科学网

 找回密码
  注册

tag 标签: 可压缩

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]从亚音速可压缩空气动力学理论推导狭义相对论 Michael James Ungs,Lafaytte USA
热度 1 yangxintie1 2019-5-22 05:36
编者按:从亚音速可压缩空气动力学理论推导狭义相对论采用的数学方法和 数理推导和本人所做的,不谋而合,可见,只要有了共同的土壤,长出的花草是一样的。关心细节可下载原文: DerivingSpecialRelativityfromcompressibleAerodynamics.pdf 此文通讯作者:MichaelJamesUngs,TetraTech,Lafayette,USA。 摘要将亚音速可压缩流动中的对流波动方程转换为基于不可压缩流动的方程的数学变换对于理解狭义相对论中使用的变换的物理基础具有深远的意义。 简要回顾了使用翼型设计的不可压缩流动解决方案代替进行高速风洞试验的演变。这反过来唤起了空气动力学家的遗忘历史,使用Prandtl-Glauert空间收缩方法作为二战前压缩效应的替代品。表示与表示相对论速度,加速度和质量的表达相同的矩阵表达式是从可压缩与不可压缩流动系统和固定车辆与空间固定坐标参考框架相关的线性变换开发的。 在亚音速空气动力学领域之外,通常不能理解和理解狭义相对论和可压缩流动理论的数学交集,使其成为我们探索的一个引人注目的主题。 关键词:可压缩流动,对流波动方程,不可压缩流动,洛伦兹因子,Prandtl-Glauert因子,狭义相对论 国际理论与数学物理杂志,Vol。7No.2017年第5期,第113-131页。doi:10.5923/j.ijtmp.20170705.02。
个人分类: 相对论属于近似|2524 次阅读|2 个评论
电子加速器加速电子能不能超过光速?寻找加速器研究者的帮助
热度 7 yangxintie1 2014-7-3 23:41
下面介绍黄志洵教授在前沿科学发表的一篇文章,他提议建立一个讨论小组,讨论如何在加速器上改进的问题,详细可以进一步看他的原文,见附件。 在北京的北京基础科学发展论坛讨论过此问题,我们每两年在一起讨论一次,也有北大核物理系的XXX教授,清华大学电子工程系主任XXX,北师大XXX等教授参加,及航天部XX研究员参加讨论,大家都没有反对意见,还提出了一些补充意见,关于束流的反向调制主要是从过去的冷却(减小截面)变成反方向,(逐渐扩大截面),另一方面我们现在电子加速器虽然没有美国,欧洲的高但是我们也能够接近到4个9,达到0.9999倍光速,我觉得这就够了,根据量子涨落,那么肯定就有超出去的,我们只有从宏观上把调制的方向反过来,才能使得超出去的这一部分得到更大加速。 另外最后得到的结果不能从现有检测手段来得到时,是否可以考虑用相位和焦点偏移统计的结果来说明,如果在磁场作用下,速度变高,同时质量变小,那么离心力产生的作用显然比仅仅速度变小而质量也变小的粒子作用显著,那么从束流的成像是否可以得到一些线索? 如果考虑到超过光速电子持续很小范围,也就是它的双曲物理性质运动区间很小,那么方程的解就必定有间断,这个间断就导致束流中间一下电子会以激烈的方式跳回更低的速度范围,中间放出一份能量,这份能量以光子或者其它什么形式出现,过去我们是否都以噪声来解读这些现象?如果不把他当噪声看,我们的加速器能不能设计的更坏一些?让这些原来想避免的情况出现的更多,噪声更高一些,如果仔细察那些“坏结果”,它的能量守恒按照双曲规律而不是椭圆规律那是否也可以说明已经有超光速电子存在? 这个理论推导在香山会议上介绍过,大家都没有疑义,在西安交大还在数学物理研究所和教授们一起讨论过,他们都严格的问了每一步过程,另外这些推导来自力学,我也请教过空气动力学一些前辈,他们都很支持,还有XXX院士看了也没有疑义,电子所原来在基金委的xxx教授也对此很支持,西电原学术委员会主任XX副校长看了也很支持,但是好些人说现在一个新理论要出来必须在实验上作出和原有理论不一样的结果来,陕西省科委的一个副主任就说:你别听他们的,洛伦兹、爱因斯坦他们树立理论的时候谁做过试验,他们这是强人所难!所以尽管这些理论探讨很招风,很多国内外名刊都不能发表,我也不着急,进一步完善证明叙述,另一方面也想着如何扩大应用,在实验上有所突破。 其实西安这里很多人都在闷着做这方面的事情,导航20所陶慧君他们用原子钟铯流转方向的办法测红移。航天部林金他们在陕西天文台发信号经卫星转乌鲁木齐再返回来测量地球自转影响,所得结果和爱因斯坦给的公式矛盾。宋健说,关于GPS 能否检验收缩因子的存在这个问题,至今使研制GPS 的人头痛。航天部门林金教授已多年研究此问题,目前还介入指导中国的GPS 研制 可惜我们对加速器太不熟悉了,过去去过北京高能所,但是那里面始终对不上口,找不到合适的人商量,很想找一些搞加速器的商量这些关于束流,焦点,截面控制等细节,其实这些大多是工程技术,也不算物理理论,最近,原来电子所后来在传媒大学搞超光速的黄志洵教授把这一套方法写了一篇文章在前沿科学发表,并且提出了用截止波导的办法来给电子加速。 裴元吉教授原来说三个月拿出方案,但是三年后他说还比较难,牵涉到降低Q值和增加灵敏度,现在已经过去八年了。他也一直很忙,每个月在北京来跑项目,他说他实际上顾不上花很多时间来办这件事情。我对这事情实际也不着急。等着,总有一天,瓜熟蒂落。 我们现在寻找的是如何在现在我们了解的电子加速器里面,把给电子加速输运的能量都小于或等于光速,变成稍微大于光速的,在不做过大改动情况下改变加速器本身的原因带来的限制。附件附上原来电子所研究员黄志洵的文章,他和电子所的宋文淼教授都支持我的想法,黄志洵教授还把这个问题更详细的阐述了一下。这就是他的文章,我们只贴出了一小部分,原谅为了省时间,里面的公式使用了matlab里面的写法,祥细文章十几页,见附件。 题目:电子加速器超光速新方案 黄志洵 * (中国传媒大学信息工程学院,北京 100024 ) 摘要: Einstein 的理论并非神圣不可侵犯,超光速将开启新物理学的大门,而自 1955 年以来一系列理论与实验研究企图发现超光速现象,多个实验显示超光速是可能的。本文在回顾 1955 年至 2009 年的研究后,得到“超光速是可实现的科学陈述”的结论。因此,狭义相对论关于“没有可以超光速行进的事物”的说法归于无效。 飞出太阳系是人类长久以来的理想,飞行速度最好达到光速或超光速。当然这很难做到,但也不是绝对不可能。 1947 年超声速飞机试飞成功突破了“声障”一事已成历史,而可压缩流力学似可用到超光速研究中来,即以空气动力学成就作为突破“光障”的参考。 从理论上讲研究“量子超光速性”是很重要的,具体包含两个方面:量子隧穿及量子纠缠态,它们分别对应小超光速( V/C5 )和大超光速( V/C10 4 )。现时的超光速研究可考虑用圆截面截止波导( WBCO )来改造直线加速器,再检验电子的运动;亦即用量子隧穿以实现超光速,而在经过势垒之后波和粒子的能量减弱。这与突破声障的情况(例如 Laval 管)相似。 为了研究飞船以超光速作宇宙航行的可能性,必须尝试使中性粒子(中子、原子)加速运动并达到高速。然而现实是不存在中子加速器,因此发现以超光速运动的电子(奇异电子)是科学家不妨一试的实验课题。从波动力学和波粒二象性的观点看,“群速超光速”在实验中取得了广泛的成功,预示着粒子形态的电子以超光速运动的可能性存在。但后者与前者一样必然是“小超光速”。这正好体现了电磁作用的传递速度(电磁波本征速度)仅为光速的事实,亦即无论波动或粒子的运动都只能在特殊条件下比光速 稍快。 关键词: 超声速;超光速;量子超光速性;直线加速器;截止波导;奇异电子 1 引言 超光速研究的意义可从几方面说明。首先,现在的航天、宇航活动(太阳系内的飞行叫“航天” space flight ,飞出太阳系的飞行叫“宇航” astronautic )中,宇宙之大使人们觉得光速( )实在是太慢了。例如 2003 年 1 月美国航天局( NASA )与 1972 年发射的《先驱者 -10 》探测器(迄今唯一飞出太阳系的人造物体)联系的时间竟然长达 11h ,传达指令和通信不能及时完成。相对论不仅认为物体的运动速度不能超光速,信号传播也不能超光速;但在量子理论中却无此限制。 2008 年 8 月 14 日《 Nature 》发表了瑞士科学家的实验结果 ,证明量子纠缠态的传播速度是超光速的,即 C V 无穷 。我们认为这项研究很重要。为了把信号速度、信息速度、物理作用速度联合起来研究, 2004 年笔者提出了一个新概念“广义信息速度” (GIV) 。 其次,航天专家已开始思考人类以超光速作宇宙航行的可能性 。 2007 年 12 月 26 日宋健院士在致谭暑生教授的信中写道 :“说‘光速不能超过’使航天人很不安。有人讲:‘逛遍太阳系后我们无事可做了’,怎么‘宇航’?……如果宇宙中没有其他传播速度大于 VC 的相互作用,讲‘尺缩、时长’也许成立。如果今后发现有,那么以 C 去推论宇宙属性就会动摇。…… SR 没有提出可信的理由禁止飞船越过光障。从逻辑推理看,尺缩、时长、质增都是视现象。” 再次, 2010 年 2 月美国国防部导弹防御局的大飞机携带的高能激光器击落了一枚飞行中的弹道导弹,实现了以光速 C 摧毁几百公里外的动态目标,是一个武器光速化的典型事例。这就使我们联想到未来出现超光速武器系统的可能性,虽然今天看来如同科幻小说。 最后,超光速研究将促进波动力学和粒子物理学的发展,特别是可能导致新学科(近光速力学、超光速力学)的建立,从而开启新物理学的大门。 但是,作为脚踏实地的科学家,我们还是要从基础性的研究工作做起;这就是写作本文的初衷。 2 突破“声障”带来的启示 第一架超声速飞机成功实现超声速飞行是在距今 63 年前( 1947 年),这表示人类建造的飞行器突破了“声障”( sonic barrier )。假如声障至今还未突破,物理学家会不会认为仅为几百 m/s 的声速是运动速度的上限?这样讲显得荒唐可笑,但从逻辑上讲并非不可能发生。现在有必要回顾突破声障的历史,看看对今天的超光速研究(即以突破光障 light barrier 为目标的努力)带来怎样的启示。 如所周知,声波是微弱扰动波的一种。在不可压缩流体中,微弱扰动的传播速度是无限大;这是因为这种流体可视为刚体,扰动传播不需要时间。实际的气体是弹性介质,是可压缩流体,传播速度是有限值。为了便于作比较研究,规定声速为 C ,则有 C=sqrt(hRT) (1) 由于h 、R 的变化区间不大,决定音速大小的主要因素是空气的温度 。例如在海平面、T =288K 时,C =341m/s ;而在高空(距地表 10km )、T =223K 时,C =300m/s 。故声速不是常数,在不同高度并不相同。作为气流速度 与当地声速 的比值的 Mach 数(M =V/C ),相同的M 值并不表示相同的V 值。 所谓“突破声障”是指飞机实现超声速(M 1 )飞行,这是在 1947 年 10 月 14 日,当时美国 X-1 火箭动力研究机达到速度 =1078km/h ,对应 =1.105 。 1954 年 2 月 28 日,美国 F-104 战斗机原型机试飞,达到声速的 2 倍(M =2 )。 真空中光速C =299792458m/s ,约为 341m/s 的 8.8 × 10 5 倍。如此之大的差距,再加上真空中光速C 是基本物理常数之一(声速却不是常数),把两个领域(声学、光学)的事情放到一起,似乎没有可比性。但波动力学的发展却告诉我们相反的结论 。 1759 年 L.Euler 首次得到了 2 维波方程,是对矩形或圆形鼓膜振动的分析;以f (x,y,z,t ) 代表膜位移,C 是由膜材料和张力决定的常数,他得到: diff(f,x,x)+diff(f,y,y)=1/c^2*diff(f,t,t) (此处公式采用maple写法,diff代表微分) 在他的论文(“论声音的传播”)中进一步分析得到了 3 维波方程 lapulace(f) =a^2*diff(f,t,t) (2) 式中laplace =diff(,x,x)+diff(,y,y)+diff(,z,z). 而f 是振动(力学振动或声学振动)变量。故从一开始波方程( wave equations )就是横跨力学、声学而发展的,对数学家而言声学和力学的边界是模糊的。由于光的电磁波本质,声学与光学的关系,可理解为声学与电磁学的关系。从 Maxwell 方程组出发得到的波方程为 lapulace(psi) =1/a^2*diff(psi,t,t) (3) 式中a =1/sqrt(epsilon*mu) ,而epsilon,mu 是波传播媒质的宏观参数。 (3) 式与 (2) 式的一致性说明,波动过程有统一的规律存在 。因此,尽管声波的传播速度与光波的传播速度数值上相差巨大,但从数学上和物理上对“突破声障”和“突破光障”作比较研究仍是可能的和有意义的。在以后的论述中我们将不断把空气动力学方程与电磁学方程作比较。 静电场是最基本的场;任何静电荷产生的电场的旋度为零,静电场是无旋场。在体电荷密度为零的区域电位函数满足 Laplace 方程。在空气动力学中,研究流体运动时使用两个基本函数,即位(势)函数 和流函数 ;当气流速度低时平面流动中视气流密度 为常量,并以 Laplace 方程描写 2 维流动 diff(phi,x,x)+diff(phi,y,y)=0 (4) diff(psi,x,x)+diff(psi,y,y)=0 (5) 这是不可压的无旋流方程,它们是 2 阶的线性微分方程。如气流速度增大,到一定程度 应视为变量,可压缩流体作平面无旋流动时的基本方程为 (1-Vx^2/C^2)*diff(phi,x,x)-2VxVy/C^2diff(phi,x,y)+(1-Vy^2/C^2)diff(phi,,y,y)=0 (6) (1-Vx^2/C^2)*diff(psi,x,x)-2VxVy/C^2diff(psi,x,y)+(1-Vy^2/C^2)diff(psi,,y,y)=0 (7) 显然,若C →infinit ,方程退化为较简单的 Laplace 方程,此即不可压流体的情形。我们注意到, 虽然出现了因子(1-V^2/C^2) ,但并未出现“声速C 不能超过”的情况。 (1-M^2)diff(phi,x,x)+diff(phi,y,y) (8) 线化过程中限定 不能太大,即不是高超声速流;亦不能是跨声速流。我们注意到,在亚声速流场上,M 1,(1-M^2)0 ,方程是椭圆型的;其性质与不可压流的 Laplace 方程基本一样。然而对超声速流场而言,M 1,1-M^20 ,方程成为双曲型的,情况有很大变化。总之,描写亚声速、超声速的运动方程是不同类型的。而对描写跨声速流动的运动方程而言,是混合型、非线性方程,求解析解十分困难。这样就出现了“计算流体力学”,它与我们熟悉的“计算电磁学”十分相似,所用的方法(如有限元法、有限差分法)也是相同的。 所谓声障是指飞行器的速度曾长时间在亚音速(M 1 )的水平上徘徊,以声速(M =1 )飞行的企图遇到了实实在在的困难。早期的飞机速度慢,按不可压缩流体处理空气动力学问题便可满足要求。当M ≥ 0.4 ,可压缩效应渐显,接近声速(M → 1 )时机头前空气密度急剧增大。当M =1 ,流体中的扰动相对于飞机已不传播,而是集中形成波面;机头与前面空气相遇时强烈压缩,密度剧增形成无形的墙(激波),造成的阻力称为波阻。它消耗发动机功率约 75% ,带来很大困难。这时需要发展“近声速空气动力学”和“超声速空气动力学”。 20 世纪 20 年代、 30 年代都有关于跨声速流动的理论研究,决定性的进展却是在 40 年代。 1945 年美国科学家提出了后掠翼理论,对克服激波影响的效果是把飞机速度提高到近声速。克服声障的努力是科学家、工程师、设计师协力进行的,从理论研究到超声速飞行成功,科学界与航空工程界联合攻关仅用了约 20 年时间。可以说是“还没有来得及争论不休”,突破声障就成功了!很明显,所谓“突破”包含两个方面——能否突破和如何突破。回顾历史,在这两方面突破声障的过程都给我们深刻的启示,留下了宝贵的经验。在空气动力学中,可压缩流体的速度势的波方程,经过线性化和无量纲化的形式为 (1-b^2)diff(phi,x,x)+diff(phi,y,y) =diff(phi,t,t) (9) 这里我们用符号b 取代符号M ,是为了把相对论与空气动力学作比较。上式表示,从本质上讲波动力学的基本操作是对微分方程的辨识和求解。钱学森( 1911-2009 )和 T.von Kármán ( 1881-1963 )一起,在 20 世纪 30 年代最早提出了高超声速流的概念,为飞机克服热障、声障提供了理论依据。他们的理论应用于高亚声速飞机的设计;实际上是在亚声速区域内把小扰动理论向非线性有所推进,虽然不能用于超声速问题的计算,但避免了奇点——在 = 时不会出现无限大质量密度。这叫虚拟气体的切线方法,实际上是一种非线性可压缩流的形式。它在今天仍有参考价值。宋健院士和清华的白同云教授在香山会议上已经把这个式子当作超光速的质量能量关系拿出来,当然他们还有别的说明方法,但是我觉得可压缩性质才是最本质的。
个人分类: 相对论属于近似|6141 次阅读|32 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-2 10:03

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部