科学网

 找回密码
  注册

tag 标签: 紫色

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

关于调色的联想
huailu49 2015-7-19 10:24
细细想来, YC 教授提出的质疑不无道理,因为俺昨天贴出来的,无论是 蓝花 ,还是 紫花 ,颜色上大多不是那么纯正。还有一点也提请大家注意,就是咱们各人电脑、 iPad 的显示器之间免不了存在色差。 念初中的时候就学过三原色。 将蓝和红这两种原色等量混合,就形成了一个二层色:紫。 将紫色分别与等量的红和蓝混合,就形成了两个三层色:紫红和紫蓝。 在 俺贴出的紫花 中,就存在上述的现象:有的是紫红,有的是紫蓝。 不由得联想到台湾政坛的蓝绿两色。蓝是原色,绿是二层色。如果细分,还可以分出浅蓝、深蓝,浅绿、深绿。那么,有没有紫蓝,抑或绿蓝呢?
个人分类: 书斋夜话|1773 次阅读|0 个评论
吃出健康:寻找食物与健康之间的最佳连接
热度 13 lionbin 2014-6-12 23:42
中央电视台刚刚播完《舌尖上的中国II》,Nature就出来叫板了。在 今天出版的 新书介绍栏目里介绍了著名美食记者Jo Robinson出版的一本新书《吃在荒野》(Eating on the Wild Side),这本书荣获2014年国际烹饪专业协会(IACP) 烹调类书籍大奖 。Jo Robinson是一名专门从事科学与健康调查的记者,她花了十多年时间,从科学文献中挖掘了有关我们饮食中营养含量减少的问题,并解释了如何选择最美味和有营养的果蔬品种。比如, 吃西红柿可防止晒伤,为什么有苦味的蔬菜更好,以及紫色蔬菜比绿色蔬菜更好 等方面的问题。Jo Robinson住在西雅图附件的瓦逊岛(Vashon Island)上,她自己经营了一个花园,里面种植了许多用于演示的最出色品种的蔬菜,最近开放给大家参观。 Nature所撰文的介绍,是采用问答的形式: 1)《吃在荒野》这本书的主要论点是什么? 所有的植物都会制造植物化学物质(phytochemicals),可防止被捕食、疾病和其他威胁。当我们消费特定植物时,我们也得到了一些保护,这本书从科学文献中找到了一些证据。例如,西红柿中的番茄红素可抵抗紫外线,因此可保护我们免受晒伤。新近研究发现,自农耕以来,我们就开始食用各种人工培育品种,而有益的植物化学物质的获取则日渐稀少,部分是因为我们农业生产中丢弃了那些有苦味或涩味的植物品种。如果水果和蔬菜中缺乏这些化合物,无法保护人类远离高血压、胆固醇、炎症反应等一系列现代多发疾病。这本书了还确定了一些传家宝式的好品种和现代品种,如紫薯(Purple Peruvian potatoes)富含植物化学物质,而且有令人愉悦的口感。 2)我们到底应该吃哪些水果和蔬菜呢? 紫色、蓝色、红色或黑色的植物,诸如大多数浆果品种和红叶卷心菜等都是不错的选择,因为它们含有一系列被称为花青素的色素。目前在试管中进行的实验,动物实验和小规模人类实验研究表明,花青素具有抑制心血管疾病风险的功能,可减少炎症反应,改善血脂和降低血压。初步研究发现,富含花青素的浆果可减缓患有结肠癌病人的癌细胞生长。越来越多的证据表明,花青素也可能减缓因年龄增长导致的认知能力和记忆能力的下降。 3)具有这种效应的唯一判定指标是颜色吗? 不是。大多数植物化学物质并非高浓度的色素。浅褐色的朝鲜蓟比那些色彩鲜艳的蔬菜有更多的抗氧化活性,它们含高浓度的无色洋蓟素(增加胆汁分泌,可保护肝脏免受致癌物影响)和绿原酸(抗高血压)。白洋葱、韭葱和青葱含有抗癌和抗流感的化合物槲皮素。尽管黄色品种含更多有色的β-胡萝卜素等物质,一些白色肉质品种的桃还是比黄色肉质品种含更多的抗氧化活性。 4)在储存蔬菜时保存营养最好的方式是什么? 植物被收获后并没有立即死亡,他们仍然在进行新陈代谢活动,并消耗糖分和植物化学物质,失去风味。减少与氧气的接触和低温可以减缓这个过程,比如可储存在密封的塑料袋(刺上10-20个针孔)中并置于冰箱。 5)烹调蔬菜最好的方法是什么? 当我看到人们煮菜时,我会感到害怕,因为在沸腾的水中细胞破裂,养分被溶解到水中。在油中进行微嫩的煎炒是不错的办法,但是汽蒸是最好的,因为它减少了与水分的接触。如果你用微波加热有苞叶的玉米穗,你就保留了营养和口味。对于解冻浆果来说,微波解冻也最好的选择,因为它破坏了一种可分解抗氧化剂的酶(多酚氧化酶)。 6)生物技术能帮助我们培育更有营养的植物吗? 在我看来,依靠基因工程,我们永远也不可能培育出富含植物化学营养成分的品种。如果说我们找到一个基因,可在卷心菜中产生更多可抗癌的芥子油甙。但是,这类化合物只是蔬菜中众多增进健康的化合物的一种,最终的效果它不一定是最有益的。但是,通过常规育种将野生物种与现代品种进行杂交,则可能引入无数的基因。在我的花园中,我种植了一种叫做荒野珍宝(Wild Treasure)的高产杂交黑莓,保留了营养和野生浆果的甜味。 7)为什么开放您的花园呢? 我想让人们看看,自己种植食物,他们可以选择那种增加寿命和更健康的品种。在我自己的花园里,有一个来自尼泊尔的野山楂。一个茶匙大小的野山楂所含的抗氧化剂也比一个大个头的蜜味脆【注:蜜味脆(Honeycrisp)为明尼苏达大学培育的苹果品种,据说是该大学科技研发产品中仅次于爱滋病药物和猪疫苗赚钱高手】 要多 。还有靛蓝玫瑰(Indigo Rose)西红柿,是一个富含花青素的黑色品种;以及胡萝卜、花菜和芦笋的紫色品种。你可以认为,紫色是新的绿色。 8)您下一本大作准备写什么? 我可能写了一本关于如何保持和提高植物中的植物营养素含量的烹调书。我还有足够的数据来写一本有关富含营养的饮料书籍,主要谈论茶、葡萄酒、咖啡、威士忌和啤酒。 我没有读到书的原文,但amazon网站有这本书的详细介绍和他人对该书的评价,鲜花和掌声很多,甚至有人评价“ 这本书将永远改变我们对食物的认识 ”。从我掌握的这些有限信息来看,作者 基于多年的科学研究和美食开发历史来说事儿,并提出了一些实用性的建议,总体 的科学思想是靠谱的: 一万年前人类开始种植实践,就开始在破坏水果和蔬菜的营养价值。不知不觉中,我们所选择植物都是那些富含淀粉和糖,低维生素、矿物质、纤维和抗氧化剂的品种,而恰恰是按照这种激进的方式所选择的水果和蔬菜,让我们失去了口味和营养。 那么,作者所提出的解决方案是:选择现代品种中具有野生植物的营养成分也具现代口味的植物,这些新品种可以在超市和农贸市场买到。 如何合理利用果蔬的风味和营养呢? 书中通俗介绍了一些简单的 制备方法,而且都来自 可科学证明的信息。下面摘录出其中的12个技巧 : 1)生菜和莴苣在准备食用的前一天就撕破叶子,可成倍增加其抗氧化成分。 2)大蒜切片、截断、捣碎然后放置10分钟再烹饪,可最大程度地增强其治疗效果。 3)挑选商店里最黄的玉米,因为其β-胡萝卜素含量是白色玉米的35倍。 4)煮土豆然后冷却24小时再吃(即使再加热也可),就将高糖蔬菜转化为低-或中糖蔬菜。相反,如果将土豆与油烹制,有助于阻止它们干扰人的新陈代谢。 5)煮熟的胡萝卜比生的更有营养。用整条胡萝卜进行烹调,比切碎的胡萝卜多含25%的镰叶芹醇(一种抗癌化合物)。 6)甜菜叶比甜菜更有营养。 7)西红柿越小,所含的营养越多。深红色的西红柿比黄色、金色或绿色的西红柿含更多 的 抗氧化剂。 8)超市中最具营养的西红柿并非在生产通道,而是在罐头食品中。加工的西红柿,不管是罐装,还是煮成糊状或制成了酱,番茄红素含量都是最高的,而且口感也最棒! 9)存放西兰花的最好办法是用塑料袋紧密包裹蔬菜,然后在塑料袋上刺上一些小针孔,这种方法比松散包裹和密封袋包装可增加125%的抗氧化剂。 10)听装或罐装罐头与新鲜食物有几乎相同的营养。 11)用微波解冻冷冻的浆果,比在常温下融化或者放在冰箱慢慢解冻,可保留两倍的抗氧化剂和维生素C。 12)树莓比麸谷类含更多的纤维。 这些果蔬,你都见过吗? 参考资料: QA: The nutrient hunter,Jascha Hoffman,Nature 510, 217 (12 June 2014) doi:10.1038/510217a http://www.amazon.com/Eating-Wild-Side-Missing-Optimum/dp/0316227943 http://www.epicurious.com/articlesguides/chefsexperts/interviews/jo-robinson-eating-on-the-wild-side-qa-recipes
个人分类: 一起读顶刊|10278 次阅读|31 个评论
紫色的姿色
sheep021 2013-6-10 21:38
今天下午,去附近公园溜达,发现紫色的花特别多,不知道是巧合,还是这个季节的确该紫花出场了?! 1 2 3 4
个人分类: 生活点滴|1675 次阅读|0 个评论
春天里的美丽小花--紫花地丁
热度 2 hongkuan15 2012-4-15 15:36
春天里的美丽小花--紫花地丁
在我印象中,春天里开花最早,最漂亮的花就属紫花地丁了。第一次记住这个小花是在上大学时的实践课上,植物学老师带领我们去植物园认植物,看到草地上一片一片紫色的小花,老师兴奋的介绍说这种小花叫紫花地丁,因为其花形非常像耕地的犁头,又叫犁头菜。看着这个紫色的小花,心理有说不出的感叹,小而美丽。在其它植物还在感受春天的时候,它们已经开始享受春天了,纷纷开出美丽得花迎接春天的到来。 紫花地丁是多年生草本,高7~14厘米,无地上茎,地下茎很短,主根较粗。叶基生,狭披针形或卵状披针形,边缘具圆齿,叶柄具狭翅,托叶钻状三角形,有睫毛。花有卡柄,萼片卵状披针形,花瓣紫堇色,距细管状,直或稍上弯;花期4~5月,紫色小花,秋后茎叶仍青绿如初,花旁伴有针状小果,直至冬初,地上部分才枯萎,因此是极好的地被植物,也可栽于庭园,装饰花境或镶嵌草坪。 图片是在奥林匹克公园,用手机拍摄的。 有博友提出此花不是紫花地丁。可能是 早开堇菜。下面附链接,大家共同鉴定一下。 辨识紫花地丁与早开堇菜 http://www.zgzm.com.cn/news/detail.asp?id=11411
9765 次阅读|4 个评论
世间奇葩(8):紫色灯笼花
热度 15 QFL 2011-2-17 09:43
世间奇葩(8):紫色灯笼花
灯笼花又名倒挂金钟或吊钟海棠,是多年生草本花卉,种类繁多;性喜凉爽、湿润的气候环境;其花娇艳美丽,主要红、紫、白三个品种。 在前段时日,本博曾上次过灯笼花(详见“ 世间奇葩(1):灯笼花 ”),但颜色有点乱了,红白不分, 因为我当时并不知道这种花的名字 ;故这次就按照颜色分类,先发一些紫色灯笼花,请大家欣赏。 --------------------------------------------------------------------------------------------------------------- 8-1、紫色的灯笼花 8-2、并列三姊妹 8-3、红色纺锤状的花蕾 8-4、俩串联姊妹花和小花蕾 8-5、紫色的灯笼花 8-6、紫色灯笼花的花穗 8-7、为了对比,上传一张白色的灯笼花
个人分类: My Shot|10160 次阅读|15 个评论
[转载]天空为何是蓝色,而不是紫色?
chemicalbond 2010-4-26 02:27
【注意到一个博主转载的文章, 天为什么是蓝色的一百年 http://www.sciencenet.cn/m/user_content.aspx?id=316082 , 读完之后,让我想起另外一篇科普文章: http://math.ucr.edu/home/baez/physics/General/BlueSky/blue_sky.html 这个问题看似简单,其实不然。一般人都不一定能够回答正确,所以转载如下。我把标题略作了修改,在文字上加了一些格式,图像也调小了点。哪位老兄有时间翻译一下,应该是个好作品。如有版权问题需要参考上面网页。另外,下面这篇文章没有提及爱因斯坦的具体解释,即空气分子密度的涨落对阳光散射的效果。前面那篇中文博客中提及了原始文献,可惜是德文,要不可以参考一下。有趣的是网上还有人对爱老的理论有争议, http://www.physicsforums.com/archive/index.php/t-2649.html 有兴趣和精力的人可以去挖一下,看看是否有价值的内容。】 Original by Philip Gibbs , May 1997. Why is the sky blue? A clear cloudless day-time sky is blue because molecules in the air scatter blue light from the sun more than they scatter red light . When we look towards the sun at sunset, we see red and orange colours because the blue light has been scattered out and away from the line of sight. The white light from the sun is a mixture of all colours of the rainbow. This was demonstrated by Isaac Newton , who used a prism to separate the different colours and so form a spectrum. The colours of light are distinguished by their different wavelengths. The visible part of the spectrum ranges from red light with a wavelength of about 720 nm , to violet with a wavelength of about 380 nm , with orange, yellow, green, blue and indigo between. The three different types of colour receptors in the retina of the human eye respond most strongly to red, green and blue wavelengths, giving us our colour vision. Tyndall Effect The first steps towards correctly explaining the colour of the sky were taken by John Tyndall in 1859 . He discovered that when light passes through a clear fluid holding small particles in suspension, the shorter blue wavelengths are scattered more strongly than the red . This can be demonstrated by shining a beam of white light through a tank of water with a little milk or soap mixed in. From the side, the beam can be seen by the blue light it scatters; but the light seen directly from the end is reddened after it has passed through the tank. The scattered light can also be shown to be polarised using a filter of polarised light, just as the sky appears a deeper blue through polaroid sun glasses. This is most correctly called the Tyndall effect, but it is more commonly known to physicists as Rayleigh scattering --after Lord Rayleigh , who studied it in more detail a few years later. He showed that the amount of light scattered is inversely proportional to the fourth power of wavelength for sufficiently small particles. It follows that blue light is scattered more than red light by a factor of (700/400) 4 ~= 10. Dust or Molecules? Tyndall and Rayleigh thought that the blue colour of the sky must be due to small particles of dust and droplets of water vapour in the atmosphere. Even today, people sometimes incorrectly say that this is the case. Later scientists realised that if this were true, there would be more variation of sky colour with humidity or haze conditions than was actually observed, so they supposed correctly that the molecules of oxygen and nitrogen in the air are sufficient to account for the scattering . The case was finally settled by Einstein in 1911 , who calculated the detailed formula for the scattering of light from molecules; and this was found to be in agreement with experiment. He was even able to use the calculation as a further verification of Avogadro's number when compared with observation. The molecules are able to scatter light because the electromagnetic field of the light waves induces electric dipole moments in the molecules . Why not violet? If shorter wavelengths are scattered most strongly, then there is a puzzle as to why the sky does not appear violet, the colour with the shortest visible wavelength. The spectrum of light emission from the sun is not constant at all wavelengths, and additionally is absorbed by the high atmosphere , so there is less violet in the light . Our eyes are also less sensitive to violet . That's part of the answer; yet a rainbow shows that there remains a significant amount of visible light coloured indigo and violet beyond the blue. The rest of the answer to this puzzle lies in the way our vision works . We have three types of colour receptors, or cones , in our retina . They are called red, blue and green because they respond most strongly to light at those wavelengths. As they are stimulated in different proportions, our visual system constructs the colours we see. Response curves for the three types of cone in the human eye When we look up at the sky, the red cones respond to the small amount of scattered red light, but also less strongly to orange and yellow wavelengths. The green cones respond to yellow and the more strongly scattered green and green-blue wavelengths. The blue cones are stimulated by colours near blue wavelengths, which are very strongly scattered. If there were no indigo and violet in the spectrum, the sky would appear blue with a slight green tinge. However, the most strongly scattered indigo and violet wavelengths stimulate the red cones slightly as well as the blue, which is why these colours appear blue with an added red tinge. The net effect is that the red and green cones are stimulated about equally by the light from the sky, while the blue is stimulated more strongly. This combination accounts for the pale sky blue colour. It may not be a coincidence that our vision is adjusted to see the sky as a pure hue . We have evolved to fit in with our environment; and the ability to separate natural colours most clearly is probably a survival advantage . A multicoloured sunset over the Firth of Forth in Scotland. Sunsets When the air is clear the sunset will appear yellow, because the light from the sun has passed a long distance through air and some of the blue light has been scattered away. If the air is polluted with small particles , natural or otherwise, the sunset will be more red. Sunsets over the sea may also be orange, due to salt particles in the air, which are effective Tyndall scatterers. The sky around the sun is seen reddened, as well as the light coming directly from the sun. This is because all light is scattered relatively well through small angles --but blue light is then more likely to be scattered twice or more over the greater distances, leaving the yellow, red and orange colours. A blue haze over the mountains of Les Vosges in France. Blue Haze and Blue Moon Clouds and dust haze appear white because they consist of particles larger than the wavelengths of light , which scatter all wavelengths equally ( Mie scattering ). But sometimes there might be other particles in the air that are much smaller. Some mountainous regions are famous for their blue haze. Aerosols of terpenes from the vegetation react with ozone in the atmosphere to form small particles about 200 nm across, and these particles scatter the blue light. A forest fire or volcanic eruption may occasionally fill the atmosphere with fine particles of 500--800 nm across, being the right size to scatter red light. This gives the opposite to the usual Tyndall effect, and may cause the moon to have a blue tinge since the red light has been scattered out. This is a very rare phenomenon, occurring literally once in a blue moon. Opalescence The Tyndall effect is responsible for some other blue coloration's in nature: such as blue eyes , the opalescence of some gem stones , and the colour in the blue jay's wing. The colours can vary according to the size of the scattering particles. When a fluid is near its critical temperature and pressure , tiny density fluctuations are responsible for a blue coloration known as critical opalescence. People have also copied these natural effects by making ornamental glasses impregnated with particles, to give the glass a blue sheen. But not all blue colouring in nature is caused by scattering. Light under the sea is blue because water absorbs longer wavelength of light through distances over about 20 metres. When viewed from the beach, the sea is also blue because it reflects the sky, of course. Some birds and butterflies get their blue colorations by diffraction effects. Why is the Mars sky red? Images sent back from the Viking Mars landers in 1977 and from Pathfinder in 1997 showed a red sky seen from the Martian surface. This was due to red iron-rich dusts thrown up in the dust storms occurring from time to time on Mars. The colour of the Mars sky will change according to weather conditions. It should be blue when there have been no recent storms, but it will be darker than the earth's daytime sky because of Mars' thinner atmosphere.
个人分类: 科普与新知|5835 次阅读|1 个评论
紫色胡萝卜
xbyang 2010-3-8 09:54
胡萝卜的本色是橙红色,韩国人却开发出紫色胡萝卜,主要是为了好看,据说营养也要好一些。 http://chinese.yonhapnews.co.kr/techscience/2010/02/18/8400000000ACK20100218003300881.HTML 我初步查阅了一些资料,紫色胡萝卜不是韩国人的首创。中国早几年就有紫色胡萝卜种植,不过种子来源于英国。没有在菜市场和超市见过这种胡萝卜,看来还不流行。 科学发达了,各种形状、颜色、个头和风味的蔬菜和粮食都涌现了,但是还是怀念童年时的土著农作物。那时的农作物比现在的香,口感好。不过,当时的农作物的确产量低,导致我和其他乡亲都常常挨饿。
个人分类: 未分类|4968 次阅读|0 个评论
禾雀闹春——紫气东来
liaojp 2010-3-3 14:54
这两天正是紫白相间禾雀花的盛花期,今年的花特别多。摄于竹园
个人分类: 花花世界|3233 次阅读|2 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-2 19:12

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部