科学网

 找回密码
  注册

tag 标签: 学习科学

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

从“学习科学”角度看“慕课”(MOOC)
热度 10 lionbin 2015-1-4 10:58
一个人从学龄开始,在学习知识的同时,还在不断地接受有关学习方法的教育。那么这种专门学习方法进行研究的学问,是否自身也构成一门学问呢?的确如此,这个专门研究学习规律的学问称为“学习科学”或“学习学”(Learning Sciences),在上世纪八十年代提出,最初只是从认知科学基础是上发展起来的新兴学科,归属与认知科学的范畴;90年代后开始走向成熟,并作为一门独立的学科领域脱颖而出 。不过,既然“学习学”是一门科学,那么就有自己的一个“体系”(system),它研究学习的全过程及其规律,而不能单纯理解为具体的学习模式和方法 。从学生的角度来讲,如果懂得学习的原理,掌握学习的方法,形成有效的学习策略,能使自己更好的学习,成为学习的主人,也就是理想中的“主动学习者”。 可见,学习学是一门实践性很强的科学,从其产生、发展、变化、提高各个阶段都离不开学习实践本身。随着语言学、心理学、教育学等的发展,学习学也是不断扩展深化的。因此,学习学强调以与时俱进的态度去学习、掌握、运用和补充。 慕课(MOOC),是新近涌现出来的一种在线课程开发模式。虽然历史不长,但发展速度非常之快,目前的在校大学生,或多或少都参与过一些相关课程。总体来看, 慕课被众多主动学习者认为是一大进步,因为它让更多的学生认识到外面的世界,给学习者提供了一种探索不同学科的机会。 斯坦福大学现任校长John L. Hennessy,也是赫赫有名的计算机科学家,他认为:“由学界大师在堂授课的小班课程依然保持其高水准。但与此同时,网络课程也被证明是一种高效的学习方式。如果和大课相比的话,更是如此。” 在慕课如火如荼发展之时,是否有人从学习学的角度对慕课进行详细的考察呢?我一直在思考这个问题,但苦于素材和实践有限,难于得出一个普遍性的结论。只是在我们的微信群聊中简单表达了一下自己的看法:我觉得, 许多教学方法的改革,并不能整体提高学生的学习效果。比如慕课,对于学习能力强的人或者有主动学习能力的人,的确提供了更多的机会和选择,然而对于本身缺乏学习能力和学习热情的人,他们自身应对变化的能力就差,在这种改变中就显得更加措手不及。 2015年新年开篇的 Science ,有一篇文章以“Rebooting MOOC Research”(重新审视慕课)为题,撰写了对慕课的反思 。 文章认为, 自慕课开始引起人们广泛关注几年来,虽然开展了一系列新的研究,但这些研究结果对教学的启示很小 。不过,应该看到,在这些研究过程中,所收集的这些大数据集,凭借其体量本身就拥有回答一些有趣问题的答案。因此,为了让对慕课的研究能促使学习更科学,学习学的研究者、课程开发者和利益相关者必须沿着三个轨迹前行: 从研究参与者到研究学习者,从调查个人对课程的学习情况到比较不同背景的学习,在实验设计中,从依赖事后分析到更多地利用多学科。 点击是否意味着学习? 很少有对慕课的研究敢宣称改善了学生的学习,仍然只能说个别教学活动可改进学习。现在各慕课网站都有大量有关学生点击什么的数据,但显然并不了解学习者的头脑究竟发生了什么改变。文章引用了在线教育初创公司(Udacity)、可汗学院(Khan Academy)、谷歌课程建设者(Google Course Builder)和edX四个课程平台的数据进行了考察。考察学生的成功(如考试成绩或结业)与学生活动之间的相关性。为了考察学生活动,研究中将庞大的复杂数据提炼为简单的,可概括个人水平的变量,Udacity统计学生所尝试问题的数量,可汗学院统计到达现场的时间,谷歌考察每周活动完成情况,edX统计事件日志中每个学生的“点击”量。之后采用简单的比较和回归分析,得出 学生活动与成功之间存在正相关关系。其实,这个结论意义不大,我们并不需要依靠这数万亿的事件日志就明白,努力与成就是相关的。 由于这些只是观测结果,做得更多与做得更好之间的因果关系是不清楚的。对于这样的研究结果,除了鼓励学生在学习中更加活跃外,对于课程设计几乎没有什么实际的意义。因此,文章指出:对于之后的慕课研究,需要采取更广泛的研究设计,要更加关注促进学生学习的因果关系。 只需要观看而不必去学习 。早期的慕课研究只是考察参与者或完成度统计,其中一个原因是大多数慕课没有可评估结构,可对学习活动进行稳健的推理。理想条件下,慕课研究人员采用三个特性来评估数据。1)评估应发生在多个时间点。在慕课中预测是非常关键的,因为登记参加学习的学员,可能包括新手,也可能包括专家,学员的异质性很大;2)评估应捕获从程序到概念多个层面的学习情况。在定量考试题中获得高分的学生,一般并没有显示他们对概念的理解或与专家的思维有什么发展;3)课程应包括已被之前的研究所验证了的评估,这样就可以与其他一些情况进行比较。最近的一些慕课研究符合这些标准,并提供了一些认识。比如, 何种学习者受益于慕课,以及何种课程材料可更好地支持学习。研究人员可以更确切说明学生究竟学到了什么,而不仅仅是做了什么 。在自主在线学习环境中,参与和学习之间的区别是非常关键的,因为传播媒体所引起混乱和不平衡对学习者是有影响的。要解决一些误解问题,需要解决我们的直觉与科学事实之间的差距。不幸的是,学习者可能更喜欢那种以更加简单方式所提供的视频材料。例如,学生对教学视频持更多的肯定态度,因为这种方式对现象的描述直截了当。当然,学生从媒体中也学到了更多直接解决误区的问题。课程开发者根据参与者统计资料进行优化,可以让学生产生愉悦的媒体体验:只需要观看而不必去学习。 反思数据共享政策 。虽然慕课研究人员有成千上万的学生数据,但很少有来自多学科的数据。学生的隐私权法规、数据保护问题,以及囤积数据的倾向让数据共享困难重重。因此,相关研究只能考察学生之间的变化,却不能对不同学科之间的差异给出有力的推论。例如,有研究者发现,学习频率和中间停顿时间与慕课完成率之间有正相关性。但是,这调查的十门课程,不仅中间停顿时间不同,招生规模、主题和其他一些特征都不相同。因此,要对教学方法进行有意义的事后比较,必须收集数百个课程的数据。共享学习者资料并不是件简单的事情。为了满足私密性的要求,最近对学生数据进行了去识别化(de-identify)。但实践证明, 为保护学生的隐私而采用模糊和洗涤的方式获得的匿名变形数据,就不再适合许多形式的科学探究要求 。让基于开放数据的慕课变成共享科学,需要大量的政策改革和社会科学数据共享的新技术创新。有一个政策是解耦隐私保护但保持匿名,这将允许研究人员在有更多数据保护制度监管中,去分享和交换这些可识别的数据。技术方案包括基于不同隐私的制度,机构可把学生的数据保存为一个标准化的格式,允许研究人员查询库,但仅返回汇总结果。 “插件”实验 。最常见的慕课实验是在独立的学科领域中增加一些课制造干预效果的“插件”。比如,可在一项研究中设计为,学生如果积极参与论坛的讨论,就可获得虚拟“徽章”,这会增加论坛活动的积极性。这些领域独立的实验,常受到心理学和行为经济学的启发,在各领域中广泛进行。插件实验的优点是通过成功的干预措施,可提高学习动机、参与度,对事实的记忆或学习中其他常见的方面,可适应不同的条件设置。但也有一些局限性:这些研究不能推进对学科的学习,不能确定如何最好地解决一个特定的误解或优化一个特定的学习序列。在课程中提高动机是必须的,但如果一个慕课的整体教学方法是错误的,插入实验也可以加速无效做法的参与度。随着慕课研究日臻成熟,不管是特定领域还是独立领域的实验都是非常重要的,但特定领域的努力可能需要更多有意的培养。嵌入实验在筒仓结构(siloed structures )的学术中更容易适应,心理学家和经济学家可以生成一些干预措施,纳入到他人开发的课程中。特定领域的研究需要多学科小组,包括内容方面的专家、评估专家、教学设计等(在教育研究中常这样称呼,但仍难以捉摸)。更复杂的慕课研究需要大学和资助机构更多的制度支持,才能走向繁荣。 A/B测试 。在缺乏可共享的跨课程数据条件下,实验设计将集中调查特定教学方法的效果。从最早的慕课开始,研究人员已经实现了“A/B测试”和其他实验设计。所谓 A/B 测试,就是为同一个目标制定两个方案,让一部分人使用 A 方案,另一部分人使用 B 方案,然后根据度量结果来决定哪个版本更好,从而决定最后真正去使用哪个版本。Fisher在他的“版权”科目中随机为学生分配了两个课程中的一个,这两个课程,一个是基于美国的判例法,一个是全球的版权问题,即对这两个课程进行实验性评估。他采用期末考试成绩、学生调查以及和助教反馈来评估课程。最后得出结论,认为对单一的版权制度进行深入考察,与考察全球的方法相比,对学生的帮助要大一些。这个实验为开放的在线法律教育提供可操作的结果。 在一个新的领域,关注概念验证如何被展示是非常合适的。 对慕课生产者来说,让基本课程材料可以被数百万人访问就是一种成就。而对慕课研究者来说,将获得的数据进行清洗后可适合许多研究就是一种成就。 在早期实践中,根据阻力最小的路径来获得结果是一个明智的策略,但它要冒着产生路径依赖的风险。为了推进这个领域,研究者需要解决早期研究忽略的那些障碍。这些挑战无法由个别研究者完全解决。提高慕课的研究,需要来自大学、资助机构、杂志编辑、会议的组织者和课程开发者的集体行动。在许多出产慕课课程的大学,教师想做的课程超出了资源支持的范围,因此大学所考虑的课程有一定的优先权。那么何种课程应优先考虑呢?应该是那些在课程设计之初就考虑解决那个领域教和学根本问题的课程。期刊编辑和会议组织者应优先出版那些进行跨机构联合的工作,考察学习效果而不仅仅是参与的结果,对设计研究有帮助和有利于事后分析的实验设计。资助机构应该共享这些优先事项,同时支持一些先的研究,如数据共享的新技术和政策,这有助于转化教育及之后的开放科学。 参考资料: 学习科学(http://baike.baidu.com/view/2342519.htm) “学习学”的性质及任务http://hi.baidu.com/khb630/item/6e89ed1065995c021894ec88 Rebooting MOOC Research, Science 2015-01-02. 347(6217): 34-35.
个人分类: 一起读顶刊|18971 次阅读|24 个评论
蒲慕明院士推荐的12本经典必读书目
热度 6 blueice1126 2014-5-1 10:55
蒲慕明院士(Mu-ming Poo,1948年10月-),祖籍广东省梅州市大埔县,生于南京,华裔美国人,原籍台湾,神经生物学家,中央研究院院士,美国科学院院士,中国科学院外籍院士,现任中国科学院神经科学研究所所长,美国加州大学伯克利分校Paul Licht杰出生物学讲座教授。 蒲幕明院士认为,在学习如何进行科学研究中, 知道一个科学发现是怎样产生的比知道这个发现更重要 。这是因为科学发现的历史在教科书里常常被忽略,而在科学论文里常常被扭曲。因为论文只会告诉我们科学发现的最终结果,而不会告诉我们其中的曲折过程。我们只有了解了科学发展的历史,才能对所要研究的科学问题有更好的把握。 而在如今社会, 知道那里去找信息比知道信息更重要, 这是因为现代社会信息超载,过多的信息会产生信息限制和抑制,我们被无法做出正确的判断。因此, 过度无选择性的阅读有害健康 ,我们应该选择真正有意义的文献进行阅读。 知道怎样叙述一件事比知道这件事更重要 。这是因为叙述的过程就是一个逻辑整合的过程。而科学是一个社会现象。做科学的乐趣部分源于与他人的交流。有效的科学交流是需要训练的。而交流的能力是所有职业都需要的。 知道什么是“未知的” 比知道什么是“已知的”重要 。现存的知识存在不完整性和不可靠性。科学的进展就是修正现存的知识。好的教科书和好的综述告诉你什么是未知。特别是行业权威所写的经典著作和文献。 学会自我教育比找到一个好老师更重要 。因此我们要有意识的读伟大科学家的自传和传记。蒲慕明院士推荐的经典自传和传记及书评如下: 1. The Eighth Day of Creation By Horace F. Judson (Cold Spring Harbor Lab Press, 1976, 1996) If you are going to read only one book outside your immediate field of study in your entire graduate school period, I recommend this one. Judson was a former science reporter for Time magazine. For a period of more than ten years during 1960s to 1970s, he tracked down and interviewed more than one hundred scientists who were involved in one way or another in the birth of molecular biology. With college training in chemistry, Judson was able to digest relevant scientific literature and integrated them with the personal history of the scientists and their discoveries. His story on the discovery of the double helix is more extensive and authentic than the one given by James Watson in “The Double Helix”. The best part of this book is the extensive quotes from original interviews with makers of molecular biology - characters like Delbruck, Luria, Watson, Crick, Chargaff, Perutz, Jacobs, Monod, etc. You will find out how pioneering scientists think and act before, during, and after major scientific discoveries. Nowhere is the history of scientific discovery more vividly unfolded. After the publication of this book, Judson was offered a professorship at Johns Hopkins University for teaching science writing. 2. Advice to a Young Scientist By Peter B. Medawar (Harper Row Publishers, 1979) Peter Medawar, a Nobel Prize winner for his discovery on the immunology of tissue transplants, was the most prominent British biologist before his death in 1987. He was known for his wit and insights on science, scientists, and society in general, and for being the best scientist-writer of his time. He has published many books (mostly collections of essays), every one of them a gem in science writing. This book actually contains advice that is relevant to scientists of all ages. I was 40 years old when I first read this book, and I have returned to it several times since then and found it still refreshing. Medawar offered many insightful comments and advice on various aspects of the scientist’s life – finding mentors, selecting research topics, performing research work, collaborating with other scientists, making oral presentation, writing scientific papers, dealing with racial and gender prejudices, coping with fame and honors, and managing a good family life. The famous Spanish neuroanatomist and Nobel Prize winner Ramon y Cajal (1852-1934) had also written a book with a very similar title (“Advice for a Young Investigator”) that is worth reading, but Medawar’s book is more appropriate for scientists in the modern world. 3. What Mad Pursuit (A Personal View of Scientific Discovery) By Franics Crick (Basic Books, 1988) This is a “scientific” autobiography by the most brilliant biologist of our time. In this book, Crick mainly wrote about his scientific activities during the classic period of molecular biology (from 1953 to about 1966, when the genetic code was elucidated). The beginning of Crick’s scientific career was rather unremarkable, and he recounted it in an illuminating way – how he decided to work in biology by the “gossip test” (“What you are really interested in is what you gossip about”), how unsuccessful he was in getting into a good lab (as a graduate student over 30 years old with a rather poor record), and how boring were his early research and his first two papers in Experimental Cell Research. The main part of the book begins with the chapter on his work with James Watson that led to the discovery of the double helical structure of the DNA molecule. To me, the most scientifically interesting part of the book is Crick’s recollections on the theoretical and experimental efforts by him and a small group of colleagues to decipher the genetic code, and on his formulation of the famous “central dogma”. Crick recounted in detail the thinking behind the work and many mistakes he and others had made along the path of discovery. We can see how a brilliant mind works in front of scientific mysteries. It is also of interest to note that the theme of “lessons and mistakes” permeates throughout the book. (The book opens with a quote of Oscar Wilde “Experience is the name everyone gives to their mistakes”). This had also become the recurrent theme in his later years when he was asked to talk about his molecular biology days. Crick was probably the most distinguished theorist in the history of modern biology, and he had much to say about how theoretical work could be most fruitfully pursued in biology. In his later years at Salk Institute in La Jolla, he focused his attention on the mystery of the brain, e.g., the mechanism of memory, the purpose of dreaming, and the neurobiological basis of consciousness. (Only the last chapter of this book deals with these later works). Consciousness is the subject of his last book “The Astonishing Hypothesis”, which I highly recommend to anyone interested in neuroscience. He was writing his last paper on consciousness during his final days on the death bed (he died in 2005 at an age of 89). I had a quite a few opportunities to meet Crick during my time at UCSD during 1996-2000. He had a sharp mind that could quickly identify key points and problems, but had very little tolerance for superficiality. 4. The Double Helix By James Watson (W.W. Norton Company, 1968) This is a fascinating scientific story on how Watson and Crick discovered the double helix structure of the DNA. When this book was first published in 1968, I was then a physics student at Tsinghua University in Hsinchu campus in Taiwan and was the first to check out the volume from the university library. It may have contributed to my interest in biology and my later switch to biophysics in the graduate school. This was a book that had offended many of Watson’s contemporaries and colleagues, because of his egocentric view of the events and people related to the discovery of the double helix. Watson made no attempt to hide his feelings and thoughts and presented an honest self-portrait in this book. His book also nicely reflected the atmosphere in the Cavendish Laboratory in the early 1950s, where major ideas in modern biology emerged among a small group of scientists chatting over a cup of tea. His latest biography “Avoid boring (other) people” is also very much worth reading. It recounts his scientific life before and after the discovery of DNA and contains summary of useful “lessons” at the end of each chapter – lessons he learned at each stage of his career. 5. A Passion for Science By Lewis Wolpert (University of Pennsylvania Press, 1988) Lewis Wolpert has been one of the most prominent developmental biologists in the United Kingdom. He was responsible for formulating the concept of “positional information” in developing organisms. The present book is a collection of interviews he conducted with a group of distinguished scientists from diverse fields. As a distinguished scientist himself, the questions Wolpert raised were thoughtful, perceptive and penetrating. The responses by the scientists are often inspiring. In the beginning of the interview, each scientist also gave a summary of the personal history that shaped his/her career in science. I particularly enjoyed the interview with Sydney Brenner. 6. A Feeling for the Organism (The life and work of Barbara McClintock) By Evelyn F. Keller, W. H. Freeman and Company (1983) Keller is currently a professor at MIT with research interests in sociology and philosophy of science, and history of biology, although she had extensive early research experience in mathematical biology. This biography of McClintock has become a classic among scientific biographies. Keller had not only written about the life and science of this remarkable woman scientist, but also addressed broader issues, e.g., how scientists interact with their peers and how they are perceived and received by the scientific community at large. Relating to McClintock’s discovery of transposable elements or “jumping genes”, which eventually won her a Nobel Prize as a solo, Keller also touched upon the interesting issues of why and how a ground-breaking discovery and a brilliant scientist could be ignored by the scientific community for decades. How does one distinguish a pioneering scientist from someone “at the fringe”? How personality and style of a scientist affect the recognition of his/her science by the scientific community? For all female scientists and scientists to be, this book is particularly relevant. Societal prejudice and discrimination against female scientists, which remains a universal problem, also played a significant part in the delayed recognition of McClintock and her work. Keller has insightful comments on this topic. 7. Is Science Necessary? By Max Perutz (Oxford University Press, 1991) Max Perutz (1914-2002) was an Austrian biologist who immigrated to UK during the Second World War. His work on protein crystallography and the solution of 3-D structure of hemoglobin at the atomic resolution won him the Nobel Prize in Chemistry in 1962. He joined Cavendish Laboratory as a young man and was assigned the task of solving the 3-D structure of proteins by X-ray crystallography, at a time when this method was only used for solving the structure of small molecules and fibrous macromolecules. It took twenty years for him to achieve the goal. This book is a collection of essays he wrote over the years on scientists and science, and on science-related books. There are many interesting stories and witty comments by this pioneer of modern biology. Perutz had served for many years as the Head of the Laboratory of Molecular Biology in Cambridge. This Laboratory is a “biological successor” of the Cavendish Laboratory and now a leading biological and biomedical research institution, from which so many Nobel Prize winners had emerged that I have lost count. 8. Ever Since Darwin (Reflections in Natural History) By Stephen Jay Gould (W.W. Norton, 1979) Stephen J. Gould (1941-2002) was a prolific and eloquent evolutionary biologist at Harvard. He wrote one long assay each month for a column (“This View of Life”) in the magazine Natural History for twenty-five years without missing a single issue, even during the time he was struggling with cancer. His had done interesting research on the evolution of snails and taught a very popular undergraduate science course at Harvard, but he is best known for the science books he published over the years. These include monographs on specific subjects (see “The Mismeasure of Man”) and a series of books that contain organized collections of his articles in Natural History. “Ever Since Darwin” is the first and perhaps the best one of the series. Gould’s writings cover evolutionary biology, geology, scientists, and history of science. He had an unusual ability in retaining, connecting, and organizing information gathered from diverse fields and sources, including ancient literature written in Latin and European languages. He appeared to have an unlimited reservoir of interesting stories and wrote with a distinct style that is exuberant and imaginative as well as logical and precise. He died on July 31, 2002, after finishing his 300th assay for Natural History (for the January issue of 2001). The last collection of his assays was published in a book entitled “I Have Landed”. Right before his death (due to cancer) he also finished a huge treatise on “The Structure of Evolutionary Theory”, a grand summary of his view on evolution. What an amazing life! Gould is legendary in the intellectual history of 20th century, not necessarily as a scientist (he was responsible for proposing the somewhat controversial hypothesis of “punctuated equilibrium”, which addresses the uneven pace of evolutionary changes), but certainly as a teacher and thinker who had greatly influenced a generation of intellectuals beyond the narrow confine of his own field. 9. It Ain’t Necessarily So: The Dream of Human Genome and Other Illusions By Richard Lewontin (New York Review Books, 2001) This is a collection of Lewontin’s essays, mostly published in the New York Review on Books, on evolutionary biology, genetics, more recently on issues related to the Human Genome Project. The NYRB is a biweekly journal on books, with book reviews that are written in the form of long essays. It has become a platform on which issues and subjects are frequently debated among academic intellectuals. Lewontin is a professor of genetics at Harvard and a progressive Marxist biologist. He emerged in the 1980s as the most eloquent spokesman for a group of scientists who strongly oppose the view that human behaviors are largely determined by our genes. There were heated debates surrounding the popularized sociobiologist’s view of Edward Wilson, who had tried to apply the lessons learned from studying social behavior of ants to human behaviors. Lewontin argued forcefully for the importance of examining the interaction and interdependence between genes and environment when studying complex biological phenomena. This book contains his essays triggered by the books he reviewed, and exchanges with opponents following the publication of his original essays. In my view, Lewontin’s arguments have become increasingly relevant following the completion of the Human Genome Project. There is now the resurgence of the “eugenic” view, i.e., all normal and pathological behaviors are based on the genetic makeup of a person. There are now genes claimed to be responsible for homosexuality, suicidal tendency, longevity, aggression, and other social behaviors. There are in fact reputable scientists who are actively propagating the nave and misleading message that a single gene could “determine” a particular social behavior. While we might suspect that Lewontin had deliberately positioned himself towards the extreme end of a wide spectrum of opinions, his words are refreshing, provocative, and persuasive. Ideology asides, there is little doubt that he is a very effective writer. If you want to find a model for learning scientific writing, use Lewontin as a model. 10. The Mismeasure of Man By Stephen Jay Gould (W.W. Norton Company, 1981) This is the best book on the subject of IQ and human intelligence. What is intelligence? Can it be quantified by a single parameter like IQ? Are there intrinsic racial and gender differences in intellectual capacity? Is the evidence of the claimed differences credible? These are not questions that can be resolved simply by sophisticated debates. Gould himself had carried out systematic reinvestigation and measurements of a collection of human skulls of different races in a Philadelphia museum, the same set of skulls Samuel Morton (a prominent American scientist in the 19th century) had used to publish his influential paper claiming that the cranial capacity increases from blacks to Indians to Caucasian (whites). Gould found that Morton’s analysis was systematically biased and his conclusion was thus false. There is also an in-depth analysis of the studies on identical twins by Cyril Burt, the infamous former doyen of British psychology, who was found to have fabricated most of this data on identical twins. On the whole, Gould’s analysis of human intelligence, although by no means generally accepted, is the best I have seen. Here I have to say that many of my Chinese friends (offspring of the “Great Han”!), including highly intelligent scientists, often express racist views that have a shallow basis and could not stand against scientific scrutiny. Speaking of social responsibilities, biologists have the utmost obligation to promote a scientifically correct view of human nature among the general populace and to fight against half-truths and misconceptions about human intelligence and behavior. After reading this book, I believe you will have a very different view on IQ and human intelligence and perhaps talk differently when this subject comes up again in your conversation with others. 11. Time, Love, Memory By Jonathan Weiner (Random House Publication, 1999) Weiner is the science writer and a winner of the Pulitzer Prize on science writing (for the book “The Beak of the Finch”, a wonderful book that combines science with scientific biography of two evolutionary biologists), and currently teaches at the Columbia University Graduate School of Journalism. In this book, he describes the life and work of Seymour Benzer (1921-2007), a geneticist at Caltech, and the work of some of his students. After finishing the mapping of the fine structure of a phage DNA in the late 1960s, a monumental achievement that could qualify him for a Nobel Prize, Benzer decided that neurobiology is the next big challenge to take. He proposed that one approach to understanding how the brain works is to search for the genetic basis of behavior through discovery of behavior mutants in fruit flies. The field he created, known as neurogenetics, is now highly populated. There are at least four generations of Drosophila neurogeneticists with lineage traceable to Benzer. There have been many amazing discoveries made through Benzer’s approach. Who would have thought that a single gene mutation (of “period” gene) could result in drastic change in the sleep-awake cycle of Drosophila, a rather complex behavior? (Such successes in Drosophila, unfortunately, have created the illusion that complex behaviors of all species, including human, are dictated by genes). This book vividly portraits Benzer as a scientist working at the lab bench even at the age over 70. When I first met him in 1977 at Caltech, two back-to-back Nature articles just appeared - one by Lionel Jaffe on the theoretical prediction and analysis of electrophoresis of proteins in cell membrane and the other by Ken Robinson and I on the experimental demonstration of the electrophoretic movement of membrane receptors in muscle cells. The first thing Benzer did when he saw me was to point to these two articles and said “Is this real? Did you check Jaffe’s math?” Benzer did not believe easily published results and himself published very little. Every one of his papers was meticulously written, with every sentence heavily scrutinized before submission. My friend Chun-fang Wu (the current Editor-in-Chief of Neurogenetics) was a postdoctoral fellow in Benzer’s lab in the late 70s. He told me that everyone in the Benzer lab had to sit around a table for hours to go through every sentence of each paper to be submitted from the lab, regardless whether you were one of the authors. In my last encounter with him at Society for Neuroscience dinner reception for Benzer as the 2004 Gruber Prize winner, I gave a brief talk as a member of the Prize Committee. Benzer was very pleased by my comment that his paper writing ritual is now in constant practice by many laboratories at Institute of Neuroscience in Shanghai. 12. Cantor’s Dilemma By Carl Djerassi (Penguin Books, 1989) Carl Djerassi, the prominent Stanford chemist who invented the oral contraceptive and became the Father of the “Pill”, turns out to be a literary man as well. By writing a series of novels based on scientists and their lives, he invented a new genre of literature that he named as “science in fiction”. It is distinctly different from “science fiction” in that the content is based on credible or plausible science, even real names of scientists are referred to and their discoveries discussed in the novel. “Cantor’s Dilemma” is the first of four books of science in fiction he wrote, and in my opinion, the best one. The main character Cantor is a distinguished professor and cancer biologist. He hit upon a novel mechanism of tumorigenesis while going to the hotel bathroom on one of his lecturing trips. He rushed back to his lab, asked his postdoctoral fellow to perform the experiment and verified his hypothesis. The achievement shook the cancer field and soon won him a Nobel Prize. Unfortunately, the experimental results by his postdoctoral fellow cannot be replicated by the laboratory of another distinguished competitor at Harvard. Even more devastating, he discovered that his postdoctoral fellow, under extreme pressure to confirm his hypothesis, actually fabricated the data that won him the Nobel Prize. Should Cantor now announce to the world that his achievement and fame were based on fabricated data? How could he ever solve the dilemma? Read this book and find out.
8902 次阅读|13 个评论
学习科学,传播科学,为参加博客比赛加油!!!!
沈海军 2010-5-2 16:34
在科学网接触好多思想.见解.观点和知识,更可贵的是结识很多高人.才子和学者!!为传播科学知识而来,为更好的学习科学而参加博客比赛. 在博客里我写我所思,所看,所想,所做的有趣的纳米艺术画,专业飞机知识等.生活中的一点记录,一点随笔,感谢科学网,为学习科学,传播科学,我依然参加博客比赛!!!!请为我加油!!!!
个人分类: 教育教学|3081 次阅读|3 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-16 01:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部