科学网

 找回密码
  注册

tag 标签: Chaos

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

Chaos 29, 063122 (2019)发表 论文:网络重整化之基于采样盒子覆盖算法
bhwangustc 2020-3-10 09:18
Chaos 29, 063122 (2019) 发表论文 Sampling-based box-covering algorithm for renormalization of networks Zong-Wen Wei, Bing-Hong Wang, Xing-Tong Wu, Yu He, Hao Liao, and Ming-Yang Zhou 网络重整化之 基于采样盒子覆盖算法
个人分类: 统计物理复杂系统研究进展|2650 次阅读|0 个评论
Chaos 发表论文:魏宗文,汪秉宏:基于采样的用盒子覆盖网络的重整化算法
bhwangustc 2019-7-9 21:39
Sampling-based box-covering algorithm for renormalization of networks Cite as: Chaos 29 , 063122 (2019); https://doi.org/10.1063/1.5093174 Submitted: 18 February 2019 . Accepted: 10 June 2019 . Published Online: 26 June 2019 Zong-Wen Wei, Bing-Hong Wang, Xing-Tong Wu, Yu He, Hao Liao, and Ming-Yang Zhou 基于采样的用盒子覆盖网络的重整化算法 魏宗文,汪秉宏 等 用最少数目的盒子覆盖网络对于重整化方法探索网络位形空间至关重要 。我们在此提出一种通用方法(包括盒子的灵活表示和采样,目前尚未得到足够重视)和用以覆盖网络的盒子选择策略。 并以随机盒抽样策略和贪婪方法进行了实例分析。 我们证明显著减少盒子数量的关键是给那些其中不包含在更大 盒子中所存在节点的盒子赋予优先选择级。 与目前众所周知的算法相比,我们的算法达到减少盒数近 25%的改进。
个人分类: 统计物理复杂系统研究进展|2798 次阅读|0 个评论
[转载]Empirical and Theoretical Evidence of Economic Chaos
pchen87 2018-3-13 11:15
Chen, Ping. “Empirical and Theoretical Evidence of Economic Chaos,” System Dynamics Review, Vol. 4, No. 1-2, 81-108 (1988). Also, Chapter 4, in Chen 2010. Thank Hai Bolin for his comment on low dimension of economic chaos.
个人分类: 复杂科学|1391 次阅读|0 个评论
[转载]For people who want to predict future climate/stock market
zuojun 2014-7-3 04:31
http://www.hawaii.edu/news/2014/06/26/chaos-theory-study-published-in-nature/
个人分类: Uniquely Hawaii|1360 次阅读|0 个评论
Logistic Map notes
sunoval 2014-3-26 23:28
最近因为一个 project 的关系,需要用到非线性动力学的一些分析方法和技巧,因此花了点时间学习了下 nonlinear dynamics and chaos 的内容。我自己虽然不是主攻这个方向的,但是学习下来,还是感觉到这个领域的有趣,有料和有深度。虽然看起来理论性和技巧性的东西偏多,但是混沌的研究应该能够揭示自然更深层次的一些东西,同时这些研究在各个学科也都各有用武之地 。 作为一个形式简单的一维、二次映射, logistic map 通常被作为一个典型的非线性、具有 chaotic 特性的动力学系统作为入门研究。自从 1976 年 被提出以来,关于这个系统的研究,不说汗牛充栋也算是不可胜数。你可以在网络上找到上千篇涉及到这个系统的文献。本文作为我学习的一个笔记,归纳总结了我所认为重要的一些 logistic map 的性质,难免会有遗漏,欢迎指正。所有的图像都在 Matlab 下编码实现 (available upon request) ,特此声明。 1. The logistic map The logistic map 本质上是一个参数 r-dependent 的 iterative map, 它的数学形式如下: (1) 对于最初提出的人口问题来说, 代表的是在第 n 年的人口与最大可能人口的比值,r 则代表着人口出生率和死亡率所形成增长率。对于大于 3.57 的r 值, 的最终取值严重依赖于初始值 。关于初始值的一点微小变化,反映在最终值 的路径将是一个巨大无比的变化,这也是具有 chaos 特性的系统的一个显著特征,我们将在后面的分析中观察到。下图所显示的是一个典型的logistic map 在 phase space 和随着时间的迭代路径。 2. Fixed point ( 定点 ) 解决一个简单的一元二次方程,我们可以很容易的找到这个动力学系统的 fixed point. (2) 这个二次方程的两个根,代表着这个系统的两个稳定点,分别是 (3) 3. Linearized stability 通过将非线性系统线性化,我们可以分析系统在 fixed point 附近的局部稳定性。 (4) 其中 λ被叫做系统的 multiplier 或者 eigenvalue. 将式子(3) 中所得的两个 fixed point 带入式子(4) ,我们得到 (5) 对于离散系统,我们知道系统获得局部稳定性的条件是 ,因此对于参数r -dependent 的 logistic map , 我们可以定性的得到 (6) 这里,通过观察我们可以发现,当 , fixed point is a non-hyperbolic fixed point, 事实上,根据 bifurcation( 分叉 ) 的定义,我们知道 is a transcritical bifurcation point of logistic map. . 当 , 从稳定的 attractor 转变为不稳定的 repeller, 同时 fixed point 变成正的,也即称为 attractor, 这种相互转换正是被称为 transcritical point 的原因。 同样的道理,当 是另一个 non-hyperbolicfixed point, 事实上这是一个 period-doubling bifurcation point of themapping. 对于初始的 mapping f, 我们得到 a transcritical bifurcation at , and a period doubling bifurcation at . 类似的,对于 map, a period doublingbifurcation 发生在 , map, a period doublingbifurcation 发生在 . 随着 r 的增加, period doubling 发生在 and bifurcate 在 。 这些 的序列遵循 Feigenbaum rule: (7) 也即,当 n 趋近于无穷, 。 4. Logistic map bifurcation diagram Bifurcation diagram 显示的是系统的稳定的 fixed points 的分布情况,这种分布取决于 的取值是不断变化的 , 如图所示。 · 当 , period doubling cascade of the sequence 决定了 attracting fixed points. · 当 , fixed point 分布在整个 的区间。这个时候,系统表现为 chaos 的特性。 总而言之,对于 logistic map , “depending on the value ofthe parameter r, orbits of the logistic map may appear orderly or chaotic”. 如图所示,横坐标轴显示的是作为参数的 r 的变化,纵坐标显示的可能的长期的 x 的取之情况。通过这个 diagram 前面我们所讨论的各种情况都变得显而易见的清楚。 5. Chaos and the Logistic Map 所谓的 chaos, 指的是在确定性的系统中所表现出的具有随机性特征的现象, i.e. “ Stochastic behavior in a deterministic system”. 根据 Strogatz , “Chaos is aperodic long-termbehavior in a deterministic system that exhibits sensitive dependence oninitial conditions”. 具有 chaos 的系统一般具备以下特征 · 对初始值敏感 - 意味着不可预测性 · Topological mixing · Density of periodic orbits · Strange attractors Sensitive dependence on 初始值,可能是 chaotic 系统最为显著,也最具困惑性的特点。它从理论上决定了 chaotic system 的不可预测性 (unpredictability) ,起始于非常接近的两个初始条件,经过一系列循环之后,相互之间的路径可能以指数形式迅速 divergence , 由此就引出了关于 Lyapunovexponents 的研究。 下图显示的是,当 r 分别为 3.55 和 3.7 时, logistic map 的迭代情况,分别对应了非 chaotic 和 chaotic 的情况。对于每一个 r 值,我们取两个非常接近的 initialcondition (eps = 0.0001). 我们发现,对于非 chaotic 系统,经过 60 步的迭代之后,两条路径仍然吻合的很好;而同时对于 chaotic 的系统,在经过不到 20 步的迭代,两个 orbit 的差距迅速拉开,从一个方面反映了系统对初始值敏感和复杂性。 Lyapunov exponent 是一项非常有效的衡量系统离散型的指标。粗略来说,如果一个系统的 Lyapunovexponent 是大于零的数,那么整个系统就是指数发散的,是个 chaos 的系统,如果小于零,那么系统不具备 chaotic 的特征。如下图所示,我们可以看到 logistic map 的 lyapunovexponent 随着 r 值的变化的分布情况,同时我们可以看到,这个变化趋势与 bifurcationdiagram 是一致的。他们是从不同的方面展示的同一系统的同一特性: chaotic. 另外一个比较能反应 logistic map 的 parameter r dependent 的方法是 cobweb(stair) map. 对于不同的 r 值,我们可以看到不同的 map 递归情况。 6. 参考文献 Strogatz, S. H., 2006, Nonlinear dynamics and chaos (withapplications to physics, biology, chemistry a, Perseus Publishing. May, R. M., 1976, Simple Mathematical-Models withVery Complicated Dynamics, Nature, 261(5560), pp. 459-467. http://en.wikipedia.org/wiki/Chaos_theory .
个人分类: 学习笔记|10022 次阅读|0 个评论
Preface of Chaos in Spacecraft Attitude Dynamics
Mech 2013-10-25 16:01
The development of spacecraft has drawn considerable attentions in the field of dynamics since the 1950’s. The spacecraft can be regarded as a particle or as a body, depending on whether one focuses on the spacecraft’s orbital motion or on its rotational motion about the center of mass. Spacecraft attitude dynamics deals with the rotational motion of spacecraft. In the discussion of attitude dynamics, the rotation of spacecraft is usually assumed not to alter the orbit, while the orbit sometimes influences the rotational motion. Almost all spacecraft have some attitude requirements, either explicit pointing requirements for antennas or cameras, requirements for solar panel orientation, or simply a requirement for a given spin-axis direction. All the requirements are implemented by the design of attitude controls. The strategies chosen in the control process may limit the useful lifetime of the spacecraft, since an all-thruster control system depletes its propellant supply. Attitude dynamics forms a theoretical basis of the design and control of spacecraft. The present monograph is concerned with spacecraft attitude motion, although essential elements of orbital dynamics will be introduced and the effects of orbital motion will be included in a few cases. With the development of nonlinear dynamics, chaos in spacecraft attitude dynamics has stirred renewed interests since the 1990's. In fact, for astronautical investigations, the predictability of spacecraft rotations is critical, and thus chaotic motions must be avoided. On the other hand, there are scientific experiments that require the whole celestial sphere to be scanned, and in those cases the chaotic rotation may be desirable. Therefore chaos theory offers a new method and viewpoint for designing spacecraft. In addition, spacecraft attitude dynamics also provides new mathematical models for engineering application of chaos analysis. Although there are some excellent monographs and textbooks on spacecraft attitude dynamics, there are few treatises on chaotic attitude motion. The present monograph focuses on chaos in spacecraft attitude dynamics. The monograph begins with the necessary fundamentals. Chapter 1 provides a primer on spacecraft dynamics, and Chapter 2 presents a survey of chaos theory. Different chaotic attitude motions are treated in Chapters 3 and 4. Chapter 3 considers only the planar motion of spacecraft, while Chapter 4 covers the spatial motion. The monograph ends with Chapter 5, dealing with controlling chaotic attitude motion. The main goal of the monograph is to provide readers with the knowledge of theory and application of chaos and its control in spacecraft attitude dynamics, including the basic concepts, main approaches and the latest research progress. The material is appropriate for university teachers, scientists, engineers, and graduate students in the fields of mechanics, applied mathematics, and aerospace science. Except for some background presented in Chapters 1 and 2, as well as Sections 4.1 and 5.1, all other materials contained in the monograph are adopted from research papers of the authors and their co-workers. The research work was financially supported by the National Natural Science Foundation of China (Project Nos. 19782003 and 10082003), the National Outstanding Young Scientists Foundation of China (Project No. 10725209), Shanghai Municipal Development Foundation of Science and Technology (Project Nos. 98JC14032 and 98SHB1417), Shanghai Municipal Education Commission Scientific Research Project (No. 2000A12), and Shanghai Leading Academic Discipline Project (No. Y0103). The first author thanks his former PhD students Professor Peng Jianhua, Professor Chen Liqun, Dr. Cheng Gong, and his postdoctoral fellow Professor Yu Hongjie for their collaborations on related research. The second author thanks Professor Liu Yanzhu, who, serving as his PhD supervisor, introduced him to this field. He also thanks his hosts, Professor Jean W. Zu (University of Toronto) and Professor C. W. Lim (City University of Hong Kong) for their assistance during his visit to their institutes so that he could complete his portions of the book. The authors thank Tsinghua University Press and Springer for the publication of this book, and Mr. Chen Zhaohui, the editor of Academic Publishing Centre, for his enthusiastic and patient cooperation. They also thank Shanghai Jiao Tong University for partial financial support of the publication. Liu Yanzhu (Shanghai Jiao Tong University) Chen Liqun (Shanghai University)
个人分类: 著述前言|3828 次阅读|0 个评论
[转载](今日物理)Physics today: Chaos at fifty (May 2013)
xuhy07 2013-8-12 12:09
近期,APS下属杂志今日物理Physics today出版了混沌50周年(1963-2013)的纪念文章,链接见下: http://www.physicstoday.org/resource/1/phtoad/v66/i5/p27_s1 Chaos at fifty Adilson E. Motter and David K. Campbell May 2013, page 27 "In 1963 an MIT meteorologist revealed deterministic predictability to be an illusion and gave birth to a field that still thrives...." Edward Lorenz and the butterfly effect. The Lorenz attractor ================================================== 附原文(pdf) Happy_Birthday__Dear_Chaos.pdf 扩展阅读 --- A comment on the article above Chaos at Fifty Four in 2013 见 http://xxx.tau.ac.il/abs/1306.6570
个人分类: 备忘分享|2919 次阅读|0 个评论
三生混沌
热度 12 tianrong1945 2013-4-11 08:27
今天,分形混沌俱乐部的活动,是由李四给大家讲“ 三生混沌 - 周期 3 即混沌”的故事。 有个新同学首先发问:“对不起,能不能首先解释一下,周期 3 是什么意思啊?” 还记得我们以前画的逻辑斯蒂系统的分岔图吗?李四说,逻辑斯蒂系统是描述生态繁衍的,如果最后的群体数趋向一个固定值,叫做周期 1 ;如果最后群体数在两个固定值之间跳来跳去,就叫周期 2 ;最后群体数在 3 个值之间跳,就叫周期 3 了。 那新生挺聪明的,眼珠一转就想明白了:“啊,几个周期就是站在几个固定位置的人传球。周期 1 时只有 1 个人,丢来丢去还是丢在 1 个人手上;周期 2 就是两个人传来传去;周期 3 就三个人,周期 4 就四个人了……” 在对混沌理论作出关键贡献的学者中,有一位华人科学家李天岩。正是他和他当年的博士论文指导教授约克( James A. Yorke ),一起创造了混沌( chaos )这个名字,也提出了“ 三生混沌” 。 约克是一位颇有个性的美国数学家,他关心政治,兴趣广泛,才华横溢,不修边幅。他研究的是应用数学,喜欢在跨学科的边沿地带转悠。约克所在的美国马里兰大学应用数学所,有一位作气象研究的 A. Feller 教授。 1972 年,约克从 Feller 教授那儿得到了洛伦茨有关气象预测、蝴蝶效应等相关的几篇论文,十分感兴趣。并且, 约克在研究洛伦茨那三个微分方程时,以一个数学家敏锐的直觉,猜测如果一个连续函数有一个周期为三的点,这个函数的长期行为就将会十分奇特,类同于洛伦茨所发现的奇异吸引子那样。约克把这个想法告诉李天岩,鼓动这个得意门生证明他的这个猜想。 李天岩果然不负老师所望,大约两星期后,就完成了这个后来被称之为 Li-Yorke 定理的全部证明。而且,证明简单易懂,只用到初等微积分里的“中值定理”。于是,两人将结果投稿到一个较通俗的刊物“数学月刊”。 不料“数学月刊” 的编辑认为论文内容太过于研究性质而将文稿退了回来,建议他们转投其它刊物,或进行修改,以至于学生们能读懂。当时的李天岩专注于自己的博士论文课题,且疾病缠身,无暇顾及去改好这篇文章。 谈到李天岩的‘疾病缠身’,不得不对李天岩这位传奇的华人数学家多写上几笔。 李天岩,生于福建沙县,三岁时随父母到台湾,大学毕业后到美国攻读博士学位,师从约克教授,后来一直在美国密执安州立大学 (Michigan State University) 数学系任教。李天岩定居美国后数十年,长时期与可恶的病魔作斗争。历经洗肾、换肾、心血管开刀等大手术十余次。意志力惊人的李天岩,长年累月在病床上坚持研究工作,在应用数学与计算数学中作出了不少第一流开创性的贡献 【 1 】 。 话说李天岩和约克的那篇文章,从“数学月刊”退回之后,便一直被搁置在桌上受冷落。直到一年之后,混沌理论的开山鼻祖之一,著名的 生态学家罗伯特·梅,从普林斯顿大学来到 马里兰大学, 讲他的逻辑斯蒂方程。 听到罗伯特·梅介绍逻辑斯蒂系统的倍周期分岔现象,群体繁殖的周期数目逐渐增多又增多,最后导致奇异行为出现一事,约克恍然大悟,立即联想到自己有关‘周期 3’的猜想。当演讲完毕,约克将罗伯特·梅送到飞机场时,赶快给他看了 李天岩那篇尚未发出的文章。 罗伯特·梅立即表示, 文中的思想和证明,也许能够对这种因 周期分岔、从有序走向无序的现象,作出最好的数学诠释。 “一语惊醒梦中人”,约克从飞机场回学校,便立即马不停蹄地找到 李天岩。三个月之后,那篇著名的、名为“周期 3 意味着乱七八糟”的文章才终于见诸于世,发表在 1975 年 12 月的“数学月刊”上。 有趣的是,李天岩和 约克在他们文章的标题中,给那种‘奇异行为’起了一个恶作剧式的名字:“ 乱七八糟 ”( Chaos)。没想到这个名字还颇得人心,随着它所表述的理论一起,不胫而走,从此 名扬天下! 此故事还有一段后续插曲。 作为“周期三意味着混沌”一文的作者,“混沌”一词的命名人,约克被邀请到处演讲。一次在东柏林的演讲后,约克去玩游艇,碰到一位名叫沙可夫斯基 (Oleksandr M. Sharkovsky, 1936-) 的乌克兰数学教授,并且无比吃惊地得知,这位教授比他早十来年就证明了与他们的“李 - 约克定理”类似的定理。这是怎么回事呢? 苏联学者在理论物理和数学上的成果的确不容小觑,难怪有苏联科学家挖苦西方人之语:“你们美国人搞的东西,我们 10 年前就有了!” 约克后来收到了沙可夫斯基寄来的论文,发表在《乌克兰数学杂志》 1964 年第 16 期上,那是一个美国数学家从不问津的一份刊物。李 - 约克文章发表的 1975 年,比起 沙可夫斯基论文发表的1964年, 已经整整 11 年过去了。 李天岩和约克的论文《周期三意味着混沌》的第一部分,证明的是,如果一个系统出现了‘周期 3 ’,那么就会出现任何正整数的周期,系统便一定会走向混沌。或者说,系统有三周期点,就有一切周期点! 【 2 】 。 而沙可夫斯基定理陈述了更为一般的情况,他将自然数按如下方式排列起来: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, … , 1 以外的所有奇数 2* 3, 2* 5, 2* 7, 2* 9, 2* 11, 2* 13, … , 2 乘上面一行 2*2* 3, 2*2* 5, 2*2* 7, 2*2* 9, 2*2* 11, …, 2 乘上面一行 ………… 然后,沙可夫斯基证明了:假设某个正整数 n 排在另一个正整数 m 的后面,那么,如果函数有周期 m 的点,则一定有周期 n 的点。 因为 3 是这个序列中排在最前面的数,显而易见,沙可夫斯基定理中的 m=3 的特例,便是李 - 约克定理的第一部分。 这个结果看起来似乎让美国学者无地自容,不过,李 - 约克定理的第二部分仍然能使美国人觉得挽回颜面,扬眉吐气,因为这一部分是沙可夫斯基定理中没有的,它深刻地揭示了结果关于初始值的敏感依赖性,以及由此而导致的不可预测性,那正是混沌的本质。 俄国科学家们固然功底深厚,硕果累累,但西方学界不拘一格的活跃气氛,跨学科间的亲密接触,理论和应用之间的配搭融合,也都是值得东方学者们深思和借鉴的。 李四有关‘周期 3 ’的演讲结束了,留下几个人在小教室里瞎扯,扯的内容是关于数字‘三’。 周期 3 ?为什么是‘三’呢?‘三’可能是个特别的数字哦,这个周期 3 激起东方哲学思维学者们的浮想翩翩。你们看,中国人的俗话中与三有关的句子太多了: “三人行必有吾师” “三个臭皮匠,赛过诸葛亮” “三个女人一台戏” “事不过三” ………… 更为奇妙的是庄子在他的寓言中的话:“南海之帝为倏,北海之帝为忽,中央之帝为混沌。”,这儿说了三个‘帝’,其中居然还有‘混沌’一词。几千年以前的中国哲人,就将‘三’和‘混沌’联系起来了!不过你得注意,此‘混沌’非彼‘混沌’也! 老子说:“一生二,二生三,三生万物”,老子的话中还有点玄机,他并不是没完没了地线性递推过去:“一生二,二生三,三生四,四生五,五生六……”,而是数到三,事情就转了弯。 如今,科学家说:周期三即混沌,与庄子和老子的思想是不是有异曲同工之妙呢?那就是见仁见智随你想象了,但是还没有科学证据的。 【 1 】李天岩传,丁玖 【 2】 Li, T. Y. and Yorke, J. A.Period Three Implies Chaos. American Mathematical Monthly 82,985–92, 1975 http://pb.math.univ.gda.pl/chaos/pdf/li-yorke.pdf 上一篇:股市大海找混沌 系列科普目录
个人分类: 系列科普|2422 次阅读|24 个评论
[转载]First Announcement of DDAP7
bhwangustc 2011-11-10 20:39
[转载]First Announcement of DDAP7
Dynamic Days Asia Pacific 7 (DDAP7) The 7th International Conference on Nonlinear Science Academia Sinica, Taipei, Taiwan, 6 August (Monday)-9 August 2012 General Information: Dynamic Days Asia Pacific (DDAP) is a regular series of international conferences rotating among Asia-Pacific countries every two years in recent years. Its purpose is to bring together researchers world-wide to discuss the most recent developments in nonlinear science. It also serves as a forum to promote regional as well as international scientific exchange and collaboration. The conference covers a variety of topics in nonlinear physics, biological physics, nonequilibrium physics, complex networks, econophysics, and quantum/classical chaos, etc. DDAP1 started in 1999 in Hong Kong, then continued in Hangzhou (DDAP2, 2002), Singapore (DDAP3, 2004), Pohang (DDAP4, 2006), Nara (DDAP5, 2008) and Sydney (DDAP6, 2010). DDAP7 will take place at Academia Sinica in Taipei, Taiwan on 6-9 August 2012. Plans for the 8th to the 9th DDAP are scheduled for India (2014) and Hong Kong (2016). Information for some former conferences: DDAP6: University of New South Wales, Sydney, Australia, 12-14 July 2010 http://conferences.science.unsw.edu.au/DDAP6/DDAP6.html DDAP5: Nara Prefectural New Public Hall, Nara, Japan, 9-12 September 2008 http://minnie.disney.phys.nara-wu.ac.jp/~toda/ddap5/ DDAP4: Pohang University of Science and Technology, Pohang, Korea, 12-14 July 2006 http://www.apctp.org/topical/ddap4/ DDAP3: National University of Singapore, Singapore, 30 June-2 July 2004 http://www.cse.nus.edu.sg/com_science/story/body.html DDAP2: Zhejian University, HangZhou, China, 8-12 August 2002 http://physics.zju.edu.cn/note/dispArticle.Asp?ID=132 DDAP1: Hong Kong Baptist University, Hong Kong, 13-16 July 1999 http://www.hkbu.edu.hk/~ddap/ Topics of the conference Chaos Pattern formation Econophysics Complex networks Protein folding and aggregation etc Organization Committee (OC) Chin Kun Hu* (huck@phys.sinica.edu.tw ) Academia Sinica: Chairperson Ming-Chya Wu* (mcwu@phys.sinica.edu.tw) National Central University: Secretary Chi Keung Chan* (ckchan@gate.sinica.edu.tw) Academia Sinica Cheng-Hung Chang (chchang@mail.nctu.edu.tw) National Chiao Tung University Chi-Ming Chen (cchen@phy.ntnu.edu.tw) National Taiwan Normal University Chi-Ning Chen (cnchen@mail.ndhu.edu.tw) National Dong Hwa University Hsuan-Yi Chen* (hschen@phy.ncu.edu.tw) National Central University Yeng-Long Chen* (yenglong@phys.sinica.edu.tw) Academia Sinica Yih-Yuh Chen (yychen@phys.ntu.edu.tw) National Taiwan University Chung-I Chou (cichou@faculty.pccu.edu.tw ) Chinese Culture University Lin-Ni Hau (lnhau@jupiter.ss.ncu.edu.tw) National Central University Ming-Chung Ho (t1603@nknucc.nknu.edu.tw) National Kaohsiung Normal University Tzay-Ming Hong (ming@phys.nthu.edu.tw) National Tsing Hua University Ding-wei Huang (dwhuang@cycu.edu.tw) Chung-Yuan Christian University Ming-Chang Huang (ming@phys.cycu.edu.tw) Chung-Yuan Christian University Kwan-Tai Leung* (leungkt@phys.sinica.edu.tw) Academia Sinica Sai-Ping Li* (spli@phys.sinica.edu.tw) Academia Sinica Sy-Sang Liaw (liaw@phys.nchu.edu.tw) National Chung Hsing University Chai-Yu Lin (lincy@phy.ccu.edu.tw) National Chung Cheng University Hsiu-Hau Lin (hsiuhau@phys.nthu.edu.tw) National Tsing Hua University Chun-Yi David Lu (cydlu@ntu.edu.tw) National Taiwan University Wen-Jong Ma* (mwj@nccu.edu.tw) National Chengchi University Ning-Ning Pang (nnp@phys.ntu.edu.tw) National Taiwan University Yuo-Hsien Shiau (yhshiau@nccu.edu.tw) National Chengchi University Chi-Tin Shih (ctshih@thu.edu.tw ) Tunghai University Hsen-Che Tseng (tseng@phys.nchu.edu.tw) National Chung Hsing University Wen-Jer Tzeng (wjtzeng@mail.tku.edu.tw) Tamkang University Zicong Zhou (zzhou@mail.tku.edu.tw ) Tamkang University *Members of Local Organization Committee International Advisory Committee (IAC) Asia-Pacific Moo Young Choi (Seoul National University, mychoi@snu.ac.kr) Robert Dewar (The Australian National University, robert.dewar@anu.edu.au) Bruce Henry (University of New South Wales, b.henry@unsw.edu.au) Gang Hu (Beijing Normal University, ganghu@bnu.edu.cn) Pak Ming Hui (The Chinese University of Hong Kong, pmhui@phy.cuhk.edu.hk) Byungnam Kahng (Seoul National University, bkahng@snu.ac.kr) Kunihiko Kaneko (The University of Tokyo, kaneko@complex.c.u-tokyo.ac.jp) Seunghwan Kim (APCTP, Pohang, swan@postech.ac.kr) Yuri S. Kivshar (The Australian National University, ysk124@physics.anu.edu.au) Takahisa Harayama (ATR Wave Engineering Laboratories, harayama@atr.jp) Yoshiki Kuramoto (Kyoto University, kuramoto@kurims.kyoto-u.ac.jp) Choy-Heng Lai (National University of Singapore, phylaich@nus.edu.sg) Baowen Li (National University of Singapore, phylibw@nus.edu.sg) Bing Hong Wang (China Univ of Science Technology, bhwang@ustc.edu.cn) Po Zheng (Zhejiang University, bozheng@zju.edu.cn) Zhigang Zheng (Beijing Normal University, zgzheng@bnu.edu.cn) Changsong Zhou (Hong Kong Baptist University, cszhou@hkbu.edu.hk) Ravindra E. Amritkar (Physical Research Laboratory, amritkar@prl.ernet.in) Mustansir Barma (Tata Institute of Fundamental Research, Mumbai, barma@theory.tifr.res.in) Abhishek Dhar (Raman Research Institute in Bangalore, dabhi@rri.res.in) Ramakrishna Ramaswamy (Jawaharlal Nehru University, New Delhi, r.ramaswamy@mail.jnu.ac.in) Europe Giulio Casati (Center for Nonlinear and Complex Systems, Via Vallegio, Giulio.Casati@uninsubria.it) Michel Peyrard (ENS de Lyon, Michel.Peyrard@ens-lyon.fr) Mogens Jensen (University of Copenhagen, mhjensen@nbi.dk) Celso Grebogi (University of Aberdeen, grebogi@abdn.ac.uk) Stefano Ruffo (University of Florence, stefano.ruffo@unifi.it) Tamas Vicsek (Etvs Loránd University (ELTE), vicsek@hal.elte.hu) America Predrag Cvitanovic (Georgia Tech., predrag@gatech.edu) Ying-Cheng Lai (Arizona State University, Ying-Cheng.Lai@asu.edu) Edward Ott (University of Maryland, edott@umd.edu) Rajarshi Roy (University of Maryland, rroy@umd.edu) Gene Stanley (Boston University, hes@bu.edu ) Host Institute Institute of Physics of Academia Sinica Sponsors: APCTP (Pohang, South Korea) Physical Society of the Republic of China (Taipei, Taiwan) National Science Council (Taipei, Taiwan) National Center for Theoretical Sciences (Taipei, Taiwan) Ministry of Education (Taipei, Taiwan) Lectures: 12 plenary lectures 12-18 invited talks in 3 parallel sessions Some contributed talks and posters * 1-2 mins short report for each poster will be arranged during poster session. 10-15 mins talk will be arranged on Aug 9 for the reporter who wins the best poster award. Important dates: 30 November 2011: collecting responses from international advisory committee 2 December 2011: preparing a list of plenary lectures and invited talks January 2012: applying NSC grant DDAP7schedule
个人分类: 会议信息|5551 次阅读|0 个评论
[转载]Research and News from Chaos
AIPBeijing2010 2011-7-15 08:16
Subject: Research and News from Chaos Advertising Info News Announcements from Chaos Impact Factor Chaos sees 16% increase in Impact Factor Journal metrics just released by Thomson Reuters*, show Chaos rising through the ranks with a 16% increase in Impact Factor in 2010 compared to 2009. Chaos' 2010 Impact Factor is 2.081, putting it among the top ten journals in Mathematical Physics. Read more * 2010 Journal Citation Reports® (Thomson Reuters, 2011) Top Downloads View the 20 most downloaded articles published in Chaos , updated monthly. Image from Time-delay-induced phase-transition to synchrony in coupled bursting neurons Bhim Mani Adhikari, Awadhesh Prasad, and Mukeshwar Dhamala Chaos 21 , 023116 (2011) Focus Issue: Synchronization Cascading Processes in Complex Networks Complex networks research has provided us with tremendous insight into the structural properties of the interaction networks among the dynamical components of complex systems. To understand the complex systems, however, we must understand how collective behavior arises and interacts with the intrinsic network structure. Synchronization and cascading are simple yet powerful examples of such collective behavior. Not only do they appear in broad range of applications, but they also allow simple paradigmatic models and analytical methods to help us capture network dynamical effects. Further developments, extensions, and variations of these tools, as well as new innovative approaches, will help advance the science of complex systems in which this Focus Issue aims to facilitate. Read full introduction Sample-to-sample fluctuations in real-network ensembles Nicole Carlson, Dong-Hee Kim, and Adilson E. Motter Chaos 21 , 025105 (2011) Cascading dynamics in complex quantum networks Liang Huang and Ying-Cheng Lai Chaos 21 , 025107 (2011) More Articles from this Focus Issue Chinese Language Site Launched Celebrating the one-year anniversary of the opening of its Beijing office, AIP has launched a Chinese-language version of its website , which gives Chinese researchers access to critical information about AIP in their own language. Read more » Keep up-to-date with all the latest news and articles in Chaos Timely updates about Chaos are available on these social networks: Subscribe to the Table of Contents alerts or the RSS feed to receive the latest research as it is published: Submit your manuscript Information for Contributors This is an email advertisement. If you do not wish to receive e-mail from Chaos , send an e-mail to unsubscribe-researcher@aip.org with the words "Unsubscribe" in the subject line. 2 Huntington Quadrangle, Suite 1NO1 Melville, NY 11747 USA © 2011
个人分类: AIP期刊|1440 次阅读|0 个评论
[转载]CHAOS in Japanese Fashion Show
fangjinqin 2010-11-27 11:20
CHAOS in Japanese Fashion Show CHAOS in Japanese Fashion Show
个人分类: 科学论坛|2536 次阅读|1 个评论
[转载]"Nature"新闻与评论:Chaos Billiard Lasers
fangjinqin 2010-6-12 17:04
Nature新闻与评论: Chaos Billiard Lasers Chaos Billiard Lasers
个人分类: 杂谈评论|2192 次阅读|1 个评论
EMTE_0000
centus 2009-7-17 05:48
A interesting poem The loss of a nail, a shoe bad; A bad shoe, folding of a horse; Folding of a horse, injured a cavalier; Injury of cavalier, lost a battle. Lost a battle, dead had an empire. how can we analyze some problem from concept of wholism?
个人分类: Mechanics|1641 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-17 08:24

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部