科学网

 找回密码
  注册

tag 标签: 空气污染物

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

人人抱怨空气污染,空气污染博文却没人看
热度 4 jianhuihong 2015-5-31 13:04
刚刚查看了 诸平老师的博文 已有 185 次阅读 2015-5-29 21:23 | 个人分类: 新观察 | 系统分类: 图片百科 | 关键词:臭氧,氮氧化物,挥发性有机物 “与臭氧( O 3 )污染有关的几张图片” http://blog.sciencenet.cn/blog-212210-894047.html 竟然只有185人看过这篇文章。 再查查我发的一篇关于氮氧化物排放控制的文章 已有 211 次阅读 2015-5-29 03:40 | 个人分类: 环保 | 系统分类: 论文交流 | 关键词:空气污染物,减排,燃烧, 锅炉 “NOx Emissions: Reduction Strategies” http://blog.sciencenet.cn/blog-2470641-893881.html 想起当初柴静女士的“穹顶之下”两天就有上亿次观看,真是感慨。人人抱怨空气污染,人人带着口罩, 人人参与指责政府无能,人人痛恨贪官和垄断国企, 但是这堂堂科学网,竟然没几个人真的关心如何治理雾霾和空气污染! 我怀疑许多人都不清楚上面这些文章是和空气污染和雾霾治理有关的。相比于骂复旦大学和股市起伏,这些文章太不娱乐了!
个人分类: 环保|1282 次阅读|10 个评论
NOx Emissions: Reduction Strategies
热度 1 jianhuihong 2015-5-29 03:40
NOx Emissions: Reduction Strategies Published May 2015 “Today's Boiler The article, written by Dr. Jianhui Hong,begins on page 10 . 点击这里,可以看到整本彩色杂志,我的文章从第十页开始: Click here: http://digital.bnpmedia.com/publication/?i=256332 Dr. Jianhui Hong If you operate stationary fired equipment (such as a boiler) and you are concerned about compliance to emission regulations, you may find this article useful. It provides a basic primer on a class of regulated pollutants called Nox and methods for controlling and minimizing their emissions. WHAT IS NOX? Nox is a term used to include two important air pollutants: NO (nitric oxide) and NO2 (nitrogen dioxide). These pollutants are sometimes called mono-nitrogen oxides. In contrast, the generic term nitrogen oxides includes a family of seven different chemical compounds (NO, NO2, N2O, N2O2, N2O3, N2O4, N2O5). Nox should not be confused with N2O (laughing gas), an analgesic commonly used in dental operations. Nox is formed and emitted in nearly all combustion processes. WHY IS NOX BAD FOR HUMAN HEALTH AND THE ENVIRONMENT? NO and NO2 are harmful to human health in their own rights. But they also play some indirect roles in harming human health and the environment. NO is a colorless, poisonous, oxidizing gas with an irritating odor. NO is toxic by inhalation, and symptoms of overexposure may not become apparent for up to 72 hours. Exposure to NO gas in low concentrations produces an irritating effect on the mucous membranes of the eyes, nose, throat and lungs, which can include choking, coughing, headache, nausea, and fatigue. NO2 is a reddish brown, poisonous gas with a slightly irritating odor. Because it is relatively insoluble in water, there is little irritation to the mucous membranes of the eyes, nose, and throat. Therefore, people who inhale even high concentrations may not be aware of their exposure. This allows NO2 to penetrate well into the lungs, where it causes oxidizing damage to the tissues. Acid rain. Nox can react with water or water vapor to form nitrous acid (HNO2) and nitric acid (HNO3). These acids in the rain can make acid rain. Acid rain can damage plants and man-made structures such as buildings, bridges, and outdoor sculptures. Smog/Ground level ozone. Nox emissions from combustion processes are primarily in the form of NO. In the air,NO reacts with oxygen to produce NO2. In the presence of sunlight, Nox can react with hydrocarbons, especially VOC (volatile organic compounds) in the air to form ground-level ozone, which is an important ingredient of smog. The reddish brown color of the hazes hanging over the skies of some major cities comes from NO2 gas. Ground level ozone is also a health hazard. It can cause irritation to eyes, noses, throats, and lungs. It can even cause asthma and other chronic lung diseases such as emphysema and chronic bronchitis. In the air, nitrous acid (HNO2) and nitric acid (HNO3) from the combination of Nox and water vapor can react with ammonia to form nitrite and nitrate salt crystals (NH4NO2 and NH4NO3). Together with sulfates, sulfites and organic particles, these nitrites and nitrates can make up 90% of Particulate Matter less than 2.5 microns in aerodynamic diameter (PM2.5). The PM2.5 interferes with the transmission of sunlight in the air, and causes visibility issues in the form of a haze that, unlike a fog, does not clear when the air warms up. Water Quality - Nutrient Overload. Nox can form nitrates in the air as we discussed. These nitrates can then come down with rain and snow. Nutrient overload problems occur in the bodies of water when the availability of nitrites and nitrates become too abundant. This nutrient overload induces changes in phytoplankton, and produces toxic brown or red algal blooms (i. E. red tides). The algal blooms can cause the death of other plants and marine animals in the water. HOW IS NOX FORMED? Nox can be formed through three different mechanisms: thermal Nox, prompt Nox, and fuel Nox. Thermal Nox. Thermal Nox is produced when nitrogen (N2) and oxygen (O2) in the air reacts to form Nox. Elemental nitrogen (N2) is typically a stable and inert gas due to its strong triple bonds, but under the high temperature conditions of a flame, it can start reacting with oxygen. Dry air is comprised of 21% oxygen and 78% nitrogen by volume. Since air is the most commonly used oxidant in combustion, thermal Nox is present in most combustion processes. Thermal Nox is very sensitive to temperature. Reducing peak flame temperature (especially below 1,300°C or 2,370°F) is very effective in reducing thermal Nox production. Many of the measures used to reduce peak flame temperature also help reduce Nox because of oxygen concentration dilution. Fuel Nox. Fuel Nox is produced when the organically bound nitrogen in some fuels (such as coal, and to a lesser degree fuel oils) react with oxygen in the flame to produce Nox. The nitrogen in these fuels are often referred to as fuel bound nitrogen. The formation of fuel Nox is very complex, but typically involves formation of HCN and NH3 as intermediates, and the subsequent oxidation to form Nox. Fuel Nox can be most effectively minimized by staged combustion, which implies delayed mixing between the fuel and air. Prompt Nox. Prompt Nox is produced when hydrocarbon radicals react with atmospheric nitrogen (N2) to form HCN, which is subsequently oxidized to form Nox. Prompt Nox is important under fuel rich conditions due to the abundance of hydrocarbon radicals. Reducing the fuel rich zone is effective in suppressing prompt Nox. HOW CAN NOX BE REDUCED? Nox abatement techniques can be divided into pre-treatment, combustion modifications, and post-treatment options. Pre-treatment. Pretreatment often means use of better fuel sources, such as switching between types of coals; switch-ing from coal to fuel oils; switching from #6 oil to #4 or #2 oil; switching from fuel oils to natural gas. Combustion Modifications. These include flue gas recirculation and various techniques. Flue Gas Recirculation (FGR). FGR is a commonly used Nox abatement technique. It targets the thermal Nox by reducing the peak flame temperature and also oxygen concentration. FGR can come in two forms: external FGR and internal FGR. Figure 1 illustrates the use of external FGR for Nox reduction. This is the most common Nox abatement technique. The use of external FGR increases the requirements for the combustion fan in terms of flow capacity and electricity consumption. Some burner designs require up to 40% FGR by mass, to achieve ultra-low Nox levels, and the combustion fans become a significant factor in the overall costs of the burners (including fixed costs and operating costs). Internal FGR is induced often by sophisticated burner designs and in-depth understanding of fluid dynamics around the burner head (Figure 2). The state-ofthe- art burner designs use no external FGR to achieve 30 ppm Nox, and use little (15%) external FGR to achieve 9 ppm Nox, while maintaining 3% oxygen (dry volume based) in the flue gas over a wide turndown range (5:1 or even 10:1). .Steam/water injection works similarly to external FGR. It targets thermal Nox by reducing peak flame temperature and oxygen concentration. The downside of this technique is the loss of efficiency compared to FGR due to the increased heat loss through the flue gas. Ultra Lean Premixing. The adiabatic flame temperature is a function of the equivalence ratio (normalized fuel/air ratio), and peaks near the point where equivalence ratio is 1 (stoichiometric condition). Ultra lean premixing aims to reduce the flame temperature by staying away from stoichiometric condition. Ultra Lean Premixing, if used alone, has the downside of high oxygen level (up to 9%) in the flue gas, and the loss of fuel efficiency due to the very high excess air. Fiber mesh burners use this technique. Air Staging. In this technique, combustion air is supplied in two or more stages. The general goal is to reduce flame temperature, and create fuel rich conditions in the early stages, before the final stage of air is supplied. This technique is very effective against fuel Nox. Under fuel rich conditions, the fuel bound nitrogen can be largely converted to elemental nitrogen instead of Nox. Fuel Staging. In this technique, fuel is supplied in two or more stages. The general goal again is to reduce peak flame temperature. This technique is often combined with Ultra Lean Premixing to overcome the efficiency issue of the latter. The excess oxygen left behind from the ultra-lean premixed flame is consumed by the later stages of the fuel supply, thus avoiding the efficiency loss associated with ultra-lean premixing. Post combustion treatment. This includes two primary options. The Selective Catalytic Reduction (SCR) process reduces Nox in the flue gas into nitrogen by injecting a nitrogen- based reagent (ammonia or urea) into the flue gas, and allowing the resulting mixture to flow through a reactor with catalysts. To be effective the mixture temperature needs to be within the working range of the catalysts. Optimum temperature for SCR varies between 480 and 800°F. SCR allows high degree of Nox reductions up to 90%. But the benefits come with increased costs in terms of catalyst installation and replacement, reagent, and electricity. The catalysts gradually lose activity over time, accompanied by an increase in ammonia slip. When ammonia slip reaches a maximum allowable threshold, at least part of the catalysts needs to be replaced. The Selective Non-Catalytic Reduction (SNCR) process reduces Nox in the flue gas into nitrogen by injecting a nitrogen-based reagent (ammonia or urea) into the flue gas. Optimum temperature for SNCR varies between 1,600 and 2,100°F. SNCR is effective when the initial Nox level is relatively high (200- 400 ppm), and is not effective at low Nox levels. For boilers firing natural gas, SNCR is not effective. SNCR alone allows Nox reductions up to 50%, and when applied in conjunction with low Nox burners allows Nox reductions up to 75%. CONCLUSION Nox is a regulated air pollutant formed in nearly all combustion processes. Its emissions can be controlled by various techniques, but the most cost-effective methods tend to be combustion modifications, especially using low Nox and ultra-low Nox burners.
个人分类: 环保|2829 次阅读|2 个评论
[转载]郝吉明院士:长三角单位污染物排放比全国高几倍
redtree 2014-8-17 16:20
郝吉明院士:长三角单位污染物排放比全国高几倍 作者:俞立严 邵雨航 来源:澎湃新闻 发布时间:2014-8-17 10:16:49 院士:长三角单位污染物排放比全国高几倍,应适度使用汽车 澎湃新闻记者 俞立严 实习生 邵雨航 郝吉明指出,长三角单位污染物排放比全国高几倍,汽车应当适度使用。IC 资料图 8月16日,国内PM2.5研究专家、中国工程院院士郝吉明在上海书展系列活动“上海科协大讲坛”上做了“透视PM2.5”的专题报告,就广受关注的PM2.5污染源及污染现状、机动车对PM2.5的影响等热点话题做了详细表述。郝吉明对澎湃新闻(www.thepaper.cn)表示,目前,长三角单位污染物排放比全国高几倍,各地应重视汽车二次污染,汽车应当适度使用;垃圾应焚烧发电处理。 中国是PM2.5污染高值区,北京排名靠后 “大多数城市都超标,(2013年度)不超标的城市是三个,拉萨、海口、舟山。”郝吉明介绍,中国是全球PM2.5污染的高值区之一,2013年全国有74个城市检测了PM2.5,京津冀是年均标准的三倍。 郝吉明透露,在对京津冀的污染源的分析中,京津冀PM2.530%来自燃煤,这30%包括燃煤排放的一次颗粒物,也包括燃煤排放的二氧化碳,氮氧化物转换成的二次颗粒物,占30%,所以燃煤占30%,包括由它造成的一次PM2.5和二次PM2.5。工业占25%,机动车占18%,扬尘占17%,生活源占10%。 郝吉明还指出,京津冀作为污染区域的一大特征是区域传输严重,“现在北京市最新研究的成果是区域传输大概占28%到36%,取决于不同的气象的条件。” 长三角单位污染物排放比全国高几倍 “上海、浙江、江苏电厂的数量400多个,水泥厂700,钢厂19个,这么多污染源都集中在这个地区,每个厂可能都在努力消减,但是在长三角地区每平方公里排放的污染物比全国高几倍。” 郝吉明介绍,2013年对全国74个城市进行的PM2.5检测中,长三角是年均标准的1.9倍,“上海大概是57微克立方米,而世界卫生组织的指导值标准是35微克”。 郝吉明说,中国在2012年把PM2.5纳入了空气质量标准。“有人问我,我们离PM2.5有多远,我们离蓝天有多远。我们与第一个过渡的值比可能有15年、20年,如果与指导值比的话,可能是40年。目前大多数的国家在往指导值的方向迈进,但是根据自己的情况有不同的起点。” 作为中国大气环境保护的战略研究的首席科学家,郝吉明认为消除重污染天气,可能要用10年,甚至更长的时间,“去年12月份长三角地区污染的情况也不能说以后不会发生,还是有可能发生”。 重视汽车二次污染,汽车应当适度使用 “去年中科院写了文章说,机动车排放只占PM2.5的3%到4%,政府为什么花这么大的精力控制机动车的污染?”郝吉明透露,文章里明确说的是机动车的一次排放占颗粒物的4%,而所谓污染源的贡献不仅仅是一次颗粒物的排放,还包括排放的气态污染物转换成的二次污染物。 郝吉明介绍,机动车减排虽然做出了很大努力,但其效果却被机动车的保有量所掩盖。“机动车每平方公里的汽车保有量东部地区比发达国家都高,连续五年,中国的汽车生产量和销售量都是世界第一,有人预测到2027年前后,中国的汽车保有量将超过美国,差不多是3亿,到2050年中国的汽车有4亿到5亿量。可以设想如果有这么多车,我们机动车污染防治的问题,油品供应的问题会变得很尖锐,所以积极防治机动车污染很重要。” 郝吉明指出,防治机动车污染要在车、油、路三个环节往前推动。“我们的路比人家宽,但是我们的车控制性能比较差,油品质量不行,前年我和一批院士给温总理写信说,中石油、中石化掌握了油品标准制定的权力,所以油品严重落后,柴油车的标准两次因为油品问题只好往后推。” “北京的一辆车平均行驶的里程现在是一年1.4万公里,东京是7000公里,在德国是1.2万到1.4万公里。”郝吉明认为汽车应当适度发展,适度使用。 焚烧发电是垃圾无害化的有效途径 在被问及垃圾焚烧发电对于本地区PM2.5浓度的影响时,郝吉明表示,从现在来看,垃圾焚烧发电是垃圾减量化、无害化和资源化的有效途径。他解释,首先废物总是得减量;其次固体废物含热比较高,所以从发电的角度把固体废物能源化;至于无害化,从现在焚烧的技术和净化设施,联合发电可以保证基本的环境要求。郝吉明认为,如果垃圾焚烧发电能达到排放标准,影响就不大。 谈及居民家中使用的空气净化器时,郝吉明说,自己的办公室也放了几台别人送的空气净化器,“他们说郝老师用的好,让我解释一下,什么空气净化器好,但是我也没有说他们好,也没有说他们差”。郝吉明坦言自己家中并没有安装空气净化器,因为“我自己是搞大气污染防治的,环境质量没有治好,我自己家里装空气净化器有点愧对大家”。 而在回答什么楼层的空气更好时,郝吉明则直言,如果该地空气污染严重,那么无论哪一层楼,空气质量都不会好。“在垂直高度上笼统可以讲高处可能会好一些,但其实差异不大。”
个人分类: 环境新闻|1373 次阅读|0 个评论
再说中国空气污染物“飞越太平洋”的科学性问题
热度 7 Talky 2014-2-7 07:32
2018 年 7 月 1 日蒋大和加注:本博文的背景情况请参见这三篇博文: 2014/1/26 博文:关键词是“飞越太平洋”! http://blog.sciencenet.cn/blog-609047-762391.html 2014/1/25 博文:为什么建议北大清华召开中外记者招待会 http://blog.sciencenet.cn/blog-609047-762085.html 2014/1/24 博文:北大清华应当召开中外记者招待会澄清谣言 http://blog.sciencenet.cn/blog-609047-761769.html ------------------------------------------------------ 下面是原文: 上班了。祝各位好友网友马年吉祥,健康快乐! 上世纪八九十年代,曾有 “ 酸雨 ” 研究热和跨国界输送程度的争论。因为能源结构,中国当时酸雨是 “ 硫酸型 ” 的,即多地降水观测分析水样中硫酸根和硝酸根当量比平均在 8~10 左右。但是日本酸雨是 “ 硝酸型 ” 的,其雨水观测分析结果表明,硫酸根和硝酸根当量比平均在 2~3 左右。这成为反驳日本学者称他们国家酸雨污染 80-90% 以上来自中国的论点的强有力依据:如果中国污染输送的影响很大,他们的酸雨为什么不也成为硫酸型?这是观测事实!然而中国和日本同在西风带,又只间隔了东海,中国污染物跨海输送的影响程度没有日本学者想象的大是什么原因呢?唯一的可能就是 东海具有相当强的 “ 清除 ” 二氧化硫和硫酸盐的能力。 酸雨前体物中能经历长距离输送的就是硫酸盐和硝酸盐,是二次性 PM2.5 。虽然现在中国空气污染的排放大大超过了当时,海洋能够达到的清除空气污染物的能力并没有减弱。讨论中国空气污染物飞越太平洋的文章,不应当仔细交待大洋清除能力的主要情况吗? 否则怎能说明模拟结果具有科学性? 最近了解的情况: 花时间查找、阅读、记录相关材料。虽然找到了一些支持依据,但不可能进行新的模拟工作来用数字否定 “ 文章 ” 的结论。但我认为已经可以说明:虽然 “ 文章 ” 采用的模型是顶级的,整体科学性强;但 “ 文章 ” 主要应用的是该模型的薄弱部分,该部分科学依据不足,而 “ 文章 ” 并未重视跨洋输送和跨陆地输送的区别会对模拟结果产生很大影响,结论因此不可信! 切入点是硫酸盐在海洋表面的干沉积过程,理由如下: 1、 “ 文章”的主要数字结论在于美国西部地区的硫酸盐污染浓度。中国排放和输送的空气污染物中,二氧化硫和硫酸盐最受到国际重视。但二氧化硫不是长寿命的,平均而言,排放后 2 天左右,都会或者被清除,或者转化为硫酸盐。 因此主要问题在于硫酸盐。 2、 污染物在跨越太平洋过程中,可能经历湿沉降、重力沉降、干沉积、和物理和化学转化。同时污染物的平流输送和湍流扩散也将主要在海洋上空的“行星边界层 ~PBL ” 内发生。其中: a) 风场、湍流、降水数据主要由气象部门提供,可靠性高,而且有气象卫星数据不断订正;因此有关输送扩散和湿沉降过程模拟比较可信; b) 海洋上空的行星边界层结构可能和陆地上空有所不同,海洋水体内部有热交换和洋流,表面又可能时有较强烈起伏。边界层厚度、底面附近的“常应力层”及其附近的垂直湍流结构会影响污染物在水面附近的浓度,特别是“干沉积”速率; c) 细颗粒物的重力沉降通常不重要,除非在输送过程中细颗粒物体积增大成为“粗颗粒物”; d) 物理变化是硫酸盐在海洋上空可能吸收水汽、发生“凝并”、或和海盐相互影响,增大体积。因此可能增加“干沉积”效率,甚至发生重力沉降; e) 假设可以不考虑从中国大陆向美国输送的硫酸盐还会因为化学转化而损失; f) 降水和风暴都不是长期持续发生的过程。干沉积是空气污染物长距离输送中被从空气中“移除 ~Removal ” 的最重要过程。干沉积速率取决于地表性质、地面附近流动和湍流状态和污染物本身性质。通常气态污染物(如二氧化硫)比较细颗粒物(如硫酸盐)更容易被干沉积。因此酸雨前体物能够经历长距离输送主要就是指硫酸盐和硝酸盐的输送。但是,由地表形态决定的干沉积速率有很大不确定性,特别是水面,常记录很小的数值。干沉积速率主要由野外试验确定。陆域淡水水面的数据很少,海水水面(起伏、湿度和盐分作用)有可靠的干沉积速率数据? 3、 可见在硫酸盐飞越太平洋的输送过程中,应当重视: a) 海洋上空行星边界层的特点,主要是厚度、近水面湍流结构和水汽交换状况; b) 海洋上空环境下,湿度比较高而且有盐分,硫酸盐是否会发生物理变化,增长体积,因此加强其干沉积,甚至发生重力沉降; c) 干沉积速率很难观测,在陆地上观测到水面上细颗粒物干沉积速率低,未必适用于大洋海水表面。 针对这三个会导致不确定性的问题,我只查找了 GEOS-Chem 中干沉积处理方式。 找到美国哈佛大学 GEOS-Chem 模型的门户网站: http://acmg.seas.harvard.edu/geos/index.html 。有 GEOS-Chem 详细介绍,包括概况和人员结构;模型的科学基础、研究重点、成绩、新闻。。。;指导委员会会议记录和 2003 年以来隔年一次的会议;模型平台、发展史、模拟年份、参照性模拟 … 怎样获得源程序;菜单、百科、常见问题 … 可用资源;以及各种工具等。信息公开、模型结构公开、人员结构公开、模型发展和修改记录公开等。 这是 GEOS-Chem 的明显优点:展示了世界顶级模型的整体科学性、优势和风范,吸引了众多国际顶级大学研究人员和研究机关的合作和参与。 在该网页上下载了有关 GEOS-Chem 科学基础、基本结构和发展历史的介绍,历次指导委员会会议记录,程序的历次修改记录。有关干沉积、硫酸盐和海盐气溶胶的概况、历次修改记录等。 从一位重要维护人员的网页上找到了硫酸盐模块源程序 sulfate_mod.f ( 9273 行)和干沉积模块源程序 drydep_mod.f ( 5135 行): http://git.oschina.net/lxzylllsl/geos-chem/tree/master/GeosTomas 。上面都附有说明文字和历次修改记录。两个源程序最新的修改记录分别是 2012 年 2 月 16 日和 2012 年 7 月 31 日。 目前 GEOS-Chem 处理硫酸盐干沉积的情况: 1、 和硫酸盐相关的沉降处理包括普通硫酸盐( SO4 )、云中的潮湿硫酸盐( SO4aq ~ aqueous )、海盐中含的硫酸盐( SO4s ~ sea salt )三类。 海盐硫酸盐有特色: GEOS-Chem 考虑海洋是排放二氧化硫和硫酸盐的重要自然源。在海洋上空的硫化学中会生成硫酸盐。并且在湿度高时会吸湿增长体积,因此增大干沉积速率,甚至涉及重力沉降。 但没有看到普通硫酸盐是否介入海洋上面物理化学过程的说明。 2、 对于海盐 (以及存在于海盐中的硫酸盐),应用 Zhang 等人( 2001 )推荐的和粒度相关的形式计算干沉降速率,考虑和相对湿度有关的粒度增大过程,甚至可能涉及重力沉降。 3、 对于 其他 气溶胶,包括普通硫酸盐,采用的干沉积速率计算方法相同,都是 Wesely ( 1989 )推荐,并由 Wang 等人( 1998 )解释的标准的系列阻尼程式( Standard resistance-in-series scheme )。 以上观察可见, GEOS-Chem 对于陆地污染源排放或形成的硫酸盐是按照普通气溶胶处理的,很可能低估了在海水表面的干沉积过程。 这些发现或猜想不能算作举证,只是提供思路。。。。。。 一段时间以来,针对汞污染和放射性物质污染问题,细颗粒物的长距离传输问题受到了进一步重视,主要针对细沙尘、炭黑、有机颗粒物、硫酸盐和海盐。湿沉降是它们最有效的清除过程。对于干沉积,海盐最容易被水化,增大体积和沉积。虽然水化程度不那么高,而且观察试验不足,硫酸盐看来应当仅次于海盐。研究硫酸盐的跨洋输送,因此应当小心翼翼! 参考文献: Zhang, L., S. Gong, J. Padro, and L. Barrie, 2001. A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment 35, 549-560 Walcek, C.J., R.A. Brost, J.S. Chang, and M.L.Wesely 1986. SO2, sulfate, and HNO3 deposition velocities computed using regional landuse and meteorological data, Atmos. Environ., 20, 949-964 Wang, Y., D.J. Jacob, and J.A. Logan, 1998. Global simulation of tropospheric O3-NOx-hydrocarbon chemistry, 1. Model formulation, J. Geophys. Res., 103, D9, 10,713- 10,726 Wesely, M.L., 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 1293-1304. 附加参考文献: Textor, C. et al, 2006. Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777–1813 Croft, B., J. R. Pierce, and R. V. Martin, 2013. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements, Atmos. Chem. Phys. Discuss., 13, 32391–32421 Chen, L., H.-H. Wang, J.-F. Liu, W. Zhang, D. Hu, C. Chen, and X.-J. Wang, 2013. Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions, Atmos. Chem. Phys. Discuss., 13, 25185–25218
个人分类: 灰霾|8449 次阅读|31 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-4 01:26

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部