,而且也无法解释为 胎教 (如果真的存在胎教的话)的影响。例如,相对于高加索和美国人混血新生儿,中国和美国人的混血新生儿不轻易受噪音和运动的干扰,能更好地适应新的刺激和环境,并更快地自我安静下来。 类似的数据大量存在于加拿大科学家菲利普 洛旭庭在《种族、演化和行为--生命历史的远景》一书中。他对不同人种的体质差异做出了总结性的描述:相对于其他人种,黑人的臀部较窄,肩膀较宽,四肢更修长,脂肪更少(我们知道,这些特征都有利于身体的散热)。而相对更多的肌肉则像一匹大排量发动机,为身体提供了强大的动力保证。其它数据指出,黑人不仅动力强劲,而且肌肉中的快肌纤维比例更高,这就使得黑人在速度类项目中占据了绝对优势--我们都知道,百米短跑的多数里程都是靠无氧呼吸来提供能量。 马力强大的肌肉发动机,还需要与之匹配的骨骼变速器。成年黑人骨骼中的无机质含量更高,平均密度比白人高出一成,因此也更为坚固。当在黑人血液中发现更高浓度的睾丸激素(比白人和黄种人高出3-19%)时,这些全身性的生理特征都变得可以理解。 众所周知,正是睾丸激素导演了男女两性的分野,它是塑造男性阳刚躯体的总工程师,强硬有力是它的工作作风,它倾向于形成更多的肌肉。类似睾丸激素的合成分子也是早期兴奋剂的主要有效成分,急功近利的运动员们以此来增强体力,提高成绩;同时也加厚自己的声带,摧毁自己和体育的尊严。 如果黑人真的拥有天然的兴奋剂补给,当我们面对自己的糟糕战绩时,似乎可以少些羞愧。不过,黑人的这种先天特质并不在所有运动项目中占优。修长的四肢显然不是举重的最佳体型,长长的四肢需要克服重力做更多的功,虽有高比例的快纤维提供爆发力,却仍旧得不偿失。黑人还存在着一个众所周知的弱项:游泳。 黑人很难在游泳项目中出类拔萃, 常见的推测是,较大的密度、较少的脂肪、以及较小的胸腔限制了他们在泳池中的表现,在克服浮力和屏气的问题上,他们需要花费更多的精力。这个解释同样看上去完备而且令人信服--至少到目前为止。 看来,将体育的种族优势解释为体质差异,似乎是最为直观,而且也能站得住脚。所以,就算将足球刷上黄色油漆,郑智也不会因此成为英超巨星;就算没有黄色的王后,黄种人也占据了国际象棋的半壁江山,他们甚至还握住了所有的围棋子。 鉴于种族体质的现实差异,以及现代竞技体育过分追求的体能竞争。很多人忧心忡忡,他们认为,从民族体育内吸取营养,将是现代体育保持鲜活持久生命力的必经之路,当新的文化注入之后,体育的种族优势将被大大稀释。 问渠哪得清如许,为有源头活水来。 标签: 奥运,体育,种族,基因,文化,进化,肤色,兴奋剂,统计学,相关性
个人分类: 奥运|944 次阅读|0 个评论
分子遗传学阅读文献:单核苷酸多态性(SNP)取代基因(gene)成为遗传单位
Bobby 2008-8-27 06:34
生物学和遗传学的革命 单核苷酸多态性( SNP )取代基因( gene )成为遗传单位 《新闻周刊》发表文章《奇迹之年》( The Year of Miracles )指出,对人类自身进行探索的基因研究成为全球的科研热点,正是基因研究的奇迹之年 2007 年,有关致病基因的一系列新发现颠覆了人类对于基因和遗传的传统认知,单核苷酸多态性( SNP )取代基因( gene )成为遗传单位。 The Year of Miracles By Lee Silver | NEWSWEEK , Oct 15, 2007 Issue Variations in these particular letterscalled snips, or SNPs, for single nucleotide polymorphismshave replaced genes as the unit of heredity. The year 1905 was an annus mirabilis, or miracle yearA rare historical moment in which key flashes of insight suddenly made the field of physics take off in new directions. That was the year Albert Einstein presented four papers that turned the conventional wisdom about how the universe works, from the infinitesimal realm of atoms to the vast reaches of the cosmos, upside down. During the next several decades, Einstein and a handful of other brilliant physicists went on to shape the 20th century and lay the foundation for all its technological accomplishments. A century later, the year 2007 is shaping up to be another annus mirabilis. This time biology is the field in transition, and the ideas being shattered are old notions of genes and inheritance. Ever since 1900, when Gregor Mendel's work on peas and inheritance was rediscovered, scientists have regarded the gene as the fundamental unit of heredity (just as the atom was regarded as the bedrock of pre-Einsteinian physics). Crick and Watson's discovery of the DNA double helix as the carrier of hereditary information did little to disturb the status quo. In recent months, however, a perfect storm of new technology and research has blown apart 20th-century dogma. The notion of the Mendelian gene as a unit of heredity, scientists now realize, is a fiction. What's taking its place? Many scientists now believe that heredity is the result of an incredibly complex interplay among the basic components of the genome, scattered among many different genes and even the vast stretches of junk DNA once thought to serve no purpose. Biology has been building up to this insight for years, but some big puzzle pieces have now fallen into place. Once scientists abandoned their preconceived notions of genes and looked instead at individual DNA letters in the genome the four bases A, C, T and Gthey immediately began to see cause-and-effect connections to myriad diseases and human traits. The result of this seemingly modest conceptual breakthrough has been a torrent of new discoveries. In five months, from April through August, geneticists at the Harvard/MIT Broad Institute, founded by Eric Lander; at deCODE Genetics in Iceland , founded by Kari Stefansson, and several other institutions have published papers suggesting that the key to a deeper understanding of the human genome may finally be in hand. These scientists have identified specific alterations in the sequence of DNA that play causative roles in a broad range of common diseases, including type 1 and type 2 diabetes; schizophrenia; bipolar disorder; glaucoma; inflammatory bowel disease; rheumatoid arthritis; hypertension; restless legs syndrome; susceptibility to gallstone formation; lupus; multiple sclerosis; coronary heart disease; colorectal, prostate and breast cancer, and the pace at which HIV infection causes full-blown AIDS. Unlike so many previous disease gene discoveries, these findings are being replicated and validated. The race to discover disease-linked genes reaches fever pitch, declared the leading British science journal, Nature. Its American counterparts at Science chimed in: After years of chasing false leads, gene hunters feel that they have finally cornered their prey. They are experiencing a rush this spring as they find, time after time, that a new strategy is enabling them to identify genetic variations that likely lie behind common diseases. That the world's top two scientific journals still use the old language of genes to describe these discoveries shows how new the new thinking really is. These findings are just a prelude to what's shaping up as a true conceptual and technological revolution. Just as physics shocked the world in the 20th century, it is now clear that the life sciences will shake up the world in the 21st. In a handful of years, your doctor may be able to run a computer analysis of your personal genome to get a detailed profile of your health prospects. This goes well beyond merely making predictions. A new technology called RNA interference may also allow doctors to control how your DNA is expressed, helping you circumvent potential health risks. Many common diseases that have preyed on humans for eonsdevastating neurological conditions such as Alzheimer's, Parkinson's, cancer and heart diseasecould be eradicated. If this sounds outrageously optimistic, so did the promise of eliminating smallpox and polio to previous generations. Why is all this happening now? What has changed between this year and last? To answer these questions, we need to trace the story of how mainstream biomedical scientists tried to link the cause of diseases to single genes and, despite early success, hit a brick wall. Meanwhile, a handful of renegade scientists, pursuing their own pet projects, happened to develop exactly the intellectual tools needed to break through that wall. These biologists are now the leaders of the new revolution in biomedical science. The seeds of our new understanding were first sown in the 1960s, when molecular biologists figured out how genetic information is organized, regulated and reproduced inside single-cell bacteria. In bacteria, a gene is a discrete segment of DNA that contains the code that tells the cell how to make a particular type of protein. Bacterial genes are arranged along a single DNA molecule, one after the other, with only tiny gaps in between. Since all organisms have DNA and work by essentially the same biochemistry, scientists assumed that a human genome would look like a larger version of a bacterium's. Clues that something was amiss came quickly with the development of DNA-sequencing methods in the 1970s. The first surprising result was that genes accounted for only 2 percent of the human genomethe rest of the DNA didn't seem to have any purpose at all. Biologists Phillip Sharp and Richard Roberts made things worse with a discovery that won them a Nobel Prize in 1993. If the gene were the basic unit of heredity, the DNA required to make any particular protein should be contained in its corresponding gene. But Sharp and Roberts found that DNA that codes for individual proteins is often split and scattered throughout the genome. Scientists could ignore these signs largely because they seemed to be making progress. By combining new DNA-sequencing tools with studies of inherited diseases in large families, medical geneticists identified the genetic culprits responsible for cystic fibrosis, Huntington's disease, Duchenne muscular dystrophy and a host of other diseases. Each of these all or none diseases is caused by a mutation in a single protein-coding region of the DNA. Few diseases, unfortunately, work so neatly. In particular, the search for genetic bases of common diseases that affect large numbers of aging people came up empty. During this lull, a visionary physician-scientist named Leroy Hood, now at the Institute for Systems Biology in Seattle , was growing impatient. Genetics, he recognized, was still a cottage industry of government-funded university professors, who each directed a small group of students and technicians to study an isolated gene. At the pace research was progressing, it would have required 100,000 worker-years of concerted effort to decipher just one complete human genome. Hood thought it was absurd that genetic scientists spent nearly all their lab time performing tedious and repetitive mechanical and chemical procedures. At the same time, he grasped the far-reaching implications of a fundamental fact: while even the simplest organism is immensely complicated, the primary structures of its most complicated partsDNA and proteinsare very simple. The alphabet of DNA contains only the four chemical letters (or bases) A, C, G and T, and proteins are made from just 21 amino acids. Hood saw that this simplicity would make it possible for robots and computers to read and write DNA and proteins more quickly, accurately and cheaply than human beings. The rest of the biomedical community refused to believe that robots could analyze something as complex as a living system. And in any case, no practicing geneticist had the capacity to design such machines. Unable to obtain government grants, Hood secured private funding to bring together dozens of scientists, engineers and computer programmers (far larger and more diverse than any other genetics team). They proceeded to invent the first generation of molecular-biology machines. Two read and recorded information from DNA and proteins respectively (a process known as sequencing), and two others worked backward, converting digital electronic information into newly written sequences of DNA or protein. Hood completely transformed the biomedical enterprise. DNA-writing machines give genetic engineers an unlimited capacity to create novel genes that can be studied in test tubes or added to the genomes of living organisms. And protein-writing and -reading machines provided drug firms with the ability to create a new generation of protein-based drugs. The DNA-reading machines suddenly made it conceivable to crack the 3 billion-base sequence of an entire human genome. In 1990 the U.S. government embarked on a 15-year, $3 billion project to do just that. Eight years later, however, the projectparceled out to many U.S. scientistswas still less than 10 percent complete. Now it was biotech entrepreneur Craig Venter who was frustrated. Convinced that government-funded workers were the problem rather than the solution, Venter enlisted private funding of $200 million to build an enormous lab filled with hundreds of automated machines, working 24/7, overseen by a handful of technicians. Within three years, the first reading of a human genome was essentially complete. Armed with data from the genome project, scientists figured they'd surely be able to crack the really hard diseases, like cancer and heart disease. But a funny thing happened when they began to look closely at this vast storehouse of genetic information. Geneticists Andrew Fire and Craig Melo galvanized the field by discovering a key mechanism that had been completely overlookedthe cellular process of RNA interference. (They shared a Nobel Prize in 2006 for the work.) Finding evidence of extraterrestrial life couldn't have come as a bigger shock. Geneticists had taken for granted that the machinery of cells involved genes directing the production of proteins, and proteins doing the work of the cell. Here was a process that didn't involve proteins at all. Instead, tens of thousands of hitherto mysterious regions of the human genomepart of the so-called junk DNAdirected the production of specific molecules called microRNAs (consisting of bits of RNA, a well-known component of cells). These microRNAs then oversaw a whole new process, called RNA interference (RNAi), that served to modulate the expression of DNA. The good news was that RNAi could open up a whole new approach to biomedical therapy (more on that later). But RNAi also made it clear that the fundamental unit of heredity and genetic function is not the gene but the position of each individual DNA letter. To make it all harder to fathom, each bit of DNA is susceptible to mutation and variation among individuals. Of the 3 billion DNA bases in the human genome, geneticists identified about one tenth of one percent (millions) that differ from one person to another. Variations in these particular letterscalled snips, or SNPs, for single nucleotide polymorphismshave replaced genes as the unit of heredity. Many scientists responded to this devastating realization by going into a funk. It will be difficult, if not impossible, to find the genes involved or develop useful and reliable predictive tests for them, Dr. Neil Holtzman, director of genetics and public policy at Johns Hopkins University , said in 2001. Fortunately, another visionary scientist, Kari Stefansson of Iceland , was already blazing a trail out of this thicket. If the genome was far more complex than scientists had thought, they would need to test for many more variables, and to do that they would need more test subjects. To find the cause of diseases would now require the participation of very large groups of genetically related people. Like Hood and Venter, Stefansson was originally motivated by frustration with the pace of research. In the United States , where most of the disease-gene-discovery projects were being conducted, most people cannot trace their ancestors back more than a few generations, and the largest families consist of a few hundred living subjects at most. Subject panels of this size failed to provide sufficient data to identify the genetic bases for complicated and variable common diseases. Stefansson decided to solve this problem by taking aim at the largest well-documented extended family that he knewhis own. Nearly all the 300,000 citizens of Iceland can trace their ancestors back, through detailed, public genealogical records, to the Vikings who settled this desolate European island more than 1,000 years ago. Stefansson gave up his faculty position at Harvard Medical School to return to Iceland , where he founded the company deCODE Genetics in 1996. He persuaded the Icelandic government to provide deCODE with exclusive access to the health records of its citizens in return for bringing investment capital and high-tech jobs to the capital, Reykjavik . So far, more than 100,000 Icelandic volunteers have donated their DNA to deCODE. Stefansson's project was roundly criticized by international bioethicists and other geneticists for violating the privacy of Icelanders (even though 90 percent of the population approved). Nevertheless, he persevered, placing the genealogy of the entire nation on a computer database, together with the health and DNA records of still-living individuals. The power of large numbers was soon apparent. In a study of obesity, he directed his software to look for SNPs associated with subsets of the population who were either extremely overweight or very thin. Within just a few hours, it began finding evidence that variations among particular DNA letters indeed played a causative role, confirming SNPs as the new unit of inheritance. As of September, deCODE has made progress in identifying SNPs that may play a role in 28 common diseases, including glaucoma, schizophrenia, diabetes, heart disease, prostate cancer, hypertension and stroke. In some cases, such as glaucoma and prostate cancer, deCODE's findings could lead to diagnostic tests for identifying people at risk of developing the disease. In other instances, such as schizophrenia, links to particular proteins have led to insight about the cause of the disease, which could lead to therapies. Buoyed by Stefansson's success, other geneticists were eager to perform large-scale family studies, yet few had similar access to ancient genealogical records. But serendipity would deliver an epiphany: it's possible to study the entire human population as a single extended family, provided scientists collect enormous amounts of data. Eric Lander, an MIT professor and the intellectual leader of the U.S. government effort to sequence the first human genome, realized scaling up would require a new approach. In 2004, Lander persuaded MIT and Harvard to combine their enormous resources toward the creation of the Broad Institute. Backed by $200 million from billionaire philanthropists Eli and Edythe Broad, the institute is driving the development of ever more advanced genetic technologies. One technology, based on computer-chip fabrication, can identify DNA base letters present at 500,000 SNPs in the genomes of 40,000 or more people. Think of this as a spreadsheet with 500,000 columns (each representing a specific SNP) and 40,000 rows (one for each person). To hunt for a genetic basis for, say, bipolar disease, the computer searches rows of people who have the disorder, checking column by column for an unusually high frequency of particular letters in comparison with people without the disease. As it turns out, a collaboration of American and German researchers has done this workand found that variations of DNA letters in 20 different positions are influential in bipolar disease. Incredibly, most disease-causing variants are the most common ones present in the human population: the strongest-acting one, for instance, exists in 80 percent of people without bipolar disease and 85 percent of people with the disease. The implication is that these variants are beneficial in some way, and cause problems only when their number exceeds a threshold. To make sense of this complexity, scientists would like ultimately to build a vast international database that contains the complete sequence of DNA bases in the genomes of hundreds of millions of people. Ideally, such a database would be available for analysis by all biomedical researchers and would provide the foundation for understanding the genetic components of all human traits. That sounds like a lot of datathink of a spreadsheet with 3 billion columns and 100 million rowsbut computing power is getting cheaper by the year. Within a decade, the cost of obtaining a sequence of all 3 billion DNA letters in an individual's genome will drop from $2 million now to $1,000. It will be a routine part of a person's health record, enabling physicians to prescribe genome-specific preventions and treatments. The discovery of RNAi, meanwhile, suggests a completely new personalized form of disease therapy. Whereas drugs act on proteins, RNAi therapy would act on the expression of DNA itself, potentially preventing or reversing diseases such as Alzheimer's, Parkinson's, Huntington's, bipolar disorder, schizophrenia and others. Old-school pharmaceutical firms have taken notice. The largest ones are betting heavily on the gene-targeted RNAi therapeutic approach to fill product pipelines, as the discovery of traditional chemical drugs becomes more elusive. Novartis and Roche have both signed nonexclusive licensing deals with the biotech firm Alnylam (founded by Phillip Sharp) for new therapeutic techniques that are valued at up to $700 million and $1 billion respectively; Merck paid $1.1 billion to buy another biotech company outright, solely to obtain its contested portfolio of RNAi intellectual property, and the London-based drug firm AstraZeneca has a $405 million licensing deal with Alnylam's competitor Silence Therapeutics. The explosion of genetic discoveries shows no sign of letting up any time soon. New diseases are being added to the list every month, and biologists are rapidly parlaying gene- and SNP-disease links into a deeper understanding of how proteins and other molecules can misbehave to cause different medical problems in different people. And other scientists are working to advance the biology revolution (accompanying interviews). As a result of their efforts, many children born this year could very well be alive and healthy at the dawn of the next century, when they may look back in awe at the annus mirabilis of biomedical genetics in 2007. Silver is a professor of molecular biology at Princeton . He is the author of Challenging Nature. He has no financial ties to any biotech or drug firm. Silver is a professor of molecular biology at Princeton . He is the author of Challenging Nature. He has no financial ties to any biotech or drug firm. Newsweek, Inc.
个人分类: 科学感想|8718 次阅读|0 个评论
分子遗传学阅读文献:基因与密码
热度 1 Bobby 2008-8-26 21:34
Genetics: what is a gene? Nature . 2006 May 25;441(7092):469-74. The idea of genes as beads on a DNA string is fast fading. Protein-coding sequences have no clear beginning or end and RNAi is a key part of information package, reports Helen Pearson Genetics: what is a gene? - Genetic information: codes and enigmas. Nature . 2006 Nov 16;444(7117):259-61. Theres more than one way to read a stretch of DNA, finds Helen Pearson - and we need to understand them all. Genetic information: codes and enigmas. . Between the cross and the sword: the crisis of the gene concept Charbel Nio El-Hani.Between the cross and the sword: the crisis of the gene concept. Genet. Mol. Biol. 2007vol.30no.2 So Paulo Mar. Challenges to the gene concept have shown the difficulty of preserving the classical molecular concept, according to which a gene is a stretch of DNA encoding a functional product (polypeptide or RNA). The main difficulties are related to the overlaying of the Mendelian idea of the gene as a unit: the interpretation of genes as structural and/or functional units in the genome is challenged by evidence showing the complexity and diversity of genomic organization. This paper discusses the difficulties faced by the classical molecular concept and addresses alternatives to it. Among the alternatives, it considers distinctions between different gene concepts, such as that between the molecular and the evolutionary gene, or between gene-P (the gene as determinant of phenotypic differences) and gene-D (the gene as developmental resource). It also addresses the process molecular gene concept, according to which genes are understood as the whole molecular process underlying the capacity to express a particular product, rather than as entities in bare DNA; a treatment of genes as sets of domains (exons, introns, promoters, enhancers, etc.) in DNA; and a systemic understanding of genes as combinations of nucleic acid sequences corresponding to a product specified or demarcated by the cellular system. In all these cases, possible contributions to the advancement of our understanding of the architecture and dynamics of the genetic material are emphasized. Between the cross and the sword-the crisis of the . Origin of phenotypes: genes and transcripts. Gingeras TR. Origin of phenotypes: genes and transcripts. Genome Res., 2007 Jun;17(6):682-90. While the concept of a gene has been helpful in defining the relationship of a portion of a genome to a phenotype, this traditional term may not be as useful as it once was. Currently, gene has come to refer principally to a genomic region producing a polyadenylated mRNA that encodes a protein. However, the recent emergence of a large collection of unannotated transcripts with apparently little protein coding capacity, collectively called transcripts of unknown function (TUFs), has begun to blur the physical boundaries and genomic organization of genic regions with noncoding transcripts often overlapping protein-coding genes on the same (sense) and opposite strand (antisense). Moreover, they are often located in intergenic regions, making the genic portions of the human genome an interleaved network of both annotated polyadenylated and nonpolyadenylated transcripts, including splice variants with novel 5' ends extending hundreds of kilobases. This complex transcriptional organization and other recently observed features of genomes argue for the reconsideration of the term gene and suggests that transcripts may be used to define the operational unit of a genome. Origin of phenotypes-genes and transcripts . What is a gene, post ENCODE? History and updated definition Gerstein MB, Bruce C, Rozowsky JS, Zheng D, Du J, Korbel JO, Emanuelsson O, Zhang ZD, Weissman S, Snyder M. What is a gene, post ENCODE? History and updated definition. Genome Res., 2007 Jun; 17 (6): 669-81. While sequencing of the human genome surprised us with how many protein-coding genes there are, it did not fundamentally change our perspective on what a gene is. In contrast, the complex patterns of dispersed regulation and pervasive transcription uncovered by the ENCODE project, together with non-genic conservation and the abundance of noncoding RNA genes, have challenged the notion of the gene. To illustrate this, we review the evolution of operational definitions of a gene over the past century--from the abstract elements of heredity of Mendel and Morgan to the present-day ORFs enumerated in the sequence databanks. We then summarize the current ENCODE findings and provide a computational metaphor for the complexity. Finally, we propose a tentative update to the definition of a gene: A gene is a union of genomic sequences encoding a coherent set of potentially overlapping functional products. Our definition side-steps the complexities of regulation and transcription by removing the former altogether from the definition and arguing that final, functional gene products (rather than intermediate transcripts) should be used to group together entities associated with a single gene. It also manifests how integral the concept of biological function is in defining genes. What is a gene, post ENCODE
个人分类: 科学感想|8053 次阅读|17 个评论
分子遗传学阅读文献:参考教材
Bobby 2008-8-26 09:06
1 、李明刚 . 高级分子遗传学 科学版研究生教学丛书 . 北京:科学出版社, 2004 年 11 月出版 2 、李振刚 . 分子遗传学 普通高等教育十一五国家级规划教材(第三版) . 北京:科学出版社, 2008 年 03 月出版 3 、张玉静 . 分子遗传学 现代遗传学丛书 . 北京:科学出版社, 2000 年 04 月出版 4 、 孙乃恩,孙东旭,朱德煦 . 分子遗传学 . 南京:南京大学出版社 , 1990 年 08 月出版 5 、杨业华 . 分子遗传学面向 21 世纪课程教材 . 北京: 中国农业出版社 , 2001 年 01 月出版 6 、解生勇 . 分子细胞遗传学 . 北京: 中国农业科技出版社 , 1998 年 10 月出版 7 、范耀山 . 分子细胞遗传学 技术与应用 . 北京:科学出版社, 2007 年 04 月出版 8 、刘良式 . 植物分子遗传学 现代遗传学丛书(第二版) . 北京:科学出版社, 2003 年 02 月出版 9 、 休斯著(胡新文,郭建春译) . 植物分子遗传学 . 北京:中国林业出版社, 2006 年出版(教材科有卖) 10 、汉译卢因( Benjamin Lewin ) 《基因 VIII ( Gene VIII )》 . (北京:科学出版社, 2005 年出版)及科学出版社推出的 英文原版《基因 IX 》 。详见见叶鹰的博客《 从《基因论》到《基因 VIII 》》( http://www.sciencenet.cn/blog/user_content.aspx?id=33261 ) 注:由于本校图书馆英文书库中的相关书籍都已老化,暂不推荐。 分子生物学参考书目 《现代分子生物学》朱玉贤等主编 . 北京:高等教育出版社 2002 年第三版 《分子生物学》余多慰等编著 . 南京:南京师范大学出版日期 :2008 年 1 月 《分子生物学》(第二版)阎隆飞、顾德兴主编 . 北京:高等教育出版社 ,2000 年 7 月出版 《分子生物学》(第二版)阎隆飞、张玉麟主编 . 北京:中国农业大学出版社 ,1997 年 《分子生物学》(修订版)郜金荣 . 武汉:武汉大学出版社出版日期: 2001-6-30 《植物分子生物学》曹仪值 . 北京:高等教育出版社 2002 版 《高级植物分子生物学》葛莘 . 北京:科学出版社 2004 版 《走向 21 世纪的植物分子生物学》林忠平 . 北京:科学出版社 2000 版
个人分类: 科学感想|13632 次阅读|2 个评论
天赋体能?--体育·种族·文化·基因的是与非(连载之五,完结)
墨人刘 2008-8-7 09:20
这是一个关于关于体育社会学和体质人类学的综述,涉及到体育、种族、文化和基因、兴奋剂的多个方面,共20000余字,将分4-5部分。引用的文献资料列于文后的拓展阅读部分,基本上按照在文中出现的顺序排列,但因为作者对资料数据有所编排,故未注明标号。作者已经确保所有引述的资料来源可靠,如有疏漏,敬请谅解并指出。 天赋体能? ――体育种族文化基因的是与非(5) 7777777777777777777777777777777777777 基因入侵体育 http://www.sciencenet.cn/blog/admin/modify_blogarticle.aspx?id=34431 一个EPOR基因的变异为成功奠定了基础,CKMM基因让后天训练更有效率在体能基因的农场上,遗传学家收获颇丰,他们的围猎成果为体育带来了什么? 50年前,刻苦足以成就冠军。当时选材宽松、竞技水平离人类极限大有差距,运动员们即便天资平平,只要惟须刻苦努力,仍能饱尝佳绩。但是进入21世纪后,竞技体育的成绩哪怕只有一点点提高,都需要高科技的渗透。《中国青年》的体育编辑碧溪东这样认为。 上世纪中叶之后,高科技开始了对竞技体育的广泛渗透。正如赌博催生了博弈论,金牌也团结了一大批科学家,在这个以运动员为核心的系统学科中,运动生理学家、营养学家、甚至物理学家们表现出难得一见的合作。当然,他们也都知道,竞赛的最终结果还是得幸运女神说了算。如果说科学家们还算心态平和的话,商人们就多少有些赌徒心理。运动装备公司不断推陈出新,只为不落人后;而只有运动员的成功,才能保证投入的巨资不打水漂。热门运动的金牌选手成了炙手可热的人选,人人争相往之。 在体育博弈中,赢在起跑线上是最优化策略,卓有成效的运动员选材机制是整个竞技体育大厦基石的保障。我国现行的选材机制仍然带有浓厚的淘汰色彩,以庞大的运动员基数为土壤,优胜劣汰,最后登上金字塔顶端的可谓凤毛麟角。这种选拔策略不仅存在拔苗助长之虞,而且不可避免地效率低下。基因技术的渗透提供了十分有效的思路,在优秀运动员选材过程中加入基因指标,将使选材工作更具有针对性,从散弹枪到狙击枪的跃迁,无疑更为精准和高效。认识到基因选材无可比拟的优越性,美国、澳大利亚等国早已捷足先登,在政府资助下开展了大规模的运动员基因选材的研究。 如上所述,拥有EPOR变异基因的个体有着更好的输氧能力,而拥有插入型ACE-I基因的个体耐力超群,如果同时还有变异的CKMM基因,则对后天训练极其敏感,这样一套基因组合拳下来,基本上可以独步天下了。 然而,天资并不是成功的充分条件,后天的艰苦训练仍然是金牌中最激动人心的部分。但有巨大的利益在前,投机取巧必定无法杜绝,天资平平者希望能后天补足,资质出众者更希望能突破极限。随着基因农场的浓雾逐渐散去,将常年汗水凝聚成一针药水的努力,似乎已不再是天方夜谭。只要能成为闪光灯下的聚焦点,名利也就滚滚而来,至于健康、道德迟些再说吧。兴奋剂也就应运而生。 作为体育-商业-科技的三联体结晶,兴奋剂通过非常规的手法,快速提升人体的运动能力。不劳而获的诱惑提供了兴奋剂的土壤,躲藏在金牌阴影下的饕餮之心,开始肆虐竞技体育赛场。 和体能基因的作用类似,常规兴奋剂以提高耐力和力量为主要目标。这些药物简单易得,效果明显;唯一的问题是,独特的分子结构显露了它们的外源身份,在实验室里很快就会原形毕露。违禁药物必须借助循环系统,才能到达作用部位,因此必定会在血液中留下蛛丝马迹。一针血样就足够泄漏所有玄机,让投机取巧者名誉扫地,前途尽毁。 转基因技术让兴奋剂厂商看到了新的出路。基因技术摒弃传统的人工合成方法,严格按照人体的基因蓝图进行生产,只不过将生产车间由人体细胞转移到工厂发酵罐内。因为模板来源于人体,所以基因生产线上的成品也与人体自然产物毫无二致,这类违禁药品很容易在人体中蒙混过关,并由此获得了一个时髦的名字--基因兴奋剂。 这是黑市交易中的热门词汇,虽然拯救过不少病患的生命,可惜终究难免被滥用的命运。上文提到的促红细胞生成素EPO,是调节人体红细胞繁殖和分化的主要激素,它可以迅速增加红细胞数量,是治疗贫血的首选良药;无意间却成了首个基因兴奋剂,被居心叵不良之徒用于增强耐缺氧能力。因为传统药检方法对基因兴奋剂束手无策,以至于从上世纪90年代起,基因兴奋剂成了运动员的最佳圣诞礼物,直至撞到悉尼奥运会的枪口上。 即便是能完全模仿人体自然产物的基因兴奋剂,也开始难逃法网。2004年的雅典奥运会,新增了生长激素HGH(人体固有的一种激素)的检测项目,让一干人等颜面扫地。《世界反兴奋剂条例2008年禁用清单国际标准》中明确表示:当这些物质偏离人群正常范围,以致不能认为是正常内源性生成,则这一样本被视为含有这种禁用物质。 看来,通过基因兴奋剂提高全身药物水平的方法,已是岌岌可危;若能药物集中在作用部位而在血液中不留痕迹,才是基因兴奋剂的王道。 基因兴奋剂必须转变方向,着手调教身体的局部细胞,此时的基因兴奋剂,本质上就是基因疗法。表面看来,这种思路就是基因工程药物的逆方向,将基因工厂重新转移到细胞之内。基因疗法常常以病毒为载体将健康基因转移到靶细胞内替换或修复致病基因,以达到治病救人的目的;但基因兴奋剂导入基因只是为了产生更多的类兴奋剂物质。 这就是上文Sweeney所采用的技术。在此之前,基因疗法对动物运动能力的促进作用也已被动物实验证明。1999年,同是宾夕法利亚大学的 詹姆斯 教授发现,当EPO基因被植入猴子大腿肌肉后,有助于肌肉获得稳定的红细胞供应。 此时基因兴奋剂的生产和消费同处一地,不再需要物流配送,自然不会在血液和尿液中留下罪证。这就是Sweeney的研究大受运动员关注的真正原因。因为基因改变只发生在细胞水平,因此只有在局部肌肉组织中才含有超量的兴奋剂,要想揪出它的身影,唯有进行活组织检查--有谁愿意在比赛前割下一片肉来,只为了证明他的龌龊? EPO和HGH分别在前两次奥运会前止步,成为反兴奋剂历史的重大突破;而面对难检的局部基因兴奋剂,北京奥运会有何举动?中国兴奋剂检测中心主任吴侔中表示,因为对基因兴奋剂的了解有限,目前谈检测还不太现实。看来,北京奥运会不大可能为此大动干戈,这是否表明彼时基因兴奋剂将泛滥成灾? 谨慎对待必不可少,但杞人忧天却并无必要。通常来说,一种新型兴奋剂从出现到被检出,通常历时十多年,贸然行动并不比谨小慎微更负责任。另一方面,基因兴奋剂要从实验室走出,不仅有众多技术难关阻遏在前,而且技术、健康、道德的风险都是违禁博弈的重要筹码。 8888888888888888888888888888888888888888 结语 正如体育种族主义在人类心灵刻满伤痕的同时,让我们反思种族的内涵及意义;基因兴奋剂既给竞技场带来了前所未有的风险,亦同时给我们提供了一个反思体育价值的契机。以健康为代价换取短期利益;享有体育资源的不公平性;在追求纪录的过程中过分强调体能的作用;公平的竞争规则造成乐趣缺失;片面强调对抗性而忽视文化的融合如此种种,这还是体育竞赛的初衷吗? 或许,基因兴奋剂的泛滥,和体育文化基因(而非体能基因)的匮乏密不可分。更快、更高、更强的目标追求,本就不该是体育的全部;更干净、更人性、更团结的口号,也只是治标之策。 现代体育要想获得持久的活力,必须从各民族体育中吸取营养。正如种族对于人类文化基因宝库的不可替代的作用一样,多样化的民族体育也应该成为现代体育文化基因的土壤。这是华南师范大学 胡小明 教授的观点。 道金斯首次提出文化基因的概念,他认为在人类社会中,文化具备同生物基因一样的 遗传性 ,同样的,丰富多彩的文化基因对于人类的意义,正如生物基因的多样性对于物种延续的重要性,两者都是不可缺失的。只有在此时,种族的分类才有足够意义;只有在此时,对基因多样性的关注才不再唯利是图;这时,种族和基因已经殊途同归。 体育正是融合文化基因和生物基因的最佳锅炉,无论我们是否认同人种的体质差异导致了莫须有的体育竞技差距,在思考种族、基因、以及文化的多样性时,赞赏的态度都是必需的。我们欣赏移动长城姚明利用身高优势统治内线,但当身高仅1米83的MVP艾弗森以凌波微步瞬间过人时,也请不要吝啬您的掌声。 拓展阅读: 1. Scott Douglas 著, Jiang2000 译,肯尼亚的机密――像世界上最好的跑步选手那样训练的简单方法, blog.huaxia.com/html/98.712998_itemid_1019.html 。描述了肯尼亚长跑文化的一些特点。 2. Bramble D.M. , Lieberman D.M. , Endurance running and the evolution of Homo.Nature,432.345-352,2004 。长跑在人类进化中的作用 3. 纪录统计来自国际田联: www.iaaf.org 4. 运动成绩的人种差异,Samson,Sport Sciences,1989 5. Race,Evolution,and Behavior,Rushton,2000 。对于关于各个种族的体质和智力差异进行了大量的数据分析。 6. 人类种族与体育运动,李力研,中国体育科技,2001 7. 人体运动能力和功率的种族差异,Bonlag,Sport Sciences,1988 8. 体格与身体成分的人种差异 , Himes , Sport Sciences , 1989 9. 科学的灾难――一个遗传学家的困惑,雅卡尔,广西师范大学出版社, 2004 10. 体育社会学,Jay J Coakley 清华大学出版社 11. 更新世晚期人类演化及现代人群形成研究的一些问题,刘武,自然科学进展,2006 12. 人类学--人及其文化研究,泰勒,广西师大出版社 13. 差异的颂歌――遗传学与人类,雅卡尔,广西师范大学出版社, 2004 14. 黑色素及其相关基因的研究进展,刘甲斐等,生物技术通报, 2007 第 4 期 15. 肤色、黑色素皮质素受体 1 和紫外线 , 吕雪梅等 , 遗传, 2002 16. 利用Y染色体进行人类起源和进化分析,孟祥宁等,国外医学遗传学分册,2003 17. 种族与体育,范可 18. 人类的体能与遗传,张传芳等,遗传学报,2004 19. 体能相关基因研究的新进展,张涛等,遗传,2004 20. 肌、基因与运动成绩,Andersen等,科学(SA中文版) 21. 血管紧张素转换酶基因多态性与运动能力关系的研究进展,高炳宏,上海体育学院学报,2006 22. 耐力训练效果与CKMM基因A/G多态性的关联研究,周多奇等,体育科学,2006年第7期 23. ACTN3 Genotype Is Associated with Human Elite Athletic Performance , Nan Yang atc , Am.J.Hum.Genet.73:627-631 , 2003 。这是关于 ACTN3 基因研究的一项重要原始资料。
个人分类: 杂谈|8178 次阅读|3 个评论
天赋体能?--体育·种族·文化·基因的是与非(连载之三)
墨人刘 2008-8-7 09:19
这是一个关于关于体育社会学和体质人类学的综述,涉及到体育、种族、文化和基因、兴奋剂的多个方面,共20000余字,将分4-5部分。引用的文献资料列于文后的拓展阅读部分,基本上按照在文中出现的顺序排列,但因为作者对资料数据有所编排,故未注明标号。作者已经确保所有引述的资料来源可靠,如有疏漏,敬请谅解并指出 天赋体能? ――体育文化基因的是与非(3) 444444444444444444444444444 Black or White 当我们用平均数来表示数据总体情况时,个性也随之消弥殆尽。而很多时候,被平均数丢弃的个性,往往具有更多的意义。平均重量相等的两箱苹果,整齐划一的那箱售价高昂,而参差不齐者只能送往罐头厂。人类基因组的成果告诉我们,决定种族差异的肤色只占据整个基因组的万分之一,更多的个人特质应该归因于种族内部的个体差异,有人说是85%--另一些人认为更高。 基因是细胞核内DNA上的小片断,由数量庞大的核苷酸以一定的顺序排列而成。虽然只有区区四种核苷酸,却足以使每个人的基因永不雷同。基因内部的核苷酸顺序就是个人的先天蓝图,每三个核苷酸对应着某个氨基酸,在译码员的帮助下翻译为多肽链,从而控制着人体的先天性状。这个过程和莫尔斯码的原理如出一辙。 继承自祖辈的基因决定了我们作为人本质,同时让我们独具特色,无可替代。基因把我们每个人都雕刻成了独一无二的橡皮图章,肤色也是图章的重要部分,不幸的是,这些特征被作为了种族分类的依据,哪怕它们只是人体所有特征的沧海一粟。 虽然在人种划分的问题上众说纷纭,但无一例外地,肤色都被作为区分种族的重要指标之一。早在三四千年前,古埃及画家就尝试用不同的色彩标示各色族人。发展到上世纪初,欧洲逐渐形成了如下的分类法:尼格罗人种(黑种人);高加索人种(白种人)和蒙古人种(黄种人)。这种分类法因为其简洁直观而广为流传。 作为一种分类尝试,人种这一概念本身并不具备任何破坏性。问题在于,趾高气昂的殖民者把种族与智力道德水平相联系,藉此对各地文化品头论足,以满足白人贵族那高眉骨下的仁厚心智。蒙古人种的浅黄皮肤和内眦赘皮表明他们狡猾而刻板(这对反义词用得堪绝);尼格罗人种的黑皮肤和厚嘴唇是更接近猿类的证明,而对黑猩猩的白皙皮肤和薄嘴唇这一事实置若罔闻。无论如何,这时的理论为后来的种族主义打下了理论基础,臭名昭著的纳粹和三K党成了人类最痛苦的集体记忆,其后遗症至今尚未完全消除。 出人意料的是,这个把人类历史搅得风声水起的名词,却立足于一块摇摇欲坠的基石。作为同一个物种,各人种的皮肤结构完全一致,所谓的肤色差别只是集中在厚度小于一毫米的表皮层中。表皮中黑色素密度越高,皮肤就越黑,和其它所有性状一样,影响黑色素浓度的原因来自于两个方面:基因和环境。这两者决定了在白黑之间存在一系列的过渡肤色,而不是像双眼皮一样全或无。 现在我们知道,有四对基因(共8个等位基因)插手了黑色素任务。简单说来,白人有8个使其具有浅肤色的b基因,黑人有8个相反效应的n基因,所有中间肤色都有x个b基因和8-x个n基因,b基因越多,肤色就越白。从其他血型系统得到的证据表明美国黑人大概有1/4的欧洲白人基因,也就是说决定肤色的8个等位基因都有1/4的可能是b基因,因此在2000万美国黑人中大概有几百人具有白色肌肤;同理,大概有20万人具有非洲创建者的纯粹黑色n基因。这是一个好消息,当我们发现子女肤色与父母大相径庭时,不用再满地找下巴了。 基因使得人体的天然肤色表现出至少八个等级,环境更是将肤色打造成为无级连续性状,就像身高等体质性状一般。肤色之所以在后天有如此之大的改变,是因为黑色素肩负着一项防护性的生理功能:紫外线光盾。在紫外线照射下,皮肤会合成更多的黑色素,以作防御。黑色素缺乏症患者对光线高度敏感,只能躲避一切光亮,所以荷兰人给他们起绰号叫Hakkerlaken,意即蟑螂--虽然刻薄恶毒,却也道出了怕光的本质。同等光照下,肤色较浅的高加索人患皮肤癌的比例比黑人高50倍,比日本人高4-12倍。 在椰子油和防晒乳广泛应用之前,人类祖先们只好以黑色肌肤来抵御强烈紫外线。生活在卡拉哈里沙漠深处的布须曼人提示了人类始祖的肤色。作为人类始祖的最可能的嫡系后裔,布须曼人呈现非常广阔的肤色范围,从一个小型的布须曼人群体中,我们就足以发现三大人种的肤色倾向。正如安德烈朗加奈在《种族之间不可调和的问题》一文中写道,如果选取南非人和布须曼人作为中间人,最白的北欧人可以直接过度到最黑的萨拉人。 但是,高密度的黑色素既是紫外线之盾,也是维生素D的克星,在抵御紫外线的入侵的同时,也阻挡了后者的合成之路。维生素D是人体必需的维生素之一,在钙质代谢中起着重要作用,但却无法从食物中获得,只在阳光的照射下由胆固醇转变而来。过深的肤色阻碍了维生素D的转化,从而影响钙质吸收,甚至因此导致佝偻病--有数据表明低日照地区的黑人儿童更容易罹患维生素D缺乏症。 因此,当10万年前的气候变迁迫使人祖走向迁徙之路时,肤色这一生死攸关而且适应性极强的表层性状逐渐发生了缓慢但醒目的改变。随着光照的减少,皮肤较浅(即b等位基因较多)者更有优势,就有更多机会生育强健后代,进而增加整个群体的b基因的频率,最终使得整个群体的肤色较浅。高加索人种和蒙古人种的浅色肌肤就是由此而来。 肤色无论深浅都是适应自然的产物,其分离不过千代。虽说肤色是最明显,最容易比较的性状,但它极不稳定,而且充其量只占人体基因组的四千分之一,似乎与任何重要的生物性状都没有关联。一个简单的例子来自于对最黑皮肤的认识。赤道附近的美拉尼西亚群岛、印度半岛和撒哈拉以南非洲等地的居民有着最深的肤色,但无论如何难以将他们归入同一种族,因为他们除了肤色这一表观现象,其他分子学证据(如血型系统)都无法指向同一群体分支。 既然肤色如此肤浅,显然,任何只以肤色为标准的种族划分都不具有生物学意义。如果说以乳糖酶的持久性作为分类标准尚且有利于选择合适牛奶的话;以显而易见的肤色差异作为特征来区分种族,又给我们带来了什么?肤色判定是如此的简便易行,然而我们是否有必要将职位、爱情、能力、智商、甚至喝茶的邀请都和对方肤色挂钩? 虽然现在的人类学家们早已不再这么做,但这一标准在人们心中却已根深蒂固。人种的概念起源于生物学的分类尝试,在最终被证明无功而返时,却早已在社会上留下了不可磨灭的印痕。面对这些,我们唯有说 I m Not Going To Spend My Life Being A Color 。(我这辈子绝不为某种肤色而活,出自迈克杰克逊歌曲《black or white》) 55555555555555555555555555555555 镀金的基因 作为科学名词的种族和人种已经危机重重,是时候让它么回归纯粹社会学阵营了。我们一方面认同各族群文化在人类文明中的独特地位,同时也应该更坦然地面对体质上可能存在的客观差异,虽然这种体质差异极可能和体育优势无关。正如范可所言,对人群多样性的关注,应该达到对独立个体的尊重,而不是助长业已存在的不同群体人与人之间的互不信任。 无论如何,对于运动员个人而言, 种族优势 毫无意义。一个很简单的道理,哪怕周遭都是金灿灿的红富士,一只瘪三苹果仍然难逃作为有机肥的命运。竞技体育真正关心的,是如何将个人推上荣誉的最高峰,同时把国家集体(以及曾经的种族)荣誉附加其上。在这方面,运动员的个人天赋,远比种族的所谓平均体质特征更有价值。 难怪瓦里纳说:人种、肤色都没有关系,重要的是一个运动员的天赋。刘翔和我一样,都有着惊人的天赋,只要我们努力训练,就可以取得优秀的成绩。运动科学家竭力使后天训练更有效率,遗传学家们则想尽办法如何把地基打好--天赋才是他们的专注主题。 遗传学家们用基因还原了种族的社会学之身,同时也赋予了天赋全新的含义。双眼皮、AB血型、男性、黄皮肤、189厘米的身高这些天赋决定了刘翔之为刘翔,而更多人关心的是,刘翔的成功有多少源于天赋? 与其说天赋由上天注定,毋宁说是基因和环境的拉锯战;遗传度这个概念被用来描述基因对性状的控制程度。双眼皮、血型和性别等因素几乎完全由基因决定;而肤色、身高等数量性状则在很大程度上受到环境的影响,日光浴和牛奶所起的作用可能比基因还大。通过对比相同环境下个人对训练的应答程度,人们发现了难以用环境解释的差异,由此可知基因必定在体能上插了一脚。让人更感兴趣的是,哪些基因蹈了体能这趟浑水? 遗传学家们只好又一次搬出相关性这一武器,虽然它射程极短而且准度难料,总归聊胜于无。以大腿力量为例,两人之间运动成绩的相关性随着亲缘关系接近而迅速升高。无关亲族几乎毫不相关(相关系数0.08),收养关系因为环境相同有着0.12的相关性,亲子关系、异卵双生的相关系数更高,同卵双生(基因完全相同)则高达0.76。很显然,共享基因的增多为成绩相关性作出了重大贡献。这个结论提示我们,如果你的立定跳远不达标,千万不要找自己的双胞胎兄弟顶替――对于裁判员这可真是个好消息。 双胞胎在运动方面的相似性也有着众多的直观证据。李小双兄弟可能是我们最熟悉的孪生兄弟,在雅典奥运会上,美国体操队的哈姆兄弟为团体夺银立下汗马功劳,新西兰的双胞胎斯文戴尔姐妹更是一举拿下女子赛艇双人双桨冠军。实在有必要在他们的金牌上刻上一副双螺旋。 更多类似研究铺垫了体能基因的红地毯。在有氧运动能力上,同卵双胞胎比异卵双胞胎有着更多的相似性。另一项关于肌肉运动能力的研究似乎开启了时空之门,让我们重回30多年前:24位大学男生的助跑跳远成绩与大学时的父亲高度相关。姚明能成为NBA现役最高球员,除了要感谢布拉德利(他在2006年退役,把这个高帽送给了姚明),其父母基因也功不可没--这对亚洲最高夫妻中的一员更曾是国家女篮队长。这些证据都暗示着,有运动基因在家族间流动。所以,如果可以的话,我更愿意在起跑之前查查对手的家谱,对于下面这位天才,翻查家谱更是必要。 芬兰越野滑雪运动员门蒂兰塔Eero Mantyranta的成功首次投射出运动基因的清晰背影。1937年出生的Mantyranta在六十年代所有滑雪赛事中出尽风头,在三届奥运会和两届世锦赛上共获得了十枚奖牌,其中包括5枚金牌。不说别的,这些奖牌的光总重量就超过二千克。如此惊人的成绩很自然地引起了很多人的怀疑,他们认为Mantyranta体内比常人多出的20%红细胞是兴奋剂所致。 三十年后,家族系谱调查才彻底洗脱了Mantyranta的嫌疑,14名与其有血缘关系的同辈表亲中,另有8人的红细胞数量同样超出常人。研究表明这种天赋来源于EPOR(促红细胞生成素受体)基因的变异,该变异导致了过多促红细胞生成素EPO的合成,进而促进机体合成更多的红细胞。不过对于其他表亲来说,这多出的红细胞并无实际意义,反倒增加了阻塞血管的风险。幸而该突变的频率极低。 Mantyranta体内的红细胞倒是多得其所。越野、长跑等耐力项目都依靠肌肉的有氧呼吸来提供能量,而氧气从肺部到肌肉的过程,正是由红细胞来完成的,这些过多的红细胞偶然间成了制胜之道。
个人分类: 杂谈|6151 次阅读|0 个评论
天赋体能?--体育·种族·文化·基因的是与非(连载之二)
墨人刘 2008-8-7 00:00
这是一个关于关于体育社会学和体质人类学的综述,涉及到体育、种族、文化和基因、兴奋剂的多个方面,共20000余字,将分4-5部分。引用的文献资料列于文后的拓展阅读部分,基本上按照在文中出现的顺序排列,但因为作者对资料数据有所编排,故未注明标号。作者已经确保所有引述的资料来源可靠,如有疏漏,敬请谅解并指出。 天赋体能? ――体育种族文化基因的是与非(2) 2222222222222222222222222222222 统计学的玩笑? 当种族和体育试图联姻之时,另有人却拿着大剪刀随时准备棒打鸳鸯。后者的证据是,体育成绩上所谓的种群差异,根本就是子虚乌有,数据假象迎合了人们趣味,从而掩盖了真相。 视觉刺激往往比数据更让人印象深刻,直观感受常常排挤掉理性思考,金牌的耀眼光芒足以将理性和冷静拒之千里。体育对数字和纪录的狂热追求,致使人们将胜负无限扩大,哪怕金银牌的差距只有0.01秒。 请暂时忘记金灿灿的荣誉,也暂时让心理学的 晕轮 效应失效,现在来还原这毫秒之差的真正含义。单次竞赛的成绩差别,对于评价一个运动员的真正水平,到底有多大意义?翻开运动员的训练记录簿,你会发现,同一运动员的成绩起伏,远远大过这微不足道的0.01秒。99分和100分的差别固然存在,不过更多的是理想主义上的,而并非学习状况的完全表现。这些微小的组间差异本该淹没在组内数据之间,但我们却对此津津乐道,历史上无数的悲情英雄证明,唯金牌化在欠缺理性思考之余,同时损伤了体育的人文精神。 0.01秒的差距,可能源于幸运女神的一个小瞌睡,也可能是肆虐的流感病毒、赛前的一盘沙拉、冲刺时的丝毫松懈、墙角一只不识趣的闪光灯、面对特定对手的心理压力、甚至可能是计时误差无论如何,这些毫厘之差显然不是评价运动员体质的稳固根基,将由此导致的金银牌作为种族体质差异的证据,更是简单粗暴。 如果说人们对登顶成功之巅的狂热还可以理解的话,一个常用的统计学工具,却不经意间扮演了不太光彩的角色。相关性分析通过一系列复杂的计算公式,找寻两组数据是否产生关联。虽然计算公式让人头皮发麻,但电脑是安抚的绝佳梳子。几秒钟就可以整出一份长长报表,最后的相关系数那一栏告诉我们,体育成绩和种族体质之间确实存在相关性。黑人云集的田径场、清一色的白皮肤 飞鱼 、满眼黄色的小球运动就是抽象数据之外的直观明证。 很可惜,这个数据引起的误会,远比其提供的有用信息更多。在了解数据的深层含义之前,相关性分析揭示了数据之间可能的关系,然而这种直观和简便,却使得它有逐渐被滥用的倾向,尤其是当这个结论刚好和我们的主观感受相吻合时,往往使人过分信任。 对相关性最常见的认识偏差,在于轻易将其上升到因果关系,如果解释刚好又符合直观印象或已有观念,错误将会更为严重和难以察觉。诚然,当两组数据关联密切时,很可能是因果关系(太阳升降与光照强弱);但也可能是同一事件引起的两个结果(公转周期引起南北半球季节反差);也可能是两个事件共有某些信息(长夜与高犯罪率);甚至可能毫无意义(白天时长与夜晚时长)。 如果在同一张图表上的分别画出月度煤炭消耗量和老年人死亡率曲线,将会发现这两条曲线高度平行,这说明两者之间存在较大相关性。但是,是否可以通过减少煤炭消耗来降低老年人的死亡率?在能源部和社保局合并之前,恐怕得先问过气象局的意见。 和寻找相关性相比,确定原因往往复杂得多,这需要控制变量进行反复实验。在结果出炉之前,为保险起见,当我们试图将优势项目与种族挂钩时,千万不要忘记审视一番别的可能。而竞技场上的肤色更替现象,似乎为解释体育成绩的种族优势提供了另一种可能。 33333333333333333333333333333 竞技场上的肤色更替 面对这些枯燥的学理说教,你可能早就不耐烦了,此时你最可能的动作就是,指着百米起跑线上那一长溜的黑色身影大叫Shut up。 不过,如果你指着的是60年代的电视节目,画面恐怕会让你大吃一惊。1960-1984年的七届奥运会上,100-400米短跑项目的黑人冠军只是稍微过半;而在黑人基普恺特坚守800米世界纪录之前,这个纪录已经被白人保持了十多年。很显然,如果选取不同的统计时段,统计结果将和直观印象大相径庭。这不是数学老师的问题,而是因为对数据的不同处理很容易导致不同的结果,况且当这些数据和我们的直观印象有所出入时,很容易造成选择性失明--尤其在偏见已经先入为主、根深蒂固时。 哪怕是同一运动项目,优势族群可能也因时而异,这才是真正的历史。在中国人崛起之前,乒坛一直是欧洲人的天地;在威廉姆斯姐妹一统网坛的前后,白人仍是网坛的主流而最具代表性的 肤色轮替 ,当数百年来的拳坛变幻。 自约翰逊以后,整个拳坛已经被黑人霸占了整整一百年,这一素材甚至已经作为常识为人所接受。但是,进入二十一世纪后,白人又开始重掌拳坛帅印。现在的重量级拳王中,拉曼的黑色身影甚至比克里钦科兄弟的博士学位更显另类。身为乌克兰巨人,克里钦科兄弟不仅拳技出众,而且都是饱学之士。WBA重量级冠军瓦卢耶夫更是有史以来最高的拳击选手,唐金赞其为世界第八大奇迹,在连续卫冕三次之后才首尝败绩;而胜者也是一名白人选手。白人在拳坛的重新崛起,已经成了不可逆转的潮流。 拳击场上的肤色轮替,表现在黑人在20世纪初崛起并霸占拳坛,以及本世纪初在东欧白人面前黯然失色。如果我们的眼光和肤色一般浅薄,难免会心生纳闷,为何同为高加索人种的美国白人,丝毫不见重新崛起于拳坛的迹象? 过分关注种族与体育表面上的相关性,极易让我们错过更深层次的原因。鉴于国家和种族之间具有相当的重叠,表面上的种族优势,很可能只是国家优势的一种表象,而后者显然具备更多的社会文化成分。以国家社会因素来解释体坛上的 种族优势 ,并不比强调种族体质更难理解--如果不是更有说服力的话。 拳击台上变幻的大王旗,既有肤色、血汗、牙齿的痕迹,背后更是摇曳出经济和文化影子。现代拳击发源于英国,分为业余拳击和职业拳击,虽然竞赛规则迥异,但业余拳击的兴衰却可折射出社会因素在拳击台影响力变化。 美国一直处在现代拳击的中心地带,1904年的美国圣路易斯奥运会上,拳击首次作为正式比赛项目(属于业余拳击)入选(显然有东道主的功劳),44名参赛选手全部都是美国籍。当时美国黑人开始在经济社会领域崭露头角,但在严重的职业歧视面前,贫穷而缺乏教育的黑人青年获得好职位的机会渺茫,风光、奢华、而且相对公平的体育竞技常成了他们改善状况的最佳出路。媒体的报道更是推波助澜,鼓动了更多的黑人青年投身其中。这些也是很多肯尼亚青年踏上长跑之路的原因,不过美国黑人更多地倾向于拳击和球类运动,事实上,这也是获利最丰的项目--如果能够在微乎其微的机会中出人头地的话。 和职业拳王的肤色轮替几乎同步,也是整整一百年后,在雅典奥运会上,美国拳击手的风头早已被俄罗斯和哈萨克斯坦等运动员抢尽。这种现象至少说明,中亚地区的拳击运动正在迅速发展,而且在与美国拳击届的文化交流中,表现出几乎势不可当的强势。如果将文化与经济当做体育的主心骨,只把肤色看作社会问题的表现,问题将迎刃而解。 和拳击届白人的重新雄起不同,直至目前,短跑仍然还是黑人的天下,更准确的说,短跑仍然是美国黑人的天下。过去六届奥运会中,男子400米的十八枚奖牌中,美国人拿走了其中的十三枚;他们创造了男子110米栏之外所有短跑世界纪录;在雅典奥运会的男子百米跑道上,固然所有决赛选手都是黑皮肤,但 美国派 更为强大,除了冠军加特林之外,另有两位美国选手也进入了前五名。美国的女子短跑同样不逞多让,从1984年到2000年的五届奥运会中,黑人女选手,确切地说是美国黑人运动员在女子百米中取得了五连冠。仅有的一次桂冠旁落发生在2004年的雅典,居然败给了白人选手--以0.03秒之差。 美国在短跑项目上的垄断优势形成已久,世界上大多数短跑好手都和美国有着深厚渊源,即便不是美国国籍,也在美国经受过长期的训练当黑人因为上述社会原因成为美国的短跑中坚时,自然也屹立在了世界的顶峰。考虑到美国人在大多数体育项目中的集团优势,黑色肌肤或许不再是问题的根本。 因此,当我们看到相同肤色的不同族群却在优势项目上大相径庭时,或许不再需要惊诧莫名。肯尼亚运动员虽然耐力极佳,但足球水平却一直不见长进。肯尼亚的长跑好手大多来自高地部落,而擅长短跑的西非黑人在长跑项目上却无所作为。日本运动员创造了8项田径世界纪录,同为黄皮肤黑眼睛的中国选手,只有区区二项入帐;反之亦然,当中国的国球选手们将所有世界冠军悉数收归囊中时,日本乒乓球手却仍将夺牌作为目标这一长串的数据对比表明,在解释这种优势体育项目的差异时,国家因素似乎比人种更为有效,这正是因为前者包含了更多的社会含义。 文化与社会环境对体育项目中的种族优势的影响,比我们想像的更大。正因为如此,中国田径队制定了走出去、请进来的战略,从2004年起定期派遣中长跑队和短跑队前往肯尼亚和美国受训。除去设备、地理环境等因素,在当地体育文化中进行现场取经肯定具有积极意义的。虽然花费巨资的效果仍有待观察,但这种行为本身就表明了行政部门对该项目的重视,长此以往,好成绩似乎是必然的。 不过,疑问仍然存在:即便种族体质和体育的相关性被夸大了,同时承认优势项目中的社会因素,人种和体质的效应仍然未被完全排除。很多人认为,黑人不适宜参加举重和游泳,这一点就可以从体质的角度得到充分的解释。是的,我们常常以四肢修长来分析其善跑的优势和举重之不利,而用密度较大来解释黑人在泳池中的劣势,这些直观的解释可以说是体质人类学上的经典解释。不过现在却需要更多的思考,不仅因为其论证已经被上文证明存在严重问题,而且论点和论据也开始动摇。 20年以前,唐纳Tanner分析了奥运会田径比赛运动员的相对腿长(坐高身高比),发现相对腿长在不同运动项目中差异明显,而参加同类项目的运动员中不存在种族差异;链球和跳高运动员最长,而马拉松、500米、100米和摔跤运动员的相对腿长最短。马拉松名列最后,你吃惊吗? 正如不同运动专项之间的差异往往掩盖了种族间的平均体型差异,同一运动专项也能轻易抹杀种族间莫须有的体质差别。因为同一项目的运动员往往会倾向于某种有利体型,哪怕他们有着截然不同的肤色和头发。我相信,只要注重选拔符合举重体型的运动员,黑人在举重台上大放异彩也并非全无可能,他们需要的只是时间。 泳池也并非黑人冠军的禁地。早在1988年,苏里南的內斯蒂成为了世界上首位黑人游泳奥运会;雅典奥运会上,津巴布韦的黑人选手考文特里独得三枚游泳奖牌,还包括一面200米仰泳的金牌;靠海的南非选手在泳池中大爆冷门,一举拿下4100米自由泳接力赛金牌,这也是非洲历史上首枚男子游泳奥运金牌,我相信这绝对不是最后一枚。 在这些金牌面前,黑人不适合游泳项目的谣言不攻自破,其实在此之前,那些一贯被视作合理的解释数据就已饱受质疑。美国生理学家早就发现,大学生游泳运动员的身体密度大于同样年龄的大学生(显然和肌肉骨骼的强壮程度有关)。可见,将糟糕的游泳成绩与身体密度挂钩,恐怕难脱主观臆断的嫌疑--更何况众多的非洲国家连饮水都存在困难。上文提到了苏里南位于加勒比海岸,南非则以好望角出名,即便是内陆国家津巴布韦也有着广阔的水域--这正是其国徽上蓝白条纹的来由。 看来,要想让种族体质和优势体育项目联姻,还有不少礼数未曾过关。体育场上的种族优势是否真的如此巨大,仍然争议颇多;即便存在,社会文化因素似乎比种族更有说服力。 正如在希特勒眼皮底下的尽掠四面金牌的欧文斯,2004年,刘翔和瓦里纳分别在110米栏和400米跑道上夺尽人们眼球。虽然黑色闪电换成了黄色和白色,这对双子星仍然让优势项目种族论者坐立不安。
个人分类: 科学魔鬼词典|6439 次阅读|0 个评论
天赋体能?--体育·种族·文化·基因的是与非(连载之一)
墨人刘 2008-8-6 23:57
这是一个关于关于体育社会学和体质人类学的综述,涉及到体育、种族、文化和基因、兴奋剂的多个方面,共20000余字,将分4-5部分。引用的文献资料列于文后的拓展阅读部分,基本上按照在文中出现的顺序排列,但因为作者对资料数据有所编排,故未注明标号。作者已经确保所有引述的资料来源可靠,如有疏漏,敬请谅解并指出。 天赋体能? ――体育种族文化基因的是与非(1) 引子 日薄西山时,在起伏的山丘间,不时可见结伴而行的长跑队伍,余晖洒在黝黑的肌肤上,拉出一道修长的影子,时而拖在身后草尖,时而投射在峡谷对面的崖壁上。 这是肯尼亚西北小镇埃腾的经典场景。一个只有区区4000居民的弹丸之地,却因为诞生了大批长跑世界冠军而蜚声体坛。坐落在附近的圣帕特里克高中更是被誉为冠军摇篮,从这里走出过40多位世界冠军。 很多的长跑好手来自冠军之乡的贫苦人家,他们亲眼看到邻居因为体育而家境好转,遂而走上了长跑之路。对于他们来说,长跑几乎是改变贫穷的唯一出路,而发生在身边的鲜活事例,也不断给他信心和激励。自古以来,埃腾人的 交通基本靠跑 ,跑步早已融入他们的生活,成为必需的那部分。 在肯尼亚,长跑和人类的历史等长。作为人类祖先最早的聚居地之一,600万年前的肯尼亚高地已经活跃着双足动物的矫健身影。他们在高地草原简单求生,鬣狗可能是最大的竞争对手,因为两者都以长跑和耐力竞争猎物。当都市人等待上二楼的电梯时,可能难以想像人类远祖的耐力极限,更难以置信的是,这种能力可能仍然隐藏在我们的骨髓之中。墨西哥的拉拉木里人可以奔跑上百英里,追逐野鹿直到对方疲惫;肯尼亚高地部落的长跑才能至今仍然令人惊叹。 斗转星移,肯尼亚凭借得天独厚的自然条件和深厚的长跑文化,成了炙手可热的长跑圣地。独特的非洲风情也吸引了无数的游客,一路陪伴着这些游客的,总有挥之不去的两个要素:壮观的峡谷景观、以及无处不在的长跑选手。 散布在东非大裂谷两侧的几十个训练基地规模不等,设施简陋是最大的共同点,但是世界各地的长跑运动员仍然趋之若鹜。2007年2月,中国田径队就曾在此集训,备战当年的大坂田径世锦赛。在山间随处可见的矫健身姿中,不乏周身名牌的欧洲人士,更多的则是赤脚上阵的本地青年。 他们中的很多都还不是专业运动员,但追逐世界冠军的梦想却从未动摇。在等待伯乐慧眼识珠的过程中,一切设施都只能就地取材,不过在他们看来,现有的一切都恰到好处:时隐时现的山间小路就是跑道;松软适中的泥土就是绝佳的运动跑鞋,踩上去温软而富有弹性。 面对竞争对手的奢华装备,他们从未有过妄自菲薄,他们知道:这些运动员千里迢迢赶来这里训练,肯定是在这里找到了他们所需要的东西。虽然说不出肯尼亚的具体优势,但他们显然已经意识到,土生土长的自己早已占尽先机。和可以共享的自然环境不同的是,他们坚信自己拥有任何名牌鞋履所不能赋予的优势--东非血统。 1111111111111111111111111 如果足球是黄色 这股看似狂妄的自信力并非夜郎自大,几十年来东非运动员在长跑领域的杰出成就铸就了他们的民族自信,同时也是动力之源。不包括障碍赛和公路赛,男子室外3000米以上的中长跑世界纪录共有15个,埃塞俄比亚和肯尼亚这两个东非国家囊括了其中的11项。2004年男子3000米障碍赛的前20名有13名是肯尼亚选手;他们同时也囊括了2007年的大坂世锦赛该项目的前三名;毫无意外地,该次世锦赛上男女马拉松赛的冠军头衔也未旁落。虽然同样受过东非高原的洗礼,却只能在30名之后才能见到中国选手的身影。今年4月结束的柏林半程马拉松赛上,肯尼亚选手再次包囊男女冠军,保罗科斯盖创造了今年男子的第二好成绩,最好成绩则归属早前的埃塞俄比亚选手。 运动场上的荣誉不仅限于东非,在为数不少的体育项目中,黑色都位于成绩的顶峰。男子百米跑道是最不缺乏注意力的项目,而这里已经被黑人把持多年。1984-2004年的六届奥运会上,男子百米决赛起跑线上的48名选手,都是清一色的黝黑皮肤。2007年在安曼举行的第17届亚洲田径锦标赛,给全亚洲人们送来了一份大礼:卡塔尔选手弗朗希斯成为首位男子百米跑进10秒的亚洲运动员--可惜,他也是黑人。 黑色旋风掀起的运动狂潮,早已突破了跑道的限制。拳击项目一直被视为最具男性魅力的活动之一,从1937年到1964年之间,8位重量级拳王中有6位是黑人,拳击几乎成了黑人拳王的友谊赛--虽然只是拳头下的友谊。如果说拳击场上的个人英雄主义尚不具有足够的代表性,请移步球场。在以团队精神著称的大球项目中,黑人的成就同样令人叹为观止,他们不仅占据了现役NBA球员的七成以上,而且为我们奉献了最伟大的乔丹和数不胜数的精彩画面。篮球场上的空中技巧让人炫目,黑色礼花不断绽放;足球场上,黑人同样呼风唤雨,足底生花。绿茵场上黑人的驰骋宣威,只有白人足以与之比肩,难道这就是足球由黑白两色组成的原因?如果把足球改成黄色,黄种人可以有更大的作为吗? 巧合的是,在黄色的乒乓球项目中,黄种人恰恰占据了绝对优势。他们也在羽毛球、射击、举重、体操等项目上占得一席之地--如果不是占据绝对优势的话。在很多人心目中,体育版图被清晰地分成了三大色块,各有阵地,互相渗透。分析过大量竞赛数据后,我们不得不承认,不同人种的竞赛成绩确实存在明显差别,不过情况和我们的直观感受有所差异。在大局面上占据绝对优势的是白人,他们是大多数竞技运动的中流砥柱;黑人和蒙古人选择性地参加一些项目,并在某些项目中拔得头筹。问题是,体育项目的种族优势,在多大程度上由肤色决定?对于这个问题,人类学家的好奇心并不亚于芸芸众生。 人种正是人类学一以贯之的研究课题。人类学命运多舛,更曾误入歧途:在诞生之初,西方研究者着眼于原始部落,只为证明本族群的优秀。这种研究理念如今早已如弃敝履,但族群间的差异仍然是重要的研究课题,这些组成了人类多样性的重要部分。 肤色似乎是种族间最明显(虽然并非最大)的生物差异,以致成了我们名片上一个抹不去的重要头衔。因此体育场上的肤色差异,很自然地在人们心中烙下了深刻的烙印。关于如何认识这种差异,华南师范大学体育学院教授胡小明说:在早期以体能为主的竞技项目中,黑人和白人占据绝对优势;黄种人则主要在侧重技能的竞技项目中取得较好成绩。体质人类学家试图以数据为基础,揭开这些体育项目的种族优势之谜。 人类学和运动生理指标足以牵起体育和种族之间的红线吗?毫无疑问,运动员个体的竞技成绩显然和体质有关,而体质可以通过若干检测指标来量化,似乎是一个含义确定的研究对象。很多体质人类学家认为,种族之间的多项平均生理指标差别颇大,种族体质正是体育项目中种族优势的重要原因,或者至少是部分地。 新生儿提供了最直接的证据,他们本是一张种族的白纸,被认为是说明种族之间先天体质差异的有利证据。弗里德曼Freedman早在上世纪七十年代就注意到,新生儿的运动力、肌肉弹性、情绪反应存在显著种族差异,而且也无法解释为 胎教 (如果真的存在胎教的话)的影响。例如,相对于高加索和美国人混血新生儿,中国和美国人的混血新生儿不轻易受噪音和运动的干扰,能更好地适应新的刺激和环境,并更快地自我安静下来。 类似的数据大量存在于加拿大科学家菲利普 洛旭庭在《种族、演化和行为--生命历史的远景》一书中。他对不同人种的体质差异做出了总结性的描述:相对于其他人种,黑人的臀部较窄,肩膀较宽,四肢更修长,脂肪更少(我们知道,这些特征都有利于身体的散热)。而相对更多的肌肉则像一匹大排量发动机,为身体提供了强大的动力保证。其它数据指出,黑人不仅动力强劲,而且肌肉中的快肌纤维比例更高,这就使得黑人在速度类项目中占据了绝对优势--我们都知道,百米短跑的多数里程都是靠无氧呼吸来提供能量。 马力强大的肌肉发动机,还需要与之匹配的骨骼变速器。成年黑人骨骼中的无机质含量更高,平均密度比白人高出一成,因此也更为坚固。当在黑人血液中发现更高浓度的睾丸激素(比白人和黄种人高出3-19%)时,这些全身性的生理特征都变得可以理解。 众所周知,正是睾丸激素导演了男女两性的分野,它是塑造男性阳刚躯体的总工程师,强硬有力是它的工作作风,它倾向于形成更多的肌肉。类似睾丸激素的合成分子也是早期兴奋剂的主要有效成分,急功近利的运动员们以此来增强体力,提高成绩;同时也加厚自己的声带,摧毁自己和体育的尊严。 如果黑人真的拥有天然的兴奋剂补给,当我们面对自己的糟糕战绩时,似乎可以少些羞愧。不过,黑人的这种先天特质并不在所有运动项目中占优。修长的四肢显然不是举重的最佳体型,长长的四肢需要克服重力做更多的功,虽有高比例的快纤维提供爆发力,却仍旧得不偿失。黑人还存在着一个众所周知的弱项:游泳。 黑人很难在游泳项目中出类拔萃, 常见的推测是,较大的密度、较少的脂肪、以及较小的胸腔限制了他们在泳池中的表现,在克服浮力和屏气的问题上,他们需要花费更多的精力。这个解释同样看上去完备而且令人信服--至少到目前为止。 看来,将体育的种族优势解释为体质差异,似乎是最为直观,而且也能站得住脚。所以,就算将足球刷上黄色油漆,郑智也不会因此成为英超巨星;就算没有黄色的王后,黄种人也占据了国际象棋的半壁江山,他们甚至还握住了所有的围棋子。 鉴于种族体质的现实差异,以及现代竞技体育过分追求的体能竞争。很多人忧心忡忡,他们认为,从民族体育内吸取营养,将是现代体育保持鲜活持久生命力的必经之路,当新的文化注入之后,体育的种族优势将被大大稀释。 问渠哪得清如许,为有源头活水来。
个人分类: 杂谈|9335 次阅读|1 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-4 11:31

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部