科学网

 找回密码
  注册

tag 标签: 倍率性能

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

蚕丝新用途:合成抑制膨胀高性能多级多孔钾离子混合电容器碳电极
nanomicrolett 2020-8-11 22:28
Cocoon Silk ‑ Derived, Hierarchically Porous Carbon as Anode for Highly Robust Potassium ‑ Ion Hybrid Capacitors HaiyanLuo, MaoxinChen, JinhuiCao, MengZhang, ShanTan, LeiWang, JiangZhong, HongliDeng, JianZhu*, BinganLu Nano‑Micro Lett.(2020)12:113 https://doi.org/10.1007/s40820-020-00454-w 本文亮点 1. 采用可再生碳源——蚕丝制备了 多级多孔氮掺杂碳 (SHPNC)。 2. 该多级多孔氮掺杂SHPNC有效 抑制体积膨胀 ,并成就了 快速的离子和电子传输能力 。 3. KIHCs的最大能量密度达到135 Wh/kg,并具有 优异的循环稳定性 和 倍率性能 。 研究背景 钾离子混合电容器(KIHCs)结合了钾离子电池与超级电容器的优点,具有高能量密度、高功率密度和长循环寿命的优点,得到了越来越多研究者的关注。然而,较大的K + 半径导致碳负极材料遭受严重的体积膨胀,从而造成KIHCs快速的容量衰减。该工作以蚕丝为原材料,制备了多级多孔氮掺杂碳用作KIHCs负极,有效缓解碳材料的体积膨胀,并提高其电子和离子的传输速度,为构建高性KIHCs提供了一条良好的路径。 内容简介 湖南大学二维材料课题组储能器件团队报道了一种具有多级多孔结构的碳纳米材料作为KIHCs负极。该SHPNC电极具有多级多孔结构和高含量氮掺杂不仅为循环过程中电子和K + 的输运提供了快速的通道,而且有效缓解电极的体积膨胀,提高其稳定性。此外,通过原位Raman,非原位HR-TEM和元素mapping表征证明了SHPNC-900电极具有优异的电化学可逆性。因此,以SHPNC-900为负极和活性炭(AC)为正极的KIHCs可实现135Wh/kg的高能量密度,并且在2 A/g的大电流密度下运行3750次能量密度仍保持初始能量密度的75.4%。另外,SHPNC//AC KIHCs展现出优异的快充慢放性能。本研究表明,该KIHCs在未来高性能储能器件领域具有较大的应用前景。 图文导读 I SHPNC的制备及其形貌表征 如图1a所示,利用蚕丝合成SHPNC分为四个步骤:(i)金属盐活化、(ii)冷冻干燥、(iii)焙烧、(iv)提纯过程。如SEM和TEM图所示(图 1b-f),所制得的SHPNC是由相互连接的碳纳米薄片组成,具有多级多孔结构,这有效地防止了碳材料的堆叠。同时,氮掺杂可以有效提高SHPNC电极的导电性并增加电化学活性位点(图1g)。这种多级多孔结构和氮掺杂为电子/钾离子的快速转移和电极的自由膨胀发挥了重要作用。图1i 是该纳米片的结构示意图,显示了SHPNC氮掺杂的种类和多孔结构。 图1.(a)SHPNC的合成示意图;(b,c)SHPNC-900(900℃煅烧)的SEM图;(d,e)SHPNC-900的TEM图;(f)高分辨TEM图;(g)SHPNC-900的元素分布图;(h)SHPNC-900纳米片的结构示意图。 II SHPNC的结构表征 该工作探究了煅烧温度对SHPNC的影响。如图2a所示,随着煅烧温度的升高,在XRD谱图中25°处的(100)峰变得更加尖锐,说明(100)层间距变小。另外,拉曼谱图中 I D / I G 值逐渐减小,表明SHPNC的石墨化程度随着退火温度的升高而增加(图2b)。通过图2c、d可以发现,随着退火温度的升高,SHPNC的比表面积显著增大,三种样品的孔径均集中在0~3 nm之间。XPS结果(图3e-i)显示了C、N、O三种元素在SHPNCs中的成键状态和大致含量,其中N的含量随退火温度的升高而降低。 图2.SHPNC的结构表征:(a)XRD谱图;(b)拉曼光谱图;(c)N2吸脱附曲线;(d)孔径分布;(e)XPS总谱;(f)C、N、O元素含量占比;(g)C1s谱;(h)N1s谱;(i)O1s谱。 III 钾离子半电池的电化学性能研究 如图3a所示,CV曲线第一个循环的阴极峰的是由于固体电解质界面的形成和电解质的分解,在随后的循环中该峰逐渐减弱。而在0.304 V处的阳极峰可以归因于K + 的插层行为。显然,随后循环的 CV曲线比较相似,同时充放电曲线几乎重叠(图3b),表明SHPNC-900电极具有良好的可逆性。电化学性能测试显示SHPNC-900表现出比其他温度煅烧制备的SHPNC具有更好的电池性能,故主要调研SHPNC-900的电化学性能。如图3c,d所示,SHPNC-900作为负极的钾离子半电池表现出高容量(在25 mA/g电流密度下循环163圈后仍有300 mA/h的可逆容量)和优异的循环稳定性(在100 mA/g电流密度下可良好的循环700圈)。另外,该工作还研究了该半电池进行反应动力学(3e-h)。明显的,随着扫描速度的加快电容的贡献逐渐增大,这表明高扫速下电化学存储行为主要由离子扩散过程决定(图3e-h)。图3i展示了该SHPNC-900电极优异的倍率性能。 图3. SHPNC-900为负极的钾离子半电池的电化学性能:(a)循环伏安曲线(CV)。(b)在电流密度为25 mA/g时的充放电曲线;(c)25和(d)100 mA/g的电流密度下的循环性能;(e)不同扫描速率下的CV曲线;(f)b值测定曲线;(g)在扫描速率为20 mV/s时的电容性贡献曲线;(h)在不同的扫描速率下的电容性贡献比例图;(i)倍率性能图。 IV 电化学可逆性分析 原位拉曼光谱和非原位TEM被用于探究SHPNC-900电极的电化学可逆性。如图4a,对充放电过程中原位拉曼结果的分析发现:在一次完整的充/放电过程中,G峰的位置也随之发生相应的偏移,最后回到最初的位置,说明SHPNC-900电极上表现出优异的电化学可逆性。图4b形象化地阐述了该KIHCs的充放电反应机理。另外,全充/全放电状态下SHPNC-900电极的元素mapping结果显示了K + 可逆的嵌入/脱出SHPNC-900电极,进一步验证了其出色的电化学可逆性。 图4.(a)钾离子半电池中SHNPC-900电极的原位拉曼光谱,及其对应的充放电曲线;(b)KIHCs充/放电机制示意图;(c,d)SHPNC-900电极在不同状态下的元素mapping((c)完全充电状态,(d)完全放电状态)。 V KIHCs的电化学性能研究 图5a(上)是SHPN-900负极、AC正极的CV曲线,显示了混合电容器的CV匹配过程。KIHCs(AC//SHPNC‑900)不同扫速的CV曲线和不同电流密度的充放电曲线表明该混合电容器设备也呈现出优良的电化学可逆性(图5a和b)。如图5c、d,与多种已报道的KIHCs相比,该KIHCs表现出较高的能量密度和功率密度。如图5e,其快充慢放性能同样让人印象深刻(在350 mA/g的电流密度下可在7分钟内迅速充满电,并以15 mA/g的电流密度持续放电可达2.5小时以上)。另外,该KIHCs具有良好的循环稳定性,在接近4000个循环后,仍然保持初始容量的75.4%(图 5g)。 图5.KIHCs的电化学性能:(a)SHPN-900负极和AC正极(上)以及全电池(下)的CV曲线;(b)不同电流密度下的充放电曲线;(c)倍率性能;(d)与其他KIHCs储能设备的性能对比图;(e,f)KIHCs的快充慢放性能(以350 mA/g的电流密度充电,在不同电流密度下放电);(g)在1 A/g的电流密度下的长循环性能,插图为对应的充放电曲线。 作者简介 朱建 本文通讯作者 湖南大学 副教授 ▍ 主要研究领域 新型储能器件的制备及电化学储能研究:碱金属(锂/钠/钾)离子电池。 ▍ 主要研究成果 在 Science、Nat. Rev. Mater.、Nat. Commun.、Joule、ACS Nano 等国际知名学术期刊上发表论文30余篇,总引用次数超过2000次。以第一作者和通讯作者发表包括 Nano-Micro Lett.、Nat. Commun、ACS Nano、Adv. Energy. Mater.、Adv. Funct. Mater.、Nano energy 在内的论文22篇,其中影响因子大于10的论文11篇,并有1篇论文( Nano Energy 2014, 3, 80-87)被评为2014年中国百篇最具影响国际学术论文。 ▍ 湖南大学二维材料课题组主页 http://nanotech.hnu.edu.cn/index.html 撰稿:原文作者 编辑:《纳微快报》编辑部 关于我们 Nano-Micro Letters是上海交通大学主办的英文学术期刊,主要报道纳米/微米尺度相关的最新高水平科研成果与评论文章及快讯,在Springer开放获取(open-access)出版。可免费获取全文,欢迎关注和投稿。 E-mail: editorial_office@nmletters.org Tel: 86-21-34207624
2731 次阅读|0 个评论
高效储能混合超级电容器:CNT诱导合成超薄MOF纳米片电极
nanomicrolett 2020-4-14 13:48
Ultrathin 2D Metal–Organic Framework Nanosheets In situ Interpenetrated by Functional CNTs for Hybrid Energy Storage Device Feitian Ran, Xueqing Xu, DuoPan, Yuyan Liu, Yongping Bai, Lu Shao* Nano-Micro Lett.(2020)12:46 https://doi.org/10.1007/s40820-020-0382-x 本文亮点 1 功能化碳纳米管 的引入有效调节了Ni-MOF的团聚,诱导合成了超薄Ni-MOF/C-CNTs杂化纳米片。 2 嵌入Ni-MOF的碳纳米管可以作为 电子传输的路径 ,比表面积的提升增加了电化学活性位点与电解质离子的接触。 3 合成的超薄Ni-MOF/C-CNTs纳米片展现出了 优异的比容量和倍率性能 。 内容简介 哈尔滨工业大学邵路教授团队通过功能化碳纳米管诱导合成的策略,成功制备了超薄镍金属有机框架(Ni-MOF)杂化纳米片。在该研究中,作者通过一种原位生长策略,将羧基化碳纳米管(C-CNTs)镶嵌到超薄的二维Ni-MOFs纳米片中。在Ni-MOF成核生长过程中,C-CNTs上的C/O官能团(-COOH,-C=O,-C-OH)通过静电吸引游离的Ni 2+ ,形成成核中心,从而诱导MOFs的结晶生长。同时,引入的C-CNTs可以起到骨架作用,对Ni-MOF晶体的生长具有一定的引导作用。适量C-CNTs不仅使得Ni-MOF形成疏松的超薄片状结构,而且改善了Ni-MOF的电子电导率。在电化学储能过程中,所引入的C-CNTs可以作为电子传输的路径,加速电子传递;而形成的超薄二维Ni-MOF纳米片结构提高了比表面积,使其暴露出更加丰富的电化学活性位点,从而大大提高了其电化学储能性能。本文的第一作者为哈尔滨工业大学博士研究生冉飞天。 研究背景 近年来,随着人们对储能需求的日趋旺盛,以锂离子二次电池和超级电容器主导的便携式电化学储能器件得到了广泛关注。其中,混合超级电容器兼容了传统电容器的高功率密度和电池的高能量密度,使其备受青睐。因为超级电容器的性能主要取决于电极,所以开发高性能电极材料至关重要。在众多的电化学储能材料中,金属有机框架(MOFs)由于其发达的孔结构、高的比表面积和丰富的金属活性位点而展现出显著的优势。然而,MOFs材料自身的低电导率及有限的暴露活性位点严重制约了其在能量存储领域的应用。因此,在改善MOFs导电性的同时,构筑连续MOFs网络微结构以实现快速的离子扩散和电荷转移,对其在储能领域的应用具有重要的意义 图文导读 I 功能化碳纳米管诱导超薄Ni-MOF/C-CNTs杂化纳米片的合成及其形貌变化 Ni-MOF/C-CNTs杂化纳米片的合成过程分为水热合成和溶剂交换两个步骤。从扫描电镜图可以看出,纯Ni-MOF为纳米片组成的堆垛结构,加入C-CNTs后,生成了二维纳米片组成的连续疏松结构。与纯Ni-MOF形成鲜明对比的是,Ni-MOF/C-CNTs中可以明显观察到大量紧密相连、疏松褶皱的纳米片。EDS元素分布图表明C、O、Ni元素均匀的分布在Ni-MOF/C-CNTs杂化材料中。 图1(a)Ni-MOF/C-CNTs杂化纳米片的合成示意图;(b, c)Ni-MOF和(d, e)Ni-MOF/C-CNTs的SEM图片;(f)Ni-MOF/C-CNTs的C、O、Ni元素分布图。 II 超薄Ni-MOF/C-CNTs杂化纳米片的微观结构表征 图2为Ni-MOF和Ni-MOF/C-CNTs40的TEM图像,从中可以看到,纯Ni-MOF呈现明显的纳米片堆栈结构,其纳米片厚度约为5-7 nm(图2a,b)。而对于添加了C-CNT的样品(图2c-e),可以清楚地看到,C-CNT均匀嵌入到Ni-MOF纳米片中,而Ni-MOF沿C-CNTs骨架延伸,整体分散程度相比前者更好。而且,Ni-MOF/C-CNTs40的厚度相比纯Ni-MOF变薄,约为3-4 nm。在高分辨的TEM图像(图2f)中,可以观察到不同晶格的存在,其中晶格条纹间距为0.35 nm对应于石墨碳的(002)衍射晶面,证明了碳纳米管与Ni-MOF的有效结合。 图2 Ni-MOF和Ni-MOF/C-CNTs40的TEM图像。 III 超薄Ni-MOF/C-CNTs杂化纳米片在三电极体系中的电化学性能 在三电极体系中,以3M KOH溶液作为电解质,我们采用循环伏安(CV)和恒电流充放电(GCD)技术对Ni-MOF和不同C-CNTs添加量的Ni-MOF/C-CNTs样品进行了电化学性能测试,结果如图3所示。图3a为不同样品在相同扫描速率(20 mV/s)下的CV曲线对比图,从中可以看出所有样品的CV曲线都具有一对明显的氧化还原峰,表明其储能过程主要是由法拉第反应所控制。图3b所示的是所得电极材料在相同电流密度(1 A/g)下的GCD曲线。可以看到,所有电极的GCD曲线都存在一个充放电平台,对应了电极在储能过程中的氧化还原反应。其中,Ni-MOF/C-CNTs40具有最长的放电时间,表明其拥有最高的比容量。图3c是在不同扫速下Ni-MOF/C-CNTs40的CV曲线。随着扫速的增大,CV曲线的轮廓基本保持不变,表明其较好的倍率性能。峰电流与扫描速度的平方根呈线性关系,表明了其受扩散控制的特性(图3d)。通过放电曲线计算得到Ni-MOF、Ni-MOF/C-CNTs20、Ni-MOF/C-CNTs40、Ni-MOF/C-CNTs60电极在1 A/g时的比容量分别为517、524、680和581 C/g。其中,Ni-MOF/C-CNTs40在10 A/g时的容量保留率可以达到65%,这主要是由于适量C-CNTs的引入使得Ni-MOF的团聚得以缓解,增加的比表面积使其暴露出更多的活性位点,二维超薄片状结构保证了电解质离子和电子在电极内部的快速扩散和转移。 图3 (a)Ni-MOF和Ni-MOF/C-CNTs的CV比较;(b)Ni-MOF和Ni-MOF/C-CNTs的GCD比较;(c)Ni-MOF/C-CNTs40在不同扫速的CV曲线;(d)Ni-MOF/C-CNTs40的扫速平方根与峰电流的关系;(e)Ni-MOF/C-CNTs40在不同电流密度下的GCD曲线;(f)Ni-MOF和Ni-MOF/C-CNTs在不同电流密度下的比容量。 IV Ni-MOF/C-CNTs40//AC 混合超级电容器的组装及其电化学性能 为了更好地评价Ni-MOF/C-CNTs40的电化学性能,以Ni-MOF/C-CNTs40为正极、商业活性炭(AC)作负极组装成水系混合超级电容器,在3M KOH电解液中测试其电容性能。通过优化不同电位窗口下的CV曲线,最终确定混合器件的电位窗口为1.7 V。图4d所示为混合器件在不同电流密度下的GCD曲线。通过GCD曲线计算可知,混合器件在1 A/g时的比电容为97.6 F/g,当电流密度为5 A/g时,其比电容保留率为66.7%。该器件循环3000次后的比电容保留率为77%(图4e)。此外,该混合电容器在功率密度为440 W/kg时,其能量密度为44.4 Wh/kg,当功率密度增加至5255 W/kg时,其能量密度为26.1 Wh/kg。 图4 (a)Ni-MOF/C-CNTs40//AC混合电容器的组装示意图;(b)MOF/C-CNTs40和AC在三电极下的CV曲线;Ni-MOF/C-CNTs40//AC混合电容器的(c)电压窗口优化,(d)不同电流密度下的GCD曲线,(e)循坏稳定性和(f)Ragone图。 作者简介 邵路 本文通讯作者 英国皇家化学会会士 哈尔滨工业大学 化工与化学学院 教授、博士生导师 ▍ 主要研究领域 膜材料及膜分离、功能材料。 ▍ 主要研究成果 邵路教授在Cell姐妹刊-MATTER、Materials Today、Energy Environmental Science、Nature子刊-Nature Communications、Advanced Energy Materials、Advanced Functional Materials等权威期刊发表SCI文章110余篇。所发SCI文章入选ESI前千分之一热点文章5篇、前百分之一高被引文章20篇和封面文章7篇。所发文章SCI引用4500余次,高因子(H-index)=41,google scholar引用5500余次,以第一发明人获授权中国发明专利25项。 邵路教授2020年入选英国皇家化学会会士;2019年入选RSC前1%(top 1%)中国高被引学者(材料);2011年入选教育部新世纪优秀人才。2019年被评为Publons跨学科优秀审稿人;2018年被评为Publons材料领域优秀审稿人;连续获评Journal of Membrane Science等期刊优秀审稿人。任SCI期刊Advances in Polymer Technology (IF=2.663)学术主编 (Academic Editor),Springer-Nature出版社新期刊AdvancedComposites and Hybrid Materials副主编。 ▍ Email: shaolu@hit.edu.cn ▍ 课题组主页: https://publons.com/researcher/1307969/lu-shao/publications/ 撰稿:原文作者 编辑:《纳微快报》编辑部 关于我们 Nano-Micro Letters是上海交通大学主办的英文学术期刊,主要报道纳米/微米尺度相关的最新高水平科研成果与评论文章及快讯,在Springer开放获取(open-access)出版。可免费获取全文,欢迎关注和投稿。 E-mail: editorial_office@nmletters.org Tel: 86-21-34207624
6714 次阅读|0 个评论
北化徐斌教授:MXene助力新能源电池!
nanomicrolett 2019-10-12 15:58
Plate-to-LayerBi2MoO6/MXene-HeterostructuredAnode for Lithium-Ion Batteries Peng Zhang, Danjun Wang, Qizhen Zhu*, Ning Sun,Feng Fu*, Bin Xu* Nano-Micro Lett.(2019) 11: 81 https://doi.org/10.1007/s40820-019-0312-y 本文亮点 1 采用 静电自组装 在二维MXene纳米片层上负载钼酸铋,构筑出具有 盘-片异质结构 的Bi2MoO6/MXene复合负极材料; 2 MXene作为基底材料,可显著 改善Bi2MoO6的导电性 并有效 缓冲其充放电过程中的体积膨胀 ; 3 Bi2MoO6/MXene异质结构表现出 高的比容量、超长的循环稳定性和优异的倍率性能 。 内容简介 北京化工大学徐斌教授、朱奇珍副教授课题组与延安大学付峰教授课题组合作,在前期工作的基础上,通过在高导电性的二维MXene纳米片上负载双金属氧化物Bi2MoO6构筑了Bi2MoO6/MXene异质结构,显著改善了Bi2MoO6作为锂离子电池负极材料的电化学性能。本论文的第一作者为博士研究生张鹏。 采用静电自组装的方法将水热法制备的表面带正电荷的纳米盘状钼酸铋组装在表面带负电荷的二维MXene纳米片上。这一独特的异质结构可以有效避免Bi2MoO6的团聚,同时,具有类金属导电性的MXene的加入不仅可以显著提高电极的导电性,还可有效缓冲Bi2MoO6在嵌锂过程中的体积膨胀。因此,Bi2MoO6/MXene异质结构表现出了较高的比容量、优异的循环稳定性和倍率性能。 研究背景 锂离子电池由于能量密度高、循环寿命长、环境友好等优势,在便携式电子设备、电动汽车、规模储能等领域得到广泛的应用。然而,目前商业化的石墨负极材料容量较低,限制了锂离子电池能量密度的进一步提高。因此,开发高容量的负极材料成为当前研究的热点。钼酸铋是一种层状结构的双金属氧化物,被广泛应用作光催化材料。新近有研究表明,钼酸铋具有高的嵌锂理论比容量(790 mAh/g)和较低的嵌锂电位(<1 V),是一种很有前景的锂离子电池的负极材料。然而,由于导电性欠佳、充放电过程中体积膨胀较大,其循环和倍率性能有待进一步改善。 图文导读 ▍ Bi2MoO6/MXene异质结构的制备过程示意图 采用LiF+HCl刻蚀Ti3AlC2制备出表面带负电的二维MXene纳米片,采用水热法合成了表面带正电荷的纳米盘状Bi2MoO6。将两溶液混合,纳米盘状Bi2MoO6和MXene纳米片静电自组装得到Bi2MoO6/MXene异质结构。 图1Bi2MoO6/MXene异质结构的制备过程示意图。 ▍ Bi2MoO6/MXene异质结构的形貌表征 从SEM图可以看出,Bi2MoO6呈不规则“盘状”结构。经静电自组装后,Bi2MoO6均匀分散在MXene片层上。 图2 (a) MXene的SEM图;(b) Bi2MoO6的SEM图;(c,d) Bi2MoO6/MXene-50%; (e,f) Bi2MoO6/MXene-30%; (g,h) Bi2MoO6/MXene-10%的SEM图。 ▍ Bi2MoO6/MXene异质结构的电化学性能 相比于纯Bi2MoO6材料,Bi2MoO6/MXene异质结构表现出较高的比容量、优异的循环稳定性和倍率性能。Bi2MoO6/MXene-30%在0.1 A/g电流下经200次循环后比容量为在692 mAh/g,而在1 A/g的大电流下循环1000次后比容量还依旧保持有545.1 mAh/ g,表明Bi2MoO6/MXene-30%在循环过程中具有优异的结构稳定性。 图4Bi2MoO6/MXene-30%(a)在0.1 mV/s下的CV图;(b)充放电曲线;(c) Bi2MoO6/MXene-50%, Bi2MoO6/MXene-30%, Bi2MoO6/MXene-10%, Bi2MoO6的循环性能;(d) Bi2MoO6/MXene-30%在不同电流密度下充放电曲线;(e) Bi2MoO6/MXene-50%, Bi2MoO6/MXene-30%, Bi2MoO6/MXene-10%, Bi2MoO6的倍率性能;(f) Bi2MoO6/MXene-30%在1 A/g下的长循环性能。 ▍ Bi2MoO6/MXene异质结构的动力学机理 MXene的加入使得Bi2MoO6/MXene异质结构的锂离子扩散系数显著高于纯Bi2MoO6。同时,通过在不同扫速下的CV分析,Bi2MoO6/MXene异质结构的储锂容量包含了较高比例的电容贡献,因而具有优异的倍率性能和循环稳定性。 图2Bi2MoO6/MXene-30%的动力学分析:(a) GITT曲线;(b)锂离子扩散系数;(c)在不同扫速下的CV曲线;(d) log i和log v关系曲线;(e) 1 mV/s扫速下CV曲线中的电容贡献; (f) 在不同扫速下的电容贡献比例图。 作者简 徐斌 (本文通讯作者) 北京化工大学材料科学与工程学院 教授、博士生导师 ▍ 主要研究领域 主要从事先进化学电源与能源材料的研究与开发,包括超级电容器、锂/钠/钾离子电池、锂-硫电池电极材料与器件,以及电化学储能用炭材料和新型二维MXene材料等。 ▍ 主要研究成果 材料电化学过程与技术北京市重点实验室副主任,中国超级电容产业联盟副秘书长在Adv Mater, Adv Energy Mater, Adv Funct Mater, Energy Environ Sci, ACS Energy Lett, Nano Energy等期刊发表SCI论文100余篇,SCI引用4900次以上,H因子38。 获省部级科技进步二等奖2项和全国优秀博士学位论文提名。 Email: xubin@mail.buct.edu.cn; bi nxumail@163.com 朱奇珍 (本文通讯作者) 北京化工大学 青年优秀后备人才 材料科学与工程学院见习副教授 ▍ 主要研究领域 从事新能源材料的研究与开发,包括锂硫电池新型电极材料及电解质体系、锂二次电池用功能性电解液和锂/钠离子电池新型电极材料研究等。 ▍ 主要研究成果 在Nano Energy, Chemical Science, Journal of Materials Chemistry A等本学科国际重要SCI期刊发表论文36篇。 Email: zhuqz@mail.buct.edu.cn 付峰 (本文通讯作者) 延安大学化学与化工学院 教授、博士生导师 ▍ 主要研究领域 主要从事能源催化材料的研究与开发、资源高效清洁利用工艺技术开发等。 ▍ 主要研究成果 陕西省“三秦人才”计划入选者、陕西省“化学工程与技术”重点学科带头人、教育部高等学校化工类专业教学指导委员会委员、延能-延大综合能源产业技术研究院院长。先后在Appl. Catal. B: Environ., J. Mater. Chem. A, Chem. Eng. J., J. Catal., J. Mater. Chem. C, Ind. Eng. Chem.Res., Chem. Eur. J.等期刊发表研究论文80余篇;授权国家发明专利9项;获省级科学技术奖二等奖1项、三等奖2项。 Email: yadxfufeng@126.com 撰稿:原文作者 编辑:《纳微快报》编辑部 MXene其他领域应用 ·往期回顾 👇 电磁屏蔽纸!超薄“三明治+梯度”结构的CNT/MXene/纳米纤维素复合材料 NML研究文章|界面作用“显身手”:NiSe2/Ti3C2Tx(MXene)助力超电及电催化分解水! 关于我们 Nano-Micro Letters是上海交通大学主办的英文学术期刊,主要报道纳米/微米尺度相关的最新高水平科研成果与评论文章及快讯,在Springer开放获取(open-access)出版。可免费获取全文,欢迎关注和投稿。 E-mail: editorial_office@nmletters.org Tel: 86-21-34207624
6400 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-17 21:52

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部