科学网

 找回密码
  注册

tag 标签: evolution

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]中国学者首次揭示早期鸟类曾有四个翅膀
livingfossil 2013-3-20 03:12
中国学者首次揭示早期鸟类曾有四个翅膀 Science 15March2013: Vol.339 no.6125 pp.1309-1312 DOI: 10.1126/science.1228753 http://www.sciencemag.org/content/339/6125/1309 Report HindWingsinBasalBirdsandtheEvolutionofLegFeathers XiaotingZheng 1 , 2 , * , ZhongheZhou 3 , XiaoliWang 1 , FuchengZhang 3 , XiaomeiZhang 2 , YanWang 1 , GuangjinWei 1 , ShuoWang 3 , 4 , XingXu 1 , 3 , * + AuthorAffiliations 1 InstituteofGeologyandPaleontology,LinyiUniversity,ShuanglingRoad,LinyiCity,Shandong276005,China. 2 ShandongTianyuMuseumofNature,Pingyi,Shandong273300,China. 3 KeyLaboratoryofVertebrateEvolutionandHumanOriginofChineseAcademyofSciencesInstituteofVertebratePaleontologyandPaleoanthropology,ChineseAcademyofSciences,142XiwaiStreet,Beijing100044,China. 4 GraduateUniversityoftheChineseAcademyofSciences,19YuquanRoad,Beijing100049,China. ↵ * Correspondingauthor.E-mail: xingxu@vip.sina.com (X.X.); ty4291666@163.com (X.Z.) Recentdiscoveriesoflargelegfeathersinsometheropodshaveimplicationsforourunderstandingoftheevolutionofintegumentaryfeaturesontheavialanleg,andparticularlyoftheirrelevancefortheoriginofavialanflight.Herewereport11basalavialanspecimensthatwillgreatlyimproveourknowledgeoflegintegumentaryfeaturesamongearlybirds.Inparticular,theyprovidesolidevidencefortheexistenceofenlargedlegfeathersonavarietyofbasalbirds,suggestthatextensivelyscaledfeetmighthaveappearedsecondarilyatanearlystageinornithuromorphevolution,anddemonstrateadistal-to-proximalreductionpatternforlegfeathersinavialanevolution. =============== Science 15March2013: Vol.339 no.6125 p.1261 DOI: 10.1126/science.339.6125.1261 http://www.sciencemag.org/content/339/6125/1261.summary NewsAnalysis Paleontology DramaticFossilsSuggestEarlyBirdsWereBiplanes MichaelBalter Summary WhentheWrightbrotherstooktotheskiesfromKittyHawkinDecember1903,theydiditinabiplane,acraftwithtwopairsofparallelwings.Mostearlyaircraftwerebiplanes,butbythe1930s,thefastermonoplanedesign,withjusttwowings,dominatedaviation.Onpage 1309 ,aChineseteampresentsdramaticnewfossilssuggestingthatearlybirdswentthroughasimilarevolution,startingoffwithwingsonbotharmsandlegsandonlylateradoptingthearms-only,monoplaneconfiguration. =================== 我国学者首次揭示早期鸟类曾有四个翅膀 Source: http://www.ivpp.cas.cn/xwdt/kydt/201303/t20130318_3795303.html Websiteof 中国科学院古脊椎动物与古人类研究所 2013-03-18 早先的研究曾发现类似鸟类的恐龙后肢上存在羽毛,但是在早期鸟类身上却没有发现这方面的证据。山东省临沂大学地质与古生物研究所及山东天宇自然博物馆郑晓廷、中国科学院古脊椎动物与古人类研究所周忠和与徐星研究员等通过分析山东天宇自然博物馆的化石,发现 11 件早期原始鸟类标本后肢上长有羽毛的明显迹象,经过深入对比研究,认为早期鸟类曾有四个翅膀,并且后肢羽翼也具备协助飞翔的气动功能。 3 月 15 日《科学》杂志在线刊登了该项研究成果。 11 件保存着 后肢羽毛或皮肤结构 的不同的早期鸟类标本包括 2 件会鸟标本 (中科院古脊椎所周忠和与张福成于 2002 年命名的一种个体较大的最原始鸟类)、 5 件孔子鸟标本 、 3 件中生代时期占主导地位的反鸟类 (隶属不同种类)和 一件燕鸟化石标本 (唯一一件同时保存有羽毛和 鳞片 的标本)。研究人员对这些早期鸟类后肢羽毛或皮肤结构的进行了仔细观察和对比研究,确认这些鸟类后肢羽毛的存在证实了早期鸟类演化过程中曾存在一个与似鸟恐龙相似的四翼阶段(如小盗龙),并且后肢羽翼在鸟类飞翔起源中曾扮演过非常重要的角色, 也就是说最早的鸟类曾经是用四个翅膀飞翔的鸟类。 燕鸟是中科院古脊椎所周忠和与张福成于 2001 年命名的一种原始今鸟类。据研究人员介绍,迄今为止,在除了今鸟类以外的其他原始鸟类都没有发现过 足部盾形鳞片 的存在。包括 273 件孔子鸟标本和 1000 多件反鸟类标本。由此可见,足部羽毛可能是虚骨龙类(包括鸟类和许多似鸟恐龙)一个普遍存在的原始特征,而在现生鸟类足部普遍存在的盾形鳞片则是在今鸟类演化的早期阶段次生出现的。现生鸟类的腿羽都不如前肢羽翼发达,即使一些鸟类小腿上仍有羽毛,也多是成簇的或紧贴皮肤生长,虽然仍有少数发育足羽的种类,但现生鸟类足部普遍的覆有盾形鳞片,而腿羽或足羽在现生鸟类中已经丧失了曾有的飞翔功能,只剩下保护或保温功能了。 依据新资料,研究人员认为,在虚骨龙类恐龙演化早期,发育出短的丝状足羽,继而足部羽毛普遍存在于虚骨龙类中。而到了近鸟类恐龙时期,开始出现大型的腿羽(包括足羽),但在鸟类演化的早期,大型足羽开始退化,这种退化是由后肢远端开始逐渐向近端发生的,不过在 基干鸟类 和其他非今鸟类类群中却仍存在大型腿羽,并且形成退化的后肢羽翼,直到今鸟类演化的早期,鸟类足部盾形鳞片出现,而腿羽退化的更加短小。因此,今鸟类(包括现生鸟类)的足部盾形鳞片鳞片要么代表一种向原始状态反转的情形,要么是一种与爬行类鳞片不完全同源的全新结构。研究人员推测,在早期鸟类演化过程中,足部皮肤结构发育过程中可能出现了个别或者一组基因表达模式的变化,从而导致羽毛向鳞片的转化。 羽毛的起源和演化是鸟类飞翔行为发生的关键因素之一。研究人员推测,腿羽的演化与早期鸟类两套独立运动系统的演化是相关的,随着前肢和后肢在鸟类运动系统中逐渐偏重不同功能,前翼变得更加发达,而腿羽则逐步退化。 徐星等认为,鸟类从树栖环境转到陆地环境,尤其是转到近水环境,可能加速了腿羽的退化。 针对山东省天宇自然博物馆收藏的数千件带羽毛的恐龙和早期鸟类化石,中科院古脊椎动物与古人类研究所与山东省临沂大学及天宇自然博物馆合作成立了专门的研究小组,对这些重要的带羽毛标本进行一系列的研究,本项成果是继 2010 年《自然》杂志关于 “ 尾羽龙羽毛发育 ” 的报道之后的又一个有关羽毛演化的重要成果。研究者们将结合 古生物学和现代发育(生物)学 资料继续这一方向的研究,相信将会有更多的重要发现和成果公诸于世。 本项研究获得到了国家自然科学基金项目、科技部科技基础性工作专项基金和中国科学院知识创新工程重要方向项目的支持。 图 1 保存有后肢羽毛的会鸟标本(王孝理供图) 图 2 保存有后肢羽毛的孔子鸟 (A 、 B) 和华夏鸟( C 、 D )标本(王孝理供图) 图 3 燕鸟标本( A ),同时保存有足部鳞片和足蹼( B 、 C) 及腿部羽毛( D 、 E )(王孝理供图) 图 4 会鸟复原图(李荣山绘制)
个人分类: 杂集Others|2341 次阅读|0 个评论
啊, Homo sapiens
热度 1 chenkev 2012-12-30 10:11
啊 , Homo sapiens 你 脑纹里可有幼年的印迹 ? 那代代相 传的神话 : 总有那一个潭 , 博大精深 … 亿万年的湖怪在修炼 , 他正是 Homo sapiens 的前生 … 今世 , 他己成精 , 他己上岸 , 他己甩掉了身上的甲泥 … 他早己 废弃了昔日的双鳃 , 他吮吸着大地的精气 … 啊 , Homo sapiens, 你仍不能主宰自己的命运, 浑浑噩噩 , 徘徊在非洲的 旷野山涧。 我却信, 你仍喜 欢那峻岭深潭 , 因 为那是你拥有的恒古遗传。 我懂了, 当我 们要修炼要闭关, 我 们仍向往深山松泉。 你不甘寂寞, 要 领略外面世界的大千, 混入物 竞天择的洪流, 你目 标茫然。 出非洲 , 难道是你没有生存的空间 ? 髙智商的突 变 , 你 远远地抛开了进化链上的同伴。 几十万年的瞬 间 , 大地始起了硝烟 , 你无情地破坏着地球植被 , 追 虏着远古弱智的伙伴。 尽管他 们身有碱基千百万 , 反抗和呻吟也是枉然。 巨象 庞大的 身躯 , 猛 兽骇人的咆哮 , 也阻不断你征伐的傲慢。 跨 过滔滔的红海 , 追逐到未来巴比 伦的空中花园 , 昔的尼安特 鲁伙伴 , 也消失在那无 边的沃野山涧。 不断重复的 杀戮 , 可以定格在 进化的每一个瞬间。 打开你 DNA 的印迹吧 , Y 染色体或炫燿昔日征服的 辉煌 线粒体却哭泣着那血泪的辛酸。 征服了 旷古近化的远亲 , 硝烟也燃到近 邻的身边。 我 们咒骂着外族的凶残 , 也从 间断的蹂躏自己的同伴 , 髙智的衍化使 疯狂更具风险。 瞧 , 我 们又有了原子弹 , 宇宙 飞船也升上天。 据信碱基 对还在加速突变 , 膨 胀的信心可否有际边 ? 难道不能有太多的责谴 ? 我 们的 DNA, 虽含博大精深的友善 , 但骨髓里却 隐藏着, 自私、狡 诈、和贪婪。 我 们调控野性的冲动 , 但也期盼着理性的空 间。 我期盼 , 对 DNA 的 监管 : 尽量多用核酸 ChiP 晶片 , 结合上尖端 PET 脑 scan 。 给予表遗传学更大的权限。 熄 灭吧, 你燥 动基因的突变 , 沉黙吧, 你操蛋 ( 白 质 ) 的 强 显。 我知道野性的躁狂不是你的本意 , 你也因 为能量低态而详安。 分亨吧, 自由的空气 , 仿如那 远古出海的精仙。 给予吧, 应本无界的地球 , 现己千疮不堪。 赋予吧 , 所有生命 , 属于它 应有的空间。 不 让我 , 看到 伪装文明薄膜下, 更多 动物的本能。 We have enough! 愿 见证 , 更多人性的光 辉。 Homo sapiens , 这是我们的前生今世 , 一个漫 长的结果 , 却又那么瞬 变。 加油吧 ! 为那并不遥远的神话 , 贴上未来人类的标签 。
1302 次阅读|2 个评论
Disputation on evol-cancer research 02
dxd 2012-11-19 23:58
A common issue that many evol-cancer researchers are focusing on is the effect of micro-environment on cells when talking about competition among somatic cells and their strategies, but I don't think it's the most essential one to be emphasized. An intuitive argument is, if a bunch/lineage of somatic cells have adapted to stable environments, how come they could quickly switch to another set of strategies that fit the new fluctuating environment? It's hard to accept such a scenario UNLESS this plasticity (or capability of switching strategies) itself is also an outcome of evolution. As a result, the focus should be what have made that plasticity possible, (only) based on which we can talk about how cell strategies are manipulated by the micro-environment. It's like a classical disputation between the niche theory and the neutral theory in community ecology. I won't talk too much on it because the disputation may not have finished yet. The point is that under niche theory you know definitely some environmental factors are making influence but nothing helps you find what they are and how they function. Now the same difficulty is seen here in evol-cancer research. Whether it's my prejudice or not, I would prefer to focus on internal causes before any external causes are considered.
4511 次阅读|0 个评论
[转载]【zz】MicroRNAs in Plants vs. Animals
zhlingl 2012-10-26 08:44
http://mirnablog.com/micrornas-in-plants-vs-animals/ It is becoming increasingly clear that microRNA are important regulators of gene expression within the animal kingdom. However, microRNA are also found in plants, behaving more like small inhibiting RNA (siRNA) during target gene knockdown. A recent review published in Genome Biology aims to discuss the differences between animal and plant microRNA and highlights the important role of each within the two kingdoms. Axtell et al. serves to showcase the important similarities and differences between microRNA in separate kingdoms and uses the model plant organism Arabidopsis thaliana as an example of classic plant microRNA function. In plants, microRNA are transcribed by RNA polymerase II as in animals, but the entire process of microRNA biogenesis is undertaken within the plant nucleus. The mature microRNA are exported out of the nucleus by Hasty, an exportin 5-like protein found in plants. A major difference between plant and animal microRNA falls within target recognition. Axtell et al. reviews the target recognition process between plants and animals; notably the direct mRNA cleavage of a microRNA target in plants due to near-perfect base complementation between the microRNA and its target. This differs vastly in animals where protein repression is believed to occur by translation inhibition as well as mRNA degradation. Hybridization of microRNA to target in animals is less stringent near the 3’ end of the microRNA strand and relies on the canonical 7-8 nucleotide “seed sequence” to drive microRNA target recognition. After highlighting the similarities and differences between plants and animals, the review dives into some evolutionally perspectives and driving factors of microRNA evolution in plants and animals. Interestingly, Axtell et al. discusses events that lead to the emergence of new microRNA genes in plants and animals. Briefly, it is more common in plants for microRNA genes to emergence via mechanisms of inverted duplication events, where as in animals it is more common for microRNA hairpins to evolve from mutational events in “unstructured” sequences of the genome. These evolutionary driving factors and mechanisms for newly acquired microRNA genes can perhaps help researchers identify novel microRNA targets within gene loci of interest. Even though most research in microRNA regulation of target genes is primarily focused on animal gene regulation, and specifically within human disease states, acknowledging the breadth and scope of microRNA regulation across kingdoms may provide useful insights into microRNA research. Axtell, MJ., et al. Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biology. 12 (2011): p. 221-234. http://genomebiology.com/2011/12/4/221 Incoming search terms for this article: http://mirnablog.com/micrornas-in-plants-vs-animals/
个人分类: microRNA|2493 次阅读|0 个评论
My current knowledge/ideas in evolutionary cancer research
dxd 2012-10-20 17:28
It just sounds natural that a bunch of somatic cells in a multi-cellular body can be viewed as a population while evolutionary/ecological theories can be used to look into the population dynamics of these cells, and it sounds tempting that theoretical works my find their application in cancer research and possibly better treatment strategies. The first conceivable scenario is that we can measure the fitness of each individual (cancerous or peripheral) cell, given its life-history strategy is well defined, and then trace how this fitness may change when the micro-environment is changed due to cancer progression and/or effects of adopted therapy. Once it is understood how to selectively suppress the fitness of the most malignant cells and avoid relapse of evil survivors, better strategies of treatment will be designed accordingly (Robert Gatenby). Actually people have already gone beyond the above scenario, asking deeper questions, e.g. how cancer have evolved and been avoided in the history of metazoan life forms? Now it isn't a novel idea that cancer cells are just betrayers in a cooperative multi-cellular body, seeking their own opportunities to maximize offspring cells, rather than contributing to the whole metazoan individual and waiting for itself to be replicated in the next generation of the whole body. Cancer cells can be viewed as an atavistic phenomenon in an evolutionary perspective based on the knowledge that multiple cellular organisms originated from single-cellular organisms. But the tricky question is, how multi-cellular organisms could emerge successfully in the first place? This refers to the question that how a multiple cellular body win battles against betrayers who always emerge from inside to seek a “free life”. So the question is transformed into a classical economic/ecologic question, where the focus is the maintenance of cooperation in a competitive population or community. To be cautious, we may not say a “body”, or a population of cells, as one part of the players of this battle. One alternative subject may be the germ-line cells as the monopolist betrayer, in contrast to other cell lineages who all become its slaves (Paul Rainey). Or from the genetic (selfish gene, refer to Richard Dawkins) viewpoint, the genome is the sole bearer of strategies in the battle between its different carriers. One apparent observation is that multi-cellular organisms like human have never 'evolved' a perfect mechanism to prevent cancer through the whole life span. Logically, they don't have to achieve this goal, as long as it can keep its integrity until successful (or optimal times of) reproduction. My guess is that both cooperation and betrayal are locally optimal/stable strategies for a cell. Figure 1. A diagram of cooperation and betrayal as locally stable strategies. A conceptual barrier exists to help prevent betrayers from emerging within a multi-cellular body. On one hand, it is easy to understand that being cancerous or malignant is locally stable, as they always have more offspring within a time interval than their neighbor competitors. This is the major concern in using population dynamics models to help design better protocols of chemotherapy. On the other hand, being cooperative should also be a locally stable strategy for any single somatic cells. Its only my guess and I haven't read this from other researchers so far. If being cooperative is not locally stable, then it is hard to imagine how multi-cellular organisms can emerge and thrive in the first place, unless we accept it possible to teach a hen to swim by throwing it into water a million times. So it is understandable that we can draw a diagram as in Figure 1, where there are two locally stable strategies for a cell and there is a barrier between them, which help multi-cellular bodies maintain their integrity and resist emergence of betrayers to some extent. The message given by the barrier is, "if you are not a really evil betrayer, you'd better be a cooperator." It is noted that here we are considering fitness only at the inter-cellular level, where the fitness at the whole body/population level is not explicitly involved, but implicitly considered. So one interesting question is if there is indeed such a barrier, and if so, how it is embodied in terms of biochemistry and molecular cellular biology (possibly also in genetics and epigenetics). If we find where this barrier is, then we will know how to utilize this barrier to help reduce the betrayer cells in the patient. My future work is based on this simple hypothesis, but my scheme framework is a bit more complex, as conflict between mitochondrial and nuclear genomes is also considered in order to comprehensively understand life-history traits of a cell. This was already introduced in an earlier post, and I will keep it updated in future posts. p.s. Some similarity is seen between game theory models and dynamical systems models, as they are essentially the same thing but with different emphases. Normally game theory works with game players at the same level, or usually it doesn't clarify if players are at the same or different levels (with different sets of candidate strategies). Specifically the ESS theory works with a population of symmetric players based on replicate dynamics. On the contrary, the dynamical systems theory works with all players (nodes) at different levels, each with a distinct set of candidate strategies to interact with one another ( via connections), while there is usually only one individual player at each level (each node includes a single player ). Both theories work you out "stable states" or more broadly "attractors" including cyclic and strange attractors, which provide the groundwork from where you can explore more complex dynamics. I wish these will finally help us harness the behavior of cell systems and tumour tissues.
个人分类: thoughts|4685 次阅读|0 个评论
Before making use of evolutionary theories
dxd 2012-10-11 11:21
When making preparation for an interview, I asked a few questions to myself. I couldn't answer them very well, but just tried to give some comments. 1. The first question is what 'evolutionary theories' really mean. I could only answer this question based on what I have learned. Certainly my favorite is evolutionary game theory, where ESS (or say replicator dynamics) forms the only central rationale. However, traditionally ESS is only dealing with symmetrical players with the same set of candidate strategies. When looking into interacting players at different levels, we need to extend the models of ESS to deal with asymmetric players with different sets of candidate strategies. Now we at at the gate of systems biology, where not only multiple categories of game players are included but also the outcomes will be more diverse -- a single-point steady (perhaps stable) state may not always be reached, but instead the whole system may show periodical, strange, noisy or just complex states. These may all be claimed to be part of theories in evolutionary biology, and become useful in tackling practical questions. Some other theories in ecology and evolution may also help, but I don't think they have enough power to make predictions. 2. A tricky question prompted into my mind is, at which time scales am I talking about the outcomes of conflict and/or competition at different structural scales? It's not a complicated question, but hard to be clarified in words. I haven't come out with a good answer yet but I would say the very difficulty is just the reason why we need the method of agent-based modelling, where running of simulation and its results will tell us what happens. 3. The third question is where the "strategies" are embodied. At this moment I could only say ATP production, resource allocation, and/or the balance between fermentation and OXPHOS. But in future within a specific topic we may find other metabolic and/or signaling pathways where different strategies may make sense. Essentially, as a strategy, it should be inheritable/replicable to some extent and be carried by a well defined individual agent/player, and there must be a set of alternative strategies potentially shared by a group of players.
个人分类: thoughts|4243 次阅读|0 个评论
读书笔记:关于miRNA (一)
dxd 2011-5-2 07:16
本文亦发布于本人 英文博客 。 During the last two months Ihave read several papers on miRNAs. I noticed miRNAs because they compose an important part of gene regulatory networks and recent discoveries have shown miRNA manipulation can do the job of the transcription factor (TF) routine (developed by Yamanaka 's group since 2006) in cell reprogramming (Anokye-Danso et al., 2011) . It will be beneficial to understand how miRNAs could do the similar things as what TFs can do in terms of gene expression regulation, as well as how different they are in their ways of functioning. Professor Oliver Hobert wrote a review in 2008 elaborating the similarities and differences between miRNAs and TFs in their ways of gene expression regulation. From his review I learned that miRNAs and TFs both compose similar motifs of regulatory networks in terms of topology and that they might have the same target genes. Besides this, miRNAs may cross link with TFs widely, composing more complex motifs and functioning coordinatingly with TFs, rather than play as a separate layer of the regulatory networks. As learned from Hobert 's review , the differences between miRNAs and TFs lie in several aspects. 1) The target loci. -- The sizes of TF targets are often 'dozens of kilobases' while those of miRNA targets are less than 1Kbp. Besides, TFs usually bind with the 5' upstream region of the target gene while miRNAs usually bind with the 3' UTFs of the target messenger RNAs. 2) Efficiency, precision and speed. -- TFs have to be translated in cytoplasm (escaping any possible miRNA repression) and then transported back into nucleus to perform their functions, while miRNAs can function just within the cytoplasm, or even more precisely in particular compartment of the cell. As the result, TF regulation may experience more noise and a higher possibility of interruption, while miRNAs may function with less noise and more instantly upon any signals from outside. 3) Reversibility. -- miRNA-mediated repression may be relieved more rapidly (if possible) than TF-mediated repression. 4) In terms of evolution -- miRNAs have smaller sizes and a non-conding nature thus may be more likely to emerge by mutation than TFs which have longer target-recognizing sequences. 5) In terms of related phenotype defects -- miRNAs are less likely to cause essential developmental failures than TFs (see cited original reports from Miska et al. 2007 and www.wormbase.org ). I keep my doubt to this claim because 80% * 90% seems not so different from 70%, although I wish I could accept it. In addition, some of the above points are side-supported by another review by Peterson et al. in 2007 . In the fantastic paper, the evolutionist authors correlated miRNAs with the evolutionary history of multi-cellular organisms and found that the emergence of miRNAs generally reduce expression noise of the related genes. And indeed, bigger miRNA families emerged more rapidly in more recent taxa, which is related to higher complexity due to more preciesly controled differentiation of new sets of terminal cell types. So generally, could we say that miRNAs are more recently evolved, more related to terminal cell types, more related to precisely, rapid and reversible gene expression regulation than TFs? And, as evolution is going on, is it possible that miRNAs could play the roles of TFs and finally replace the latter? At first glance it is contradictory to the claim in the above 4) that most miRNAs don't play vital roles in development. And it seems miRNAs are only the leaves and fine twigs while TFs construct the major branches of the 'tree' of regulatory networks. But considerring the recent advances of miRNA-mediated reprogramming, things are not so impossible and small twigs can also grow to be big branches. Personally I think, even if it is untrue and impossible, at least it gives some hint to future bio-technology, by which we could devise an organism without TFs but only miRNAs composing its genome regulatory networks.
个人分类: thoughts|4603 次阅读|0 个评论
[转载] Is there any hope for timely decision-making?
zuojun 2010-12-6 04:11
Dear Colleagues: Still reviewing my future options, and in the process of seeking solutions, stumbled across this blog site ( The Daily Impact ) on the New American Evolution . Hate to particularly encourage some of you leaning in the Doomsday direction, but you'll no doubt identify with this gloomy message. This attitude must be infectious, for my latest Huffington Post article on climate change policy appears to suggest that there is no hope for timely decision-making. Aloha. Pat Pat's Daily Blog
个人分类: From the U.S.|2552 次阅读|0 个评论
[转载]NASA-The evolution of modern aircraft
czyu 2010-9-28 11:05
NASA-The evolution of modern aircraft NASA-The evolution of modern aircraft
个人分类: 未分类|1292 次阅读|0 个评论
[转载]NASA-The evolution of modern aircraft
czyu 2010-9-28 11:03
NASA-The evolution of modern aircraft NASA-The evolution of modern aircraft
个人分类: 未分类|1694 次阅读|0 个评论
[转载]NASA-The evolution of modern aircraft
czyu 2010-9-28 11:00
NASA-The evolution of modern aircraft NASA-The evolution of modern aircraft
个人分类: 未分类|1252 次阅读|0 个评论
[转载]NASA-The evolution of modern aircraft
czyu 2010-9-28 10:58
NASA-The evolution of modern aircraft NASA-The evolution of modern aircraft
个人分类: 未分类|1496 次阅读|0 个评论
IPv4与IPv6自治系统级网络拓扑演化中的相变
abyssoop 2010-6-4 10:42
最近做的一篇论文,几经周折,终于发表了。全文可从http://arxiv.org/abs/1007.2280 上看到,摘要如下 题目:PhaseChangesintheEvolutionoftheIPv4andIPv6AS-LevelInternetTopologies 摘要:InthispaperweinvestigatetheevolutionoftheIPv4andIPv6Internettopologiesattheautonomoussystem(AS)leveloveralongperiodoftime.Weprovideabundantempiricalevidencethatthereisaphasetransitioninthegrowthtrendofthetwonetworks.FortheIPv4network,thephasechangeoccurredin2001.Beforethenthenetworkssizegrewexponentially,andthereafteritfollowedalineargrowth.Changesarealsoobservedaroundthesametimeforthemaximumnodedegree,theaveragenodedegreeandtheaverageshortestpathlength.FortheIPv6network,thephasechangeoccurredinlate2006.Itisnotablethattheobservedphasetransitionsinthetwonetworksaredifferent,forexamplethesizeofIPv6networkinitiallygrewlinearlyandthenshiftedtoanexponentialgrowth.Ourresultsshowthatfollowingdecadesofrapidexpansionuptothebeginningofthiscentury,theIPv4networkhasnowevolvedintoamature,steadystagecharacterisedbyarelativelyslowgrowthwithastablenetworkstructure;whereastheIPv6network,afteraslowstartupprocess,hasjusttakenofftoafullspeedgrowth.WealsoprovideinsightintothepossibleimpactofIPv6-over-IPv4tunnelingdeploymentschemeontheevolutionoftheIPv6network.TheInternettopologygeneratorssofararebasedonaninexplicitassumptionthattheevolutionofInternetfollowsnon-changingdynamicmechanisms.Thisassumption,however,isinvalidatedbyourresults.Ourworkrevealsinsightsintothe InternetevolutionandprovidesinputstofutureAS-LevelInternetmodels.
个人分类: 论文交流|6780 次阅读|2 个评论
研讨会实录
mikletonsen 2010-5-21 01:11
每个周四我们实验室都会小组讨论,互相促进研究工作。首先由某个人向全组成员汇报最近看过的论文与编程实现的结果,然后大家就该篇文章进行深入的讨论,包括文章的研究思路、有没有继续做下去的必要等。由于大家都研究进化计算,因此讨论气氛非常热烈。 今天师弟报告了他对差异进化(differential evolution)算法中两个重要参数F与CR的研究进展,以差异进化中的SaDE、jDE等经典算法为例。讨论的结果让人沮丧。个体变异步长F与交叉概率对算法性能影响非常大,可是没有一套参数能够解决所有的问题。就是对于同一个测试函数,进化过程中的不同阶段使用的参数值也可能不同。因此考虑进化过程中的参数自适应问题成为考虑的思路之一,以便参数能随着进化的深入在线学习、适应不同的环境。可是这又与我们的实验结果不相符,自适应算法的优化结果并不好。为何如此?应该是在适应的过程中,浪费了太多的评价次数。在给定评价次数的条件下,算法的进化代数减少,降低了计算精度。 虽然我的博士研究大部分时间都用在进化计算上,但是现在我已经感觉不到进化计算的发展前景,失去了兴趣,虽然还有很多想法可以写论文。但是一篇篇仅仅改进算法的文章又有什么意思?况且还不能适应全部的问题。于是我想转到其他的方向,比如计算经济。 从7:30开始的会议,一直持续到晚上10点钟。外面的倾盆大雨把我们全都留在了实验室,无法回宿舍。到了11点多时,瓢泼似地雨水丝毫没有变小的意思,只好冒雨跑回宿舍了。
个人分类: 网文荟萃|2697 次阅读|1 个评论
支持用“演化”
yejian 2009-11-29 22:38
与孟津老师商榷 关于进化还是演化,讨论已经很多。我只想从另外一个大家还说得比较少的角度谈一谈。 孟津老师支持使用天演,很有道理。名家名译,如果不是后来有进化和演化出来多事,用天演乃名正言顺。 但是孟老师有一点我觉得值得商榷:进化和演化两个词,含义都过于广泛,它们不仅可以用来描述自然界的现象,也可以用到非自然界孟老师若因此而觉得这两个词都不好,我不能同意。今天的问题是进化和演化的统一,孟老师确实乱上更添了乱: 》 名词的作用就是便于沟通,能统一就该统一,因此,有一些在各大学科都通行的名词,本该在各个学科中进行统一。1915年,胡明复、赵元任、任鸿隽、秉志、杨杏佛等中国的第一代科学家,在康奈尔大学成立的中国科学社,是旧中国最有影响力的科学组织虽然是民间组织。中国科学社在结社出版《科学》杂志之初,即提出以提倡科学、鼓吹实业,审定名词、传播知识为宗旨,可见名词统一的重要性。 从另一个角度看,一个名词在各个学科中通行,恰恰表明了这个概念的基本和普遍。既然是普遍的现象和观念,当然该用统一的名词。就像物质、能量、信息等概念,完全没有各学科区分的必要(遗憾的是海峡两岸对信息和资讯这么基本的名词至今还未统一用法)。 孟老师说,天演的天含自然界的意思。那么,天演的意思就是自然界的演化。所以,我觉得孟津老师是不反对演化的,也许是觉得给个更经典更质朴的选择天演,进化演化就别闹腾了。问题是,一方面,窃以为对自然事物使用天演,有一丝丝意思重复的味道。另一方面,天演的使用范围,也就局限在自然界了。如果我们要讨论生物和人类的evolution,用天演没有问题。如果我们要讨论恒星和地球的evolution,用天演也没有问题。但是如果我们要讨论人类的意识、思维能力、语言能力,乃至社会、思想观念等的evolution,用天演就会有问题。20世纪工业技术的天演,更不合适。 这里我可以讲一个有点黑色幽默的笑话。多年前(大概是十年前),我曾向名词审定委员会的两位副主任约专稿,讨论科学名词的统一问题。按刊发体例,每位作者需提供一份中英对照的简介。结果,两位副主任提供的对自己单位名词审定委员会的英译出现了不一致。分别打电话询问,则给出了第三种译法,让我挠头不已。最后如何解决的,已经记不清了。 既然现状是在生物学之外的其他自然学科中演化用得比较普遍,如湖泊的演化、宇宙的演化、恒星的演化等(大多数人的意见都不支持这些地方用进化),在生物学中多数意见也是觉得用演化比用进化好,而在社会科学中用天演不合适,那么,显然是用演化更好。名词委员会对这个词也是至今未统一译法,在计算机科学、生物学、自然辩证法中使用的是进化,在物理学中使用的是演化。 另外,关于大多数讨论所涉的方向性问题,从低等到高等,从简单到复杂,这本身就是自然界的规律和社会发展规律。用演化,并不意味着排斥这种进步,进的意义其实包含在了演之中,但是演化又避免了进化语义上强烈的进而排斥退的意味。 所以,我支持使用演化。 附:孟老师在博文 进化演化天演论 中对郝炘老师的回复 标题: 发表评论人: 郝炘 台湾用演化,物理学界evolution也译为演化,比如宇宙演化。 博主回复:地学中也常用演化,如地壳演化,构造演化,湖泊演化,气候演化,等等。但这也是一些学者觉得演化一词使用得过于广泛,而不赞同用生物演化来代替生物进化。 窃以为逻辑上有点说不过去。春风带来了春天的信息、这个人很有能量,这些基本的科学名词在各学科的使用,仍然不排斥其被应用得更加广泛。
个人分类: 生活点滴|6635 次阅读|4 个评论
生态学一千问 A thousand questions on ecology (1)
entomology 2009-11-28 12:46
Question 1: 有一种药物,1000例绝症里面只能治愈1例,请问统计学上显著否?这个药物是否值得开发?能用否?总比治不好强吧? If there is a drug, by which only one case in 1000 cases of fatal disease canbe cured, I ask whether the differences arestatistically significant? Isthe drugworthdevelopment? Better than nothing? Question 2: 有单细胞生物变成多细胞生物的,有单细胞生物保持单细胞状态的,那么,有多细胞生物变成单细胞生物的吗? 如果有,我支持中性演化学说就多一点;如果没有,我还是相信进化有一个总体的方向性的。 There are single-celled organisms which becomemulti-cellular organisms, there are single-celled organisms which keep single-cell state, then,is there any multi-cellular organism which evolve to a single-celled one? If yes, I support a little more on the neutral theory of evolution; if not, I still believe thatEVOlution has a general direction.
个人分类: Exchange & Cooperation 交流与合作|3247 次阅读|2 个评论
关于自私和大爱的博弈论分析及其他
sunon77 2008-7-28 06:19
自私是生物的本性? 自私是生物的本性似乎都成了人们的共识。而理由是生物的本能基本上都是由基因决定的,所以,不自私的基因自然就会消失了。这似乎是不证自明的常理。但生物的进化和演进并非如此简单。果真如此,小到多细胞生物体的形成,大到生物协作社会的形成,都不会出现。自私不等于本身最受益,更不等于在进化策略中占优势。比如,我们以两个人写博客的策略为例,做一个博弈论分析。 博客的博弈论分析 假如甲、乙两人写博客,阅读对方的博客收益为 5 ,自己写博客的付出为 2 ,两人都不写,自然双方收益为 0 。我们可以写出博弈论的收益矩阵如下: Fig. 1 Payoff matrix of writing blog for one time 如果我们只进行一次试验,看看 本身最受益的策略是什么。很显然,如果对方写博客,我写博客那么收益为 5-2=3 ;如果我不写,光读对方的博客,那么收益为 5 。如果对方不写博客,我写博客那么收益为 -2 ;如果我不写,则双方都不写,那么收益为 0 。本身最受益的策略当然是不写。这是博弈论中典型的囚徒困境 (Prisoners Dilemma) ,理性分析的结果是不写,整体的最佳收益仅仅是 5+0=5 ;如果不理性分析选择合作,整体的最佳收益是 3+3=6 。不过,对个体而言,本身最受益的策略还是自私策略:不写光看。 但是,假设 一次试验之后,再做下一次试验的几率为 w ,那么总共试验的数学期望值 m=1/(1-w) 。假设我们有总是 自私的人,不写光看;和以牙还牙的人(对方上次不写他也不写,对方上次写他也写,双方博弈: Fig. 2 Payoff matrix of writing blog for m time 做一个简单的数学分析, m5/3 时,即只要两人做两次以上的博弈,以牙还牙的人的收益就可以超过 总是 自私的人。 做同样的数学分析,我们可以严格的证明, 在没有规则的博弈( Random Game )中,总是合作的人会最先出局, 总是 自私的人会胜出; 在 总是 自私的人占多数的情况下,以牙还牙的人会打败 总是 自私的人,以牙还牙的人会胜出; 在以牙还牙的人占多数的情况下,总是合作的人会打败 总是 以牙还牙的人,总是合作的人会胜出; 以下的情况会比较复杂 : i) 在总是合作的人占多数的情况下, 总是 自私的人会卷土重来,于是循环; ii) 在总是合作的人占多数的情况下, Win-stay, Lose-shift 的人会胜出,并成为稳态; 真正 生物进化的 博弈 由此,在生物进化的 博弈中,自私不等于本身最受益,更不等于在进化策略中占优势。所谓自私的基因才能适者生存,那是望文生义的线性简单思维。真正的 生物进化的 博弈,是由英国的生物学家 John Maynard Smith 创立的,目前已成为分析 生物进化最重要的理论。任何一个社会,都需要制定一个整体最受益的合理规则。虽然这个进化占优的策略不一定是杨玲兄提倡的人人大爱(所以 治国靠爱 在没有道德规则的社会是有问题的),但总是 自私的肯定不是 生物进化的 稳态。自私决不是生物的本性,这不过是自私的人的遮羞布罢了。人都有求生的一面,所以中国出了个 Runner Fan ,世界上任何一场战争中都有弃械而逃的士兵。但是最让人佩服的是 Joseph Conrad 写的《 Lord Jim 》, 你才知道自爱自立自存固然是人的正当欲望,但是生命中向上的力量和人的理想会最终战胜利己, 逃兵可以变成舍身取义的英雄,这才是永恒的人性的光辉。 John Maynard Smith 's classic speech Origin of Life: http://vega.org.uk/video/programme/63 END
个人分类: 写在科学边上|6624 次阅读|5 个评论
基因时代的终结者 (3)---拉马克 vs. 达尔文
sunon77 2008-7-28 04:36
拉马克主义 (Lamarckism) 是生物进化学说之一,为法国博物学家拉马克所创立。他认为生物在新环境的直接影响下,环境变化了,习性改变,使得生活在这个环境中的生物有的器官由于经常使用而发达,有的器官则由于不用而退化,这就是用进废退。这种由于环境变化而引起的变异能够遗传下去,这就是获得性遗传。并认为这样获得的后天性状可传给后代,使生物逐渐演变,且认为适应是生物进化的主要过程。 在 DNA 结构被发现后,人们通常认为遗传性状由基因决定,拉马克主义被认为是把获得性状遗传给后代的过程过于简单化,于是落在故纸堆里没人问津了。长颈鹿脖子越用越长,这几乎都被作为笑谈了。 Denis Nobel 举了一个精彩的例子,我将其译为一个中国版本,让我们重新认识拉马克主义。 镜花缘之 拉马克 vs. 达尔文 镜花缘中的秀才唐敖和林之洋、多九公三人出海游历各国,假设他们出行是由纳米公司赞助,所以乘坐的是纳米船,看到的风土人情都是细胞的尺度。某日,唐和林、多九公道了某处岛屿,岛上的居民千奇百怪 200 多个村落,有圆滚滚的大胖子,有细竹杆的瘦高条,有干巴巴的老头子,有水汪汪的妙龄女子。奇怪的是,岛上的居民的基因都完全相同,并无二致,但是他们的模样千奇百怪。村落相异,模样不同,有的做挑夫,有的去浇水,有的管纺线,有的去打仗。而同一个村落的居民,由其环境而定,都长得一模一样。并且他们生的子女,都继承了环境而定的模样,高矮胖瘦,完全一样。唐、林等人大为惊讶,这不是拉马克主义 (Lamarckism) 的明证么?遗传性状居然不由基因所决定,获得的后天性状居然可以传给后代。 这该不是偶然罢。他们起舵再行,到了另一座岛屿。让他们更为惊讶的是,这座岛屿上的居民也大约是 200 多个村落,居民的基因全然相同,但形态各异,并且它们的基因与上一座岛屿居民的基因并不相同。他们再到另一座岛屿,情况依然。最让人惊讶的是,这些岛屿跟大陆板块一样,会发生漂移。当两座岛屿足够近的时候,便会出现一条水路,然后有一队勇士手持锋利的梭镖,奋勇向另一座岛屿前进,环境险恶,许多人在途中便丧生。终于有勇士突破禁备森严的宫殿,此时闪电划过长空,勇士与宫殿融为一体。不久这座宫殿一分为二,二分为四,最后成长为一座新的岛屿。 Fig. 1 人体大约有 200 多种不同的细胞 我想此时你已经猜到,这些岛屿并非他指,正是我们人类本身。人体大约有 200 多种不同的细胞,包括骨细胞、神经细胞、皮肤细胞、心脏细胞等等,其形态千奇百怪,但所包含的基因却全然相同。已经分化的骨细胞等繁衍后代,虽然基因相同,仍然保持骨细胞的形态。这种获得的后天性状,不由基因而发生的隔代遗传,决不是什么奇谈怪论,而是正统的生物学发现,只不过是在细胞层面上罢了。虽然同样的基因由父代传给子代,但是基因本身并不能决定骨细胞、神经细胞等的性状。基因被打上了某种化学的标记( chemical marking, for example, a methylation of Cytosines etc. ),这些化学标记才真正决定了子代细胞的性状。而更有意思的是,当人体在制造生殖细胞的时候,所有基因上的化学标记都会被抹去,这时的细胞的基因,重新恢复了可以生成一切其他细胞的可能。 总之,决定生物的性状,的确有超越基因的因素存在。真正改变生物性状的基因工程,绝非简单的将所谓单一功能的基因切过来,粘过去就性状改变那样简单。现在的转基因工程,对相近物种把握还比较大,对于相异物种,大部分还是靠运气 (shotting in the dark) 。为什么转基因试验,包括克隆试验一般成功的几率都非常低,正是这个道理。 (待续)
个人分类: 生物物理-biophysics|5419 次阅读|8 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-5 15:47

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部