科学网

 找回密码
  注册

tag 标签: 随机矩阵

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

冷Er原子碰撞中的混沌现象
热度 1 yanbohang 2014-3-16 01:50
冷Er 原子碰撞中的混沌现象 科学的目标是探索未知世界。因此将技术推到新的极致总是激动人心的,往往也导致新的发现。冷原子发展至今已经非常成熟和宏大了,下一步如何走。如果你对基于冷原子的量子模拟感到疲惫,最新 Nature 杂志上关于 Er 的研究或许能让你眼前一亮。 ( http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13137.html ) 冷原子最先是在碱金属原子方面发展起来的,后来扩展到碱土金属。最近几年扩展到多电子稀土原子,比如 Cr , Dy , Er 等。多电子结构给原子带来了全新的性质,文章中就研究了 Er 原子的共振碰撞性质。对于碱金属, Feshbach 共振研究已经比较多了,比如研究 Fermi 子的 BEC-BCScrossover , Cs 原子的 Effmov 物理,以及用 Feshbach 共振来实现超冷分子等等。可以说是一个非常基本和成熟的技术。 Ferlaino 小组获得 Er 超冷原子后,研究 Er 原子 Feshbach 共振。扫描磁场,记录原子的损失,结果发现非常多的共振谱。 图 1 : Er168 和 Er166 的 Feshbach 共振。 在碱金属中, Feshbach 共振可以非常精确地计算出来。但是 Er 是多电子结构,直接计算需要耦合非常多的参数。文章中也尝试从第一原理出发计算共振能级。用分波法,计算到 L=20 阶,但是计算结果和实验还是差距很大。图 2 是计算的结果,横轴是计算分波的阶数,纵轴是计算的共振密度(每高斯磁场中平均有多少共振线)。实验结果是阴影区域。可以看到,从头算的结果比实验小很多。更多的计算或许能和实验符合更好,但是计算量太大了。 科学家已经有很多处理复杂系统的经验。如果不能从头算,可以研究系统的统计性质。在核物理领域,人们已经遇到过类似的问题。 Winger 发展了随机矩阵方法( RMT )来处理此类问题。 图 2 : 分波计算结果。 文章中研究了工作点位置的统计性质。第一个性质是共振点密度。横轴是扫描的磁场,纵轴是共振点的累加。在比较大磁场情况下,可以用直线拟合,说明比较大磁场情况下,共振点密度保持不变。 图 3 : 共振点和共振密度累加线。 另一个统计性质是相邻共振点距离( NNS )的统计性质。计算每一对相邻点的距离,横轴是这个距离,纵轴则是相应的几率。在随机矩阵理论中, NNS 满足 Winger-Dyson 分布。 这是量子混沌的一个一般结论。可以看到,实验数据和这个理论符合的很好。整个结果在意料之外,超冷原子的一大优势就是可以精确计算,如今又观测到量子混沌现象。这样可以从精确计算和统计两个方面进行对比,带来新的思路。 图 4 : NNS 统计性质
个人分类: 文献|4657 次阅读|1 个评论
专题讨论班:随机矩阵(六)(皮竞辉)
GrandFT 2013-12-2 14:57
题目:随机矩阵(六) 主讲:皮竞辉 时间:2013年12月2日星期一下午15:00 地点:16教学楼308室 提纲: Gauss系综能级密度,半圆率 参考文献:M.L.Mehta Random matrices
个人分类: 专题讨论班|1848 次阅读|0 个评论
专题讨论班:随机矩阵(五)(皮竞辉)
GrandFT 2013-11-27 14:29
题目:随机矩阵(五) 主讲:皮竞辉 时间:2013年11月26日星期二上午8:30-10:00 地点:16教学楼308室 提纲: 2.本征值的联合几率密度函数 3.随机矩阵与信息论 4.配分函数 参考文献:M.L.Mehta Random matrices
个人分类: 专题讨论班|1884 次阅读|0 个评论
专题讨论班:随机矩阵(四)(皮竞辉)
GrandFT 2013-11-27 14:24
题目:随机矩阵(四) 主讲:皮竞辉 时间:2013年11月25日星期一上午11:00-12:00 地点:16教学楼308室 提纲: 1.矩阵元的联合几率密度函数 参考文献:M.L.Mehta Random matrices
个人分类: 专题讨论班|1876 次阅读|0 个评论
专题讨论班:随机矩阵(三)(皮竞辉)
GrandFT 2013-11-6 23:46
题目:随机矩阵(三) 主讲:皮竞辉 时间:2013年11月7日星期四上午9:45-12:00 地点:16教学楼308室 提纲: 1,预备知识 2,时间反演不变 3,高斯正交系综 4,高斯辛系综 5,高斯幺正系综 6,矩阵元的联合几率密度函数 参考文献:M.L.Mehta Random matrices
个人分类: 专题讨论班|2783 次阅读|0 个评论
专题讨论班:随机矩阵(二)—随机矩阵与黎曼ζ函数(皮竞辉)
热度 1 GrandFT 2013-10-22 16:00
题目:随机矩阵(二)—随机矩阵与黎曼ζ函数 主讲:皮竞辉 时间:2013年10月22日星期二下午4:45-6:10 地点:16教学楼308室 提纲: 1. 黎曼ζ函数简介 2. 黎曼ζ函数的零点 3. 黎曼ζ函数与随机矩阵 4. 谱ζ函数 参考书目: 参考文献:M.L.Mehta Random matrices
个人分类: 专题讨论班|3322 次阅读|3 个评论
周四讨论班:随机矩阵(皮竞辉)
热度 1 GrandFT 2013-10-9 18:32
题目:随机矩阵 主讲:皮竞辉 时间: 2013 年 10 月9 日 星期四 下午4:30 地点: 16 教学楼 308 室 一 引言 二 随机矩阵与核物理 三 原子核中的能级统计 四 维格纳猜想 五 黎曼zata函数的零点 说明:本次主要讲述随机矩阵的基本概念以及与其他学科的联系 参考文献:M.L.Mehta Random matrices
个人分类: 周四讨论班|2406 次阅读|2 个评论
讨论班(周五):量子台球系统与随机矩阵简介(皮竞辉)
GrandFT 2013-5-23 12:50
题目: 量子台球系统与随机矩阵简介 主讲:皮竞辉 时间:2013年5月24日星期五下午4:30-6:10 地点:16教学楼308室 提纲: 一. 混沌简介 二. 台球实验: 1.固体和液体中的波的传播 2.微波台球 3.介观结构 三. 随机矩阵简介 参考文献:《Quantum Chaos》H-J Stockmann 《Random matrices》Madan Lal Mehta 《量子混沌》顾雁
个人分类: 周四讨论班|2959 次阅读|0 个评论
科学计量学工作者是否也要注意随机矩阵?
热度 8 Wuyishan 2012-8-6 06:21
科学计量学工作者是否也要注意随机矩阵? 武夷山 2010 年 4 月 10 号出版的《新科学家》杂志的封面文章是 Mark Buchanan写 的关于 The Random Matrix (随机矩阵)的Enter the matrix: the deep law that shapes our reality。 Mark Buchanan 是美国物理学家和科学作家, 2009 年曾因其围绕复杂性研究领域撰写的科学作品而在意大利都灵获得拉格朗日奖。这篇封面文章说: 假定你拥有多年的经济指标数据(通胀率、就业率、股价,等等),并着手寻找其间的因果关系。 J. P. Bouchaud 及同事证明:即使这些变量是随机波动的,但由于观察到的最大相关性仍旧足够大,因而这些相关性显得是显著的。 这种现象叫 Curse of dimensionality (维度的诅咒),意思是:大量信息的存在,使得研究一切事物都变得容易起来,但同时,“识别出的模式其实无意义”也变得司空见惯了。此时,随机矩阵方法就派上了用场,它有助于将有意义的模式和无意义的模式区分开。 博主:在科学计量学领域,可资利用的指标数据也越来越多。因此,计量经济学家的提醒对于我们科学计量学界也有启发意义。 李泳老师找到了 Mark Buchanan 那篇文章的电子版( http://treasure.1x1y.com.cn/useracticles/20100408/20100408022432574.html ),而下面这篇评论文章( http://andrewgelman.com/2010/04/random_matrices/ )对理解“随机矩阵”应有帮助,同时该文也发表了与 Mark Buchanan 不同的意见。故将此文附在下面,供参考。 Random matrices in the news Posted by Andrew on 13 April 2010, 11:35 am Mark Buchanan wrote a cover article for the New Scientist on random matrices, a heretofore obscure area of probability theory that his headline writer characterizes as “the deep law that shapes our reality.” It’s interesting stuff, and he gets into some statistical applications at the end, so I’ll give you my take on it. But first, some background. About two hundred years ago, the mathematician/physicist Laplace discovered what is now called the central limit theorem, which is that, under certain conditions, the average of a large number of small random variables has an approximate normal (bell-shaped) distribution. A bit over 100 years ago, social scientists such as Galton applied this theorem to all sorts of biological and social phenomena. The central limit theorem, in its generality, is also important in the information that it indirectly conveys when it fails. For example, the distribution of the heights of adult men or women is nicely bell-shaped, but the distribution of the heights of all adults has a different, more spread-out distribution. This is because your height is the sum of many small factors and one large factor–your sex. The conditions of the theorem are that no single factor (or small number of factors) should be important on its own. For another example, it has long been observed that incomes do not follow a bell-shaped curve, even on the logarithmic scale. Nor do sizes of cities and many other social phenomena. These “power-law curves,” which don’t fit the central limit theorem, have motivated social scientists such as Herbert Simon to come up with processes more complicated than simple averaging (for example, models in which the rich get richer). The central limit theorem is an example of an attractor–a mathematical model that appears as a limit as sample size gets large. The key feature of an attractor is that it destroys information. Think of it as being like a funnel: all sorts of things can come in, but a single thing–the bell-shaped curve–comes out. (Or, for other models, such as that used to describe the distribution of incomes, the attractor might be a power-law distribution.) The beauty of an attractor is that, if you believe the model, it can be used to explain an observed pattern without needing to know the details of its components. Thus, for example, we can see that the heights of men or of women have bell-shaped distributions, without knowing the details of the many small genetic and environmental influences on height. Now to random matrices. A random matrix is an array of numbers, where each number is drawn from some specified probability distribution. You can compute the eigenvalues of a square matrix–that’s a set of numbers summarizing the structure of the matrix–and they will have a probability distribution that is induced by the probability distribution of the individual elements of the matrix. Over the past few decades, mathematicians such as Alan Edelman have performed computer simulations and proved theorems deriving the distribution of the eigenvalues of a random matrix, as the dimension of the matrix becomes large. It appears that the eigenvalue distribution is an attractor. That is, for a broad range of different input models (distributions of the random matrices), you get the same output–the same eigenvalue distribution–as the sample size becomes large. This is interesting, and it’s hard to prove. (At least, it seemed hard to prove the last time I looked at it, about 20 years ago, and I’m sure that it’s even harder to make advances in the field today!) Now, to return to the news article. If the eigenvalue distribution is an attractor, this means that a lot of physical and social phenomena which can be modeled by eigenvalues (including, apparently, quantum energy levels and some properties of statistical tests) might have a common structure. Just as, at a similar level, we see the normal distribution and related functions in all sorts of unusual places. Consider this quote from Buchanan’s article: Recently, for example, physicist Ferdinand Kuemmeth and colleagues at Harvard University used it to predict the energy levels of electrons in the gold nanoparticles they had constructed. Traditional theories suggest that such energy levels should be influenced by a bewildering range of factors, including the precise shape and size of the nanoparticle and the relative position of the atoms, which is considered to be more or less random. Nevertheless, Kuemmeth’s team found that random matrix theory described the measured levels very accurately. That’s what an attractor is all about: different inputs, same output. Thus, I don’t quite understand this quote: Random matrix theory has got mathematicians like Percy Deift of New York University imagining that there might be more general patterns there too. “This kind of thinking isn’t common in mathematics,” he notes. ‘Mathematicians tend to think that each of their problems has its own special, distinguishing features. But in recent years we have begun to see that problems from diverse areas, often with no discernible connections, all behave in a very similar way. This doesn’t seem like such a surprise to me–it seems very much in the tradition of mathematical modeling. But maybe there’s something I’m missing here. Finally, Buchanan turns to social science: An economist may sift through hundreds of data sets looking for something to explain changes in inflation – perhaps oil futures, interest rates or industrial inventories. Businesses such as Amazon.com rely on similar techniques to spot patterns in buyer behaviour and help direct their advertising. While random matrix theory suggests that this is a promising approach, it also points to hidden dangers. As more and more complex data is collected, the number of variables being studied grows, and the number of apparent correlations between them grows even faster. With enough variables to test, it becomes almost certain that you will detect correlations that look significant, even if they aren’t. . . . even if these variables are all fluctuating randomly, the largest observed correlation will be large enough to seem significant. This is well known. The new idea is that mathematical theory might enable the distribution of these correlations to be understood for a general range of cases. That’s interesting but doesn’t alter the basic statistical ideas. Beyond this, I think there’s a flaw in the idea that statistics (or econometrics) proceeds by blindly looking at the correlations among all variables. In my experience, it makes more sense to fit a hierarchical model, using structure in the economic indexes rather than just throwing them all in as predictors. We are in fact studying the properties of hierarchical models when the number of cases and variables becomes large, and it’s a hard problem. Maybe the ideas from random matrix theory will be relevant here too. Buchanan writes: In recent years, some economists have begun to express doubts over predictions made from huge volumes of data, but they are in the minority. Most embrace the idea that more measurements mean better predictive abilities. That might be an illusion, and random matrix theory could be the tool to separate what is real and what is not. I’m with most economists here: I think that, on average, more measurements do mean better predictive abilities! Maybe not if you are only allowed to look at correlations and least-squares regressions, but if you can model with more structure than, yes, more information should be better.
个人分类: 科学计量学研究|6491 次阅读|12 个评论
《高维随机矩阵的谱理论及其在无线通信和金融统计中的应用》
热度 1 ustcpress 2012-4-11 09:14
《高维随机矩阵的谱理论及其在无线通信和金融统计中的应用》
丛书名:当代科学技术基础理论与前沿问题研究丛书——中国科学技术大学校友文库 (“十一五”国家重点图书出版规划项目) 出版日期:2009年6月 书号ISBN:978-7-312-02274-6 出版社:中国科学技术大学出版社 正文页码:244页(16开) 定价:48.00元 编辑邮箱: edit@ustc.edu.cn (欢迎来索要目录、样章的PDF) 当当网购书链接: http://product.dangdang.com/product.aspx?product_id=20631604 【 内容简介 】 本书讲述了随机矩阵谱理论的主要结果和前瞻研究,以及它在无线通信和现代金融风险理论中的应用。书中前面讲解基本知识,后面分析重要范例,全面介绍了随机矩阵谱理论在这两个领域中的成果。本书对其他需要高维数据分析的领域,能起到示范作用。本书可作为统计学、计算机科学、现代物理、量子力学、无线通信、金融工程、经济学等领域本科生、研究生和工程技术人员学习随机矩阵理论的重要参考资料。 【 作者简介 】 白志东教授, 1968 年本科毕业于中国科学技术大学数学系; 1978 年在该校读研,师从殷涌泉教授学概率,师从陈希孺教授学数理统计, 1982 年于中国科学技术大学数学系获得博士学位; 1990 年被评为第三世界科学院院士。并当选为美国数理统计研究院院士,国际统计协会会员, 2002 年起担任中国概率统计学会常务理事。第二作者和第三作者分别是方兆本教授和梁应敞教授。
个人分类: 院士著述|5772 次阅读|1 个评论
讨论班题目:随机矩阵
GrandFT 2009-9-28 20:47
题目:随机矩阵 参考文献: H-J Stockmann, Quantum chaos:an introduction, Cambridge, 1999 F. Haake, Quantum signatures of chaos, Springer, 2000 L. E. Reichl, The transition to Chaos: Conservative classical systems and quantum manifestations, Springer, 2004 注:邱荣涛讲的是文献 中的内容,其它几个文献中的内容还没有讲。 (这只是个例子,这个题目由邱荣涛讲)
个人分类: 讨论班课题推荐|3037 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-23 20:06

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部