科学网

 找回密码
  注册
科学网 标签 等离子体 相关日志

tag 标签: 等离子体

相关日志

磁流体发电
zjzhang 2011-12-16 18:07
普通发电机,能量的转换为 初级能源(化学燃料,核燃料)- 热能 - 机械能(线圈在磁场中转动)- 电能; 而磁流体发电机是直接对等离子体加热,后等离子体进入磁场产生电动势,能量转换为 初级能源(化学燃料,核燃料)- 热能 - 电能。 1959 年, 美国阿夫柯公司建造了第一台磁流体发电机。
个人分类: 数学|2878 次阅读|0 个评论
回旋动理学理论
热度 1 plasmascience 2011-11-24 12:02
回旋动理学应该是我们做磁约束等离子体理论的基本工具,可惜到今天为止我还没有看懂过一篇回旋动理学的文章, 请教了Xu师弟后,他给了我以下建议: "建议先看Brizard在07年review of modern physics上写的一篇综述。他是基于李变换扰动方法的现代回旋动理学理论,这篇能看懂应该就能看懂大多数回旋动理学的文献了。李变换扰动方法可以看文献:Cary,1983,annal of physics,littlejohn,1982,journal of mathematical physics。最后一篇需要对微分流形有一些简单的了解。" 有懂的同学可以在这留言告诉我你的心得,谢谢!
5569 次阅读|4 个评论
[转载]无极灯启动特性研究
chvacuum 2011-10-26 23:11
  为了研究提高无极灯光效的方法, 本文测量了无极灯启动阶段的电参数和发射光谱, 分析了点灯后阻抗、Hg 原子光谱强度、Ar 原子光谱强度、等离子体参数和放电模式随时间的变化规律。结果表明, 在启动阶段, 无极灯阻抗发生了升-降-升的变化;Hg 原子谱线强度在某稳定位置附近做相对稳定的波动; Ar 原子光谱强度迅速下降到某稳定值; 电子浓度迅速下降到某稳定值, 中能电子温度相对稳定; 放电处于H 型放电模式。这为进一步设计电子整流器和提高无极灯的光效奠定了基础。   无极放电光源是一种低气压放电光源, 由于没有电极, 因此它与传统光源相比有诸多优势, 例如寿命长, 在寿命期间光衰十分小, 而且发光物质和电极不会出现相互作用, 因而得到广泛的研究 。无极放电是指放电腔中没有内置电极的一种放电形式, 腔体内可以填充一种、两种或多种放电气体气氛。尽管无极放电已经被发现了130 多年 , 并且在1891 年Tesla 采用无极放电原理首先设计了照明概念灯, 但采用无极灯放电制成更加实用的无极灯才是近20 年的事情。1991 年松下公司首先推出了采用1356 MHz 高频电流驱动的Everbright 无极灯, 这种灯的功率为27 W, 光效是37 lm/W , 平均寿命是40000 h。同年, 荷兰Philips 公司生产了一种梨形的QL 无极灯, 这种灯采用凹腔式的腔体结构,驱动频率为265 MHz, 光效为70 lm/W, 平均寿命是60000 h。1994 年, 美国GE 公司推出了一款称为GENURA 的紧凑型一体化无极灯, 其驱动电流的频率也是2.65 MHz, 光效是50 lm/W , 寿命是15000 h。随后1996 年德国Osram 公司推出了工作在250 kHz的环形ENDURA 无极灯, 其光效达到了75 lm/W, 平均寿命是60000 h。   近年来, 随着能源紧张和环境恶化的不断加剧,节能环保的无极灯和LED 灯成为目前研究的热门光源。因为LED 灯具的散热是目前LED 的一个重要障碍, 而散热对无极灯要简单得多。因此, 与LED相比, 无极灯在大功率方面占有绝对的优势。因而研究影响无极灯光效的各种性能对进一步提高其光效和应用领域具有重要意义。目前无极灯存在的电磁辐射问题可以通过提高高频发生器的工作稳定性、给发生器增加金属屏蔽外壳以及给泡壳增加导电金属膜来有效降低。无极灯与以前研究的大气压介质阻挡放电相比, 有很大不同, 前者主要是低气压下的H 型放电, 而后者是电容耦合的E 型放电 。对无极灯而言, 由于启动性能影响其启动光效和稳定性, 因此本文主要研究影响无极灯启动阶段的电学和光学特性。 1、实验装置   为了测量无极灯的启动特性, 采用一种50 W橄榄型的无极灯进行实验, 实验原理如 图1 所示。该无极灯包括电子镇流器( 也称高频发生器) 、高频馈线、耦合器和泡体四部分, 通常高频馈线、耦合器和泡体做成一个整体称为无极灯的灯泡。实验中采用的镇流器是商用无极灯电子镇流器。实验中采用陶瓷管来限制光纤探头测量的光强度。TektronixTCPA300 电流探头、Tektronix P6015A 高压探头和Tektronix TPS 2014( 100MHz, 1Gs/ s) 四通道示波器测量电子镇流器输出端的电压、电流和功率等电参数。采用Avantes 2048 光纤光谱仪测量无极灯的发射光谱强度。 图1 实验原理图 3 、结论   无极灯的启动特性对无极灯的光效和稳定性非常重要。通过电参数和发射光谱的测量研究, 发现无极灯启动阶段, 电子镇流器输出的电压、电流和功率发生了一定的变化, 无极灯阻抗经过一个升- 降- 升的过程; 发射光谱发生了较大的变化: Hg 原子发射光谱强度在小范围内做相对稳定的波动变化,Ar 谱线强度降低很快, 在10 s 达到一个稳定值; 电子浓度随放电时间的变化迅速减小到某一稳定值,中能电子相对稳定, 放电工作在H 型放电模式。 参考文献    陈大华, 陈育明. 无极放电光源的进展 . 中国照明电器, 2008, (3) : 1- 5    王长全, 张贵新, 董晋阳, 等. 无极灯的温度特性研究 . 中国照明电器, 2010, (7) : 1- 4    Hittorf W. Ueber die Elekticititatsleitung der Gase . Annual Physics, 1884, 21: 90-139    Tesla N. Tesla珜 Experiments with Alternating Current at High Frequency . Electrical Eng ineer, 1891, (7) : 549- 550    王长全, 张贵新, 方志, 等, 常压介质阻挡放电对聚苯乙烯表面改性研究 . 真空科学与技术学报, 2009, 29(6) : 695- 699    Yu Chen, Guo Zhigang, Zhu Ximing, et al. Spatially Resolved Optieal Emission Spectroseopy Investigation of E and H Modes in Cylindrical Inductively Coupled Plasmas . Journal of Physics D: Appllied Physics, 2007, 40(7) : 5112- 5116    Daltrini A M, Moshkalev S A, Monteriro M J R, et al. Mode Transitions and Hysteresis in Inductively Coupled Plasmas . Journal of Applied Physics, 2007, 101(7) : 073309    龙奇. 高频诱导无极光源的发射光谱学诊断 . 博士学位论文, 2008: 49    Czerwiec T, Graves DB. Mode Transitions in Low Pressure Rare Gas Cylindrical ICP Discharge Studied by Optical Emis珜椀漀渀 Spectroscopy . Journal of Physics D: Appllied Physics, 2004, 37(4) : 2827- 2840
个人分类: 真空|1703 次阅读|0 个评论
Magnetoplasmonics 磁等离子体光子学(II)
热度 1 gxdu 2011-10-1 10:45
Magnetoplasmonics 磁等离子体光子学(II)
光驱动下,贵金属纳米结构中电子的集体震荡模式有偶极子模式和多极子模式。偶极子模式最常见,是一辐射模式,单个偶极子的辐射分布在电动力学中有严格的数学描述,可参考杰克逊的《经典电动力学》。多极子模式均不是辐射模式,其对远场辐射贡献为零。在等离子体光子学中,有模式之间的耦合,也有贵金属纳米结构之间的耦合,二者均非常重要。 电偶极子的辐射分布中有远场球面波分量,球面波是一种传输波,其电场和磁场分量满足自由空间的比例关系;但近场分量不是一种传输波,其电场分量站主要,而磁场分量小得多。当自由空间中有两个贵金属纳米粒子受光照射,他们辐射的电磁波会作用到对方。特别是当二者靠近到他们可以通过其辐射的近场分量相互作用时,这种相互作用会大大增强,这就是贵金属纳米结构之间的耦合。 例子是,考虑一维纳米粒子链,粒子半径是 40 纳米,粒子之间的距离是 60 纳米,当其中一个粒子收到光辐射,自由电子集体震荡时,链上其他粒子也会通过彼此之间的近场耦合而发生同频率的震荡。但由于金属的欧姆热损耗和偶极辐射损耗,这种震荡的幅度随远离激发粒子的距离迅速指数衰减。 如果加入磁性材料,电子的集体震荡行为就受磁矩的影响,具体如何影响,能多大程度的影响。首先,由于自旋轨道作用,磁矩会诱导与磁化方向相反的旋度电流(楞次定律)。这种旋度电流反过来能翻转磁矩吗?考虑圆偏振光作用于磁性材料上,电子会是怎样的运动轨迹呢? 简单的考虑自由电子在光场中的运动,光电场在 xy 平面内, Eq.(1) 电子轨迹为 Eq.(2) 第一项为光诱导的回旋运动,考虑光周期为飞秒量级,在一个光周期内,可以忽略电子受到的散射,认为电子是自由的。这样,一个光周期内,电子在一个圆偏振光中的运动轨迹为圆周运动和平移运动的合成。圆周运动分量的旋度和光的旋度相同。
个人分类: 科研笔记|3883 次阅读|1 个评论
祝贺王晓钢老师当选美国物理学会会士(APS Fellow)
热度 2 phenixd 2011-10-1 09:11
王晓钢教授(科学网博主--等离子体科学)刚刚当选2011年美国物理学会会士(APS Fellow),已肯定他在磁重联和复杂等离子体方面的贡献。这是继蔡诗东院士我国第二个等离子体物理学家在大陆获得的APS Fellow。证书上的嘉奖词(citation)是: “For seminal contributions to the theory of magnetic reconnection with broad applications to fusion and space plasmas, and to studies of waves and instabilities in complex plasmas.” 当选APS Fellow 还是很不容易的。 以前看过APS DPP的Fellow名单,发现只有L.CHEN, G.FU等几位华人在,大陆本土竟然一个都没有,太悲催了。9.16号刚刚在杭州CPS秋季会议上见过王老师。再次祝贺王老师,望大陆有更多人成为APS Fellow。
9363 次阅读|2 个评论
[转载]磁重联
热度 1 hqsong 2011-7-30 06:38
本文转自王晓钢的博客 磁重联漫谈 (1) 屈指数来,笔者研究等离子体中磁力线的“重联”现象已整整 20 年了。 磁重联( magnetic reconnection ),或磁力线重联( magnetic field line reconnection )——也有叫“磁场重联”的,取描述磁力线“断开”( break )再“重新连接”( reconnect )的物理过程的意思。这一过程早期就是用 magnetic field line broken and reconnected 这样的语言来表述的。(既然是“连接”,应该译作“磁重连”的;不过既然大家都这么用着,就先这么写着。) 磁重联的理论,在实验室、空间、与天体等离子体物理领域里都有重要的应用。很多“快尺度”的大规模能量转换过程如实验室中磁约束等离子体的各种撕裂不稳定性( tearing instabilities )、空间物理中太阳风等离子体与地球磁层之间的耦合、天体(太阳)物理中耀斑( solar flares )、日冕加热( solar coronal heating )、日冕物质抛射( coronal mass ejections, CME )等现象,或是典型的、或是伴随着磁重联的物理过程。而且基于磁重联理论发展起来的“磁场拓扑”理论对几何与拓扑研究也有很大的推动。 磁重联的模型,起源于天体(太阳)物理的研究。最早的“磁重联”概念是一位澳洲的物理学家为解释日耀斑现象而提出的( Giovanelli, R. G., 1946: Nature 158 , 81 )。但是那时他用的 terminology 不是“ magnetic reconnection ”,而是“ magnetic annihilation ”——磁“湮灭”。就是说,当两条方向相反、相对运动的磁力线在一点“相遇”时,会产生磁“湮灭”而放出光——用此来解释日耀斑观测看到的强辐射。 这个简单的模型,开创了等离子体物理学的一个重要研究领域——磁重联理论、实验、与卫星、天文观测。以至于最近美国专门以磁重联研究为主要目的连续发射了五颗卫星(即所谓 THEMIS 计划)。什么叫“原创性研究”( original work )? Giovanelli 的这个工作就是典型的例子。 当然,现在看来这个模型还非常粗糙。不过,开创性的工作常常是简单的、但是抓住了关键。 磁重联漫谈 (2) 当然,现在看来这个模型还非常粗糙。 首先,通过现代计算机模拟我们可以看到,磁力线的电磁“湮灭”是在真空中发生的现象。即磁力线只有在真空中才能以光速运动并“湮灭”。而在等离子体中,因为要“携带”环绕其旋转的带电粒子(特别是离子)一起运动,所以磁力线是有“质量”的,即使是电磁扰动引起的磁力线运动,其速度相比光速来说也是缓慢的——大约在 Alfven 速度的数量级。因此,后来人们改用“ reconnection ”来代替“ annihilation ”。 而且我们知道,磁场的散度为零,所以磁力线是不会“断开”的(至少在真空中)。实际上,在等离子体的理想磁流体( ideal magnetohydrodynamics, or ideal MHD )近似下,等离子体与磁力线是“冻结”( frozen in )在一起运动。形象地说,就如我们小时候喜欢吃的“棒冰”的冰冻结在中间的棍上一样。更准确的比喻是串在中间的杆儿上的算盘珠:可以很容易的沿着杆儿运动或者“回旋”运动,但是没法“跨越”这一根杆儿到另一杆儿上去。当然,如果等离子体中有不均匀性,还是会产生横越磁力线的“漂移”( drift ),但是如果磁场限制在有限的体积内,这种“漂移”运动仍然限于同一磁力线所螺旋缠绕成的磁面上:不过是“抄近路”到同一磁力线的另一部分而已。就像调皮的孩子在螺旋滑梯上直线地从“一层”跳到“另一层”。 理想磁流体的这一重要性质可以用来实现在物理测量上“追踪”( tracing )磁力线( A. Newcomb, 1960: Ann. Phys. (N.Y.) 10 , 232 );并且保证了磁力线在其演化过程中拓扑性质不变。这种不变性对应的守恒量叫做“磁螺旋度”( magnetic helicity ),定义为磁矢势 A 与磁感应强度 B 的点乘积的空间积分(一般积分域为一条“磁力管”)。 当等离子体中的耗散效应(比如电阻)很小的时候,也就是说,磁力线在等离子体中的扩散时间远大于磁力线运动的特征时间、或者耗散效应起显著作用的特征空间尺度远小于磁场变化的特征空间尺度,上述性质还可以继续应用。所以对于空间以及实验室中的磁约束等离子体来说,理想磁流体的这些性质基本上都是适用的。 但是,当两条磁力线足够接近,到了“非理想”效应( non-ideal effects ,比如耗散或者其它破坏理想磁流体条件的动理学效应如有限 Larmor 半径等效应)显著影响物理过程的尺度,随它们一起运动的“等离子体元”便分辨不出自己到底属于哪一条磁力线。这可以有两种情况:或者(当碰撞很弱的时候)两条磁力线之间的距离小于带电粒子环绕磁力线运动的回旋半径( Larmor 半径);或者(当碰撞足够强的时候)一条磁力线上的电子被“碰出”自己的回旋轨道后可以被另一条磁力线“捕获”,甚至完全“丢失”了(不知道跑到那条磁力线上去了)。 这时反过来我们也可以说(因为我们只能做粒子运动的测量)磁力线“丢失”了自己的 identity ,也就是说我们无法 identify 磁力线了。人们把这个磁力线“迷失”的区域叫做“扩散区”( Diffusion Region )。因此,在这个区域里磁场的拓扑可以发生改变。一旦这种改变发生,“走出”这个“扩散区”的磁力线就已经不再是原来的磁力线了。它们之间的连接形式发生了“重组”。我们把这个磁力线进入扩散区、“迷失”、重新连接,最后“走出”扩散区的整个过程,叫做“磁力线重联”或者简称“磁重联”。显然,磁重联伴随着磁场拓扑的变化(比如等离子体中的撕裂模就是一种典型的磁重联过程,“撕裂”就有原来磁场拓扑被改变的意思),因此导致磁场能量的快速释放。所以实验室、空间、天体等离子体中很多快过程、特别是“突发”( Onset )过程,如太阳耀斑、日冕物质抛射、磁暴( Magnetic Storms )、磁层亚暴( Magnetosphere Substorms )、锯齿崩塌( Sawtooth Collapses )、破裂不稳定性( Disruptions )等都与磁重联有关甚至是磁重联主导的物理过程。 磁重联漫谈 (3) 一场秋雨一场凉。终于告别炎热的夏天,迎来了秋季学期。校园里又充满了年轻人的欢声笑语。 周末,不谈学问,说点轻松的: 说起“磁螺旋度守恒”,想起在 Graduate School 的一些往事。 我的博士导师曾经对“磁螺旋度守恒”的发展做过一些贡献。前面说了磁螺旋度定义为磁矢势 A 与磁感应强度 B 的点乘积的空间积分。他名字的英文缩写正好是 A. B. ,所以一些同行戏称他“ A dot B ”(即 A 点乘 B 的英文读法)。我第一年上他的《流体物理》,有时会到办公室问些问题。当时读文献看到“磁螺旋度守恒”觉得挺有意思的,就去问: “物理学中的守恒量都对应着一种不变性。比如能量动量守恒对应时空平移不变性。那么 Helicity 守恒对应什么不变性?” 记得他当时扬了扬眉毛,看了我一下,不无赞叹地说:“中国的大学里还学这些?”暑假考过 Qualify 以后,他便鼓励我到他那里做,并建议我申请 JHU/APL 的 Fellowship ——大概相当于国内学校的“宝钢奖学金”一类的,但是条件很丰厚,比当时博士后的 salary 还多:因为包括了每年几万美元的学费。到我手里的 stipend 当然没有那么多,但是还是比学校助研奖学金( Graduate Research Assistantship, GRA )多不少。而且包括每年参加两次学术会议及论文版面费的研究经费。我在磁重联方面的工作,就是在这个 Fellowship 的支持下起步的。当然,现在翻出那时写的文章,会觉得很幼稚。可是当时写的时候,还是信心满满地,说:“一劳永逸地解决了”( once for all )某某问题。结果被 referee 狠狠地教训了一通 :p 那篇文章是关于地磁亚暴的,发在 JGR 上。接着做的是关于太阳物理的,发在 ApJ 上。再接下来却是一篇流体的( finite time singularity )、一篇磁约束聚变( sawtooth crash )的。没几年的时间,等离子体物理的主要领域都走了一遍,有点踌躇满志的感觉吧。直到毕业那一年在 Gordon Conference 上(第二年又在 UCSB 的 ITP )与一位有名的前辈科学家 John Greene 深入讨论磁重联的基本概念,才知道我的一些理解不仅肤浅,有些甚至根本就是错误的。 在 New Hampshire 和 Santa Barbara 与 Greene 先生的那些讨论,让我受益至今。当时他就非常强调磁重联的零点,其重要性我到后来也才渐渐明白。前几年我们通过卫星观测数据分析得到了有关的证据,并看到了很多相关的物理现象。但是那时他已经失去记忆了。否则,有很多我至今仍想不明白的卫星观测结果在他那里一定会有清晰的答案。 Greene 先生在去年去世了。作为等离子体物理方面国际最高奖项之一 Maxwell 奖的得主( 1992 ),他的名字通过“ BGK 波”留在了物理教科书上。但是,我个人认为,他在磁重联方面的贡献,也许更重要;至少应该不逊于著名的 Sweet-Parker 模型。他的 Maxwell 奖获奖报告就是关于磁重联拓扑理论的。与 Eugene Parker 教授一样,更可贵的是他对科学真理的不懈追求。记得他说过:他那些关于三维磁重联基本理论的文章送出去以后,每次一开始都被 Referee 们打了回来。提起这件往事他开玩笑说:每次 rejected ,他就再送。次数多了,那些人也 tired 了,就让他发了。同 Parker 教授一样,他也说:越是真正的有科学思想的文章,越容易被 rejected ;反而是一些平庸的文章容易发表。你们年轻人不要怕文章给人家 rejected ,要 keep trying ! 把这句话转述给刚开始自己 career 的年轻人。 磁重联漫谈 (4):Sweet-Parker模型 Giovanelli 的理论只是一个定性的、初步的想法。而要解决物理问题,需要定量的研究。最早试图定量研究磁重联的模型应该是 1957 年提出的 Sweet-Parker 模型。 这个模型应该被称为磁重联的“一维”模型:因为假设了在等离子体携带磁力线进入“扩散区”的方向(“入流”方向,通常选作为 x- 方向)上的特征尺度远远小于磁力线重联以后携带等离子体离开“扩散区”的方向(“出流”方向,通常选作为 y- 方向)的特征尺度。至于另外一个方向( z- 方向),我们可以称之为“ transparent ”方向。也就是说,这个方向上的特征尺度更长,所以可以看成是“透明”的,即任何一个 z= 常数的横截面都应该是相同的——完全忽略了沿着这个方向的变化。 可能有人会问:忽略了 z- 方向上的变化,那应该是二维模型呀?不错,是二维的。但是因为“出流”方向( y- 方向)的变化也是大尺度的,我们在实际的计算中只考虑了这个尺度特征尺度,而没有计入具体的空间变化形式。 这个模型的物理图像是这样的:如果在等离子体中存在一个沿着 z- 方向的“电流片”,那么电流的方向显然可以看成“ transparent ”方向。既然是“片”其宽度一定远远大于厚度。于是我们又可以简化其在宽度方向的变化。如果其厚度很薄,在流体近似下可以忽略,那我们就有了电流奇异性( current singularity ),而这个奇异性正是 Sweet-Parker 模型的关键(不过,这一点人们在三十多年后才认识到)。 显然,电流片两侧的磁场是反向的。如果这些反向的磁力线因为外界的驱动或者磁场自身的自由能而相互“靠拢”( merging )。磁重联就发生了。 Sweet-Parker 模型假设电流片外的物理过程是“稳态”的( steady state ), dF/dt = 0 —— 这里和后面 d/dt, d/dx 都应该是偏导数,可惜没有相应的符号。那么磁通量的变化率(单位时间流入电流区的磁通)应该等于 v x dF/dx ,这里 v x 显然是等离子体“入流”的速度,这里的 F 是磁通。在模型的二维几何下,某一点的磁通定义为:从该点到原点连一条截线,通过这条截线的磁力线根数。根据这个定义,我们有: v x dF/dx = v x B y 。这在物理上很明显:就是单位时间在 x- 方向被带进电流片区的沿着 y- 方向的磁力线的根数! 这就是S weet-Parker 模型的“外区解”( outer region solution ),再简单不过! 那么,电流片内呢? 因为电流片很薄,两边的磁力线 merging ,所以电流片内 v x 趋近于零!磁通的变化只有 dF/dt 这一项。从磁感应方程, DF/Dt = dF/dt = h J = h B y / D 。这里 D/Dt 用来表示全导数, h 是电阻率, J 是电流密度, D 是电流片的半厚度。后面两个等号前面应该还有常数,为简单起见我们把它们无量纲化了。这个方程就是 Ohm 定律:电场等于电阻乘电流——因为磁通 F 显然就是磁场的矢势的 z 分量,其时间微分就是没有静电分量的电场(差一个光速因子),又是再简单不过!关键点在于把电流 J z = dB y /dx (无量纲化了前面的常数因子)简化成 B y / D 。这很明显:横跨电流片 D B y / D x=2B y /2 D 。 D 趋向零就等于 dB y /dx 。 另一个关键点是将“内区解”( inner region solution )的磁通变化率 DF/Dt = h B y / D 与“外区解”的磁通变化率 DF/Dt = v x B y 相“匹配”( matching ),得到电流片的半宽度 D = h /v x 。 这是 Sweet-Parker 模型的神来之笔!就这么一个等号,可以写整整一厚本数学书,名字叫:《渐进方法》( Asymptotic Methods )。具体到这里,用的是“边界层”理论( boundary layer theory )。当然,这么“匹配”会有人不同意的。更严格的理论是在 60 年代中期发展的。而 Sweet-Parker 模型真正适用的非线性电阻磁重联理论里,严格的理论一直就没有发展!!(有志气的年轻人不妨做一做。 )可是数值模拟和实验研究都证明了这个简单模型的正确! Amazing ! 再下面的就是简单的不可压缩性: v x L y = v y D 。这里 L y 就是电流片宽度方向的特征尺度, v y 则是“出流”的速度(物理上可以证明等于当地的 Alfven 速度)。带入 D = h /v x ,我们得到 Sweet-Parker 模型最重要的结论:磁重联的速率(磁力线进入电流片即“扩散区”的速率) v x ~ D ~ h 1/2 这个结果,虽然屡受挑战,但在电阻磁重联理论中“独领风骚”的地位至今难以动摇。 这再次告诉我们:只要抓住了关键,就可以用最简单的模型(这个模型仅仅是个一维模型——另一维的 info 仅仅是在不可压缩性里引入了一个尺度 L y )得到最重要的结果。 我们常说:某个工作有“物理”。这就是“物理”! 这个模型是 1957 年 Sweet 在一次会议上提出的几何模型和设想(会议文集 1958 年发表);同年 Parker (就是提出“太阳风”理论的那位)在 JGR 上发表了第一篇有上述推导过程的论文。 当然,这个模型仅仅是一个“半定量”的“ scaling ”模型。“严格”的理论是后来才发展起来的。 磁重联漫谈(5):Sweet-Parker模型(续) Sweet-Parker 模型看起来很完美,特别是其给出的 v x ~ D ~ h 1/2 的磁重联速率。 记得当 年在 UC Santa Barbara 的 ITP 做访问的时候,一位 Fields 奖得主来讲 Knot 理论,举了一个有意思的例子: 假设有 N 条平行的高速路,再在其上架设另一方向(与下面的路成一个角度)的 N 条平行的高速路。这样“上面”的交通和“下面”的交通相互独立。所以可以看成分属两个拓扑结构。如果上面任意一条路上的交通要到下面去,就要进行 N 个“操作”,即与下面的每条路都要交叉一次。我们把每个操作定义为一次“ crossing ”。那么整个拓扑的改变(上面的交通全部转到下面去)就需要 N 平方个“ crossing ”。 另外一个数学家站起来说:有一个办法可以减少“ crossing ”的数目!这些“高速路”构成一个有 N 平方个可能做“ crossing ”的点的网格。只要我们沿着其中的一列(或者行)做这样的操作:在每个交叉点上把要“交汇”的上下两条高速路“断开”,然后再把上面的右半条(或者平面顶部半条)与下面的右半条(或者平面顶部半条)“重新连接”起来;把上面的左半条(或者平面底部半条)与下面的左半条(或者平面底部半条)“重新连接”起来;则只需要N次操作,所有上面的交通都可以“下去”,所有下面的交通也都可以“上来”! 物理学家们起来说:第一种情况是“扩散”:把上面的交通都“扩散”到下面去,下面的也“扩散”上来;而第二种情况是“重联”:不同拓扑结构通过“断开”和“重新连接”而联通起来! 这是个典型的二维重联问题! 有意思的是,我们知道磁扩散率是和电阻率 h 成正比的。根据上面的拓扑理论,这对应 N 2 ——而其“重联”率是 N ——正是“扩散”率的平方根!! 这就是 Sweet-Parker 模型的结果:磁重联速率正比于 h 1/2 ! 另外,可以看出:“扩散”可以随处发生,但是“重联”只发生在一个特殊的“列”或者“行”。物理上,这个选择不是任意的,而是在一定的拓扑结构“ separatrix ”上。(等离子体物理学界的同行们通常翻译成“分形线”( 2D )或者“分形面”( 3D )。) 磁重联漫谈(6):简短几句 无碰撞磁重联应该最后谈,因为 很多重要问题没有解决。但是有读者问起,就简单说几句笔者个人的看法。 问题1 : 您说过,电阻磁重联中电子和离子是从一根磁力线被 “ 碰撞 ” 到另一根磁力线。在 Hall 重联过程中,在扩散区电子离子运动分离,只有电子冻结在磁力线上。这样磁力线带着质量轻的电子会运动更快、重联更快,这应该是 Hall effect 加速磁场重联的物理图像吧。在这里我想问电子从一根磁力线跑到另一根磁力线的机理是什么? Hall effect 并不是耗散项(磁通扩散项),在 Hall reconnection 中,若是没有电阻项重联还会发生吗?因为我看到别人做 Hall MHD reconnection 时,电阻项都被保留。 第一:是的,电阻磁重联是因为碰撞引起带电粒子从绕着一条磁力线转“变换”到围着另一条磁力线转; Hall 磁重联是因为离子的非磁化使得磁力线在 Hall 效应起作用的离子惯性区得以“甩掉包袱(离子)”,“轻装前进(只携带电子)”,或者说,磁力线的“惯性”突然变小,速度突然变快! 第二:但是如问题所说,到底是什么机制“ break the field line ”,或者说使得电子从一条磁力线跳到另一条(所以我们不再能 clearly identify a field line ),还是一个 open question 。今天上午笔者在这里的 International Substorm Workshop 上 lead 磁重联 session 的讨论时,这正是 outstanding issues 之一。一个可能的 candidate 是波对电子的散射引起的所谓“反常电阻”效应,比如低混杂波(一种频率介于电子与离子回旋频率之间的静电波)对电子的散射。 问题2 : 那么,在托卡马克中的 collisionless reconnection, 往往是电子惯性项被保留,而不是 Hall 项。这里想请王老师谈一谈电子惯性项加速磁场重联的物理图像是什么;在这里(有电子惯性项没有 Hall 项),离子的运动特征是什么?在 m=1 kink-tearing 和 m1 tearing, 电子运动特征的主要差异是什么 ? 这里是好几个问题: 第一:托卡马克磁重联研究中, m=1 的 kink-tearing研究一般投影在磁场方向,所以 没有 Hall 电场项,但是有沿磁场方向的电子压强梯度项(而非电子惯性项); 第二:对磁重联的加速体现在沿磁力线的电子压强梯度。但是,如果电子没有惯性,这一项会很快将电子加速到速度无穷大!这又是一个遇到奇点的时候必须把丢掉(忽略)的物理效应再捡起来的例子。注意:电子惯性反而是“减慢”的效应! 第三:对于标量压强,其梯度是没有贡献的(因为在磁感应方程里 ,it is the curl of the term that really matters );所以只有压强张量的非对角项有贡献。而这些非对角项一般认为是 turbulent Reynolds stress ——我们再一次看到电子运动与湍流谱相互作用的贡献!这可能给我们指出一条最后明白这个问题的路。 至于 m1 tearing modes ,其本征函数是 localized ,与 m=1 kink 的 globalized 本征函数有根本的不同,所以本质上是慢时间尺度的电阻磁重联。 这些问题的具体物理图像,我们会慢慢讨论。 磁重联漫谈(7):Petschek模型 Sweet-Parker 模型虽然很成功,但是存在一个致命的问题:磁重联的速率太慢。事实上,太阳大气等离子体的电阻率大约在 1/10 10-12 ,由此得到的重联率 v x ~ h 1/2 ~ 10 -5 -10 -6 Alfvén 速度,远远不能解释像日耀斑这样的快过程。 人们注意到 Sweet-Parker 模型重联率所以相对比较慢,原因是其重联区的拓扑结构近似是一维的,即我们前面说的:“等离子体携带磁力线进入‘扩散区’的方向(‘入流’方向,通常选作为 x- 方向)上的特征尺度远远小于磁力线重联以后携带等离子体离开‘扩散区’的方向(‘出流’方向,通常选作为 y- 方向)的特征尺度。”这样,由于“出口”太小、“进口”太大,导致已经“ merging ”到扩散区附近的磁力线的“排队等候”,物理学家用的词汇叫 magnetic flux “ piled up ”。(这样的过程会在重联区形成很薄的强电流片,其物理效应我们以后再谈。)因此,有人( Petschek , 1964 )提出一种“快”磁重联模型:认为重联区的拓扑是呈具有 X 分形线的二维结构,这样入流区(在 y- 方向上的)长度与出流区(在 x- 方向上的)宽度大约在同一个数量级。而出流的“喇叭口”形状会形成一个如钱江潮的“慢激波”(道理相似,但相对运动方向相反)。根据这个“ slow shock ”(慢激波)上下游的连接条件,可以得到磁重联的速率 v x ~ - ln h h 1/2 h 这个几乎与电阻无关的重联率基本上可以很好解释日耀斑这样的快过程。 但是人们后来发现,在 Petschek 模型的物理讨论所依赖的电阻磁流体框架下,无法得到 X 型的磁场几何结构,除非电阻很大—— h 10 -3 ( W. Park, et al, 1984: Phys. Fluids 27 , 137; D. Biskamp, 1986: Phys. Fluids 29 , 1520; Z. W. Ma et al, 1995: Phys. Plasmas 2 , 8 ) 。而对于这么大的电阻, - ln h 与 h 1/2 的重联率几乎没有可以明显区分的差别!而在对应实际物理世界的电阻很小、 Sweet-Parker 和 Petschek 这两种模型的结果有可以明显区分的差别的情况下, 1980 年代以后发展的高精度的数值模拟结果告诉我们:即使初始条件取 Petschek 模型的磁场分布,我们也总是得到 Sweet-Parker 的电流片几何位形和 h 1/2 的重联率! 后来人们才意识到:尽管 Petschek 模型的磁场拓扑结构是出于增大重联率的正确考虑,但是使用的电阻磁流体的物理模型是错误的!正确的快磁重联模型依赖于 1990 年代无碰撞磁重联理论的发展。 磁重联漫谈(8):Tokamak的“有理”磁面 (一位朋友批评说:应该多写点托卡马克 !写这么多磁重联,年轻人都去做磁重联了! (写的时候没有想到这一点 :p 。无非是觉得自己对这个问题还有一些心得而已。这就做一点改正。其实等离子体物理的研究方向确实很宽。大家看了主要还是学习分析问题的出发点和方法。至于选择的具体方向,不妨根据自己的喜好、国家的需要、和单位的情况。) 笔者前面说到:“正确的快磁重联模型依赖于 1990 年代无碰撞磁重联理论的发展。”但实际上无碰撞磁重联理论早在 1966 年就与电阻磁重联的理论(而非模型)同时发展起来了。但是在介绍无碰撞磁重联的早期理论之前,我们先介绍电阻磁重联的理论发展。 前面说到的 Sweet-Parker 模型也好、 Petschek 模型也好,都还是半定量的模型,算不得定量的“理论”。电阻磁重联的线性理论最早是 1963 年由 Furth, Killeen, Rosenbluth 提出的( Phys. Fluids 6, 459, 1963 ),被称为 FKR 理论。这个理论是针对在 Tokamak 位形下有理面上因为磁重联引发的“撕裂模”( Tearing modes ),利用渐进方法中的边界层( Boundary Layer )理论,第一次得到电阻磁重联(撕裂模)的线性增长率。 笔者不打算在这里谈具体的数学计算,只是强调几个要点。 首先,介绍一下“有理面”: 磁约束等离子体的 Tokamak 环形装置看着像“轮胎”,或者“ Donut ”。里面的等离子体被约束在一层一层套着的“轮胎”(或者“ Donut ”)形状的“磁面”上——每个磁面都是一根磁力线绕成、并用一个物理量 q 来表征。显然 q 是随着“轮胎”小环半径 r 连续变化的—— q=q(r) 。这个物理量人们称之为“安全因子( safety factor ),数值上等于磁力线绕大环的圈数和绕小环的圈数之比。 因为 q 是连续变化的,所以一定是由分立的有理数和这些有理数之间的连续的无理数组成。那么在那些具有有理数 m/n 的 q 值的磁面(我们称为“有理面”( rational surface ))上,磁力线绕大环 m 圈同时正好绕小环 n 圈!所以有理面上的磁力线有下述性质: 1 )首尾相接的闭合曲线, 2 )只覆盖磁面上一个“测度”为零的部分。 这两个性质非常重要! Tokamak 等离子体中千变万化的各种模式,大都是因为这两个性质或其中之一引起的。 我们先来看分立的有理面之间的那些连续分布的无理面( irrational surface )。很显然,因为这些面上 q 是无理数,所以磁力线不会在绕大环有限圈之时正好也绕小环有限圈,而只能这么无限地绕下去——铺满整个磁面。因为在等离子体中磁力线自身的“张力”,所以这些“无理”磁面非常“结实”。这就是为什么 Tokamak 整体约束还是不错的。但是那些磁力线“只覆盖磁面上一个测度为零的部分”有理面,特别是“低模数”( m 、 n 很小)的、磁力线只绕那么一两圈的有理面,就显得格外“软”。而且更重要的:因为磁力线的周期性(首尾相接的有限长闭合曲线),则对于任何局域的扰动——沿着磁力线传播的都会传回来;垂直磁力线传播则总会有一个模数为( m, n )的本征模与这个有理面( q=m/n )上的磁力线的几何结构“共振”!从而引起各种不稳定性的增长。所以 Tokamak 上的有理面也称“共振面”( resonant surface )。 对于 Tokamak 中的磁重联过程来说,我们强调两点:第一,有理面是磁场的“拓扑分形面”( topological separatrix );第二,有理面上的磁力线满足周期条件。这两点非常重要。后来的所谓“分量重联”理论忘掉了这两点(特别是最后一点),导致一些荒谬的结果。 磁重联漫谈(9):有理面上的奇异性 前面说到: FKR 理论“是针对在 Tokamak 位形下有理面上因为磁重联引发的‘撕裂模’”。但是 Tokamak 的有理磁面都是轮胎形状的曲面。这样几何位形下的问题,处理起来是有一定难度的。 事实上,我们在研究等离子体的“宏观”尺度(一般指装置的特征尺度)约束时,理想磁流体理论是很好的近似。如我们在《磁重联漫谈( 1 )》中所说:“ 在等离子体的理想磁流体( ideal magnetohydrodynamics, or ideal MHD )近似下,等离子体与磁力线是‘冻结’( frozen in ) 在一起运动。形象地说,就如我们小时候喜欢吃的‘棒冰’的冰冻结在中间的棍上一样。更准确的比喻是串在中间的杆儿上的算盘珠:可以很容易的沿着杆儿运动或者‘回旋’运动,但是没法‘跨越’这一根杆儿到另一杆儿上去。当然,如果等离子体中有不均匀性,还是会产生横越磁力线的‘漂移’( drift ),但是如果磁场限制在有限的体积内,这种‘漂移’运动仍然限于同一磁力线所螺旋缠绕成的磁面上:不过是‘抄近路’到同一磁力线的另一部分而已。就像调皮的孩子在螺旋滑梯上直线地从‘一层’跳到‘另一层’。” 但是在这一近似下,等离子体磁通( Magnetic Flux ,相当于磁矢势的主分量)的本征函数解在有理面上产生“奇异性”——其一阶导数(相当于磁场)产生阶跃;二阶导数(电流)产生 delta 函数奇异性。正如我们在前面(《物理学中的奇点》)讲到的: “数学物理方程的奇点表明,原来赖以得到这个方程(或者这组方程)的物理假设或者近似在这一点及其邻域不再成立,需要引进新的物理效应甚至新的物理模型。 。。。 “为了 resolve 这个‘奇点’,在物理上我们或者引进耗散效应(如粘滞或者电阻)、或者引进构成介质的微观粒子本身的‘分立’效应(如带电粒子的回旋半径这样的动理学( kinetic )效应)。” 如果我们在有理面附近非常薄的一个薄层里(在理想磁流体极限下这个薄层的厚度为零!)引进耗散(电阻)效应,导致电阻撕裂模理论(即 FKR 理论和 Rutherford 理论);如果引进动理学( kinetic )效应,则给出无碰撞撕裂模理论。 正因为这个薄层非常薄,给我们处理问题反而带来极大的方便:第一,我们可以把轮胎形状的有理面沿着“赤道平面”切一刀,再沿任一环向角切一刀,展开成一个平面;第二,我们可以利用“边界层”理论来处理这一问题。 那么,有理磁面为什么会有这种奇异性? 这是因为,连续变化的无理磁面的集合中嵌入一个具有分立性质有理磁面,相当于在连续变化的磁场结构中引入了拓扑不连续性。在理想磁流体图像中,磁场和等离子体是“冻结”在一起的,这种拓扑不连续性便转化成物理的不连续性(和更高阶导数的奇异性)。 这种理想磁流体图像中拓扑不连续性与物理不连续性的“不变性”,应该可以用一个数学定理或者物理量守恒定律描述。 磁重联漫谈(10):有理面上的边界层 前面讲到有理面上的奇异性,提到:“正因为这个薄层非常薄,给我们处理问题反而带来极大的方便:第一,我们可以把轮胎形状的有理面沿着‘赤道平面’切一刀,再沿任一环向角切一刀,展开成一个平面;第二,我们可以利用‘边界层’理论来处理这一问题。”这两点是研究像磁重联这样在大尺度下存在“奇异性”的数学物理问题的关键。 其中“第一点”将复杂的三维问题变成了“一维”问题! 把有理面展开成一个平面,则在两个延伸方向(大环和小环方向)上都有周期条件。做相应的 Fourier 展开之后,在每个特定的有理面上只有一个 Fourier 分量。且对应的微分符号变成代数符号。这样三维的微分方程在两个方向上“代数化”了,只剩下小环径向的变化。在物理上,这是由于有理面上的奇异性导致垂直有理面的特征尺度远远小于其它两个周期条件方向的尺度。 而“第二点”则为解决这样的问题提供了常用的方法。 我们知道,对连续介质中没有外部驱动时物理量 F 随时间演化的典型数学物理方程基本上都是带有耗散项的“抛物型”方程,比如 dF/dt = DF/Dt + vDF/Dx = l D 2 F/Dx 2 这里 D 表示偏微分。方程的右边是所谓耗散项, l 是耗散系数。如果 F 是磁通(磁矢势的某一分量),则这个方程就是欧姆定律:左边是“电场”(包括 v x B 部分), l 是电阻, D 2 F/Dx 2 是电流。等等。如果耗散很弱,耗散系数 l 非常非常小,则我们可以做“理想情况下”的近似,令 l = 0 。物理上就是,如果系统的特征尺度是 L ,那么,对应耗散( dissipation )的特征时间显然就是 T D =L 2 / l 。 l 趋于 0 对应于物理量 F 被 dissipated 的时间趋于无穷大。所以近似有 dF/dt = 0 ,或者说, F 基本保持不变。 这样的近似在绝大多数区间是适用的。但是如果区间里存在着奇异性,问题就来了:这个奇异性存在于一个很小的区间,引进一个非常小的特征尺度 D 。则其对应的特征时间尺度 t D = D 2 / l 成为一个可以和系统特征运动时间 T 0 相比拟的有限值!相应的,在这个奇异面上,方程右边的耗散项就不能忽略。这时,理想近似下得到的所谓“奇异面”因为这个耗散效应的存在变成了“奇异层”。显然这个“奇异层”的厚度 D ~ ( l T 0 ) 1/2 (我们又看到了 Sweet-Parker 模型的 1/2 方关系)。 这样一类在 “奇异层”外部可以用“理想近似”求解,但是在其内部必须考虑耗散项的数学物理问题,我们称之为“边界层问题” ( Boundary Layer Problems )。求解的方法称为“边界层方法”。 磁重联漫谈(11):边界层方法 前些日子收到空间中心一位研究生的来信,谈到他们组织了一个讨论班,每周开一次讨论会。笔者的这几篇“磁重联漫谈”也是他们讨论的内容。 第一个感觉是:我们做学生那会儿的钻研科学的风气还是一直传承下来了。前些年听到过好多同事感慨,学校的科学讲座没有多少人听,有时还要通过学工部的人组织学生去、或者是把听讲座作为得学分的要求。听说这些学生自己组织起来学,很高兴——不仅为他们的钻研精神,更为中国科学事业的发展前景。所以他们的组织者提出让我去讲一讲,没二话就答应了。 昨晚去玉泉路。大概有二、三十位研一的学生吧。都是很认真、好学的。而且很聪明,物理的直觉很好。这个“漫谈”即使只为这些年轻人写,也值得! 继续说磁重联。 上一次讲到处理有理面上奇异性的“边界层方法”。数学上这种方法属于“渐进方法”( Asymptotic Methods )的一种。具体作法是:将所研究的物理问题分成两个区来讨论,一个是我们原来所研究的、理想磁流体近似成立的、但是“抠去”了奇点的“外区”( outer region );一个是理想磁流体解的奇点的“邻域”所形成的“内区”( inner region )。在外区仍然使用理想磁流体方程,得到原先的有奇点的理想磁流体近似解。但是因为“抠去”了奇点(“拓宽”为内区),所以在外区理想磁流体近似解是“解析”的。而在内区,或者引入耗散(电阻),或者引入动理学效应(带电粒子回旋、电子惯性、乃至湍流效应等),得到 resolved 奇点的“内区解”。 数学上这样比较严格的表述听起来很“绕”,但是物理图像很简单:大尺度下理想磁流体是很好的近似,但是在小尺度下物理量(比如磁场、电流)的显著变化使得这个近似不再成立,必须把原来忽略的物理机制“找回来”。 在数学上马上遇到一个问题:外区和内区之间的界面在哪里?使用何种“边界”条件来连接这两个区的解?这是“边界层理论”的关键所在。 因为内区和外区使用不同的方程:比如内区使用电阻磁流体方程组,外区使用理想磁流体方程组,所以两个区的解无法在“边界”上平滑地连接。所以,任何直接做这种连接的企图都会导致解的一阶微商在连接点的不连续及二阶微商的奇异性。也就是说:这样做其实就是把原来的奇点分成两个隔开一点的奇点而已!那么,如何解决这个问题呢? 具体作法是:如果原来的奇点作为坐标(比如 x )原点,我们可以将外区解与内区解“匹配”起来,即令外区解在 x à ±0 时的极限等于内区解在 x à ±∞ 时的极限相等,作为连接内外区的“边界条件”——数学上称为“匹配条件”( Matching Condition )。 这在严格的数学意义下显得有点匪夷所思。可能这也是“渐进方法”至今只是应用数学的一个分支,而不登数学的大雅之堂的原因之一吧。但是在物理上这很好理解:从大尺度的外区看过来,在趋近小尺度( x à ±0 )的时候,非理想磁流体的效应正是将要显现而没有显现;而从小尺度的内区看出去,在趋近大尺度( x à ±∞ )的时候,非理想磁流体的效应正是将要消失而没有最后消失。 这就是“边界层理论”的精要所在。 大家周末愉快! 磁重联漫谈(12):撕裂模的线性理论 前面介绍了“边界层方法”。这里我们利用这个方法来讨论 Tokamak 等离子体中的“撕裂模”。 “撕裂模”( Tearing Modes )这个名字,最初是用来形容这个不稳定模式发展起来以后“电流片”被“撕裂”(或者说,“丝化”)的现象。现在看来这个想法是“ Too nave, sometimes too simple ”。事实上,电流并没有如人们开始想像的那样聚集到磁岛的中心( O- 点附近),而是分布在磁岛的“边缘”,也就是“磁分形线”附近。因为这些“磁分形线”在 X- 点交汇,所以 X- 点反而是电流最强的地方。当然“撕裂模”这个名字还是被沿用下来了,不过现在是表示“磁场拓扑结构”被“撕裂”。 在理想磁流体近似下我们已经得到了“外区”的磁场不连续、电流奇异性的解。由边界层理论知道,只要我们知道了“内区”的解的形式,再利用 matching 条件把内、外解“连接”起来,问题就解决了。 对 Tokamak 等离子体中的“撕裂模”(除了 m=1 的扭曲 - 撕裂模)来说,内区解满足所谓“常数磁通”( Constant- y )近似。即对于空间变化来说,磁通函数 y (相当于垂直磁重联过程所在平面的磁矢势分量)在“内区”近似地是一个常数,即仅随时间变化。这个空间分布的近似常数,表示在某一特定时刻有多少条磁力线被“重联”。“常数磁通”近似的物理实质是,相对于磁通函数来说,磁场在不连续处的跳变是有限的。 在“常数磁通”近似下得到电阻磁流体方程组的内区解,然后利用前面介绍的边界层理论方法与理想磁流体方程组的外区解“连接( matching )”, Furth , Killeen ,与 Rosenbluth 第一次得到了托卡马克等离子体中电阻撕裂模的线性增长率( Phys. Fluids 6, 459, 1963 )。这个增长率的标度是电阻率的 3/5 次方,比 Sweet-Parker 的重联率(标度为电阻率的 1/2 方)要慢得多(考虑空间及实验室等离子体中电阻率一般是 10 -10 的数量级)。后来人们发现, Sweet-Parker 的重联率实际上是“非常数磁通”( Non-constant- y )电阻撕裂模在非线性阶段的时间尺度。 与电阻撕裂模线性理论发展的同时,无碰撞(零电阻)撕裂模线性理论也发展起来( Laval, Pellat, and Vuillemin, 1966: in Plasma Physics and Controlled Nuclear Fusion Research 2 (IAEA), p259 ; Coppi, Laval, and Pellat, 1966: Phys. Rev. Lett. 16, 1207 )。被称为 LPV 撕裂模理论。 我们知道,磁重联的物理本质是等离子体在重联区的“退磁化”。这种“退磁化”效应或者是碰撞引起的,或者是带电粒子的有限 Larmor 半径效应( FLR , Finite Larmor Radius )引起的。前者适用电阻撕裂模理论;后者适用无碰撞撕裂模理论。对于前者,内区物理过程用电阻磁流体方程来描述;而对于后者,内区物理过程应该用带电粒子的动理学( kinetic )方程来描述。 因为电子的回旋半径远远小于离子的回旋半径,所以在电子回旋半径的尺度范围,离子早已“退磁化”了。 LPV 理论就是基于这样的图像,在内区只考虑电子的动力学,而只把离子作为中性背景。在此假设条件下,得到内区解;然后与外区的理想磁流体解连接,最后得到无碰撞撕裂模的线性增长率。这个增长率显然与电阻无关,而与电子回旋半径的 3/2 次方成正比。 磁重联漫谈(13):撕裂模的线性理论(续) 上一篇提到,因为电子的回旋半径远远小于离子的回旋半径,所以在电子回旋半径的尺度范围,离子早已“退磁化”了。 LPV 理论基于这样的图像,在内区只考虑电子的动力学,而只把离子作为中性背景,得到无碰撞撕裂模的线性增长率与电子回旋半径的 3/2 次方成正比。 这一结果很快被 U Maryland 的李逸群( Y C Lee )教授和 J F Drake 博士推广到了强磁化的 Tokamak 等离子体中。他们首先利用简单的物理分析估算出线性无碰撞撕裂模的增长率,然后从由 Vlasov 方程来推导。“严格”的理论结果和物理的估计符合得很好。堪称如何“做物理”的一个范例。 但是, 90 年代托卡马克物理实验进展和更快速的计算机的高精度大规模数值模拟手段的发展,使得人们认识到 60 年代开始发展起来的那些以电子动力学为主的无碰撞 撕裂模的线性理论是不完全的。事实上,在理想磁流体过程主导的“外区”和电子动力学主导的“内区”之间,存在着一个“离子惯性区”。在这个区域内(宽度近似为“离子惯性尺度”),离子“退磁化”的结果,使得磁力线卸去了沉重的离子惯性而只携带着依然磁化的电子运动。因此,磁力线运动的“惯性”突然降低了 3 个数量级。导致在这个区域里磁力线(及磁化的电子)的突然“加速”。而“退磁化”的离子则继续减速——和电子运动互相“解耦”。这是典型的 Hall 效应。所以“离子惯性区”也被称为“ Hall 效应区”。这样,原来的“内外区”边界层理论必须分成三个区来求解: MHD 区(外区), Hall 区(中间区),电子动力学区(内区)。 可是实际上相应的理论并没有发展起来。主要原因应该是由于 Hall 效应起重要作用的地球空间等离子体中, Harris 电流片的厚度(相当于“外区”宽度)常常薄到“离子惯性尺度”。所以渐进方法失效。而且对于空间等离子体过程来说,线性稳定性并不重要。由于数值手段的发展,人们现在基本上是采用数值模拟的方法来对这一问题开展研究。因此发展起来的研究领域,被称作 Hall MHD Reconnection(Hall磁流体磁重联) 。 这里的所谓“离子惯性尺度”是由光速与离子等离子体频率之比 c/ w pi 来定义的。相应于我们熟知的电子趋肤深度 c/ w pe ,这一尺度的物理意义并不直观。如果考虑离子的“退磁化”,对应的特征尺度应该是离子回旋半径 V i,the / W ci ——离子热速度与离子回旋频率之比;或者“离子声”回旋半径 c s / W ci ——离子声速与离子回旋频率之比。但是我们如果重写“离子惯性尺度”就发现: c/ w pi =V A / W ci !即等离子体的 Alfvén 速度与离子回旋频率之比。因此“离子惯性尺度”具有“ Alfvén ”回旋半径的非常直观的物理意义!而且这个尺度有一个特殊的性质:与磁场强度无关!这就是为什么这个尺度适用于磁零点附近的区域。事实上,离子惯性尺度只与等离子体密度有关(其它参数如光速、基本电荷、圆周率等都是自然界的基本常数)。 磁重联漫谈(14):“离子撕裂模”迷雾 说起无碰撞撕裂模的线性理论,有一段历史值得一提。 前面说到 无碰撞撕裂模线性理论,即 LPV 理论,在发表时主要针对在地球磁尾等离子体中的应用:将地磁尾磁场简化成东西方向流动的“越尾电流片”( cross tail current )南北两侧、地 - 日连线方向上的反向磁场。而磁重联则被看成是零磁面( neutral plane )附近“非磁化”效应引起的。但是实际上地磁尾是地磁“偶极场”在 night side 被太阳风拉伸的结果——也就是说,无论拉伸得多厉害,在所谓的“零磁面” neutral plane 上总是存在的一个垂直该面、南北方向的非零“ normal ”磁场分量。因此电子在 neutral plane 上仍然是被磁化的。而且由于在这种情况下磁力线变成一组抛物线型的曲线,磁扰动引起形变在 neutral plane 上表现为磁力线的疏密变化;而环绕磁力线的电子的密度也被压缩和拉伸。这时,磁场扰动能量被转换成压缩电子密度的能量,撕裂模被稳定。 这种磁场分布的稳定性的本质,是原来被 零磁面分隔成两个不同拓扑区域的 磁场结构,因 neutral plane 上的“ normal ”分量联系起来。因此,扰动磁场只是使得磁力线变得疏密相间,但不再引起磁场拓扑的变化。 可是这样简单的物理图像当时却没有人想到! 70 年代对这样的磁场位形下的撕裂模稳定性的解释是:电子压缩效应( Electron Compressibility )。因此有人提出:虽然电子被磁化了,但是如果 normal 磁场分量足够小,离子仍然是非磁化的,有可能提供不稳定性的自由能。 于是就有人来看色散关系: 1/ g =1/G e +1/G i 。 这里 g 是撕裂模的增长率, G e 是电子的贡献,是 G i 离子的贡献;分别同各自的质量的平方根成正比。所以 G e G i , 1/G e 1/G i 。近似有 1/ g =1/G e , g =G e = g e 。 人们就把色散关系改写成: 1/ g =1/ g e +1/ g i 。 这样写不是不可以,只要记住 g e 和 g i 的物理意义,把它们看成代表不同粒子贡献的参数。可是有人就误解(或者说“偷换”)了这一概念:既然电子对不稳定性没有贡献了,就简单地把它的那一项拿掉。于是把电子磁化、离子“非磁化”条件下的色散关系写成: 1/ g =1/ g i ,则 g = g i 。 并把这一新的“不稳定模式”称为“离子撕裂模”。因为 g i 比 g e 至少大 40 多倍,所以“离子撕裂模”反而变成了更快增长的不稳定性!! 尽管 1986 年, LPV 三人中的 Pellat 和另一位法国物理学家 Lembege 指出了 “ 离子撕裂模 ” 的错误 。但是没有打中要害。致使这一理论竟然统治了磁尾磁重联研究 20 年之久!到 90 年代初期甚至有所谓 “ideal tearing” 的理论出现。可见当时对磁重联的物理图像的理解上的混乱。 其实,问题的本质在于我们前面说过的:扰动磁场只是使得磁力线变得疏密相间(即激发沿 neutral plane 传播的磁声波),但不再引起磁场拓扑的变化。 陈省身先生说得好:几何物理是一家。对物理过程的拓扑直观,往往能够更清楚地看到其物理本质。对磁重联研究来说尤其如此。
6092 次阅读|2 个评论
力尽不知热,但惜夏日长
热度 3 等离子体科学 2011-7-24 17:55
这是白香山写割麦子的。但笔者觉得用来比我们的暑期学校也许更合适。 2011年中国等离子体物理暑期学校今天结业。我们这一届筹划委员会四年来的努力也画上一个圆满的句号。 “中国等离子体物理暑期学校”是上世纪80年代初期,由我国已故著名等离子体物理学家蔡诗东院士倡议并由中国物理学会等离子体物理分会的前身“中国等离子体研究会”组织的,其目的是为了在中国推进和发展等离子体物理研究,培养聚变与等离子体科学研究人才,实现“把等离子体物理的根扎在中国”的理想。 记得20多年参加第一次暑期学校,在火车上巧遇蔡先生。第一次见面就被他一连串的问题问倒。还是郭世宠老师出来解围:怎么能一见面就把人学生问住了?但是蔡先生治学的严谨、认真给我留下了深刻的印象。 当时蔡老师说:20年后中国的等离子体物理要你们来做。他特别希望我们出去以后,早些回国,为中国的等离子体物理事业做贡献。这也是促成我后来回国工作的原因之一吧。 今天笔者代表筹划委员会做总结,就想到当年蔡诗东老师说的:20年以后,中国的等离子体物理要靠你们。今天看到来自全国的100多位学员,说的也是这句话:ITER 2018年放电,在座的那时候基本都是高级职称了。ITER 15年的运行,要靠现在正在听课的这些学员们——如李建刚几年前在杭州说的,这是ITER Generation! 而且,我们中国自己的聚变工程堆也在这个时期建设。我们希望的是,这些年轻人会比我们做得更好! 30年前,蔡老师就开始注重研究energetic particle modes,这是ITER Regime燃烧等离子体物理要关心的。我们现在才开始重视——比蔡老师已经落后了30年! 希望下一代的年轻人,有蔡老师那样的vision,经过“力尽不知热,但惜夏日长”的努力,超过我们!
个人分类: 学海无涯|6100 次阅读|10 个评论
[转载]科学家确定从普通物质到夸克物质相变温度
热度 1 yshimp 2011-6-25 18:04
http://news.sciencenet.cn//htmlpaper/201162517283230417688.shtm 记者6月24日从中国科技大学获悉,中美印科学家合作烹制了宇宙大爆炸“夸克汤”,从而在世界上首次确定从普通物质到夸克物质的相变温度。6月24日出版的《科学》杂志以“量子色动力学相图的标度”为题,发表这一研究成果。 据悉,中美印科学家联合研究确定了从强子物质(即普通物质)到夸克胶子等离子体的相变(即状态转变)温度约为175百万电子伏特,相当于2万亿摄氏度。中方研究人员罗晓峰介绍说,宇宙初生时,亿万物质是一锅由自由的夸克和胶子组成的浓稠的“汤”,俗称“夸克汤”,即夸克胶子等离子体。寻找夸克胶子等离子体存在的证据并研究其基本性质,对研究早期宇宙具有重要意义。 他说,在通常情况下,夸克和胶子被强相互作用力禁闭在强子中。通过对普通原子核“加热”,有可能使强子“融化”而形成夸克胶子等离子体。2000年以来,科学家们利用美国布鲁克海汶国家实验室中的相对论重离子对撞机(RHIC)进行实验研究,发现了一些夸克胶子等离子体形成的证据。但是从强子物质到夸克胶子等离子体的相变温度尚不清楚。 日前,RHIC对撞机将两束金原子核加速到接近光速,使其发生碰撞,形成高能量密度和高温的夸克胶子等离子体,冷却后产生大量粒子。中美印科学家组成合作小组,研究分析对撞机上STAR探测器采集到的大量实验数据,在世界上首次把测量到的净质子数分布的特征,与格点量子色动力学的计算结果进行比较,从实验上直接确定了重子数密度为零的情况下从强子物质到夸克胶子等离子体的相变温度。(来源:中国新闻网 吴兰) Scale for the Phase Diagram of Quantum Chromodynamics Sourendu Gupta 1 , Xiaofeng Luo 2 , 3 , Bedangadas Mohanty 4 , * , Hans Georg Ritter 3 , Nu Xu 5 , 3 - Author Affiliations 1 Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India. 2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China. 3 Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 4 Experimental High Energy Physics and Applications Group, Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India. 5 College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China. Matter described by quantum chromodynamics (QCD), the theory of strong interactions, may undergo phase transitions when its temperature and the chemical potentials are varied. QCD at finite temperature is studied in the laboratory by colliding heavy ions at varying beam energies. We present a test of QCD in the nonperturbative domain through a comparison of thermodynamic fluctuations predicted in lattice computations with the experimental data of baryon number distributions in high-energy heavy ion collisions. This study provides evidence for thermalization in these collisions and allows us to find the crossover temperature between normal nuclear matter and a deconfined phase called the quark gluon plasma. This value allows us to set a scale for the phase diagram of QCD.
1352 次阅读|1 个评论
[转载][转]Plasma Physics Books(非常全的等离子体物理书单)
hangmuyang 2011-6-17 22:02
General Public P. I. John, Plasma Sciences and the Creation of Wealth , Tata-McGraw-Hill, New Delhi, 2005. Yaffa Shalom Eliezer, The Fourth State of Matter , Hilger, Bristol, 1989 (2nd edition, 2001). John W. Freeman, Storms in Space, Cambridge, 2001. Kenneth R. Lang, The Cambridge Encyclopedia of the Sun, Cambridge Press, 2001. Hans Wilhelmsson, Fusion: A Voyage Through the Plasma Universe , IOP, 1999. Steven T. Suess and Bruce T. Tsurutani, From the Sun: Auroras, Magnetic Storms, Solar Flares, Cosmic Rays, American Geophysical Union, 1998. T. Kenneth Fowler, The Fusion Quest , Johns Hopkins Press, 1997. Kenneth R. Lang, Sun, Earth and Sky , Springer-Verlag, Berlin, 1995, 1997. Gareth Wynn-Williams, The Fullness of Space , Cambridge, 1992. Paul D. Thompson, Gases Plasmas, Lippincott Company, Philadelphia, 1966 (out of print) Introductory Plasma Science: Basic Physics of the Local Cosmos , National Academy Press, Washington D.C., 2004. A. A. Harms et al., Principles of Fusion Energy, World Scientific, 2000. R. Hazeltine and F. Waelbroeck, The Framework of Plasma Physics , Perseus Books, 1998. Plasma Science: From Fundamental Research to Technological Applications , National Academy Press, Washington D.C., 1995. R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics , IOP, 1995. Richard Dendy, Plasma Physics , Cambridge, 1993, 1995. Francis Chen, Introduction to Plasma Physics and Controlled Fusion , Plenum Press, 1974, 1988. Basic Plasma Physics Nonequilibrium Phenomena in Plasmas, A. Surjalal Sharma and Predhiman Kaw, eds., Springer, 2005. Takashi Fujimoto, Plasma Spectroscopy, Clarendon Press, Oxford, 2004. J. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge, 2004. T. Tajima, Computational Plasma Physics with Applications to Fusion and Astrophysics, Westview Press, 2004. William Kruer, The Physics of Laser Plasma Interactions, Westview Press, 2003. Y. Elskens and D. Escande, Microscopic Dynamics of Plasmas and Chaos, IOP, 2002. Per Helander and Dieter J. Sigmar, Collisional Transport in Magnetized Plasmas, Cambridge, 2002. Paul Gibbon, Short Pulse Laser Interactions with Matter , Imperial College Press, 2000. R. Davidson, The Physics of Nonneutral Plasmas , Imperial College Press, 2001. V. A. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma, Taylor Francis Group, London, 2001. H. Wilhelmsson and E. Lazzaro, Reaction-Diffusion in the Physics of Hot Plasmas, IOP, 2000. J. T. Mendonca, Theory of Photon Acceleration, IOP, 2000. Paul Gibbon, Short Pulse Laser Interactions with Matter , Imperial College Press, 2000. J. Weiland, Collective Modes in Inhomogeneous Plasmas, IOP, 1999. S. S. Moiseev, V. Oraevsky, and V. Pungin, Non-Linear Instabilities in Plasmas and Hydrodynamics , IOP Press, 1999. Vladimir Fortov and Igor Iakubov, The Physics of Non-Ideal Plasma , Imperial College Press, 1999. Plasma Chemistry , L. S. Polak and Yu A. Lebedev, eds., Cambridge, 1999. V. V. Antsiferov and G. I. Smirnov, Coherent Radiation Processes in Plasmas , Cambridge, 1999. M. Brambilla, Kinetic Theory of Plasma Waves: Homogeneous Plasmas , Oxford, 1998. Hans R.Griem, Principles of Plasma Spectroscopy ,Cambridge, 1997. W. Horton and Y-H Ichikawa, Chaos and Structures in Nonlinear Plasmas , World Scientific, 1996. The Physics of Dusty Plasmas , P. Shukla, D. Mendis V. Chow, editors, World Scientific, 1996. Toshiro Ohnuma, Radiation Phenomena in Plasmas , World Scientific, 1996. C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves with Electron Beams and Plasmas , World Scientific, 1995 E. A. Oks, Plasma Spectroscopy , Springer-Verlag, 1995. W. Lochte-Holtgreven, Plasma Diagnostics , North-Holland, 1968, APS 1995. Dusty and Dirty Plasmas, Noise, and Chaos in Space and in the Laboratory , H. Kikuchi, editor, Plenum Press, NY, 1995. Sanborn C. Brown, Basic data of plasma physics , AIP Press, 1994. V. Shevelko and L. Vainshtein, Atomic Physics for Hot Plasmas , Oxford, 1993. Setsuo Ichimaru, Statistical Plasma Physics , Vol. 1. Basic Principles, Vol. 2. Condensed Plasmas, Perseus Books, 1992, 1994. Thomas Stix, Waves in Plasmas , AIP Press, 1992. Nonlinear and Relativistic Effects in Plasmas , V. Stefan, ed., AIP, 1992. A. Mikhailovskii, Electromagnetic Instabililties in an Inhomogeneous Plasma , IOP, 1992. R. A. Cairns, Radiofrequency Heating of Plasmas , IOP, 1991. Ronald Davidson, An Introduction to the Physics of Nonneutral Plasma , Addison-Wesley, 1990. W. Manheimer and C. Lashmore-Davies, MHD and Microinstabilities in Confined Plasmas , IOP, 1989. R. C. Cross, An Introduction to Alfven Waves , Hilger, Bristol, 1988. A. Galeev and R. Sudan, Basic Plasma Physics , North-Holland, 1989 (selections from Handbook of Plasma Physics , Vol. 1 2, 1983, 1984) J. P. Freidberg, Ideal Magnetohydrodynamics , Plenum Pr., NY, 1987. Plasma Waves and Instabilities , C. L. Grabbe, ed., American Assoc. of Physics Teachers, 1986. Dwight Nicholson, Introduction to Plasma Theory , Wiley, 1983. E. Lifshitz and L. Pitaevskii, Physical Kinetics: Volume 10 , Elsevier, 1981. N. Krall and A. Trivelpiece, Principles of Plasma Physics , McGraw-Hill, 1973. Fusion Plasmas Jeffrey Freidberg, Plasma Physics and Fusion Energy, Cambridge Univ. Press, 2007. Plasma Physics: Confinement, Transport and Collective Effects, A. Dinklage et al., eds., Springer-Verlag, 2005. G. McCracken and P. Stott, Fusion: The Energy of the Universe, Elsevier, 2005. J. Wesson, Tokomaks, 3rd ed. , Oxford Univ. Press, 2004. C. Braams and P. Stott, Nuclear Fusion: Half a Century of Magnetic Confinement Fusion, IOP Press, 2002. R. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators, Imperial College Press, 2001. P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices , IOP Press, 2000. Paul M. Bellan, Spheromaks , Imperial College Press, 2000. M. Liberman, J. Degroot, A. Toor, and L. Spielman, Physics of High-Density Z-Pinch Plasmas , Springer, 1999. M. Wakatani, Stellerator and Heliotron Devices , Oxford Univ. Press, 1998. J. Lindl, Inertial Confinement Fusion , Springer, 1998. A. B. Mikahilovskii, Instabilities in a Confined Plasma , IOP, 1998. Laser Plasma Interactions 5: Inertial Confinement Fusion , M. Hooper, ed., IOP, 1996. Physics of High Energy Particles in Toroidal Systems , T. Tajima and M. Okamoto, eds., AIP Press, 1994. M. N. Rosenbluth, New Ideas in Tokamak Confinement , Springer, 1994. B. Kadomtsev and I. Kurchatov, Tokamak Plasma: A Complex Physics System , IOP, 1993. M. Nezlin and I. Kurchatov, Physics of Intense Beams in Plasmas , IOP, 1993. H. L. Berk, Fusion, Magnetic Confinement , in Encyclopedia of Applied Physics, Vol. 6, pp. 575-607, VCH Publishers, Inc., 1993. Richard D. Hazeltine and James D. Meiss, Plasma Confinement , Perseus Books, 1992. High-frequency Plasma Heating , ed. A. Litvak, AIP, 1992. K. Nishikawa, and M. Wakatani, Plasma Physics: Basic Theory with Fusion Applications , Springer-Verlag, 1990. Kenro Miyamoto, Plasma Physics for Nuclear Fusion , MIT Press, 1980, 1989. J. Reece Roth, Introduction to Fusion Energy , Lincoln Rembrandt, Charlottesville, 1986. Weston Stacey, Fusion: An Introduction to the Physics and Techniques of Magnetic Confinement Fusion , Wiley, 1984. Space Plasmas The Mars Plasma Environment, C. T. Russell, ed., Springer, 2007. Cosmic Magnetic Fields, R. Wielebinski and R. Beck, eds., Springer-Verlag, 2005. Wolfgang Kundt, Astrophysics: A New Approach, Springer-Verlag, 2005. D. A. Gurnett and A. Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications, Cambridge, 2005. James Lequeux, The Interstellar Medium, Springer-Verlag, 2005. A. C. Das, Space Plasma Physics: An Introduction, Narosa Publishing House, New Delhi, 2004. Gunther Rudiger and Rainer Hollerbach, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory , Wiley-VCH, 2004. Gerd W. Prolss, Physics of the Earth's Space Environment, Springer-Verlag, 2004. Solar and Space Weather Radiophysics, Astrophysics and Space Science Library, Vol. 314, Dale Gary and C. Keller, eds., Kluwer, 2004. J. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge, 2004. M-B Kallenrode, Space Physics: An Intro to Plasmas and Particles in the Heliosphere and Magnetospheres , Springer-Verlag, 2001, 2004. Toshi Tajima, Computational Plasma Physics: With Applications to Fusion Astrophysics, Perseus, 2004. Markus Aschwanden, Physics of the Solar Corona, Springer-Verlag, 2004. Exploration of the Outer Heliosphere and the Local Interstellar Medium, NAS/NRC, National Academies Press, Washington, DC, 2004. Space Plasma Simulation, Jorg Buchner et al., eds.,Springer-Verlag, 2003 Alan C. Tribble, The Space Environment: Implications for Spacecraft Design, Princeton, 2003. Arnoldo O. Benz, Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae, Kluwer Academic Publ., 2002. Syun-Ichi Akasofu, Exploring the Secrets of the Aurora, Kluwer Academic Publ., 2002. Arnold Hanslmeier, The Sun and Space Weather, Kluwer Academic Publ., 2002. H. Kikuchi, Electrodynamics in Dusty and Dirty Plasmas - Gravito-Electrodynamics and EHD , Kluwer, 2001. Space Weather, Paul Song, Howard J. Singer, and George L. Siscoe, eds., Geophys. Mono. 125, American Geophysical Union, 2001. Plasma Astrophysics, B. Coppi et al, eds.Vol. 142, Int'l School of Physics Enrico Fermi, 2000. E. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications, Cambridge, 2000. F. Verheest, Waves in Dusty Space Plasmas, Kluwer, 2000. A. Choudhuri, The Physics of Fluids and Plasmas: An Intro for Astrophysicists , Cambridge, 1999. Jorg Buchner, Plasma Astrophysics and Space Physics, Kluwer Academic Publ., 1999. Vinod Krishan, Astrophysical Plasmas and Fluids , Kluwer Academic Publ., 1999. Magnetic Helicity in Space and Laboratory Plasmas, M. R. Brown, R. C. Canfield, A. A. Pevtsov, eds., Geophys. Mono. 111, American Geophysical Union, 1999. Sun-Earth Plasma Connections, J. L. Burch, R. Carovillano, S. Antiochos, ed., Geophys. Mono. 109, American Geophysical Union, 1999. Measurement Techniques in Space Plasmas, Particles, ...Fields, R. F. Pfaff, J. Borovsky, D. Young, eds., Geophys. Mono. volumes 102, 103, American Geophysical Union, 1998. D. Bryant, Electron Acceleration in the Aurora and Beyond , IOP, 1998. M.-B. Kallenrode, Space Physics: Plasmas and particles in the Heliosphere and Magnetosheres , Springer, 1998. T. Tajima and K. Shibata, Plasma Astrophysics , Addison-Wesley, 1997. R. A. Treumann and W. Baumjohann, Advanced Space Plasma Physics , World Scientific, 1997. J. F. Lemaire, D. Heynderickx, and D. N. Baker, eds., Radiation Belts: Models and Standards, Geophys. Mono. 97, American Geophysical Union, 1996. W. Baumjohann and R. A. Treumann, Basic Space Plasma Physics , World Scientific, 1996. V. V. Zheleznyakov, Radiation in Astrophysical Plasmas , Kluwer Academic Publ., Dordrecht, 1996. The Physics of Dusty Plasmas , P. Shukla, D. Mendis and V. Chow, eds., World Scientific, 1996. Plasma Astrophysics and Cosmology , Anthony L. Peratt, ed., Kluwer, 1995. Margaret Kivelson and Chris Russell, Introduction to Space Physics , Cambridge, 1995. J. Buchner, Physics of Space Plasmas, MIT Press, 1995. Charles F. Kennel, Convection and Substorms , Oxford Univ. Press, 1995. Leonard F. Burlaga, Interplanetary Magnetohydrodynamics , Oxford Press, 1995. P. Sturrock, Plasma Physics: An Intro to the Theory of Astrophysical, Geophysical, and Laboratory Plasmas , Cambridge, 2004. J. G. Kirk, D. B. Melrose, and E. R. Priest, Plasma Astrophysics , Springer-Verlag, 1994. Sergei Sazhin, Whistler-mode Waves in a Hot Plasma , Cambridge Univ. Press, 1993. S. Peter Gary, Theory of Space Plasma Microinstabilities , Cambridge, 1993. Anthony Peratt, Physics of the Plasma Universe , Springer-Verlag, 1992. George Parks, Physics of Space Plasmas , Addison-Wesley, 1991. Modeling Magnetospheric Plasma Processes , G. Wilson, ed., American Geophysical Union, 1991. F. Curtis Michel, Theory of Neutron Star Magnetospheres , U. Chicago, 1991. Numerical Simulation of Space Plasmas , B. Lembege and J. Eastwood, eds., North-Holland, 1988. Donald Melrose, Instabilities in Space and Laboratory Plasmas , Cambridge, 1986. Eric Priest, Solar Magnetohydrodynamics , Reidel, 1985. Plasma Technology Plasma Technology for Textiles, R. Shishoo, ed., Woodhead Publ., Cambridge, 2007. The Physics and Technology of Ion Sources, Ian Brown, ed., Wiley, 2004. A. Fridman and L. Kennedy, Plasma Physics and Engineering, Taylor and Francis, 2004. Emerging Applications of Vacuum-ARC-Produced Plasma, Ion, and Electron Beams, E. Oks and I. Brown, eds, Kluwer, 2003. Bundesministerium fur Bildung und Forschung, Plasma Technology, BMBF (www.bmbf.de), Germany, 2001 (in German and English - www.bmbf.de/pub/plasma_technology.pdf) J. Reece Roth, Industrial Plasma Engineering, Vol. 2 - Applications, IOP, 2001. E. Bazelyan and Y. Raizer, Lightning Physics and Lightning Protection, IOP, 2000. K. Muraoka and M. Maeda, Laser Aided Diagnostics of Gases and Plasmas, IOP, 2000. Yu. M. Aliev, H. Schluter, and A. Shivarova, Guided-Wave-Produced Plasmas, Springer, 2000. W. N. G. Hitchon, Plasma Processes for Semiconductor Fabrication, Cambridge, 1999. Dusty Plasmas: Physics, Chemistry and Technological Impacts in Plasma Processing, Andre Bouchoule, ed., Zukov and O. Solonenko, eds., Lavoisier, 1999. Thermal Plasmas and New Materials Technology , vol 12, M. Zukov and O. Solonenko, eds., Cambridge, 1999. H. Zhang, Ion Sources, AIP, 1999. M. Sugawara, Plasma Etching: Fundamentals and Applications, Oxford, 1998. Microlithography: Science and Technology , J. R. Sheats and B. W. Smith, eds., Marcel Dekker, NY, 1998. I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas , Wiley, 1998. Generation and Application of High Power Microwaves , R. Cairns and A. Phelps, eds., IOP, 1997. Environmental Aspects in Plasma Science , Sugiyama, L., T. Stix, and W. Mannheimer, eds., AIP Press, 1997. Y. P. Raizer and J. E. Allen, Gas Discharge Physics, AIP, 1997. Plasma Science and the Environment , W. Manheimer, L. Sugiyama, and T. Stix, eds., AIP, 1996. R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas , IOP, 1996. Dynamics of Transport in Plasmas and Charged Beams , G. Maino and M. Ottaviani, eds., World Scientific, 1996. 12th International Symposium on Plasma Chemistry , J. V. Heberlein, D. W. Ernie, and J. T. Roberts, Int'l Union of Pure and Applied Chemistry, Univ. of Minnesota Pr., Minneapolis, Aug., 1995. Rimini, E., Ion Implantation: Basics to Device Fabrication , Kluwer Academic Publishing, Boston,1995. Stephen O. Dean and N. Poltoratskaya, " Applications of Fusion and Plasma Device Technologies ," in Plasma Devices and Operations, Vol. 4, 1995. J. Reece Roth, Industrial Plasma Engineering, Vol. 1 - Principles, IOP, 1995. Michael Lieberman and Allan Lichtenberg, Principles of Plasma Discharges and Materials Processing , Wiley Sons, 1994. Alfred Grill, Cold Plasma in Materials Fabrication , IEEE Press, 1994. J. C. Miller, Laser Ablation , Springer-Verlag,1994. Plasma Spraying: Theory and Applications , ed. R. Suryanarayanan, World Scientific, 1993. Non-thermal Plasma Techniques for Pollution Control , B. M. Penetrante and S. E. Schulteis, eds., NATO-ASI Series G, Vol. 34, Parts A and B, 1993. Plasma Technology: Fundamentals and Applications , eds. M. Capitelli and C. Gorse, Plenum Press, 1992. Dry Etching for VLSI , eds. A. J. van Roosmalen, J. A. G. Baggerman, S.J.H. Brader, Plenum Press, NY, 1991. Handbook of Plasma Processing Technology , eds. S. Rossnagel, J. Cuomo, and W. Westwood, Noyes Publications, 1990. Plasma Polymerization and Plasma Interactions with Polymeric Materials , ed. H. Yasuda, Wiley Sons, 1990. Plasma Diagnostics , eds. O. Auciello and D. Flamm, Academic Press, 1989. Plasma Etching , eds. D. Manos and D. Flamm, Academic Press, 1989. A. Chambers, R. Fitch, Walmley, S. Coldfield, and B. Halliday, Basic Vacuum Technology , IOP Publ., 1989. Russ Morgan, Plasma Etching in Semiconductor Fabrication , Elsevier, 1985. Plasma Diagnostic Techniques , eds. R. Hudlestone and S. Leonard, Academic Press, 1978. Techniques and Applications of Plasma Chemistry , eds. J. Hollahan and A. Bell, Wiley Sons, 1974. Computational Plasma Physics T. Tajima, Computational Plasma Physics: With Applications to Fusion and Astrophysics , Addison Wesley, 1989. C. K. Birdsall, and A. B. Langdon, Plasma Physics via Computer Simulation , McGraw-Hill, 1985, 1991. Hockney and Eastwood, Computer Simulation using Particles , Adam Hilger, 1988. _______________________________________________________ New and Special Sources Plasma science materials from Russia and other FSU states are a specialty of Cambridge International Science Publishing . William Beaty's Nikola Tesla and Tesla Coil page and resources on ball lightning Vladimir Rokov and Martin Uman, Lightning Physics and Effects, Cambridge Press, 2003. http://www.plasmas.org/references.htm
4839 次阅读|0 个评论
等离子体物理导论讲义
热度 3 DynamoChina 2011-6-3 07:44
等离子体物理讲义06_磁流体力学及静平衡.pdf 等离子体物理讲义07_磁约束与稳定性.pdf 等离子体物理讲义08_磁化等离子体波.pdf 等离子体物理讲义10_非磁化热等离子体.pdf 等离子体物理讲义14_波-波相互作用.pdf 等离子体物理讲义13_波-粒非线性效应.pdf 等离子体物理讲义12_碰撞算子BBGKY理论.pdf 等离子体物理讲义11_磁化热等离子体.pdf 等离子体物理讲义09_RMHD与磁重联.pdf 等离子体物理讲义08_磁化等离子体波.pdf 等离子体物理讲义07_磁约束与稳定性.pdf 等离子体物理讲义06_磁流体力学及静平衡.pdf Bellan_FundamentalsPlasmaPhysics.pdf 等离子体物理讲义01_等离子体基本性质.pdf 等离子体物理讲义02_电磁场中的带点粒子.pdf 等离子体物理讲义03_绝热不变量磁约束.pdf 等离子体物理讲义04_动理学理论矩方程.pdf 等离子体物理讲义05_冷等离子体波.pdf 课程编号: 312019Z 课时: 40 学分: 2.0 课程属性: 专业基础课 主讲教师: 马石庄 课程名称: 等离子体物理导论10-11春季 教学目的、要求 等离子体是物质的第四态,虽遍及宇宙空间,在地面上却不能自然存在。人类在对太空不懈探索的同时,寄厚望于受控热核聚变以免遭化石能源枯竭的困境,这一切都有赖于等离子体物理学的进展。 本课程是等离子体物理、空间物理、天体物理以及核物理与技术专业研究生的基础课,同时也可作宇航科学与工程、电子与通讯、材料科学与技术等专业研究生的选修课。 本课程采用国际著名的教科书为教材,讲解等离子体物理学的基本概念、基本原理和描述问题和分析问题的基本方法;强调物理概念和物理原理,也做必要的数学描述和基本推导,为学生的进一步的自主学习勾勒一副知识地图。 预修课程 普通物理,高等数学; 教材 Bellan, Paul M., Fundamentals of Plasma Physics, Cambridge University Press ,2004. 主要内容 第一章 绪论(1)等离子体在自然界的存在,等离于体的定义,温度的概念,Debye屏蔽,等离子体参数,等离子体判据 第二章 单粒子运动(2)均匀的电场和磁场,非均匀电场,非均匀磁场,随时间变化的电场,随时间变化的磁场,导向中心漂移,绝热不变量 第三章 作为流体的等离子体(2) 等离子体物理学与普通电磁学的关系,流体运动方程,垂直于磁场的流体漂移,平行于磁场的流体漂移,等离子体近似 第四章 等离子体中的波(3) 波的相速度与群速度,等离子体振荡,电子等离子体波,声波,离子波,等离子体近似的有效性,离子波和电子波的比较,垂直于磁场的静电电子振荡,垂直于磁场的静电离子波,下杂化频率,的电磁波,垂直于 的电磁波,截止和共振,平行于 的电磁波,磁流体波,磁声波,基本等离子体波与CMA图 第五章 扩散和导电性(3) 弱电离气体中的扩散和迁移,扩散引起的等离子体衰变,稳桓态解,穿过磁场的扩散,完全电离等离子体中的碰撞,单流体MHD方程,完全电离等离子体中的扩散,扩散方程的解,Bohm扩散和新经典扩散 第六章 平衡和稳定性(3)磁流体平衡,β的概念,磁场进入等离子体的扩散,不稳定性的分类,双流不稳定性,“重力”不稳定性,电阻漂移波 第七章 动理学理论(2) 分布函数的意义,动理学理论方程,流体方程的推导,等离子体振荡和Landau阻尼,Landau阻尼的意义及物理论证,BGK和Van Kampen模,离子Landau阻尼,磁场中的动理效应 第八章 非线性效应(2)等离子体鞘层, 离子声激波,有质动力,参量不稳定性,等离子体回波,非线性朗道阻尼,非线性等离子体物理方程 参考用书 1. Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol.1 Plasma Physics, 2ed Edition, Springer, 2006. (第一版中译本,陈,F.F., 等离子体物理学导论, 人民教育出版社, 1980.) 2. Boyd, T. J. M. Sanderson, J.J., The Physics of Plasmas, Cambridge University Press /世界图书,2003.(中译本,科学出版社) 3. Bittencourt, J. A., Fundamental of Plasma Physics, 3rd Edition, Springer 世界图书,2004. 4.Gurnett, D. A. Bhattacharjee, A., Introduction to Plasma Physics with Space and Laboratory Application, Cambridge University Press, 2005. 5. N. A. 克拉尔,等离子物理学原理,超星图书馆. 7. 郑春开,等离子体物理,北京大学出版社,2009. 8. 胡希伟,等离子体理论基础,北京大学出版社,2006..
11003 次阅读|1 个评论
[转载]我国首个航空等离子体动力学国家级实验室成立
zqh2002 2011-6-2 22:39
新华网专稿(新华军事评论员 郑文浩)5月12日,中国首个航空等离子体动力学国家级重点实验室在空军工程大学成立。对于大多数人来说,等离子体这种宏观的中性电离气体距离他们的生活实在是太遥远了。即使是热爱军事的网友,很多对这方面也仅仅是表面的了解。等离子体与军用航空的关系,流传最广泛的就是所谓的“俄罗斯战机使用等离子体隐身”这个说法了。 说到“等离子体隐身”,就要提到人类的载人航天。在一次次飞船、航天飞机返回地球的过程中,由于他们和大气层的剧烈摩擦,飞船表面产生了等离子层,形成了电磁屏蔽。很多中国人都会记得几次神舟飞船返回地球的时候都会有一段时间和地面暂时中断联系,就是这种现象的反映。当然,这种现象早就受到了军事技术人员的注意,就是有可能通过这种等离子体的电磁屏蔽来实现作战飞机的主动隐身。然而设想并不等于工程实践,实际上通过等离子体来实现隐身从工程角度来讲很难实现。因为想实现覆盖几十米长作战飞机的等离子层,要么会牺牲飞机的气动外形,要么会对飞机的电源和燃料提出了很难实现的要求。 现在对等离子体的研究,基本上已经可以确定。那种大气摩擦产生的热等离子,是不可能应用于飞机隐身的。即使在俄罗斯,现在也没有没有确凿的证据来证明有实用的等离子体飞机隐身技术。唯一在技术界流传广泛的,就是有传闻美国在B-2轰炸机上使用了一些由稳态电源或者微波产生的冷等离子体来实现隐身。这种传闻,和美国公开B-2采用飞翼和涂料来实现隐身的说法差异很大。由于B-2轰炸机涉及到美军的核心机密,等离子体隐身的说法只能是个疑问 。 除了等离子体隐身,那么等离子体和军用航空的契合点又在哪里呢? 我们不妨再看看原来的那条新闻。不难发现,这个实验室的全称是“航空等离子体动力学国家级重点实验室”,里面有动力学这个关键词。而新闻中还提到:“这个实验室的成立,是推进我国在航空动力发展领域实现理论和技术创新的重要举措,并为解决制约航空装备发展和空军战斗力生成的瓶颈问题提供了重要的研究平台……”答案已经很明显了,等离子体研究与“航空动力”这制约中国航空装备发展和空军战斗力生成的瓶颈问题有着直接的关系。 一些公开的资料表明,等离子体在航空动力上,可以有效地提高燃烧稳定性和燃烧效率,极大改善航空发动机压气机增压比升高后的工作稳定性,从而实现推重比10甚至更高涡扇发动机的生产;而在飞机气动力上,等离子体可以减少飞机阻力,增加升力,提高战机的失速攻角和机动性。 例如在航空发动机上,风扇、压气机是航空涡扇发动机的核心部件。提高航空涡扇发动机的推重比,只能增加压气机的增压比,而随之带来的问题就是压气机出口面积急剧缩小、效率严重降低。而通过在压气机的特定位置上布置等离子体激励装置,则会有效改善发动机内气体的流动效果。 毫无疑问,等离子体动力学的研究在全球范围内都是一个非常超前的领域。以至于在公开的资料中,只知道等离子体对空气的流动会产生作用,但是其作用的机理却不清楚。那么国外的一些先进航空动力,例如F-119、F-135发动机,是否使用了等离子体技术,也是一个谜。不过这次我国成立等离子体国家级重点实验室,显示我国在航空动力、飞行器气动力研究方面,已经进入了最前沿领域。随着我国在等离子体动力学研究上的不断深入,中国在研制推重比10以上的先进航空发动机的技术积淀,将更为深厚,从而为先进战机、空天飞行器、大型军用运输机的发展奠定坚实的基础。
3040 次阅读|0 个评论
航空等离子体动力学国防科技重点实验室成立
xiaguangqing 2011-5-28 19:12
http://mil.news.sina.com.cn/2011-05-12/1427646855.html 优美的环境为科研创造了良好条件。谭超 摄 领导和专家为航空等离子体动力学国家级实验室揭牌。谭超 摄 空军工程大学隆重举行航空等离子体动力学国家级实验室揭牌仪式。   中广网西安5月12日消息 (记者谭超 刘小红)今天,我国首个航空等离子体动力学国家级重点实验室在空军工程大学挂牌成立。这是空军院校首次实现国家级科技创新平台建设零的突破,将从根本上提升我国航空等离子研究技术的自主创新能力。   来自国家,总部、空军机关领导,著名院校研究所的专家参加了揭牌仪式。等离子体是一种宏观电中性电离气体,在航空工业上有着重要的用途。这个实验室由空军工程大学该学科的带头人教授李应红任主任,在他的带领下将为我军航空领域培养一支技术水平高、攻关能力强的科技创新团队。这个实验室的成立,是推进我国在航空动力发展领域实现理论和技术创新的重要举措,并为解决制约航空装备发展和空军战斗力生成的瓶颈问题提供了重要的研究平台,同时也将成为国内相关领域发展学术研究和交流活动的共享平台。   这个实验室将充分利用国内优势研究资源,紧盯世界航空动力学发展前沿和适应我国航空等离子体动力学技术发展需求 ,在装备论证方面、承担国家和军队重点研究课题,造就科技领军人才,产出有影响力的研究成果,打造引领大学科技创新的重要研究基地, 推动我国航空事业的跨越式发展。   据了解,自60年代以来,美国、前苏联等军事强国就开始研究等离子体的性能。近年来,等离子体技术在俄罗斯取得了突破性进展,其研究领先于世界。
8958 次阅读|0 个评论
[转载]2011年度“中国等离子体物理暑期学校”
phenixd 2011-4-24 14:21
(Chinese Summer School on Plasma Physics,CSSPP11) 第一轮通知 “中国等离子体物理暑期学校”(英文为Chinese Summer School on Plasma Physics;以下简称暑期学校或CSSPP)是上世纪80年代初期,由我国已故著名等离子体物理学家蔡诗东院士倡议并组织起来的,其目的是为了在中国推进和发展等离子体物理研究,培养聚变与等离子体科学研究人才,实现“把等离子体物理的根扎在中国”的理想。 为了发展我国的受控热核聚变和等离子体物理事业、支持ITER大型国际合作计划及国内的EAST和HL-2A大科学工程项目,大力培养核聚变和等离子体物理方面的高层次人才已成为中国等离子体物理界的迫切任务。在相关研究所和高校的支持下,经海内外专家反复讨论,决定从2007年起恢复举办“中国等离子体物理暑期学校”。2007年8月,恢复后的第一届暑期学校在成都成功举办。 2007年10月“中国等离子体物理暑期学校筹划委员会”正式成立,确定暑期学校每年举办一届,主题将根据学科发展和国内受控热核聚变研究的需求,每四年为一个周期进行长期规划。2008年由中国科技大学承办第二届暑期学校,2009年在浙江大学举办第三届暑期学校。2010年的第四届暑期学校由东华大学承办。2011年的第五届暑期学校将由大连理工大学承办。 现将CSSPP11有关情况首轮通知如下: 2011年度暑期学校以“总结前四期的内容和介绍新的前沿领域”为主题。 (1) 授课对象:等离子体物理和受控热核聚变领域的研究生、青年研究人员(为了保证暑期学校的质量,经筹划委员会讨论决定,本次暑期学校限定120名学员,其中核工业西南物理研究院和 中科院等离子体所各30名 ,其它单位60名)。 (2) 授课地点:大连理工大学校区内(教室待定) (3) 授课时间:2011年7月15~24日;7月14日(14:00-20:00)在大连理工大学专招二部报到。 (4) 会务简况:免收注册费;住宿:大连理工大学专招二部。食宿费、交通费自理。 (5) 联系人:刘悦(Email: liuyue@dlut.edu.cn ,13941156545)、王德真(Email: wangdez@dlut.edu.cn ,13052718903)。 暑期学校开展“学员论坛”活动,欢迎学员在课程学习的同时,相互交流学习和研究工作情况,具体时间安排见日程表。愿意在“学员论坛”作报告的学员请作好相应的准备。 等离子体所学员报名,请于2011年5月31日前发回执到: zhaodan@ipp.ac.cn 。 2011年度“中国等离子体物理暑期学校” 组委会 2011年4月11日 From: http://www.ipp.cas.cn/tzgg/tz_yjs/201104/t20110420_74472.html
3329 次阅读|0 个评论
燃烧等离子体-高能粒子物理
热度 1 phenixd 2011-4-12 12:48
燃烧等离子体-高能粒子物理
个人分类: 生活点滴|4127 次阅读|1 个评论
[转载]科学像花儿一样 浙大“材料微结构摄影比赛” 科学即美学
热度 1 沈海军 2011-4-2 16:15
图1:揭秘金字塔——新型硅基太阳电池原型器件 作品简介:本作品为新型单晶硅太阳电池原型器件的界面扫描电镜图片。将两种金属材料的纳米结构(薄膜和硅衬底之间以及薄膜表面的金属纳米结构)产生的表面等离子体激元与传统的单晶硅片表面织构化(单晶硅衬底腐蚀后得到的“金字塔”结构)相结合,共同增强电池的陷光作用,以期提高太阳能利用效率。 李喆(07级博士) 摄 图2:你是我的眼——铟掺杂氧化锌 作品简介:这是由透射电镜在放大4000倍的情况下拍摄的。整个画面主要由四部分构成:眼睛上部、眼球、眼睛下部和右下部分的点缀物。其中眼球是重点,它非常圆,其实它是由一圈纳米颗粒围成的,这些纳米颗粒在高放大倍数下基本呈正六边形,是铟掺杂的氧化锌。被圈在里面的纳米颗粒同样是掺铟的氧化锌,它们呈随机分布,远看就像眼睛里面的一些血丝。陈栋栋(08级硕士) 摄 图3:一代天骄@牡丹——氧化铜纳米花薄膜 作品简介:这是化学沉积制得的氧化铜薄膜的扫描电子显微镜照片。图中氧化铜具备等级结构:一级结构呈现出三维的牡丹花形貌,二级结构为二维的薄片,形状酷似花瓣,每片花瓣厚20—50纳米。这种特殊结构的氧化铜花状薄膜结构稳定,作为锂离子电池负极材料具有非常好的电化学性能。 相佳媛(06级博士) 摄 图4:知——氧化铜 作品简介:这是用简单的湿化学法合成的氧化铜粉体的透射电子显微镜照片。CuO粉体呈二维片状结构,长约500纳米,宽约200-300纳米,厚20-50纳米,从外形上看酷似“叶子”。该种特殊结构的纳米片状CuO,作为锂离子电池负极材料具有非常好的电化学性能。落叶纷飞,有一种凄凉的悲怆,却更有一种坚强的美丽,美丽中带有希望。张冬(09级博士) 摄 中科院院士张泽去年4月从北方来到杭州,在浙江大学材料系开始了他新的学术生涯。工作之余,他会开一辆墨绿色的吉普车出发,去欣赏杭州美景。这几天,他正准备充当司机, 带材料系的同学们一起出游。但搭车的人要符合一个条件——必须是在刚刚结束的“材料微结构摄影比赛”中的前三,或者是最后一名。 因为科学 所以艺术 张泽院士是材料科学领域的著名科学家,他常说,“材料的结构决定了它的性能”。在他的研究工作中,常常要给材料拍照。用的不是我们通常说的相机,拍的也不是我们平常所见的照片,而是把材料放在电子显微镜下,放大几十万倍甚至几百万倍后,拍到的纳米级的成像,可以看到原子的分布。其实不光是张泽院士,这是材料系的老师和研究生们都常要做的事。目前,浙大有4台高倍电子显微镜,是师生们做科研的热门设备。 张泽院士来到浙大作的第一场讲座是“材料性能与显微结构间关系”。他对着一张张材料微结构照片发出一次次由衷的赞叹:“大家看这个结构,真是美啊!”“我的一位研究生做了一个非常漂亮的材料,你们看这个曲线……”,过路人一定会误以为这位眉飞色舞的教授是在作一场美学报告。他加盟浙大之后,正在筹建浙大电镜研究中心,学校投入了4500万元人民币用于购置国际最高端电子显微镜,张泽院士期望把中心建设成为浙大乃至长三角地区材料、物理、化学、化工和机械等学科的科学家的高端共用平台。这不是一件买设备、用设备这么简单的事,首先要设计建一个安安静静的地方安置它。高倍的电子显微镜,连过路汽车产生的震动也会影响它的效果。 浙大材料系的系主任叶志镇教授也坐在席间听讲座,那段时间他正在想着,如何让学生对材料学科更有兴趣。张泽的讲座很打动他,让他想起自己读博士的时候,导师曾教导他,电镜观察很重要。“我在麻省理工学院访问的时候,发现那里经常会举办一些竞赛,培养学生创新和艺术创作能力。”叶志镇想到了微结构摄影,系里有得天独厚的设备,为何不让同学尝试一番,来一场微结构摄影大赛?大家来比比谁的研究做得好,再比比有没有艺术细胞,能不能从微观世界中看出点美学元素,读出点人生哲理? 因为艺术 所以科学 “要避免学生将来成为‘有知识,没文化’的人。”张泽院士很赞同叶志镇的想法,“确实应该开展一些积极向上、崇尚真善美的人文活动。”材料系其他几位教授想法也很一致,于是,大教授们兴致勃勃地开始操办起第一次微结构摄影大赛,张泽是大赛组委会的主任。比赛还设立了很丰厚的奖金,一等奖有4000元,相当于本科生年度的奖学金。 比赛要求,每个同学都必须拍摄自己参与的研究成果,除了提供照片和说明文字,还必须有指导老师对作品的原创性作证明。“有的同学为了照片更加美观,希望能做一些PS处理,我们规定,除了上色,其他一切PS的修改都是不允许的。”叶志镇说。 材料系党委书记王东虽然不是材料学科出生,但对每幅作品都是如数家珍。“有幅获奖的作品叫‘金字塔’,我们评委会给它的一句话点评是‘因为艺术所以科学。”王东介绍,这幅作品拍摄的新型单晶硅太阳电池原型器件的截面扫描电镜图片,一种把光能转化存储为电能的材料。如果一种材料的表面非常光滑,那就会反射很大一部分光线,而这种材料的微观结构正好是一个个“金字塔”,太阳光照到这里,就能在内部相互反射,而 “逃”不出去。学术上称之为增加了电池的“陷光”作用,这就提高了光能的转换效率,很有应用前景。 “很多照片,就像野生动物摄影一样,要等待,要抢拍。”王东介绍,获得一等奖的杨叶峰的照片就是一幅因“技术和学术结合得相当精美”而征服评委的照片。“一开始我们认为他是把镜头‘钻’近了‘央视大楼’的底部拍出来的,但这个几乎是不可能实现的,后来才发现杨叶峰同学是抓拍了一个很有学术意义的瞬间。“就像摄影师在一个风景秀丽的地方等待一群藏羚羊的出现,科学工作者也在等待某个激动人心的时刻。这种心情应该都是相通的。” 艺术就是人与自然交融 参加微结构摄影大赛的作品,在浙大材料系面向本科生的专业介绍会上派上了大用场。材料系面向大类学生举办专业介绍会的那天,本科大一大二的同学们对学长们拍摄的照片充满了好奇,学弟学妹们对着一幅“一代天骄@牡丹”的照片议论纷纷:“这不就是一朵西湖边的牡丹吗”王东在一旁笑着解说:“这当然是西湖边的牡丹,但它是盛开在西湖边的一所大学的实验室里。而且才几十纳米大。”这幅牡丹是06级的博士生相佳媛拍的。两年前,她通过多次试验制备出了一种电容量较大的氧化铜材料,在显微镜下观察微观结构,她惊喜地发现这种氧化铜材料像一朵盛开的牡丹。“当时我拍下了这张照片,还写了一篇关于这种材料的论文,我是这样形容它的,它就是‘flowerslike’(像花一样)”。 08级硕士陈栋栋用透射电镜,把铟掺杂的氧化锌放大了4000倍拍了照片。“当一只‘眼睛’活生生地映入我的‘肉眼’时,那种震撼是很难描述的,当‘双目’相对的时候,我感受到了科学与艺术结合的力量,人与自然交融的力量。”小陈把这张照片起名为《你是我的眼》,他说:“非等价半导体的掺杂是一个很重要的课题,通过这只‘眼睛’,让我们看到了一片光明和希望!”决赛现场,小陈把“眼睛”的照片做成了一副眼镜,邀请了10多位同学来帮助做“模特”,各拍一张墨镜照。出场的阵势立刻征服了台下的观众,评委们听到雷鸣般的掌声,就一致决定把 “最佳人气奖”颁给了这双“眼睛”。 杨叶峰是2006年的直博生,他的获奖作品《央视大楼》是一张比较难懂的照片,之所以被评委相中,很重要的原因是对其学术价值的肯定和对他坚持不懈的科研精神的鼓励。在杨叶峰最初开始研究生生涯的两年间,没有特别激动人心的研究进展,但在2010年7月,他的论文终于被权威化学期刊接受,《美国化学会志》上全文刊载了他14页的研究论文,这是件很不容易的事,他因此获得了浙大学生的最高荣誉——竺可桢奖学金。 杨叶峰的研究领域是半导体纳米晶合成。目前,学术界对纳米四脚针状结构 (tetrapod) 的形成机制尚未形成统一的认识,对它核心区域进行结构表征还存在很大的困难,多个分支的空间阻碍,很大程度上妨碍了核心区域的结构观察,因此,有关核心区域原子级分辨率的高分辨电镜照片仍十分罕见。通过潜心研究,他在国际上首次合成了Mg掺杂的ZnO纳米四脚针状结构,通过高分辨透射电子显微镜拍下了照片。为了拍到这张照片,杨叶峰选了夜深人静的一刻,因为外界的震动、电磁波辐射等干扰都会影响成像质量,样品要在电镜腔体内事先稳定若干时间。“最重要的是要在拍摄过程中保持耐心,坚持!很多时候坚持和放弃只是一念之间的事情,尤其是原以为这几乎是不可能做到的。”杨叶峰说。 决赛现场,浙大紫金港校区东区的教室挤满了学生和老师。张泽院士的即兴致辞让场内的同学都很兴奋。“我在这里发出邀请,这个比赛的前三名和最后一名,都可以搭我的车出去玩一天,我随时接受你们的预约。”张泽说,“参与”是最重要的,所以,最后一名也是值得和应该鼓励的 http://www.mememama.cn/2011/0115/1812_2.html
4409 次阅读|1 个评论
2011-3-25学术
stillme2010 2011-3-25 09:35
非热等离子体技术是烟气处理的发展趋势之一。本文采用 FeCu/zeolite 作为催化剂对微波催化去除 NOx 及 SO2 进行了研究。试验结果表明,带有 FeCu/zeolite 的微波反应器可用来微波催化氧化 91.7% 的 NOx 为硝酸盐, 79.6% 的 SO2 氧化为硫酸;带有 FeCu/zeolite 以及 NH4HCO3 作为还原剂的的微波反应器去除 NOx 以及 SO2 的反应效率分别为 95.8% 以及 93.4% 。微波的加入可以加速催化还原 SO2 以及 NOx ,微波的加入可以提高 SO2 的去除效率从 14.5% 至 18.7% , NOx 的去除效率从 13.4% 提高至 18.7% 。 FeCu/zeolite 采用 XRD, XPS, SEM, BET 进行表征。微波催化去除 SO2 以及 NOx 采用 L-H 动力学模型拟合。
1874 次阅读|0 个评论
ITER——即将升空的“人造太阳”
kejidaobao 2011-2-21 15:01
目前,全球面临环境污染、气候变暖、能源紧缺等危机,导致各国纷纷加入寻找新的可持续发展能源的行列。作为地球上众多能量的来源,太阳本身就是一个巨大的核聚变反应堆,其内部有大量氘和氚,在高温高压的环境下,氘和氚不停撞击而进行聚变作用,产生巨大能量。如何使核聚变过程变得可控,并收集释放的能量,成为解决全球能源环境问题的重大任务,人类开启了设法“人造”小太阳的征途。 国际热核实验堆(International Thermonuclear Experimental Reactor,ITER)计划于1985年由美国与前苏联提出,历经20年不断发展与演变,如今成为欧盟、美、日、中、印、韩、俄7国合作的国际项目。ITER的设计目标为实现点火的聚变实验反应堆、验证聚变发电的物理和工程可行性以及产氚工艺研发,其目的就是要建造一个“人造太阳”,涉及的关键技术有堆设计、芯部等离子体、包层材料 相关技术等。中国主要承担的任务有屏 蔽包层、实验包层、超导磁体、高压变电 站、真空泵和加料、远程控制以及核分 析等。 包层实验是ITER的关键任务之一,是ITER与DEMO的决定性纽带。在ITER实验包层(TBM)计划中,共安排了3个窗口、6个模块,中国主导一个窗口,并提出固态TBM和液态TBM的概念,基本确定以固态为主(由中国核工业集团公司西南核物理研究院负责),参与法国的ITER实验;以液态为辅(由中国科学院等离子体研究所负责),跟踪国际研究,作为固态的备用。中国工程物理研究院物理与化学研究所承担了验证在线氚增殖-提取循环技术的可靠性的工作,以避免在TBM及锂铅回路中造成很高的氚渗透量及滞留量。本期第69~73页刊登的谢波等的“ITER中国液态锂铅实验回路中的氚技术”一文,综述了2004年以来中国液态锂铅回路中氚技术的研究进展。封面图片为巨大的核聚变堆——太阳,由谢波提供;本期封面由严佳君设计。 (本刊记者 刘志远)
个人分类: 栏目:封面图片说明|3165 次阅读|0 个评论
元宵、灯谜、等离子体
热度 4 等离子体科学 2011-2-17 14:46
正月十五元宵节。东亚地区还守着中国古时的习俗,称“上元节”。西方则用“灯节”( Lantern Festival )的俗称——不仅因为“东风夜放花千树”的上元花灯,也因为“元宵灯谜”的传统民俗。比如《红楼梦》第二十二回:《听曲文宝玉悟禅机 制灯谜贾政悲谶语》就记述了当时元宵制灯谜的风俗。 想起做学生时猜过的一个灯谜:望儿归(打一物理名词)。 谜底正是:等离子。 等离子体被称为物质的第四态。当初中文命名时,等、离二字应取自“整体呈准电中性的电离状态”。“子”从何来,就不得而知了。名字起得虽好,但是有点长,比起其它三态:固体、液体、气体,长了一倍,说起来有些绕口。以至于很多学生(以科大为甚)干脆简称其为“等体”! “等体”二字,叫起来虽然与其它三态“对等”,但是全无科学性。而且,现代科学的发展已经对“等离子体”中的这个“等”字发起了挑战——各种非中性等离子体( Nonneutral Plasmas ),甚至单分量(仅有电子、或者仅有离子)等离子体( OCP , One Component Plasma )的出现,导致“准电中性”的完全破坏。 其实若想减字,笔者觉得“子”字是可以不要的,因为原来就没有实际意义。而且“等离体”的量子( plasmon )直接叫“等离子”,方便自然。如今通常的叫法是“等离子体激元”,即不方便也不自然——比如 Phonon 称为“声子”而不是“晶体激元”。 但是如果考虑上面提到的“等”字的狭义性,则只剩一个“离”字可用。但是“离体”这个名称不仅物理意义太模糊,而且非常容易引起歧义。 台湾地区仿照“血浆”,将物理上的 plasma 译成“电浆”( plasmon 则称“电浆子”)。赵凯华老师觉得这个名字好一些——因为 Langmuir 先生当初想到 plasma 这个名字的时候就是觉得它与“血浆”有些类似——他即将出版的新书就叫:《电浆基本理论》。 总之,物理学会再讨论中文物理学词汇的时候,应该考虑给“等离子体”正名了! 不管新名字是什么,元宵制灯谜的时候,会少一条。对喜欢“射虎”的朋友来说,是个小小的遗憾 :p
个人分类: 燕园夜话|3935 次阅读|11 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-23 21:16

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部