科学网

 找回密码
  注册

tag 标签: 微生物

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

自然界对腐败感兴趣,还是对进步更感兴趣?
biozhang 2010-1-31 19:04
张星元:自然界对腐败感兴趣,还是对进步更感兴趣? 这几天熵在科学网上成了热门话题。好久没有写博文了,也插上几句。 热力学第一、第二定律只在隔离(孤立)系统中成立。在隔离(孤立)系统里,如果任凭事物自由发展,必然熵增,必然走向腐败,走向热寂。 世界万物总是互相关联的,因此绝对的隔离系统是没有的。在现实世界(非隔离系统,包括封闭系统和开放系统)里,事物几乎从来不可能是任其发展的(互相关联之故),至少是不可能完全任其发展的。它们几乎总是会遭遇从系统外部流入的某种能量和物质。如果这些从外部流入的能量和物质足够多的话,则热力学第二定律所描述的稳步退化的情形就会被部分或全部地扭转过来。处于沸腾中的电热水壶内水和培养中的微生物活细胞就是比较典型的实例。
个人分类: 复杂系统|3855 次阅读|5 个评论
微生物生命活动的三个基本假说是一个整体
biozhang 2010-1-9 16:51
张星元:微生物生命活动的三个基本假说是一个整体 微生物生命活动的三个基本假说是一个整体,主要表现为: ① 一个完整的思想体系:微生物生命活动的三个基本假说(代谢能支撑假说、代谢网络假说和细胞经济假说)以及以它们为前提做出的推理构成了一个完整的思想体系。第一假说反映微生物生 命活动的前提(代谢能的持续供应),第二假说体现微生物生命活动的内容(能量、物质的转化关系),第三假说揭示微生物生命活动的法则(人和微生物合作的基础)。这三个基本假说从三个不同的角度来分析同一个问题,微生物的生命活动的问题,体现了三者的相互联系和相互协调。第一假说从生物能学和代谢能对生命活 动的支撑的角度认定微生物细胞是代谢能转换器,第二假说从生化学和代谢的角度认定微生物细胞是生化反应器和生物材料加工器,第三假说从生物信息学的角度认 定微生物细胞是生物信息编码器、信息传感器和信息处理器。 ② 三个假设相互支持、相互制约,相互补充:能量代谢需借助代谢网络来实现,代谢网络的运行需要代谢能的支撑,能量代谢和物质代谢相互交叉,并且都受细胞经济规律的规范和制约。代谢网络中代谢物的流动依赖于代谢能支撑,受制于细胞经济规律;然而对代谢能支撑和细胞经济的研究,又必须借助于它们的载体代谢网络。 ③ 发酵工程的自然辩证法:现代工业发酵建立在对代谢能支撑、代谢网络和细胞经济等三个基本假说的深刻研究上。代谢能支撑假说揭示了工业发酵的原动力。在代谢网络假说中,代谢途径(酶蛋白)和多种蛋白系统的有序组合作为一个整体,称为代谢网络(物质代谢网络),这样有利于我们从宏观上把握微生物的代谢和生理,为工业发酵从原料到目标产物的设计,提供分 析的依据和实际操作的位点。细胞经济的概念的提出为正确处理工业发酵中人的主观愿望与微生物生命活动的客观规律之间的对立统一关系提供了理论依据。 ④ 学科的交叉和渗透:将化学、生物化学、微生物学、分子生物学、细胞学等学科的知识与物理学、物理化学、化工原理、电工学、生物学、经济学、哲学和自然辩证法等学科的知识渗透、交叉、交融起来,互相支撑,融会贯通,建立发酵学科的新概念。 本博文的英文译文见 http://www.sciencenet.cn/m/user_content.aspx?id=285663
个人分类: 生命系统|4780 次阅读|0 个评论
英国研究显示“脏”小猪更健康
吴信 2009-12-2 20:37
这算是创新吗?这与之前我还看到的与肠道益生菌相关的研究,根本是一回事啊。换汤不换药。 新华网伦敦11月30日电(记者 黄堃) 户外放养的猪总是比圈养和严密隔离饲养的猪看起来脏。但英国一项研究显示,这些户外放养的脏小猪实际上更健康。 英国阿伯丁大学等机构研究人员日前在《BMC生物学》( BMC Biology )期刊上报道了这一发现。他们将54只基因谱系近似的小猪平均分成3组,一组在户外放养,另一组在室内圈养,最后一组不仅在严格隔离的环境下饲养,还被定时喂食抗生素。 研究人员分别在实验初期、小猪断奶期和接近成熟期对它们进行了分析。结果发现,在户外放养的那一组小猪中,肠道里约90%的细菌都属于壁厚菌门,这类细菌的大部分都对健康有益,有助于控制大肠杆菌和沙门氏菌等致病菌;而室内圈养的小猪肠道内这种细菌只占70%,隔离饲养的小猪肠道内这种细菌仅为50%左右。 研究人员说,肠道菌群的差异甚至还引起与免疫系统相关的基因变化,在隔离饲养的小猪体内,与发炎免疫反应有关的基因表达更多;而在户外放养的小猪体内,与免疫细胞T细胞相关的基因表达更多。 研究人员认为,实验表明,看起来脏的环境反而更有利于小猪的健康和免疫系统发展。研究人员说,虽然在小猪身上得到的实验结果不能直接套用到人身上,但两者肠道内微生物的相似性,使得这一结果对人类也具有参考价值。 BMC Biology 2009, 7:79doi:10.1186/1741-7007-7-79 Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces Imke E Mulder* 1 , Bettina Schmidt* 1 , Christopher R Stokes2 , Marie Lewis2 , Mick Bailey2 , Rustam I Aminov1 , James I Prosser3 , Bhupinder P Gill4 , John R Pluske5 , Claus-Dieter Mayer6 , Corran C Musk1 and Denise Kelly1 1Gut Immunology Group, University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK 2Veterinary Pathology, Infection Immunity, Langford House, Langford, Bristol, BS40 5DU, UK 3Institute of Biological and Environmental Sciences, University of Aberdeen, St Machar Drive, Aberdeen AB24 3UU, UK 4Agricultural and Horticultural Development Board, Winterhill House, Snowdon Drive, Milton Keynes MK6 1AX, UK 5School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia 6Biomathematics Statistics Scotland, University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK Background Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in early-life environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoor-housed pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results. Conclusion Early-life environment significantly affects both microbial composition of the adult gut and mucosal innate immune function. We observed that a microbiota dominated by lactobacilli may function to maintain mucosal immune homeostasis and limit pathogen colonization.
个人分类: 科研心得|3361 次阅读|2 个评论
茶叶加工中微生物的研究
gem 2009-8-8 09:29
随着科学技术的发展及农业可持续发展的需要,生态系统中各生物种间相互协调和相互促进的功能被愈来愈多地发现并充分利用到各个领域。其中不少微生物被应用于茶业领域,用以提高茶叶产量,防治茶树病虫害,进行茶叶保鲜贮藏和提高成品茶的质量等。本文就茶叶加工中微生物种类及组成等方面的研究现状进行总结,探讨了茶叶加工中微生物存在的一些问题及对策,并展望了微生物在茶叶加工领域中的发展前景。    1 茶叶加工中的微生物    1.1黑茶加工与微生物    1.1.1黑毛茶    目前,对于制茶过程中的微生物研究越来越多,随着研究的不断深人,人们越来越认识到微生物在茶叶加工中的重要性,这在黑茶制造中尤显突出。镜检鉴定研究表明川黑茶在渥堆中微生物群落主要是酵母、霉菌和细菌。其中以酵母菌最多,且为假丝酵母(Candida sp.)中的种类;霉菌则以黑曲霉(Aspergivus niger)占优势,其次为青霉( Penicillism sp. );细菌为无芽孢短小杆菌等。黑曲霉中的许多种类均能生产分泌纤维素分解酶、蛋白酶等酶类,这些微生物及其分泌的酶系统对茶叶中的有机物质进行分解、水解、氧化与转化形成了黑茶特征性品质风味。    1.2.2伏砖茶    王志刚等对茯砖茶中关于微生物的种类进行了较为详细的论述。他认为,茯砖茶中霉菌相的优势菌是散囊菌属的种类,冠突散囊菌是主要的,也是出现频率最高的种类,其它还有间型散囊菌、谢瓦散囊菌、甸甸散囊菌、阿姆斯特丹散囊菌等,非散囊菌属的霉菌出现频率也较高,主要是黑曲霉、毛霉、拟青霉、青霉等。在发花初期,有一定量的黑曲霉、青霉,及其他霉菌存在,但当优势菌冠突散囊菌生长起来后,这些霉菌的生长则被抑制。研究表明,发花是茯砖茶所特有的工艺过程,进人发花工序后,砖坯温度已逐渐冷却至接近室温,湿热作用强度大大减弱。然而,正是在这种温、湿条件下,茯砖茶中优势微生物种群冠突散囊菌得以大量繁殖,它们从茶叶中吸取可利用态基质,进行代谢转化,在满足自身生长发育的同时,也产生各种胞外酶(如多酚氧化酶、果胶酶、纤维素酶、蛋白酶等),作为有效的生化动力,催化茶叶中各种相关物质发生氧化、聚合、降解、转化。因此,发花的实质是在一定的温、湿条件下,使有益优势菌冠突散囊菌大量生长繁殖,并借助其体内的物质代谢与分泌的胞外酶的作用,实现色、香、味品质成分的转化,形成茯砖茶特有的品质风味。    1.1.3普洱茶    普洱茶目前在港、澳、台和东南亚,以及法国、日本等地,深受消费者欢迎。现代医学临床已经证明,普洱茶对人体有保健作用。在加工过程中,其特殊保健功能与品质形成的关键就是渥堆。周红杰等在针对普洱茶加工过程中微生物及酶系变化的研究中,发现黑曲霉、青霉、根霉、灰绿曲霉和酵母等微生物存在于普洱茶的整个加工过程中,其中初期黑曲霉最多,约占微生物的80%左右,黑曲霉代谢产生的水解酶,在渥堆中期,表现为增加趋势,在渥堆前期中温型霉菌生长繁殖迅速,后期低温嗜干的灰绿曲霉开始繁殖,在渥堆水分适度时,大量酵母的生长对普洱茶甜醇滋味的形成有重要作用。    1.1.4六堡茶    六堡茶在晾置陈化后,茶中便可见到有许多金黄色金花,这是有益品质的黄霉菌,它能分泌淀粉酶和氧化酶,可催化茶叶中的淀粉转化为单糖,催化多酚类化合物氧化,使茶叶汤色变棕红,消除粗青味。但也有人认为这种金花与伏砖茶中的金花相同,关于六堡茶渥堆中的微生物及晾置陈化后的微生物是哪些,有待进一步研究。    1.2红茶加工与微生物    国内外大量研究证实,酵母菌、真菌、细菌等三类微生物是影响红茶品质的最主要微生物,赵和涛研究表明,在红茶加工中,霉菌能分泌a-淀粉酶、葡萄糖生产酶、麦芽糖酶、界限糊精酶等生物酶。这些生物酶都具有液化和糖化淀粉的能力,对提高红茶中可溶性糖含量以及增进香气和滋味均有良好作用。由酵母菌作用而产生的氨基酸转化分解反应,对提高红茶茶汤鲜爽味,有较大促进作用;一些酵母菌能促进芳香物质氧化分解,如酵母菌酶在多酚氧化酶的共同作用下,能使青叶醇、青叶醛转化为橙花醇和水扬酸甲酯,这种芳香物质的转化反应,可使青草气散失,花香甜味形成,对提高红茶香气非常有利。一般茶树老芽叶都含有很高的纤维素,在红茶加工中,纤维素细菌可通过纤维素酶作用分解为纤维二糖,再转化为葡萄糖,这种由纤维素细菌作用而引起的茶芽中纤维素分解反应,可使粗老茶茶汤转向甜醇,并能去掉一些粗老味,大大提高粗老低档红茶品质。    1.3茶饮料与微生物    微生物发酵茶饮料是一种新兴的保健茶饮料,现已应用到茶饮料发酵的微生物主要有细菌、酵母菌、霉菌和食用真菌。细菌主要是耐茶叶中单宁酸的乳酸杆菌和醋酸杆菌;酵母菌主要是一些在发酵过程中能同时以出芽生殖、孢子生殖、结合生殖三种生殖方式进行繁殖的酵母菌,如出芽酵母、德氏酵母、假丝酵母和酿酒酵母;霉菌是一些能够在茶叶没食子酸单宁诱导作用下产生胞外酶,水解茶叶中没食子酸单宁酯键的霉菌,如曲霉、镰孢子霉、木霉等。目前,用微生物发酵茶饮料的报道不少,如邵伟等用巴氏醋杆菌(Acetobacter pasteurianus),保加利亚乳杆菌(Lactobacillus bulgaricus)和啤酒酵母( Saccharomyces carlsbergensis)发酵绿茶,生产富含细菌纤维素的绿茶饮料,独具风味,酸甜可口,清凉解热的发酵饮料;酵母菌、醋酸菌研制红茶菌,,LiuChi-Hsein等,提出利用二次发酵法进行红茶菌工业化生产,突破了目前只有家庭生产红茶菌的局限。江洁等以玉米淀粉糖浆对红茶进行浸提,对浸提液进行乳酸菌和酵母菌共生发酵,制作出具有较高营养价值,风味独特的发酵茶饮料。日本的发酵茶Goishi-ch:是在茶叶中先接种As-per翻llus fumigatus,Asper刻us niger, Penicillium sp. ,Scopulariopsis brevicaulis,发酵一段时间后,再接种Lac-tobacillus.Plantarum进行发酵,生产出一种富含氨基酸的茶饮料。邬龄盛的研究表明,以茶汁为培养基、平菇为菌种人工调控培养营养药用型菌茶是可行的。另外,还有茶酒和真菌保健茶的研制等,也是目前茶深度加工的热点之一,很有市场开发价值。可见,利用微生物发酵,研究开发的新型保健茶饮料将具有广阔的市场前景。    1.4茶叶废弃物与微生物    近年来,用茶叶饲养畜禽能明显提高畜禽肉的品质已有报道。刘妹,涂国全以茶渣为主要原料(含量达70%),适当添加其它辅料,通过混合菌共同发酵后,料中粗蛋白含量达到23%以上,达到仔猪配合饲料中的粗蛋白含量,直接作饲料饲喂畜禽是可行的,可以变废为宝。因此,茶渣通过微生物发酵后可以作为一种新的优良饲料原料,改善目前由于广泛饲喂配合饲料、集约化养猪而造成的猪肉品质下降的状况,将会具有广阔的应用前景。此外,范代忠用果胶酶和木霉菌作真菌培养液,可从茶渣中提取葡萄糖。    1.5污染微生物与茶叶加工    王志刚等的研究表明,茯砖茶中的杂菌主要是黑曲霉、毛霉、拟青霉、青霉等,散囊菌能够产生毒素。现已研究发现,细菌型和霉菌型二类微生物,在红茶加工中,具有较强的分解蛋白质作用,其作用机理可能是这二类微生物能产生蛋白酶和一些氨基酸脱羧酶,然后分解蛋白质转化成氨基酸,氨基酸在氨基酸脱羧酶作用下生成不同的腐败胺类物质,此类物质具有挥发性,产生特异的臭味,影响红茶的品质。Abdulkadir E. Elshafie等对阿曼地区4种流行的商业红茶品牌中的48个茶样进行实验分析,发现Aspergillus niger是主要的污染微生物,污染范围从0.66%到30.34。其次是Aspergillus flaus,Penicillium spp.和Pacelomyces spp.,污染的百分比分别为0.6%, 0.84%和0.21%。这与Halweg和Podsiadlo报道的结果一致。Abdulkadir E. Elshafie认为这些污染真菌主要来自产品的分类、包装和贮存过程中,在环境适宜的条件下可以生长并产生真菌毒素危害人类的健康。在南非,Cloete TE和Kotze JMI从红茶加工的整个阶段分离出Coliforms,lactic acid bacteria,Psuedomonas,uoden-tified yeasu和filamentous fungi等污染菌类。在埃及,调查人员从茶里分离出真菌包括两株黄曲霉产毒菌株.因此,茶叶只有在严格的卫生条件下加工、分类、包装和贮存,茶污染才可能被消除或降低。邬龄盛指出在菌类保健茶引起污染的杂菌主要是:丝孢目(Hyphonyc-etales)中曲霉属(Aspergillus ( Mish )Link )、青霉属(Peni-cilium LR.ErFr)、丛梗孢属( Moniliavon )、毛霉目(Muco-。Les)的根霉属(Rhizopus Ehrenb.ex Corda)等真菌及少量的细菌。它们首先争夺空间、养分,进而分泌抗生素抑制菌种菌丝体的生长,形成各种不愉快的霉味。    2展望    茶叶经过微生物发酵后,酚氨比降低、芳香类物质增加、农药残留降解而且溶人许多微生物代谢活性物质以及微生物菌体,这表明微生物对改善茶叶品质,提高茶叶综合利用具有积极意义,我们可以预见,走茶叶深加工与微生物发酵工程有机结合的路,是21世纪茶叶产业发展的新趋势。随着这一领域研究工作的不断发展,人们对茶微学的认识会不断提高,微生物在茶业领域的应用也会不断深人和拓展。但有几个问题仍需进一步去探讨1)从以上的论述可知,黑茶、红茶、茶饮料等的特殊品质的形成都与微生物有关,但目前仍然集中在固体茶的发酵,给人们的消费带来不便。(2)由于黑茶类具有特殊的保健功能,因此我们应该开发出相应的黑茶饮料或发酵液态茶饮料,一方面,可以增加茶饮料的多样性,另一方面,可以扩大黑茶的消费群体,同时也提高原料的利用率。(3)微生物液态茶饮料的研究开发是一个新兴的课题,在研究过程中要注重加强适合茶叶发酵的微生物菌种筛选、食药用真菌菌茶饮料的研究与开发、茶叶微生物发酵理论和动力学研究,使茶叶微生物发酵有具体的发酵模型和准确发酵参数等作为应用指导。(4)虽然微生物对提高成茶品质有积极的作用,但在制茶过程中不可避免会产生有害微生物,如何利用有益微生物,控制有害微生物产生,有待进一步研究。(5)开发茶叶发酵饲料,不但提高原料的利用率,而且还可以提高茶叶的整体经济效益. 普洱茶吧
个人分类: 谈天说地|6127 次阅读|0 个评论
何正国:清水捞鱼做科研(转)
liudongyang 2009-6-25 17:07
原题:《 何正国 :3年做了6年的科研》作者:易言 http://news.hzau.edu.cn/showarticle.php?aid=23346 编者按:从开年之初,本报推出了60年鼎盛中国 辉煌狮山人才强校工作巡礼专题,计划用全年时间,投用大量版面,分老一辈归国教授、知名专家、服务基层专家、师德师风先进和近年引进人才等5个部分,用历史思维来审阅学校人才强校战略的具体实施情况,点线面结合,突出重点。 截止到日前,专题中的赤子心归国教授记事栏目推出7篇报道,对上世纪50年代前归国的部分专家进行了集中报道。从本期起,本报将推出第二个栏目赤子心狮山之子,对我校现有知名专家和师德师风模范人物进行报道。最近科研成井喷之势的何正国教授一贯低调,对学生出了名的严格,而恰恰他的两名即将毕业的硕士研究生做出了10以上影响因子的论文。正值毕业生远赴各地之际,遂将何教授纳入该栏目的第一个报道对象,供师生借鉴、为学生壮行。 40岁的武汉人,我校微生物学本科和硕士毕业,哈佛大学医学院博士后,组建学校蛋白组学和代谢组学平台,对学生要求严格,领衔的课题组今年连续在国际著名学术杂志发表两篇论文,影响因子都在10以上有关生命科学技术学院教授何正国的信息都只是碎片,这位微生物专家低调的连想报考他研究生的外校学生都要在网上求助。 何正国比自己研究生在实验室呆的时间要长很多,以至于给实验室送水的工人找他拿水票比找学生更方便。如果没有特别重要的事情,他会严格遵循着两点一线,每天从家到实验室,总是准时出现在实验室,一直呆到很晚,周末和节假日也不例外。马上要到昆明医学院工作的研究生张璐感叹:这3年导师其实做了6年的事。仅半年时间,就能发出两篇影响因子10以上的文章,这在国内微生物领域团队中是从来没有过的。何正国的愧疚隐藏在收获的喜悦之后:没有时间很好的陪家人,尤其是陪自己年迈的母亲。母亲是何正国回到武汉的重要的原因之一。 清水捞鱼:从平常科研材料寻找创新点 2004年,在哈佛大学医学院完成博士后工作的何正国面临着选择:英国等国外研究机构希望他过去工作,而武汉大学等国内机构也伸出了橄榄枝。父亲早年去世,母亲年事已高,需要身边有人照顾,何正国作出了回武汉的选择。5年过去,他很轻描淡举地回忆自己的选择:母亲、老婆孩子一大家人,不想再在外面跑了。 从1995年6月硕士毕业开始,到2004年回到武汉,何正国已经在国内跑了10年,这10年,他真正找到了科研的兴趣,学会了自己认为最重要的本领:清水捞鱼,即从平常的科研材料去发现创新点的科学思路。 1995年,硕士毕业的何正国来到荆州江汉石油学院(注:现为长江大学),从事石油地质特殊微生物的研究。因为与油田的天然关系,石油学院的横向课题很多,年轻的何正国总能在这些课题组里找到自己的位置,收入也不错。但时间长了,何正国觉得非科班出身自己很难真正融入有关石油的研究,独立开展工作、独立承担课题都很遥远,提高自己成为了最紧迫的事。1998年,何正国考到了中国科学院微生物所。 因为有了3年的工作经历,何正国重新学习的针对性很强,也格外的勤奋。1999年,中科院推出新政,博士要毕业必须有两篇SCI论文,这让一起考进该所的10多名博士多少有些措手不及,而何正国在这一年的年底就发表了两篇SCI论文。正好此时丹麦哥本哈根大学生物化学系分子生物学研究所与中国科学院微生物所有合作培养协议,2000年,毕业已经不是问题的何正国来到丹麦该所作访问博士。 丹麦的学习进一步开阔了何正国的视野,使得他有机会和微生物领域世界顶级科研院所接触。2001年,博士毕业的何正国很顺利的来到美国哈佛大学医学院,师从美国科学院院士查尔斯.尼克森(Charles C. Richardson)教授。在何正国眼里,查尔斯.尼克森这个老头似乎有种魔力:他所选取的噬菌体是个很平常的材料,各项研究做的十分充分,要出成果是很难的。但这个神奇的老头却隔一段时间就有新的重大成果出现。何正国特别打了个比喻:这就像大家在清水池塘捞鱼,如果有人总能从中捞出大鱼那肯定是很有本事的。 关键不是材料、不是实验条件,而是怎样确立思路、选准角度,从看似平常材料总能找到创新点,从导师身上,何正国领悟了清水捞鱼背后的科学真谛。在哈佛期间,何正国也是利用T7噬菌体,发现了病毒的单链DNA结合蛋白C-末端小肽对其DNA聚合酶、DNA解旋酶以及引发酶等多个复制关键酶的功能有重要调控作用,在国际著名杂志JBC上发表研究论文2篇,有关研究结果最近被《自然》等杂志引用。 勤奋沉潜:3年时间成长的平台 2009年6月3日上午8点20分,微生物重点实验室的一场硕士答辩惊动了很多人:7位微生物领域的国内权威专家组成的超级豪华答辩委员会,其中有华科的副校长骆清铭等人,有人说这堪比博士答辩委员会;副校长高翅专门来旁听;此后校园网发布的《两位女孩的答辩》短时间内点击率就达到3000人次以上。答辩会评委、副校长张献龙这样评价这场答辩:两个硕士发(影响因子)10以上的文章,这在我校具有里程碑式的意义。骆清铭等答辩委员则说:半年内就能发出两篇影响因子10以上的文章,国内微生物领域的团队还没有过先例。 答辩的3个硕士生都是何正国的学生,其中两个女孩在校内似乎比她们的导师更出名:郭曼曼,生科院2006级本硕连读研究生,她构建一个在常规条件下对结核分枝杆菌的功能基因进行方便安全研究的遗传操作平台,并寻找可能在结核病原潜伏感染及耐药性突变产生中发挥关键作用的基因。今年2月18日,其成果在国际著名学术杂志《基因组研究》发表;张璐,2006级从云南师大考入我校。在何正国的指导下,她试图弄明白古菌DNA复制起始蛋白和DNA聚合酶之间存在物理的和功能性的相互作用,并希望阐明在古菌生命体中DNA复制起始和延伸两个过程之间的分子偶联机制,4月,这项由我校独立完成的成果发表在国际权威杂志《美国科学院院刊》(PNAS)上。 在答辩现场,委员们更关心研究思路的由来。两位女孩都坦承:自己在开始接触课题时,都曾怀疑能否做出东西来。何正国的回答给了她们底气:我给你们的都是好课题,你们可以做出发《自然》杂志的东西,也可以把整个大的课题都毁掉。 2005年9月回到学校后,何正国便是与众多研究生一起摸爬滚打,完全的沉潜下去,组建了一个全新的蛋白质组学的平台。何正国获得了50万的启动经费,这相对后来引进人才的启动经费相比并不充裕。在农业微生物国家重点实验室主任陈焕春院士的帮助下,何正国很快参加到了一些重大项目中,结核杆菌的研究便是从这时开始启动的。 学校给予了何正国构建蛋白质组学平台的具体任务:党委书记李忠云和生科院院长、中科院院士 张启发 等都对该平台寄以厚望。从2006年开始,学校先后投资了600余万元来搭建这个平台。以前某些平台建设失败的阴影让部分人怀疑蛋白质组学平台组建的意义。何正国感受到了这些压力。在回忆这段日子的时候他说:更多的压力都被学校领导和 张启发 院士给过滤了,这样我有了一个相对宽容的沉潜的机会。 一个完全从头开始的平台碰到了很多的困难,最大的困难在于没有任何技术储备,何正国只有和自己的学生一起来从头摸索一切。平台没有其他老师和实验技术人员,2005年来到学校时何正国带了一个硕士研究生,在周俊初教授的支持下,他有了两个博士生。到2006年,又招了5个硕士生。这批学生成为了何正国工作的生力军。 充分挖掘这些研究生的潜力、培养他们对科研的兴趣成为了何正国的重点工作。每周碰头,每两周汇报一次工作进展,鼓励学生大量涉猎相关领域研究的文献。这位并不多说话的教授说话逻辑很强,总是用最简洁的话来回答问题。在每两周例行的研究进展中,他要求研究生:一两句话报告所看的每篇参考文献的内容,而这些学生中的勤奋者,两个周有可能会看70多篇国内外文献。 何正国的严格在生科院和农业国家微生物重点实验室是出了名的。2006年7月,张璐来不及享受大学毕业的最后一个暑假,就来到学校进入实验室,而郭曼曼更早的时候已经开始与实验室打交道。研一有大量的课程要学习,课余的时间两位女孩被要求泡在实验室,去做一些像构建文库、设计载体等实验的基本操作。正是这些看似简单的基础操作,让两人开始重新认识科研,郭曼曼甚至有了句实验室的名言:如果你没成功,那是因为你失败的次数还不够多。在这样的要求下,实验室的人都非常注重效率,在实验室的每个人都在同时做几项事情,在转化的同时,还在做PCR,同时还在跑着胶。这样的氛围中,时间安排自然紧凑。科研还是要时间投入了,我们效率上来了,时间投入自然就有保证,张璐这样感慨。 何正国组建的平台在微生物的DNA复制调控研究领域一直是在与国际顶级实验室的激烈竞争中逐步发展起来的。两年前,他们吃了一次哑巴亏。课题组在古菌中发现了多个DNA复制起始蛋白能够协同参与DNA复制原点的识别,但这一重大发现却被退稿。而不久后,牛津大学、加州大学等国外著名机构的科学家联手在《科学》杂志发表了非常相似的结果。2007年8月31日,何正国至今仍很清楚的记得《科学》发表论文的日子。一方面我们吃了个亏,觉得很遗憾,但一方面对自己的研究思路是更有信心了。今年的井喷坚定了何正国的信心,他说:更多、更大的惊喜应该在后面。 郭曼曼打算出国,张璐则要到昆明医学院工作,选择这份工作很重要的原因是男友在昆明工作。6月3日的上午,评委打分的间隙,何正国特意抽空跑出来,他一如以往的直率:答辩你们表现出还是知识面不广,暴露出你们积累还是不够;而且委员们更关心你们是如何提出问题,如何从更广泛的意义上去评价这些研究,显然你们并没有很好的思考这些。 结核杆菌和古菌这两个国内科学界做的很多的材料,两位研究生却都做出了大文章,何正国显然更希望研究生能掌握清水捞鱼的思维方法,他叮嘱这些即将远行的弟子: 不管在哪工作,最重要的是怎样思考问题的科学思维习惯,而不仅仅是把目光盯在新的技术手段上。
个人分类: 科研记录|1813 次阅读|1 个评论
终于污染了
liudongyang 2009-6-22 12:21
原代培养的细胞终于污染了,正在找原因。一瓶为霉菌污染,瓶底肉眼可以看到灰黄的菌落,放大菌丝纠结在一起。一瓶为球菌污染,满天繁星,惨不忍睹。
个人分类: 读书买书|29 次阅读|0 个评论
应该重视微生物制剂在现代农业中的应用研究
liminglei 2009-6-17 17:55
自从循环农业成为热点话题以来,有关微生物在现代农业中的作用也就热了起来,这应该源以微生物在地球生物圈食物链中的分解者地位。现代工业带给农业的最大影响在于化肥的生产,可以说,化肥使得传统农业失去了魅力,但是,化肥的应用同样也产生了许多效果,如:农产品的质量问题、土壤质量下降、等等。 所以,在西方国家就出现了有机农业的概念,在我国就有绿色农业或循环农业的提法,其核心问题就是回归传统农业的生产方法,禁止农业生产对现代工业产品的依赖,特别是化肥、农药的使用。而是利用生物的方法解决农业生产的问题。因此,目前所谓的生物农药、生物肥料(微生物制剂)的研制就显得很热门! 但是,目前的微生物制剂产品能够解决这一问题吗?答案并不肯定。实际上,微生物制剂产品不能够取代化肥、农药。这是由于人类对于微生物世界认识的局限性,现代微生物学只是解决了可培养微生物的认识,可是,对于那些不可培养微生物在自然界中的作用还需要探索!也很值得探索!
个人分类: 生活点滴|3080 次阅读|0 个评论
地球、微生物细胞与鸡蛋的比较研究
biozhang 2009-6-16 10:48
张星元:地球、微生物细胞与鸡蛋的比较研究 地球好比一个大鸡蛋,微生物细胞好比一个小鸡蛋,它们与鸡蛋一样都属于开放系统。 开放系统与其环境之间有交流。开放系统的资源是指其自备的条件。 因此某开放系统对应的环境所给予其的光和热不能划为它的资源,应该划为其环境为它提供的条件。至于规律性地提供的条件是否可以看作是该开放系统的一种特殊的资源,可以讨论。因此太阳光对于地球这个开放系统来说是应该是条件, 太阳光对于太阳系这个开放系统来说是资源。 老母鸡孵小鸡时为鸡蛋提供的热量也是鸡蛋这个开放系统发生熵变的条件 ,而鸡蛋受精与否是鸡蛋的资源问题。受精的鸡蛋可以被母鸡孵出小鸡( 熵减 ),未受精的鸡蛋同样条件下孵不出小鸡( 熵值基本保持不变 )。 太阳光照耀地球,也照耀邻近地球的火星,为什么地球这样繁荣而火星却是另一番景象?除了它们各自与太阳的距离稍有差别外, 资源不一样,发展的起点不一样 。 微生物细胞的DNA是其最重要的内部资源,它的生存环境使外部条件;在同样的生存环境中不同种的微生物细胞各行其是。
个人分类: 复杂系统|5547 次阅读|3 个评论
美丽的微世界
Moonkey 2009-5-31 18:46
最近,做细菌的鉴定,做了一些细菌的电子显微镜的照片。发现,原来在我们目力所不能及的地方,美丽也无处不在;贴几张细菌的SEM照片,和大家分享下。觉得好的话,也请大家把自己做的微世界或其他的美丽图片一起分享下,在紧张辛苦的实验后,也轻松下紧绷的神经。 (微生物圈主,一个小提议,是否可以组织个小活动,让做微生物的都晒晒自己做的不同微生物的图片,既可以放松心情,也可以做为科研工作的参考哦)。
个人分类: 生活点滴|4040 次阅读|2 个评论
海洋微生物研究培养基
热度 1 luweidong 2009-5-9 11:19
引用出处: http://www.51xuewen.com/Blog/B_aShow.aspx?blog=wangleleID=9497 Marine Agar (DSMZ Medium 123) Composition per liter: Agar ..................................................................15.0g Tryptone............................................................10.0g Peptone ...............................................................5.0g Yeast extract ........................................................1.0g Synthetic seawater ............................................. 1.0L pH 7.8 0.2 at 25C Synthetic Seawater Composition per liter: NaCl ..................................................................24.0g MgCl26H2O .....................................................11.0g Na2SO4................................................................4.0g CaCl26H2O.........................................................2.0g KCl......................................................................0.7g KBr......................................................................0.1g SrCl26H2O .......................................................0.04g H3BO3 ...............................................................0.03g NaSiO39H2O...................................................5.0mg NaF...................................................................3.0mg NH4NO3 ...........................................................2.0mg Fe3PO44H2O ...................................................1.0mg Preparation of Synthetic Seawater: Add components to distilled water and bring volume to 1.0L. Mix thoroughly. Preparation of Medium: Add agar, tryptone, peptone, and yeast extract to synthetic seawater and bring volume to 1.0L. Mix thoroughly. Adjust pH to 7.8. Gently heat and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Pour into sterile Petri dishes or leave in tubes. Use: For the cultivation and maintenance of Halobacillus halophilus, Halomonas spp., Vibrio harveyi,Cobetia marina, and Ruegeria atlantica. Marine Agar 2216(DSMZ Medium 604) Composition per liter: NaCl ................................................................19.45g Agar ..................................................................15.0g MgCl2..................................................................8.8g Peptone................................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract ........................................................1.0g KCl....................................................................0.55g NaHCO3 ............................................................0.16g Ferric citrate........................................................0.1g KBr....................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4 ..........................................................8.0mg Na2SiO3............................................................4.0mg NaF...................................................................2.4mg NH4NO3 ...........................................................1.6mg pH 7.6 0.2 at 25C Source: This medium is available as a premixed powder from BD Diagnostic Systems. Preparation of Medium: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat while stirring and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Pour into sterile Petri dishes or leave in tubes. Use: For the cultivation and maintenance of Hyphomonas spp., Oceanospirillum spp., Hyphomicrobium indicum, Psychroflexus gondwanensis=Flavobacterium gondwanense, Salegentibacter salegens=Flavobacterium salegens, Psychromonas antarctica, Sulfitobacter mediterraneus, Thalassomonas viridans,Vibrio spp., Marinospirillum minutulum=Oceanospirillum minutulum, Terasakiella pusilla=Oceanospirillum pusillum, Pseudoalteromonas atlantica=Alteromonas atlantica, Pseudomonas atlantica,Roseobacter spp., Erythrobacter longus, Pseudospirillum japonicum=Oceanospirillum japonicum,Marinobacter hydrocarbonoclasticus (Pseudomonas nautica), Psychrobacter spp., and Moritella japonica. For the isolation, cultivation, and maintenance of a wide variety of heterotrophic marine bacteria. Marine Agar with Biphenyl Composition per liter: NaCl ................................................................19.45g Agar ..................................................................15.0g MgCl2..................................................................8.8g Peptone ...............................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract........................................................1.0g KCl....................................................................0.55g NaHCO3............................................................0.16g Ferric citrate........................................................0.1g KBr ...................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4..........................................................8.0mg Na2SiO3............................................................4.0mg NaF ..................................................................2.4mg NH4NO3 ...........................................................1.6mg Biphenyl...........................................................1.0mg pH 7.6 0.2 at 25C Preparation of Medium: Add components, except biphenyl, to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Pour into sterile Petri dishes or leave in tubes. After agar solidifies, aseptically add a few crystals of biphenyl to each plate. Use: For the cultivation and maintenance of biphenyl-utilizing marine bacteria, such as Cycloclasticus pugetii. Marine Agar with -Carrageenan Composition per 1070.0mL: Solution A.......................................................... 1.0L Solution B ..................................................... 60.0mL Solution C ..................................................... 10.0mL pH 7.2 0.2 at 25C Solution A: Composition per liter: NaCl ..................................................................25.0g Agar ..................................................................15.0g MgSO47H2O......................................................5.0g Casamino acids ...................................................2.5g Carrageenan.....................................................2.5g NaNO3.................................................................2.0g CaCl22H2O.........................................................0.2g KCl......................................................................0.1g Preparation of Solution A: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Autoclave for 15 min at 15 psi pressure121C. Solution B: Composition per 100.0mL: Na2HPO42H2O.................................................3.56g Preparation of Solution B: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Solution C: Composition per 100.0mL: FeSO47H2O........................................................0.3g Preparation of Solution C: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Preparation of Medium: Aseptically add 60.0mL of sterile solution B and 10.0mL of sterile solution C to 1.0L of sterile solution A. Mix thoroughly. Pour into sterile Petri dishes or distribute into sterile tubes. Use: For the cultivation and maintenance of ATCC strain 43554. Marine Agar with - and -Carrageenan Composition per 1070.0mL: Solution A.......................................................... 1.0L Solution B..................................................... 60.0mL Solution C..................................................... 10.0mL pH 7.2 0.2 at 25C Solution A: Composition per liter: NaCl ..................................................................25.0g Agar ..................................................................15.0g MgSO47H2O......................................................5.0g Casamino acids ...................................................2.5g NaNO3 ................................................................2.0g -Carrageenan...................................................1.25g -Carrageenan...................................................1.25g CaCl22H2O ........................................................0.2g KCl......................................................................0.1g Preparation of Solution A: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Autoclave for 15 min at 15 psi pressure121C. Solution B: Composition per 100.0mL: Na2HPO42H2O.................................................3.56g Preparation of Solution B: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Solution C: Composition per 100.0mL: FeSO47H2O........................................................0.3g Preparation of Solution C: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Preparation of Medium: Aseptically add 60.0mL of sterile solution B and 10.0mL of sterile solution C to 1.0L of sterile solution A. Mix thoroughly. Pour into sterile Petri dishes or distribute into sterile tubes. Use: For the cultivation and maintenance of Pseudomonas carrageenovora. Marine Agar with Naphthalene Composition per liter: NaCl ................................................................19.45g Agar ..................................................................15.0g MgCl2..................................................................8.8g Peptone ...............................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract ........................................................1.0g KCl....................................................................0.55g NaHCO3 ............................................................0.16g Ferric citrate........................................................0.1g KBr....................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4 ..........................................................8.0mg Na2SiO3............................................................4.0mg NaF...................................................................2.4mg NH4NO3 ...........................................................1.6mg Naphthalene ........................................................1mg pH 7.6 0.2 at 25C Preparation of Medium: Add components, except naphthalene, to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Pour into sterile Petri dishes or leave in tubes. After agar solidifies, aseptically add a few crystals of naphthalene to each plate. Use: For the cultivation and maintenance of naphthalene-utilizing marine bacteria Marine Agar with Sulfur (ATCC Medium 1922) Composition per liter: NaCl ................................................................19.45g Sulfur ................................................................10.0g MgCl2..................................................................8.8g Peptone................................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract ........................................................1.0g KCl....................................................................0.55g NaHCO3 ............................................................0.16g Ferric citrate........................................................0.1g KBr....................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4 ..........................................................8.0mg Na2SiO3............................................................4.0mg NaF...................................................................2.4mg NH4NO3 ...........................................................1.6mg pH 7.6 0.2 at 25C Preparation of Sulfur: Autoclave sulfur for 15 min at 0 psi pressure100C on three successive days. Preparation of Medium: Prepare anaerobically under a gas phase of 80% N2 + 10% CO2 + 10% H2. Add components, except sulfur, to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat while stirring and bring to boiling. Autoclave for 15 min at 15 psi pressure121C. Cool to 5055C. Aseptically add 10.0g of sterile sulfur. Mix thoroughly. Aseptically and anaerobically, under a gas phase of 80% N2 + 10% CO2 + 10% H2, distribute into sterile tubes. Use: For the cultivation and maintenance of Thermococcus litoralis. Marine Ameba Medium Composition per liter: Agar ..................................................................10.0g Malt extract .........................................................0.1g Yeast extract........................................................0.1g Artificial seawater.............................................. 1.0L Artificial Seawater: Composition per liter: NaCl ..................................................................27.5g MgSO4 7H2O...................................................6.78g MgCl26H2O .....................................................5.38g KCl....................................................................0.72g NaHCO3............................................................. 0.2g CaCL22H2O.......................................................1.4g Preparation of Artificial Seawater: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Preparation of Medium: Add components to artificial seawater and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Pour into sterile Petri dishes or leave in tubes. Use: For the cultivation of Cochliopodium clarum, Heteramoeba clara, Ling***oeba leei, Paramoeba pemaquidensis, and Vannella species. Marine Broth 2216 (LMG Medium 164) Composition per liter: NaCl ................................................................19.45g MgCl2..................................................................8.8g Peptone ...............................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract........................................................1.0g KCl....................................................................0.55g NaHCO3............................................................0.16g Ferric citrate........................................................0.1g KBr ...................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4..........................................................8.0mg Na2SiO3............................................................4.0mg NaF...................................................................2.4mg NH4NO3 ...........................................................1.6mg pH 7.6 0.2 at 25C Source: This medium is available as a premixed powder from BD Diagnostic Systems. Preparation of Medium: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat while stirring and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Use: For the cultivation of Vibrio liquefaciens and for the isolation, cultivation, and maintenance of a wide variety of heterotrophic marine bacteria. Marine Broth with Biphenyl Composition per liter: NaCl ................................................................19.45g MgCl2..................................................................8.8g Peptone................................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract ........................................................1.0g KCl....................................................................0.55g NaHCO3 ............................................................0.16g Ferric citrate........................................................0.1g KBr....................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4 ..........................................................8.0mg Na2SiO3............................................................4.0mg NaF...................................................................2.4mg NH4NO3 ...........................................................1.6mg Biphenyl ...........................................................1.0mg pH 7.6 0.2 at 25C Preparation of Medium: Add components, except biphenyl, to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Aseptically add a few crytals of biphenyl to each tube or flask. Use: For the cultivation of biphenyl-utilizing marine bacteria. Marine Broth with -Carrageenan Composition per 1070.0mL: Solution A.......................................................... 1.0L Solution B ..................................................... 60.0mL Solution C ..................................................... 10.0mL pH 7.2 0.2 at 25C Solution A: Composition per liter: NaCl ..................................................................25.0g MgSO47H2O......................................................5.0g Casamino acids ...................................................2.5g -Carrageenan .....................................................2.5g NaNO3 ................................................................2.0g CaCl22H2O ........................................................0.2g KCl......................................................................0.1g Preparation of Solution A: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Autoclave for 15 min at 15 psi pressure121C. Solution B: Composition per 100.0mL: Na2HPO42H2O.................................................3.56g Preparation of Solution B: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Solution C: Composition per 100.0mL: FeSO47H2O........................................................0.3g Preparation of Solution C: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Preparation of Medium: Aseptically add 60.0mL of sterile solution B and 10.0mL of sterile solution C to 1.0L of sterile solution A. Mix thoroughly. Pour into sterile Petri dishes or distribute into sterile tubes. Use: For the cultivation of ATCC strain 43554. Marine Broth with - and -Carrageenan Composition per 1070.0mL: Solution A.......................................................... 1.0L Solution B..................................................... 60.0mL Solution C..................................................... 10.0mL pH 7.2 0.2 at 25C Solution A: Composition per liter: NaCl ..................................................................25.0g MgSO47H2O......................................................5.0g Casamino acids ...................................................2.5g NaNO3 ................................................................2.0g -Carrageenan...................................................1.25g -Carrageenan...................................................1.25g CaCl22H2O ........................................................0.2g KCl......................................................................0.1g Preparation of Solution A: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Autoclave for 15 min at 15 psi pressure121C. Solution B: Composition per 100.0mL: Na2HPO42H2O.................................................3.56g Preparation of Solution B: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Solution C: Composition per 100.0mL: FeSO47H2O........................................................0.3g Preparation of Solution C: Add component to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Preparation of Medium: Aseptically add 60.0mL of sterile solution B and 10.0mL of sterile solution C to 1.0L of sterile solution A. Mix thoroughly. Distribute into sterile tubes or flasks. Use: For the cultivation and maintenance of Pseudomonas carrageenovora. Marine Broth with Naphthalene Composition per liter: NaCl ................................................................19.45g MgCl2..................................................................8.8g Peptone................................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract ........................................................1.0g KCl....................................................................0.55g NaHCO3 ............................................................0.16g Ferric citrate........................................................0.1g KBr....................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4 ..........................................................8.0mg Na2SiO3............................................................4.0mg NaF...................................................................2.4mg NH4NO3 ...........................................................1.6mg Naphthalene ........................................................1mg pH 7.6 0.2 at 25C Preparation of Medium: Add components, except biphenyl, to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Aseptically add a few crytals of naphthalene to each tube or flask. Use: For the cultivation of naphthalene-utilizing marine bacteria. Marine Broth with Sulfur Composition per liter: NaCl ................................................................19.45g Sulfur ................................................................10.0g MgCl2..................................................................8.8g Peptone ...............................................................5.0g Na2SO3..............................................................3.24g CaCl2...................................................................1.8g Yeast extract........................................................1.0g KCl....................................................................0.55g NaHCO3............................................................0.16g Ferric citrate........................................................0.1g KBr ...................................................................0.08g SrCl2..................................................................0.03g H3BO3 ...............................................................0.02g Na2HPO4..........................................................8.0mg Na2SiO3............................................................4.0mg NaF ..................................................................2.4mg NH4NO3 ...........................................................1.6mg pH 7.6 0.2 at 25C Preparation of Sulfur: Autoclave for 15 min at 0 psi pressure100C on three successive days. Preparation of Medium: Prepare anaerobically under a gas phase of 80% N2 + 10% CO2 + 10% H2. Add components, except sulfur, to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat while stirring and bring to boiling. Autoclave for 15 min at 15 psi pressure121C. Cool to 50C. Aseptically add 10.0g of sulfur. Mix thoroughly. Aseptically and anaerobically, under a gas phase of 80% N2 + 10% CO2 + 10% H2, distribute into sterile tubes. Use: For the cultivation of Thermococcus litoralis. Marine Caulobacter Medium Composition per liter: Proteose peptone...............................................10.0g Yeast extract........................................................3.0g Artificial seawater.............................................. 1.0L pH 7.27.4 at 25C Artificial Seawater: Composition per liter: Commercially available marine aquarium salts mixture ...........................variable Preparation of Artificial Seawater: Add commercially available marine aquarium salts mixture to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Preparation of Medium: Combine components. Mix thoroughly. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Use: For the cultivation of Caulobacter halobacteroides and Caulobacter maris. Marine Chlorobiaceae Medium 2 Composition per 1051.0mL: Solution 1.................................................... 950.0mL Na2S9H2O solution...................................... 60.0mL NaHCO3 solution .......................................... 40.0mL Vitamin B12 solution ....................................... 1.0mL pH 6.8 0.2 at 25C Solution 1: Composition per 950.0mL: NaCl ..................................................................20.0g MgSO47H2O......................................................3.0g KH2PO4...............................................................1.0g NH4Cl .................................................................0.5g CaCl22H2O.......................................................0.05g Trace elements solution SL-8 ......................... 1.0mL Preparation of Solution 1: Add components to distilled/deionized water and bring volume to 950.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Cool to 4550C. Trace Elements Solution SL-8: Composition per liter: Disodium EDTA .................................................5.2g FeCl24H2O.........................................................1.5g CoCl26H2O ......................................................0.19g MnCl24H2O .......................................................0.1g ZnCl2.................................................................0.07g H3BO3 ...............................................................0.06g NaMoO42H2O..................................................0.04g CuCl22H2O ......................................................0.02g NiCl26H20........................................................0.02g Preparation of Trace Elements Solution SL8: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Na2S9H2O Solution: Composition per 100.0mL: Na2S9H2O..........................................................5.0g Preparation of Na2S9H2O Solution: Add Na2S9H2O to distilled/deionized water and bring volume to 100.0mL. Autoclave for 15 min at 15 psi pressure121C. Cool to 4550C. NaHCO3 Solution: Composition per 100.0mL: NaHCO3 ..............................................................5.0g Preparation of NaHCO3 Solution: Add NaHCO3 to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Filter sterilize. Vitamin B12 Solution: Composition per 100.0mL: Vitamin B12 ......................................................2.0mg Preparation of Vitamin B12 Solution: Add vitamin B12 to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Filter sterilize. Preparation of Medium: To 950.0mL of cooled, sterile solution 1, aseptically add 60.0mL of sterile Na2S9H2O solution, 40.0mL of sterile NaHCO3 solution, and 1.0mL of sterile vitamin B12 solution. Mix thoroughly. Adjust pH to 6.8 with sterile H2SO4 or Na2CO3 . Aseptically distribute into sterile 50.0mL or 100.0mL bottles with metal screw-caps and rubber seals. Completely fill bottles with medium except for a pea-sized air bubble. Use: For the isolation and cultivation of marine members of the Chlorobiaceae. Marine Chromatiaceae Medium 2 Composition per 1051.0mL: Solution 1.................................................... 950.0mL Na2S9H2O solution...................................... 60.0mL NaHCO3 solution.......................................... 40.0mL Vitamin B12 solution ....................................... 1.0mL pH 7.3 0.2 at 25C Solution 1: Composition per 950.0mL: NaCl ..................................................................20.0g MgSO47H2O......................................................3.0g KH2PO4...............................................................1.0g NH4Cl .................................................................0.5g CaCl22H2O ......................................................0.05g Trace elements solution SL-8 ......................... 1.0mL Preparation of Solution 1: Add components to distilled/deionized water and bring volume to 950.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Cool to 4550C. Trace Elements Solution SL-8: Composition per liter: Disodium EDTA.................................................5.2g FeCl24H2O.........................................................1.5g CoCl26H2O ......................................................0.19g MnCl24H2O .......................................................0.1g ZnCl2.................................................................0.07g H3BO3 ...............................................................0.06g NaMoO42H2O..................................................0.04g CuCl22H2O ......................................................0.02g NiCl26H20........................................................0.02g Preparation of Trace Elements Solution SL8: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Na2S9H2O Solution: Composition per 100.0mL: Na2S9H2O..........................................................5.0g Preparation of Na2S9H2O Solution: Add Na2S9H2O to distilled/deionized water and bring volume to 100.0mL. Autoclave for 15 min at 15 psi pressure121C. Cool to 4550C. NaHCO3 Solution: Composition per 100.0mL: NaHCO3 ..............................................................5.0g Preparation of NaHCO3 Solution: Add NaHCO3 to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Filter sterilize. Vitamin B12 Solution: Composition per 100.0mL: Vitamin B12 ......................................................2.0mg Preparation of Vitamin B12 Solution: Add vitamin B12 to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Filter sterilize. Preparation of Medium: To 950.0mL of cooled, sterile solution 1, aseptically add 60.0mL of sterile Na2S9H2O solution, 40.0mL of sterile NaHCO3 solution, and 1.0mL of sterile vitamin B12 solution. Mix thoroughly. Adjust pH to 7.3 with sterile H2SO4 or Na2CO3 . Aseptically distribute into sterile 50.0mL or 100.0mL bottles with metal screw-caps and rubber seals. Completely fill bottles with medium except for a pea-sized air bubble. Use: For the isolation and cultivation of marine members of the Chromatiaceae. Marine Cytophaga Agar Composition per liter: Agar ..................................................................15.0g Nutrient broth......................................................8.0g Yeast extract ........................................................5.0g Salt solution ....................................................... 1.0L Salt Solution: Composition per liter: NaCl ................................................................12.86g MgCl2................................................................2.48g KCl....................................................................0.75g CaCl2.................................................................0.56g Fe(SO4)2(NH4)2...............................................0.048g Preparation of Salt Solution: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Preparation of Medium: Add solid components to 1.0L of salt solution. Mix thoroughly. Gently heat while stirring and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure 121C. Pour into sterile Petri dishes or leave in tubes. Use: For the cultivation and maintenance of Cytophaga species. Marine Cytophaga Medium Composition per liter: NaCl ..................................................................24.7g Agar ..................................................................15.0g MgSO47H2O......................................................6.3g MgCl26H2O .......................................................4.6g Tryptic digest of casein.......................................1.0g Yeast extract........................................................1.0g KCl......................................................................0.7g NaHCO3 solution .......................................... 10.0mL CaCl22H2O solution..................................... 10.0mL pH 7.2 0.2 at 25C NaHCO3 Solution: Composition per 10.0mL: NaHCO3..............................................................0.2g Preparation of NaHCO3 Solution: Add NaHCO3 to distilled/deionized water and bring volume to 10.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. CaCl22H2O Solution: Composition per 10.0mL: CaCl22H2O ........................................................1.2g Preparation of CaCl22H2O Solution: Add CaCl22H2O to distilled/deionized water and bring volume to 10.0mL. Mix thoroughly. Autoclave for 15 min at 15 psi pressure121C. Preparation of Medium: Add components, except NaHCO3 solution and CaCl22H2O solution, to distilled/deionized water and bring volume to 980.0mL. Mix thoroughly. Gently heat and bring to boiling. Autoclave for 15 min at 15 psi pressure 121C. Cool to 5055C. Aseptically add 10.0mL of sterile NaHCO3 solution and 10.0mL of sterile CaCl22H2O solution. Mix thoroughly. Pour into sterile Petri dishes or distribute into sterile tubes. Use: For the cultivation of Cytophaga species, Flexibacter species, Microscilla species, and Saprospira grandis. Marine Cytophaga Medium A Composition per liter: Agar ..................................................................15.0g Pancreatic digest of casein..................................2.0g Beef extract .........................................................0.5g Yeast extract........................................................0.5g Sodium acetate....................................................0.2g Seawater...................................................... 700.0mL pH 7.2 0.2 at 25C Preparation of Medium: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Pour into sterile Petri dishes or leave in tubes. Use: For the cultivation of Flexibacter maritimus. Marine Cytophaga Medium B Composition per liter: Agar ..................................................................15.0g Pancreatic digest of casein..................................2.0g Beef extract .........................................................0.5g Yeast extract ........................................................0.5g Sodium acetate....................................................0.2g Seawater...................................................... 500.0mL pH 7.2 0.2 at 25C Preparation of Medium: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure121C. Pour into sterile Petri dishes or leave in tubes. Use: For the cultivation of Vibrio ordalii. Marine Cytophaga Medium C Composition per liter: Agar ..................................................................15.0g Pancreatic digest of casein..................................2.0g Beef extract .........................................................0.5g Yeast extract ........................................................0.5g Sodium acetate....................................................0.2g pH 7.2 0.2 at 25C Preparation of Medium: Add components to seawater and bring volume to 1.0L. Mix thoroughly. Gently heat and bring to boiling. Distribute into tubes or flasks. Autoclave for 15 min at 15 psi pressure 121C. Pour into sterile Petri dishes or leave in tubes. Use: For the cultivation of Cytophaga agarovorans, Cytophaga fermentans, and Cytophaga salmonicolor. Marine Desulfovibrio Medium Composition per liter: Solution A................................................... 980.0mL Solution B ..................................................... 10.0mL Solution C ..................................................... 10.0mL pH 7.8 0.2 at 25C Solution A: Composition per 980.0mL: NaCl ..................................................................25.0g DL-Sodium lactate...............................................2.0g MgSO47H2O......................................................2.0g Na2SO4................................................................1.0g NH4Cl .................................................................1.0g Yeast extract........................................................1.0g K2HPO4...............................................................0.5g CaCl22H2O ........................................................0.1g Resazurin .........................................................1.0mg Preparation of Solution A: Add components to distilled/deionized water and bring volume to 980.0mL. Mix thoroughly. Gently heat and bring to boiling. Continue boiling for 3-4 min. Allow to cool to room temperature while gassing under 100% N2. Solution B: Composition per 10.0mL: FeSO47H2O........................................................0.5g Preparation of Solution B: Add FeSO47H2O to distilled/deionized water and bring volume to 10.0mL. Mix thoroughly. Solution C: Composition per 10.0mL: Ascorbic acid ......................................................0.1g Sodium thioglycolate ..........................................0.1g Preparation of Solution C: Add components to distilled/deionized water and bring volume to 10.0mL. Mix thoroughly. Preparation of Medium: To 980.0mL of cooled solution A, anaerobically add 10.0mL of solution B and 10.0mL of solution C. Mix thoroughly. Adjust pH to 7.8 with NaOH. Distribute into tubes or flasks. During distribution, swirl the medium to keep the precipitate in suspension. Autoclave for 15 min at 15 psi pressure121C. Use: For the cultivation and maintenance of Desulfovibrio desulfuricans, Desulfovibrio salexigens, and Desulfovibrio vulgaris. Marine Flagellate Medium Composition per 15.0mL: Rice grains ..........................................................2.0g Seawater........................................................ 15.0mL Preparation of Medium: Autoclave rice grains for 15 min at 15 psi pressure121C. Add 2.0g of sterile rice grains to 15.0mL of filter-sterilized seawater. Aseptically distribute into T-25 tissue culture flasks. Use: For the cultivation of Acanthoecopsis unguiculata, Amastigomonas species, Bicosoeca vacillans, Bodo designis, Bodo variabilis, Caecitellus parvulus, Choanoeca perplexa, Codosiga gracilis, Diaphanoeca grandis, Entosiphon species, Goniomonas species, Procryptobia species, Pseudobodo tremulans, Rhynchomonas nasuta, Salpingoeca urceolata, Stephanoeca diplocostata, and Stephanopogon apogon. Marine Flagellate Medium with B-Vitamins Composition per liter: Seawater...................................................... 990.0mL Vitamin solution............................................ 10.0mL Vitamin Solution: Composition per 100.0mL: ThiamineHCl ...................................................0.15g Calcium D-(+)-pantothenate..............................0.05g Nicotinamide.....................................................0.05g PyridoxalHCl ...................................................0.05g Riboflavin .........................................................0.05g Folic acid.........................................................0.025g PyridoxamineHCl ..........................................0.025g Biotin .............................................................12.5mg Preparation of Vitamin Solution: Add components to distilled/deionized water and bring volume to 100.0mL. Mix thoroughly. Filter sterilize. Preparation of Medium: Allow natural seawater to age for 2 months. Filter sterilize. Aseptically add 100.0mL of sterile vitamin solution. Mix thoroughly. Aseptically distribute into sterile tubes or flasks. Use: For the cultivation of Oikomonas species. Marine Glucose Trypticase Yeast Extract Agar (MGTY Agar) Composition per liter: Agar ....................................................................8.0g Glucose ...............................................................2.0g Pancreatic digest of casein..................................1.0g Yeast extract ........................................................1.0g L-CysteineHClH2O............................................0.5g Seawater...................................................... 750.0mL Tris-HCl buffer (5.0 mM, pH 7.5) ................ 50.0mL Resazurin (0.1% solution)............................... 1.0mL pH 7.5 0.2 at 25C Preparation of Medium: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat while stirring and bring to boiling. Distribute into tubes or flasks under 97% N2 + 3% H2. Cap with rubber stoppers and place tubes in a press. Autoclave for 15 min at 15 psi pressure121C with fast exhaust. Use: For the cultivation and maintenance of Spirochaeta isovalerica. Marine Glucose Trypticase Yeast Extract Broth (MGTY Broth) Composition per liter: Glucose ...............................................................2.0g Pancreatic digest of casein..................................1.0g Yeast extract........................................................1.0g L-CysteineHClH2O............................................0.5g Seawater...................................................... 750.0mL Tris-HCl buffer (5.0 mM, pH 7.5) ................ 50.0mL Resazurin (0.1% solution) .............................. 1.0mL pH 7.5 0.2 at 25C Preparation of Medium: Add components to distilled/deionized water and bring volume to 1.0L. Mix thoroughly. Gently heat while stirring and bring to boiling. Distribute into tubes or flasks under 97% N2 + 3% H2. Cap with rubber stoppers and place tubes in a press. Autoclave for 15 min at 15 psi pressure121C with fast exhaust. Use: For the cultivation and maintenance of Spirochaeta isovalerica. Marine Methanogenium Alcohol Medium Composition per 1003.0mL: NaCl ..................................................................21.0g MgCl26H2O .......................................................3.0g NaCl ....................................................................1.0g KCl......................................................................0.5g MgCl26H2O .......................................................0.5g NH4Cl .................................................................0.4g Sodium acetate3H2O..........................................0.4g KH2PO4...............................................................0.2g CaCl22H2O ........................................................0.1g NaHCO3 solution.......................................... 60.0mL 2-Propanol....................................................... 5.0mL Na2S9H2O solution........................................ 3.0mL Cyanocobalamin solution ............................... 1.0mL Selenite-molybdate-tungstate solution............ 1.0mL Thiamine solution ........................................... 1.0mL Trace elements solution .................................. 1.0mL
个人分类: 微生物生物化学|5396 次阅读|1 个评论
试说地球人的小兄弟——微生物
biozhang 2009-4-21 17:18
张星元:试说“地球人的小兄弟”——微生物 我对微生物的认识,说来话长。 老一辈把微生物叫做“微生虫”,意思就是肉眼看不见的害人精。幼儿园老师教导我们要讲究卫生,饭前便后洗手,掉在地上的食物不能放进嘴里;防的就是沾在手上、食物上的看不见的微生物钻进人体害人。 小学、中学也读了一些科普书,主要是关于上天、入地的(我幼时的梦想),直到高中毕业还是这样看待微生物。大学里学了微生物学(工业微生物学),才开始了修正对微生物的认识,原来有些微生物是能为人类制造工业产品的。 大学毕业后的十年间总是认为微生物既是人类的敌人又是人类的工具 ,希望自己能在使微生物成为我们在工业生产上的驯服工具的事业中为人类做出贡献。 在祖国“科学的春天(1978年)”里,我考上了研究生,主攻微生物生理学;毕业留校后主讲微生物生理课(一度执教微生物学)。在教学和科研的兴趣的驱动下,我阅读了大量的有关微生物的书籍和有关的科技读物,包括工业的、农业的、医疗卫生的、环境的、寄生或伴生的微生物……;做了大量的微生物领域的研究,努力攀登微生物科学高峰,渐渐进入“一览众山小”的境界。站在 微生物科学高峰 的平台上,我看到多种多样的微生物与人类发生各种各样的关系。 站在人类的立场上看,许多种微生物对人类是有益的,人们可以利用它们;有一些微生物对人类是有害的,人们应该提防它们 ;而多数微生物还没有来得及研究清楚,众说纷纭。 上个世纪九十年代,我深入研究微生物生命活动的规律的时候发现,站在人的立场上看待微生物太狭隘了, 世界并不只属于人类,人和微生物同样是地球上的居民,原则上处于平等的地位 。地球上各种生物(包括人类)之间的关系是错综复杂的,互相制约的,人类要在地球上生存发展下去就必须应顺自然规律施展自己(人类)的抱负,而绝不是以自己(人类)为中心画圈。微生物是与人类是同时处于地球上的有生命的存在物,在处理人类与微生物的关系时,人们应该尊重微生物,承认其自主性。 微生物没有为人类服务的义务,人们也不能把自己的意志强加给微生物 。 微生物是我们地球人的小兄弟,它们的存在,有的明显地对人类有益,有的明显地对人类有害;有的间接地对人类有益,有的间接地对人类有害;有的有对人类有益的一面,也有对人类有害的一面;有的表面看起来是有益于人类实际上处理不当却是有害的,有的表面看起来对 人类 有害 实际上处理得当却是有益的……。 如何与微生物相处,关键在于人类的智慧和包容 。科学技术的发展将更好的协调人与微生物之间的关系,任何事情都不该走极端。培菌、消毒、灭菌、抑制、激活、休眠、诱变、克隆、驯化、改良、研究等都只是最终实现人类和微生物双赢的手段。 人贵有自知之明,所以人类比其它生物高明。正因为高明,所以必须自持 ,否则“聪明反被聪明误”。
个人分类: 生命系统|4829 次阅读|1 个评论
神奇的微生物系列之酵母菌
热度 2 cutefay 2009-4-20 22:27
提起酵母菌,很多人想到的是我们用来蒸馒头发面用的干酵母。其实,酵母菌(yeast)是是一些单细胞真菌的统称。酵母菌是人类文明史中被应用得最早的微生物。 我国古代的酿酒作坊(汉代画像) 古埃及人酿制啤酒的场面 目前已知有1000多种酵母菌,它们在自然界分布广泛,主要生长在偏酸性的潮湿的含糖环境中,例如,在水果、蔬菜、蜜饯的内部和表面以及在果园土壤中最为常见。 下面是几张显微镜下的酵母菌的图,有电子显微镜的照片,也有光学显微镜下的照片。值得一提的是,任何物质在电子显微镜下观察到的原始照片都是黑白的照片,所谓彩色的电子显微镜的照片,是后来经过图像处理得到的。在光学显微镜下,大多数微生物也都是无色的,只有把菌体染色,才能够在光学显微镜下看清楚。 而酵母菌中我们最常见的同时也是最有用的就是我们发面用的酵母了,它的全称是酿酒酵母(Saccharomyces cerevisiae),是酵母菌属的。酵母之所以能够用来发面,是因为酵母是兼性厌氧微生物,它在有氧气和没有氧气的情况下都能够生存,在有氧气的情况下进行呼吸代谢,在缺乏氧气的时候,酵母菌把糖类转化为二氧化碳和乙醇来获取能量。正因为酵母菌在缺少氧气的情况下能够产生二氧化碳,所以可以在面团里产生气体,使面团膨胀松软。 因为酵母菌发酵还可以产生乙醇,所以,可以用来酿酒(白酒、啤酒、黄酒、葡萄酒、米酒等)以及工业上生产燃料乙醇。 在这里顺便提一下,我们通常见到的动物和植物,都需要氧气才能生存,我们称之为呼吸作用,呼吸作用可以来代谢有机物质,来为生命体提供能量。虽然植物还可以通过光合作用制造氧气,但是植物还是要吸入氧气进行呼吸作用的。而有些微生物,却可以在没有氧气的情况下生存,它们是通过发酵作用来获取能量。这一点将在以后介绍厌氧微生物的篇幅中详细阐述。 酵母菌的用途非常大,除了用在食用上之外,还可以用在工业、医药、饲料、基因工程等方面。酵母是高等真核生物特别是人类基因组研究的模式生物,在生物信息学领域发挥重大的作用。 任何一种微生物都有其最适生存环境,酵母菌也不例外。温度、pH、营养元素等因素都可以影响酵母菌的生长。酵母菌的最适生长温度在30~35度左右,因此,我们在蒸馒头发面的时候,都要把它放在热一点的地方,让酵母菌生长和代谢快一些,能够产生更多的二氧化碳,发出来的面才会更松软。但是也要控制在一定的温度范围内,最高不要超过38℃~39℃。一般正常的温度应控制在26℃~28℃之内,如果使用快速生产法则不要超过30℃,因为超过该温度,将发酵过速,面团未充分成熟,保气能力则不佳,影响最终产品品质。另外,酵母菌只有在没有氧气的环境下才会产生二氧化碳,因此,发面的时候都是揉个大面团放着,没有人把面做成饺子皮那样来发面的。 酵母菌有对人有益的种类,也有对人体有害的种类。例如红酵母(Rhodotorula)会生长在浴帘等潮湿的家具上;白色假丝酵母(或称白色念珠菌)(Candida albicans)会生长在湿润的人类上皮组织,使人得真菌性皮肤病,需要用抗真菌的药治疗。 酵母的营养非常丰富,它的主要成分是蛋白质,几乎占了酵母干物质的一半含量,而且人体必需氨基酸含量充足,尤其是谷物中叫缺乏的赖氨酸含量较多。另一方面,含有大量的维生素B1,维生素B2及尼克酸。所以,现在很多维生素B族的保健品和营养品,都是从酵母中提取的出来的。另外,现在有很多的昂贵的护肤品,尤其是抗衰老的护肤品,也都是从酵母中提取一些物质制成的。现在还流行自制酵母面膜,我还经常自制,护肤效果的确非常好。就是把干酵母粉用水给调和,再加一点乳液或者其他保湿面膜调和,涂在脸上,过10到15分钟之后洗掉。做完自制酵母面膜之后,脸上感觉润润的,很有光泽。一小袋酵母不到一元钱,可以用上10次以上呢!爱美的女性不妨试试,真的是又经济又实惠。 以上图片来自网络
个人分类: 科研*创新|23961 次阅读|13 个评论
神奇的微生物系列——概述
cutefay 2009-4-20 16:37
前言:前一阵子我们课题组的人在写一本书,我写的部分是和厌氧微生物相关的,也查了一些相关的资料,另外,我大学的小专业也是微生物专业。在这里,我想写一些微生物的科普系列的博文。我这是一时兴起想写的,我希望自己能够坚持下去。 微生物(microorganism简称microbe)是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体 微生物与人们的关系非常密切,人们无时无刻不在接触微生物。我们呼吸的空气,我们接触的物体上,我们的皮肤上、消化道内等等,都存在着很多微生物。它们有些是有害的,但也有些是有益的,还有一些是无害无益的。微生物的数量多得惊人,可以说,我们生活在微生物的海洋中。 给大家看一些数据: 农田中,每克土壤中的数量:细菌9.810^7个;放线菌2.010^6个;真菌1.210^5个;藻菌2.510^4个;原生动物3.010^4个。 在人的消化道内,微生物的数量如下表所示: 人体体表及体内存在大量的微生物: ☆ 皮肤表面平均10万个细菌/平方厘米; ☆ 口腔细菌种类超过500种; ☆ 肠道微生物总量达100万亿; ☆ 每克粪便的细菌总数为1000亿个; 人的口腔内的微生物: 万米深海、85公里高空、 地层下128米和427米 沉积岩中都发现有微生物存在。 微生物对人类来说是一把双刃剑,它对人类乃至整个自然界起着非常重要的作用。微生物是生态系统的分解者,是地球物质能量循环的一部分,它还能够为我们人类生产很多产品,例如食品类的酱油、酒、味精、豆腐乳、酸奶等等;医药类的抗生素、疫苗等等,化工产品的乙醇、丁醇、塑料制品等同时,微生物,尤其是厌氧微生物,是生命的起源。同时,有些病原微生物也在危害着人类的健康。在我们物质文明发达的今天,人们已经离不开微生物作为生产的工具。微生物具体的作用,将在具体的篇幅中介绍。 这系列博文不对微生物学系统知识做介绍,仅仅介绍一些和人们生活密切相关的微生物。 下面贴几张好看的微生物显微照片^_^
个人分类: 科研*创新|10023 次阅读|7 个评论
微生物细胞生命活动的复杂性
热度 1 biozhang 2009-4-18 07:01
张星元:微生物生命活动的复杂性 微生物细胞是一个远离平衡状态的不平衡的开放体系 世界上一切物体总是相互作用、相互关联,形成一个整体。世界作为一个整体是无法进行实验和研究的,为了实验和研究的方便,只好从这个整体分隔出一部分(我们感兴趣的部分)来,这样分隔出来的被界面包围的部分(准备进行研究的部分),被称为热力学的体系(或系统),与体系相互作用着的其余部分称为该体系的环境或外界。 根据界面的性能可将热力学的体系分成3类:①孤立系统(隔离系统),指与环境既没有物质交换也没有能量交换的系统;②封闭系统,指与环境没有物质交换,但可以有能量交换的系统;③开放系统,指与环境既可有能量交换又可有物质交换的系统。 微生物活细胞属于哪一类系统呢? 微生物的活细胞任何时刻都离不开它生存的环境,只有在与环境的交换中才能维持细胞结构和生命活动,因此微生物细胞绝不是孤立系统。如果微生物细胞是封闭系统,那么根据熵增加原理,它们(假定的封闭系统)及它们所处的环境组成的孤立系统必将自发地走向混乱,其结果必将是微生物细胞的解体;因为微生物活细胞是客观存在的,所以微生物细胞也不是封闭系统。综上所述, 微生物活细胞只能是开放系统。 微生物活细胞的生命活动是朝着有序的方向进行的,有序状态的形成和维持都需要与环境之间有交流的、开放的条件;而交换则要靠细胞内外的不平衡来推动。微生物活细胞总是不断地从环境取得营养物质(一般是作为化学能源的低熵物质),在细胞内进行生物氧化,获得代谢能和代谢中间物,同时把细胞内部这样的不可逆过程产生的热量(能量形式转换时耗散的能量)和一部分代谢中间物排放到环境中去,也就是把能量形式转换时发生的混乱(熵增)释放到环境中去。微生物的生存过程就是其自身与环境进行能量交换和物质交换的不平衡的过程,因此, 微生物活细胞是不平衡的开放系统。 在远离平衡状态下,开放系统在释放熵的同时宏观上走向有序。微生物活细胞靠消耗能量来维持细胞的高度有序(低熵)的状态。为了维持生存或使生物量有所增长,必须有足够的有效能源。如果净的能量输入超过临界值,细胞状态会涌现宏观变化,出现一种新的有序状态(生长或分化)。 对于微生物细胞这个系统而言,离开平衡状态越远,产生和输出熵的能力越强,有序化能力越强,细胞结构越稳定,细胞的活力越大。因此, 微生物活细胞是一个远离平衡状态的不平衡的开放系统。 微生物细胞代谢的实质就是实现负熵抑制熵增的过程 1.微生物的生存任何时刻都离不开它的环境 热力学的创建在系统学之前。从系统学的角度看,热力学第一定律分析封闭系统的情况:能量既不能创生也不会消灭而只能从一种形式转化成另一种形式;热力学第二定律描述隔离系统中的情况:任何自发过程总是持续熵增而趋向热寂。 那么能不能用已有的热力学常识,也就是封闭系统能量守恒,隔离系统持续熵增来解释微生物的生命活动呢?。如前所述,微生物活细胞是一个远离平衡状态的不平衡的开放系统,既不属于封闭系统又不属于隔离系统,这样的系统似乎已经超出了经典热力学研究的范围。 微生物的活细胞任何时刻都离不开它生存的环境,而且直接面向环境, 研究微生物系统必须同时研究它(它们)存在的环境,以及微生物与环境两者的互动关系。绝对不能单独将微生物系统抽出来套用热力学定律。 我们应该把微生物细胞和它所处的环境一起作为一个系统(假定这个系统是隔离系统)来考虑。 微生物细胞(以化能营养型微生物为例)不断地从环境中获取容易被其利用的营养物质,经代谢将其中的化学能转换为代谢能、在代谢能的支撑下形成代谢中间产物;代谢中间产物的一部分在细胞内可参与生物合成支持生长、分化或维持,其余(较难或不能被利用)作为代谢废物返回给环境。 有序的代谢调控促进能量形式的转换,代谢能支撑有序的代谢活动,代谢能形成和使用时,均发生能量的耗散(以热量的形式向环境散发),宏观上表现为有热量放出。 2.热力学中的熵 能量在系统空间中的分布(能量状态)通常是不均匀的,有能量梯度存在(如温度梯度,电化学梯度),可以被用来做功。能量梯度可用来做功,因被转换成其他形式的能量而降低,逐渐转变成没用的(做功的利用率较低的或不能做功的能量状态)均衡态,同时将热量不可逆地释放(能量耗散)到环境中去。 entropy是德国物理学家克劳修斯(Rudolf Clausius)在1850年创造的一个术语(中文译为熵),他用它来表示任何一种能量在空间中分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量分布完全均匀,那么,这个系统的熵就达到了最大值。 3. 负熵过程是微生物活细胞存在的基础 负熵是指系统与环境作交换而引起的系统自身的负熵变(熵值的减少)。负熵总是与系统吸收低熵物、消化低熵物以及产生和排出高熵物的整个过程联系在一起的。微生物活细胞的生长、繁殖或维持的过程,实质上就是实现负熵以抑制熵增的过程;负熵的实现有赖于环境对微生物细胞的供应,以及微生物细胞与其环境的对话和微生物细胞自主的代谢。微生物活细胞实现负熵的过程包括四个过程:①低熵物的输入微生物细胞对环境营养的吸收;②微生物细胞经济的子系统之间的竞争与协同;③熵的产出和高熵物的输出培养物的升温(不能做功的热能的放出)和代谢废物(高熵物)的排出;④信号传输和反馈调节(环境与微生物细胞的对话和细胞自主的生命活动)。 微生物细胞之不但不会因持续的熵增而自行解体,相反会因为新陈代谢而使细胞熵值降低(细胞走向一个释放熵的、宏观上有序的状态);因此,微生物细胞代谢的实质就是实现负熵以抑制熵增的过程。 培养的环境条件和营养物质的供应是环境对微生物细胞系统的选择,环境条件的变化可以通过向微生物细胞的输入来控制微生物细胞;而微生物细胞向其环境输出,通过输出影响环境,则是其对环境的反作用。 负熵过程体现了微生物细胞与环境的双向选择作用和细胞自主的代谢功能,负熵过程是微生物活细胞存在的基础。 微生物细胞是典型的耗散结构 1. 关于能量耗散 在摩擦生热的过程中,做机械功的效率较高的机械能转变不能做机械功的热能,这在物理学中就叫能量耗散。微生物细胞的生命活动伴随着有热量产生,这是因为新陈代谢(包括分解代谢和合成代谢)中在能量形式转换(化学能与代谢能之间的转换)的过程中放出不能被自身回用的热能,所以 新陈代谢也是一种能量耗散过程。 2. 关于耗散结构 经典物理学理论认为,能量最低时,系统最稳定,否则系统将消耗能量产生熵,系统不稳定。耗散结构理论认为在高能量的情况下,开放系统也可以维持稳定。例如生物体,如果套用热力学定理定律,将被认为是一种极不稳定的结构,会因持续的熵增而自行解体;但实际上正好相反,生物体的生命活动始终是宏观有序的。 生物体是一种开放的结构,从环境中不断地吸收能量和物质,经新陈代谢而向环境放出熵,以破坏环境的方式保持系统自身的稳定。 耗散结构理论认为在开放的远离平衡的条件下,系统通过与外界交换物质与能量,通过能量的耗散和内部非线性动力学机制,可以形成和维持相对稳定的时空有序结构,由于 这种有序结构靠不断耗散能量来维持,故称之为耗散结构 。 3. 微生物细胞是典型的耗散结构 耗散结构理论指出,系统从无序状态过渡到这种耗散结构有几个必要条件,一是系统必须是开放的,即系统必须与外界进行物质、能量的交换;二是系统必须是远离平衡状态的,系统中物质、能量流和热力学力的关系是非线性的;三是系统内部不同元素之间存在着非线性相互作用,并且需要不断输入能量来维持。 根据耗散结构理论判定, 微生物细胞是典型的耗散结构 。
个人分类: 生命系统|8458 次阅读|4 个评论
微生物细胞生命活动的复杂性
biozhang 2009-4-18 07:00
张星元:微生物生命活动的复杂性 微生物细胞是一个远离平衡状态的不平衡的开放体系 世界上一切物体总是相互作用、相互关联,形成一个整体。世界作为一个整体是无法进行实验和研究的,为了实验和研究的方便,只好从这个整体分隔出一部分(我们感兴趣的部分)来,这样分隔出来的被界面包围的部分(准备进行研究的部分),被称为热力学的体系(或系统),与体系相互作用着的其余部分称为该体系的环境或外界。 根据界面的性能可将热力学的体系分成3类:①孤立系统(隔离系统),指与环境既没有物质交换也没有能量交换的系统;②封闭系统,指与环境没有物质交换,但可以有能量交换的系统;③开放系统,指与环境既可有能量交换又可有物质交换的系统。 微生物活细胞属于哪一类系统呢? 微生物的活细胞任何时刻都离不开它生存的环境,只有在与环境的交换中才能维持细胞结构和生命活动,因此微生物细胞绝不是孤立系统。如果微生物细胞是封闭系统,那么根据熵增加原理,它们(假定的封闭系统)及它们所处的环境组成的孤立系统必将自发地走向混乱,其结果必将是微生物细胞的解体;因为微生物活细胞是客观存在的,所以微生物细胞也不是封闭系统。综上所述,微生物活细胞只能是开放系统。 微生物活细胞的生命活动是朝着有序的方向进行的,有序状态的形成和维持都需要与环境之间有交流的、开放的条件;而交换则要靠细胞内外的不平衡来推动。微生物活细胞总是不断地从环境取得营养物质(一般是作为化学能源的低熵物质),在细胞内进行生物氧化,获得代谢能和代谢中间物,同时把细胞内部这样的不可逆过程产生的热量(能量形式转换时耗散的能量)和一部分代谢中间物排放到环境中去,也就是把能量形式转换时发生的混乱(熵增)释放到环境中去。微生物的生存过程就是其自身与环境进行能量交换和物质交换的不平衡的过程,因此,微生物活细胞是不平衡的开放系统。 在远离平衡状态下,开放系统在释放熵的同时宏观上走向有序。微生物活细胞靠消耗能量来维持细胞的高度有序(低熵)的状态。为了维持生存或使生物量有所增长,必须有足够的有效能源。如果净的能量输入超过临界值,细胞状态会涌现宏观变化,出现一种新的有序状态(生长或分化)。 对于微生物细胞这个系统而言,离开平衡状态越远,产生和输出熵的能力越强,有序化能力越强,细胞结构越稳定,细胞的活力越大。因此,微生物活细胞是一个远离平衡状态的不平衡的开放系统。 微生物细胞代谢的实质就是实现负熵抑制熵增的过程 1.微生物的生存任何时刻都离不开它的环境 热力学的创建在系统学之前。从系统学的角度看,热力学第一定律分析封闭系统的情况:能量既不能创生也不会消灭而只能从一种形式转化成另一种形式;热力学第二定律描述隔离系统中的情况:任何自发过程总是持续熵增而趋向热寂。 那么能不能用已有的热力学常识,也就是封闭系统能量守恒,隔离系统持续熵增来解释微生物的生命活动呢?。如前所述,微生物活细胞是一个远离平衡状态的不平衡的开放系统,既不属于封闭系统又不属于隔离系统,这样的系统似乎已经超出了经典热力学研究的范围。 微生物的活细胞任何时刻都离不开它生存的环境,而且直接面向环境,研究微生物系统必须同时研究它(它们)存在的环境,以及微生物与环境两者的互动关系。绝对不能单独将微生物系统抽出来套用热力学定律。我们应该把微生物细胞和它所处的环境一起作为一个系统(假定这个系统是隔离系统)来考虑。 微生物细胞(以化能营养型微生物为例)不断地从环境中获取容易被其利用的营养物质,经代谢将其中的化学能转换为代谢能、在代谢能的支撑下形成代谢中间产物;代谢中间产物的一部分在细胞内可参与生物合成支持生长、分化或维持,其余(较难或不能被利用)作为代谢废物返回给环境。 有序的代谢调控促进能量形式的转换,代谢能支撑有序的代谢活动,代谢能形成和使用时,均发生能量的耗散(以热量的形式向环境散发),宏观上表现为有热量放出。 2.热力学中的熵 能量在系统空间中的分布(能量状态)通常是不均匀的,有能量梯度存在(如温度梯度,电化学梯度),可以被用来做功。能量梯度可用来做功,因被转换成其他形式的能量而降低,逐渐转变成没用的(做功的利用率较低的或不能做功的能量状态)均衡态,同时将热量不可逆地释放(能量耗散)到环境中去。 entropy是德国物理学家克劳修斯(Rudolf Clausius)在1850年创造的一个术语(中文译为熵),他用它来表示任何一种能量在空间中分布的均匀程度。能量分布得越均匀,熵就越大。如果对于我们所考虑的那个系统来说,能量分布完全均匀,那么,这个系统的熵就达到了最大值。 3. 负熵过程是微生物活细胞存在的基础 负熵是指系统与环境作交换而引起的系统自身的负熵变(熵值的减少)。负熵总是与系统吸收低熵物、消化低熵物以及产生和排出高熵物的整个过程联系在一起的。微生物活细胞的生长、繁殖或维持的过程,实质上就是实现负熵以抑制熵增的过程;负熵的实现有赖于环境对微生物细胞的供应,以及微生物细胞与其环境的对话和微生物细胞自主的代谢。微生物活细胞实现负熵的过程包括四个过程:①低熵物的输入微生物细胞对环境营养的吸收;②微生物细胞经济的子系统之间的竞争与协同;③熵的产出和高熵物的输出培养物的升温(不能做功的热能的放出)和代谢废物(高熵物)的排出;④信号传输和反馈调节(环境与微生物细胞的对话和细胞自主的生命活动)。微生物细胞之不但不会因持续的熵增而自行解体,相反会因为新陈代谢而使细胞熵值降低(细胞走向一个 释放熵的、宏观上有序的状态 );因此,微生物细胞代谢的实质就是实现负熵以抑制熵增的过程。 培养的环境条件和营养物质的供应是环境对微生物细胞系统的选择,环境条件的变化可以通过向微生物细胞的输入来控制微生物细胞;而微生物细胞向其环境输出,通过输出影响环境,则是其对环境的反作用。负熵过程体现了微生物细胞与环境的双向选择作用和细胞自主的代谢功能,负熵过程是微生物活细胞存在的基础。 微生物细胞是典型的耗散结构 1. 关于能量耗散 在摩擦生热的过程中,做机械功的效率较高的机械能转变不能做机械功的热能,这在物理学中就叫能量耗散。微生物细胞的生命活动伴随着有热量产生,这是因为新陈代谢(包括分解代谢和合成代谢)中在能量形式转换(化学能与代谢能之间的转换)的过程中放出不能被自身回用的热能,所以新陈代谢也是一种能量耗散过程。 2. 关于耗散结构 经典物理学理论认为,能量最低时,系统最稳定,否则系统将消耗能量产生熵,系统不稳定。耗散结构理论认为在高能量的情况下,开放系统也可以维持稳定。例如生物体,如果套用热力学定理定律,将被认为是一种极不稳定的结构,会因持续的熵增而自行解体;但实际上正好相反,生物体的生命活动始终是宏观有序的。生物体是一种开放的结构,从环境中不断地吸收能量和物质,经新陈代谢而向环境放出熵,以破坏环境的方式保持系统自身的稳定。 耗散结构理论认为在开放的远离平衡的条件下,系统通过与外界交换物质与能量,通过能量的耗散和内部非线性动力学机制,可以形成和维持相对稳定的时空有序结构,由于这种有序结构靠不断耗散能量来维持,故称之为耗散结构。 3. 微生物细胞是典型的耗散结构 耗散结构理论指出,系统从无序状态过渡到这种耗散结构有几个必要条件,一是系统必须是开放的,即系统必须与外界进行物质、能量的交换;二是系统必须是远离平衡状态的,系统中物质、能量流和热力学力的关系是非线性的;三是系统内部不同元素之间存在着非线性相互作用,并且需要不断输入能量来维持。 根据耗散结构理论判定,微生物细胞是典型的耗散结构。
个人分类: 生命系统|31 次阅读|0 个评论
微生物分泌系统(非完整版)
热度 1 luweidong 2009-4-16 23:09
蛋白的分泌在调节微生物与周围环境的相互作用起很重要的作用。对于革兰氏阴性菌而言,分泌需要蛋白穿过细胞的内膜和外膜。还有很多的分泌蛋白的目的地是进入寄主细胞,因此其中的几种分泌系统包含使蛋白转膜穿过寄主细胞质膜的装置。 图1总结了目前已知分泌系统的主要特性。对于革兰氏阴性菌,一些分泌蛋白可以通过I型、III型和IV型分泌途径一步转运穿过细胞的内外膜。而其他的蛋白第一步通过Sec途径或者Tat途径先输出到周质间隙中,然后再通过II型、V型或者极少数通过I型、IV型分泌途径穿过(translocate across)外膜。对于革兰氏阳性菌而言,分泌蛋白主要通过Sec途径或者Tat途径穿过单层的膜。但是,对于革兰氏阳性菌中的分支杆菌就非常特殊,分泌蛋白是通过一个独特的VII途径穿过细胞壁和细胞质膜的,目前还不十分确定这个过程是否是一步还是两步来完成。
个人分类: 微生物生理学专题|13609 次阅读|0 个评论
微生物活细胞是什么东东?
biozhang 2009-4-13 09:04
张星元:微生物活细胞是什么东东? 世界上一切物体总是相互作用、相互关联,形成一个整体。世界作为一个整体是无法进行实验和研究的,为了实验和研究的方便,只好从这个整体分隔出一部分(我们感兴趣的部分)来,这样分隔出来的被界面包围的部分(准备进行研究的部分),被称为热力学的体系(或系统),与体系相互作用着的其余部分称为该体系的环境或外界。 根据界面的性能可将热力学的体系分成3类:①孤立体系(隔离体系),指与环境既没有物质交换也没有能量交换的体系;②封闭体系,指与环境没有物质交换,但可以有能量交换的体系;③开放体系,指与环境既可有能量交换又可有物质交换的体系。 微生物活细胞属于哪一类系统呢?这还得从热力学第二定律说起。 德国克劳修斯(R.E.Clausius)发现的热力学第二定律(1850年)指出:热量不能自发地由低温物体向高温物体传递。也就是说,热力学系统的自发过程总是向有序性程度减少、无序程度增加(即熵增加)的方向发展。这个定律的经典热力学表述是:在孤立系统中,任何自发过程总是朝着越来越混乱的方向演化。 微生物的活细胞任何时刻都离不开它生存的环境,只有在与环境的交换中才能维持细胞结构和生命活动,因此微生物细胞绝不是孤立系统。如果微生物细胞是封闭系统,那么根据熵增加原理,它们(假定的封闭系统)及它们所处的环境组成的孤立系统必将自发地走向混乱,其结果必将是微生物细胞的解体;因为微生物活细胞是客观存在的,所以微生物细胞也不是封闭系统。综上所述,微生物活细胞只能是开放体系。 微生物活细胞的生命活动是朝着有序的方向进行的,有序状态的形成和维持都需要与环境之间有交流的、开放的条件;而交换则要靠细胞内外的不平衡来推动。微生物活细胞总是不断地从环境取得营养物质(一般是作为化学能源的低熵物质),在细胞内进行生物氧化,获得代谢能和代谢中间物,同时把细胞内部这样的不可逆过程产生的热量和一部分代谢中间物排放到环境中去。因此,微生物细胞是不平衡的开放体系。 耗散结构 理论指出,系统从无序状态过渡到这种耗散结构有几个必要条件,一是系统必须是开放的,即系统必须与外界进行物质、能量的交换;二是系统必须是远离平衡状态的,系统中物质、能量流和热力学力的关系是非线性的;三是系统内部不同元素之间存在着非线性相互作用,并且需要不断输入能量来维持。 根据耗散结构理论判定,微生物细胞是典型的耗散结构。
个人分类: 生命系统|4382 次阅读|0 个评论
霍乱蔓延时
eloa 2008-12-8 09:04
桔子帮小帮主 发表于2008-12-7 星期日 6:14 马尔克斯在《霍乱时期的爱情》中这样描述疫情的爆发: 当乌尔比诺医生踏上故乡的土地,从海上闻到市场的臭气以及看到污水沟里的老鼠和在街上水坑里打滚的一丝不挂的孩子们时,不仅明白了为什么会发生那场不幸,而且确信不幸还将随时再次发生。所有的霍乱病例都是发生在贫民区设备齐全的殖民地时期的房屋有带粪坑的厕所,但拥挤在湖边简易窝棚里的人,却有三分之二在露天便溺。粪便被太阳晒干,化作尘土,随着十二月凉爽宜人的微风,被大家兴冲冲地吸进体内 若干年后又一个十二月,今日的津巴布韦瘫痪在新的霍乱时期。历史更替,社会不同,不变的仍是那依水而生的致病菌。 霍乱时期无爱情 在英国伦敦有一条名为宽街(Broad Street)的大道,道路中央立着一只被拆了把手的抽水泵。古老的水泵封存了150年前的霍乱疫情,也见证了人类第一次和霍乱这个黑色幽灵针锋相对。 1854年,一场突如其来的霍乱打破了城市的平静。得病的人们毫无休止地泻出米汤一样的液体,继而喷射般地狂吐,不久便身体失水皱缩、眼眶塌陷、血液粘稠以致皮肤呈现深蓝和褐色;短短10天,小小街区便有500人丧生。人们相信是土壤中散发出的有毒瘴气侵害了人体,于是纷纷逃离城市。医生约翰斯诺却对瘴气说十分怀疑如果是有害气体,为什么最先感染的不是鼻子和肺,而是肠胃?为什么与住满病人的楼房相对的房屋竟能幸免瘴气的飘入?敏锐的医生将病人的住处记录下来,标出一幅流传后世的死亡地图(ghost map),死人的分布毫无疑问地圈出了宽街的这口抽水泵(图)。斯诺在一篇文章中详细记录道:我发现这些人都住在离泵走路不到3分钟的地方。好不容易有几家远的,竟然也都喜欢喝这口泵中的水。似乎水里一种有生命的东西使人染病,喝了就逃不脱。谨慎的人们遵照他的指示拆掉了抽水泵的把手,让附近居民被迫绕远路去别的地方喝水;但他们同时也对着空气中的假想敌喷洒消毒的石灰。霍乱疫情莫名其妙地消失了,但究竟是拆水泵还是石灰的作用,就没人能说清楚了。 遗憾的是,当这位侦探透过惊慌失措的人群,开始对死亡幽灵投去冷静目光,中风却夺去了他的性命。不论多么坚信自己的猜测,这个公共卫生界的先驱终究还是带着一个假说进了坟墓;他也无法得知,正当自己在伦敦的诊所对着一张缩小了2000倍的地图描点,企图对米汤便溯源,远在一千公里外的意大利,另一个人正从另一极端出发,用显微镜将同样的液体放大了百倍。 菲利普帕西尼,牧师半路出家学起了解剖。当时,持续近20年的亚洲霍乱也波及了他所在的弗洛伦萨。帕西尼从病人样品中观察到成千上万微微弯曲的棒状小东西。帕西尼将它们命名为Vibrio(弧菌,拉丁语颤抖),意思是小东西会甩着尾巴四处游动。那些印度进口的病原被观察完毕,没能在实验室受到合适的待遇,苟延残喘了2年就纷纷死光了。不过,在接下来的后半生,信奉眼见为实的帕西尼继续用显微镜检查了所有能找到的霍乱样品,其中包括血液、粪便,甚至死人的内脏粘膜。他发表了许多文章,论证霍乱是一种传染病,不由瘴气却由小东西所致;病人内脏上皮细胞严重受损,人体严重脱水;仅凭这些解剖学症状,帕西尼竟然预言了十分正确的治疗方法给病人注射盐水。最后一篇文章发表在他去世前3年。可惜,那时的学术界仍然被瘴气说所统领,在1874年的国际卫生会议上,21国政府投票一致决定导致霍乱的坏东西仍旧在空气里乱飞;帕西尼的作品甚至从来没有被翻译成英文,当然也无人知晓。和这些文献一同被埋没的,还有这张制作精美的细菌涂片,周围同样用花体意大利文对观察内容及时间作出了详细注解(下图)。 同斯诺一样,帕西尼的霍乱时代也没有留下任何爱情八卦。他终生未婚,死去时,带不走一片硬币。因为他一生的积蓄都交给了霍乱研究以及两位生病的妹妹。 在离去人间82年之后,帕西尼的观察终于得到世人承认,他的成就也被光荣地烙印在致病菌的大名之上霍乱弧菌-帕西尼1854。 于是,就不能不说到微生物学之父科赫,他的名字被烙印在月亮上。 霍乱的第一项诺贝尔奖 马尔克斯获得了诺贝尔文学奖;而在现实世界,使人们接受了霍乱弧菌的德国医生科赫则获得了诺贝尔医学奖这是我想象一个细菌可能获得最多的褒奖了。 科赫曾于1882年首先分离了结核杆菌(见《 称霸地球 》),正是这种细菌引发了桑塔格笔下的浪漫主义灵魂疾病;同一位作者则这样描述霍乱:比其它致命疾病更可怕;它使感染者褪去人形,皱缩成自己的漫画形象,直到生命消亡。 恰巧就在帕西尼去世的这一年,仿佛冥冥注定一般,科赫被派到霍乱横行的埃及,满眼是各样的漫画形象,需待他们生命终止逐一解剖观察。科赫的显微镜下重现了30年前帕西尼看到的景象弧形且带尾巴的逗号杆菌专一地出现在霍乱患者的肠道粘膜。这一年年底,当埃及的霍乱得到控制,科赫主动请愿前往病情肆虐的印度继续研究。几个月后,他终于在实验室中培养起帕西尼当年没能保住的菌种(如果大家记得《称霸地球》,同样在消化道的幽门螺杆菌也不易培养),并根据细菌繁殖和传播的特点总结出控制霍乱流行的方法,直到今天仍使人类受益。科赫的名人效应使得自己的发现较之以前更容易得到人们的注意;带着全队人马和纯纯净净的霍乱弧菌回到祖国,他得到了对民族英雄般的欢迎。 1905年的诺贝尔医学奖是对科赫几十年工作的肯定,其中包括对霍乱弧菌的认可和对瘴气说的否定。这个行踪在50年前被斯诺追踪、外貌被帕西尼详加记录、又在20年前被科赫在实验室好生饲养的细菌的致病性终于尘埃落定。读到这里,你恐怕也能看出,马尔克斯对飘散风中的致病物质的优美描写却是不尽准确的。 今日,科赫这个名字被标在一座月亮环形山之上,与儒勒凡尔纳比邻而居。地球上的我们不想让他在百年之后仍看到霍乱肆虐,于是将他写在了月亮背面。 最恐怖和最容易治愈的疾病 如今的研究者不再面对当年先驱所受的种种限制:霍乱弧菌的分离和培养技术已经成熟,显微镜分辨率也已突破可见光的约束。在电子显微镜下,这颗霍乱弧菌微微扭曲,一端飘摇着长长的鞭毛;体态不失优雅(题图)。 其实,它在人体内远没有镜头下这么悠闲,那多半是一段遭受蹂躏的旅程:胃酸会令绝大多数霍乱弧菌毙命。不过,如果利用菌海战术,也许会有几颗细菌经过大浪淘沙达到目的地小肠。这些幸运儿会奋力挥舞鞭毛,以便自己能扒开粘液、拨开密密层层的小肠绒毛,最终钻进下边温暖和安全的所在。 在小肠中,霍乱弧菌让人觉得不舒服的策略非常简单。它们分泌一种叫做肠毒素的分子,肠毒素贴到人的小肠细胞表面,会像一口泵一样把氯离子源源不断地从人细胞里泵出去,结合小肠腔里原本就很多的钠离子变成食盐溶液;这个时候,小肠腔里高盐,小肠细胞里低盐,为了维持盐的平衡,小肠细胞就会发疯一样向小肠腔吐水,吐光了再从人体其它部分吸,吸了再吐。如此机理,小小的肠毒素能在一天之内通过小肠细胞从人体吸出6升水,全都变成米汤便排出人体。当然,天性节省的霍乱弧菌不会白花能量产生肠毒素米汤便会带着成千上万新出生的霍乱弧菌流出人体,流入河道或者城市下水系统,如果偏巧不受阻拦,便可寻到新的下家。在历史上,一注携带了霍乱弧菌的水曾经流进柴可夫斯基哥哥家的水管,再被接入作曲家的杯子、直接入口下肚,这被许多人推测直接导致了作曲家的死亡。 科学家已经证明,霍乱症状完全由肠毒素引起,因为如果将霍乱弧菌生产肠毒素的本领去掉(通过基因改造),那被接种的可怜实验动物便不会腹泻了。 失水让人迅速干瘪,当失去10%的水分,人就可能眩晕甚至昏厥。但在腹泻时流走的不只是水分,还有维持细胞功能所需要的氯、钠和钾离子,这就是为什么严重的腹泻会让你手脚发麻甚至肌肉抽搐。钾流失再严重,心脏功能和神经传导便会产生障碍。同时腹泻还会带来低血糖甚至肾衰竭的危险。 霍乱致病的原理如此直接,治疗措施同样易行。只需1茶匙食盐加8茶匙糖,用过滤或煮沸的干净水配成一升溶液让病人喝下即可对症,在必要的时候可以采取补液盐注射。这种简单的治疗能将死亡率由50%降到1%以下。当然,抗生素可以将症状持续时间减半,但这只是辅助,如果不补充盐类来缓解症状,吃下药物也是枉然。 尾声:何时能降下霍乱的黄旗 津巴布韦,北京奥运网站上曾这样介绍她:自然资源丰富,工农业基础好,粮食自给有余,享有南部非洲粮仓的美誉。《时代》网站上写道:这个昔日的粮食出口大国,今日她的百姓何以没有可以饮用的净水,怎么会没钱生火烧水,怎么会拿不出糖和盐。 并不是一个发达国家思路所能想象的这样简单。 在1858那个致病菌还不得而知的年代,伦敦刚刚从霍乱的危机中复苏。人们记起斯诺的警告,花了近十年修缮城市排水系统。从1866年至今,它一直保护着市民的健康,城市史上再无一人感染霍乱。 这让我想起自己曾经游走至某处,问:请问哪里方便。胳膊一挥,理直气壮答:我们全村都没厕所,满地都行。县委书记来了照样儿。 除了人道危机,在这个世界的角落,也许还有其他需要担心和关注的东西。 让我最终回到小说吧。在结尾,主人公阿里沙终于在暮年同自己深爱一生的人结合。他命令船长挂起霍乱的黄旗,永远航行不靠岸。 希望人们的爱永生永世,霍乱就此止步。 转载原创文章请注明,转载自: 科学松鼠会 本文链接: http://songshuhui.net/archives/5508.html
个人分类: 医学|1271 次阅读|0 个评论
Superbugs,The new generation of resistant infections is almost impossible to tre
songshuhui 2008-9-4 14:30
小红猪小分队 发表于2008-01-7 星期一 10:27 分类: 医学 , 小红猪翻译小分队 , 生物 | | by Jerome Groopman August 11, 2008 Doctors fear that dangerous bacteria may become entrenched in hospitals. In August, 2000, Dr. Roger Wetherbee, an infectious-disease expert at New York Universitys Tisch Hospital, received a disturbing call from the hospitals microbiology laboratory. At the time, Wetherbee was in charge of handling outbreaks of dangerous microbes in the hospital, and the laboratory had isolated a bacterium called Klebsiella pneumoniae from a patient in an intensive-care unit. It was literally resistant to every meaningful antibiotic that we had, Wetherbee recalled recently. The microbe was sensitive only to a drug called colistin, which had been developed decades earlier and largely abandoned as a systemic treatment, because it can severely damage the kidneys. So we had this report, and I looked at it and said to myself, My God, this is an organism that basically we cant treat. Klebsiella is in a class of bacteria called gram-negative, based on its failure to pick up the dye in a Grams stain test. (Gram-positive organisms, which include Streptococcus and Staphylococcus , have a different cellular structure.) It inhabits both humans and animals and can survive in water and on inanimate objects. We can carry it on our skin and in our noses and throats, but it is most often found in our stool, and fecal contamination on the hands of caregivers is the most frequent source of infection among patients. Healthy people can harbor Klebsiella to no detrimental effect; those with debilitating conditions, like liver disease or severe diabetes, or those recovering from major surgery, are most likely to fall ill. The bacterium is oval in shape, resembling a TicTac, and has a thick, sugar-filled outer coat, which makes it difficult for white blood cells to engulf and destroy it. Fimbriafine, hairlike extensions that enable Klebsiella to adhere to the lining of the throat, trachea, and bronchiproject from the bacterias surface; the attached microbes can travel deep into our lungs, where they destroy the delicate alveoli, the air sacs that allow us to obtain oxygen. The resulting hemorrhage produces a blood-filled sputum, nicknamed currant jelly. Klebsiella can also attach to the urinary tract and infect the kidneys. When the bacteria enter the bloodstream, they release a fatty substance known as an endotoxin, which injures the lining of the blood vessels and can cause fatal shock. Tisch Hospital has four intensive-care units, all in the east wing on the fifteenth floor, and at the time of the outbreak there were thirty-two intensive-care beds. The I.C.U.s were built in 1961, and although the equipment had been modernized over the years, the units had otherwise remained relatively unchanged: the beds were close to each other, with I.V. pumps and respirators between them, and doctors and nursing staff were shared among the various I.C.U.s. This was an ideal environment for a highly infectious bacterium. It was the first major outbreak of this multidrug-resistant strain of Klebsiella in the United States, and Wetherbee was concerned that the bacterium had become so well adapted in the I.C.U. that it could not be killed with the usual ammonia and phenol disinfectants. Only bleach seemed able to destroy it. Wetherbee and his team instructed doctors, nurses, and custodial staff to perform meticulous hand washing, and had them wear gowns and gloves when attending to infected patients. He instituted strict protocols to insure that gloves were changed and hands vigorously disinfected after handling the tubing on each patients ventilator. Spray bottles with bleach solutions were installed in the I.C.U.s, and surfaces and equipment were cleaned several times a day. Nevertheless, in the ensuing months Klebsiella infected more than a dozen patients. In late autumn of 2000, in addition to pneumonia patients began contracting urinary-tract and bloodstream infections from Klebsiella . The latter are often lethal, since once Klebsiella infects the bloodstream it can spread to every organ in the body. Wetherbee reviewed procedures in the I.C.U. again and discovered that the Foley catheters, used to drain urine from the bladder, had become a common source of contamination; when emptying the urine bags, staff members inadvertently splashed infected urine onto their gloves and onto nearby machinery. They were very effectively moving the organism from one bed to the next, Wetherbee said. He ordered all the I.C.U.s to be decontaminated; the patients were temporarily moved out, supplies discarded, curtains changed, and each room was cleaned from floor to ceiling with a bleach solution. Even so, of the thirty-four patients with infections that year, nearly half died. The outbreak subsided in October, 2003, after even more stringent procedures for decontamination and hygiene were instituted: patients kept in isolation, and staff and visitors required to wear gloves, masks, and gowns at all times. My basic premise, Wetherbee said, is that you take a capable microrganism like Klebsiella and you put it through the gruelling test of being exposed to a broad spectrum of antibiotics and it will eventually defeat your efforts, as this one did. Although Tisch Hospital has not had another outbreak, the bacteria appeared soon after at several hospitals in Brooklyn and one in Queens. When I spoke to infectious-disease experts this spring, I was told that the resistant Klebsiella had also appeared at Mt. Sinai Medical Center, in Manhattan, and in hospitals in New Jersey, Pennsylvania, Cleveland, and St. Louis. Of the so-called superbugsthose bacteria that have developed immunity to a wide number of antibioticsthe methicillin-resistant Staphylococcus aureus , or MRSA , is the most well known. Dr. Robert Moellering, a professor at Harvard Medical School, a past president of the Infectious Diseases Society of America, and a leading expert on antibiotic resistance, pointed out that MRSA , like Klebsiella , originally occurred in I.C.U.s, especially among patients who had undergone major surgery. Until about ten years ago, Moellering told me, virtually all cases of MRSA were either in hospitals or nursing homes. In the hospital setting, they cause wound infections after surgery, pneumonias, and bloodstream infections from indwelling catheters. But they can cause a variety of other infections, all the way to bacterial meningitis. The first deaths from MRSA in community settings, reported at the end of the nineteen-nineties, were among children in North Dakota and Minnesota. And then it started showing up in men who have sex with men, Moellering said. Soon, it began to be spread in prisons among the prisoners. Now we see it in a whole bunch of other populations. An outbreak among the St. Louis Rams football team, passed on through shared equipment, particularly affected the teams linemen; artificial turf, which causes skin abrasions that are prone to infection, exacerbated the problem. Other outbreaks were reported among insular religious groups in rural New York; Hurricane Katrina evacuees; and illegal tattoo recipients. And now its basically everybody, Moellering said. The deadly toxin produced by the strain of MRSA found in U.S. communities, Panton-Valentine leukocidin, is thought to destroy the membranes of white blood cells, damaging the bodys primary defense against the microbe. In 2006, the Centers for Disease Control and Prevention recorded some nineteen thousand deaths and a hundred and five thousand infections from MRSA . Unlike resistant forms of Klebsiella and other gram-negative bacteria, however, MRSA can be treated. There are about a dozen new antibiotics coming on the market in the next couple of years, Moellering noted. But there are no good drugs coming along for these gram-negatives. Klebsiella and similarly classified bacteria, including Acinetobacter , Enterobacter , and Pseudomonas , have an extra cellular envelope that MRSA lacks, and that hampers the entry of large molecules like antibiotic drugs. The Klebsiella that caused particular trouble in New York are spreading out, Moellering told me. They have very high mortality rates. They are sort of the doomsday-scenario bugs. In 1968, Moellering travelled to Malaita, in the Solomon Islands. I was really interested to see whether we could find an antibiotic-resistant population of bacteria in a place that had never seen antibiotics, Moellering said. The natives practiced head-hunting and cannibalism, and were isolated as much by conflict as by the islands dense jungle. Moellering identified microbes there that were resistant to the antibiotics streptomycin and tetracycline, which were then in use in the West but had never been introduced clinically on Malaita. Later studies found resistant bacteria in many other isolated indigenous human populations, as well as in natural reservoirs like aquifers. Before the development of antibiotics, the threat of infection was urgent: until 1936, pneumonia was the No. 1 cause of death in the United States, and amputation was sometimes the only cure for infected wounds. The introduction of sulfa drugs, in the nineteen-thirties, and penicillin, in the nineteen-forties, suddenly made many bacterial infections curable. As a result, doctors prescribed the drugs widelyoften for sore throats, sinus congestion, and coughs that were due not to bacteria but to viruses. In response, bacteria quickly developed resistance to the most common antibiotics. The public assumed that the pharmaceutical industry and researchers in academic hospitals would continue to identify effective new treatments, and for many years they did. In the nineteen-eighties, a class of drugs called carbapenems was developed to combat gram-negative organisms like Klebsiella , Pseudomonas , and Acinetobacter . They were, at the time, thought to be drugs of last resort, because they had activity against a whole variety of multiply-resistant gram-negative bacteria that were already floating around, Moellering said. Many hospitals put the drugs on reserve, but an apparent cure-all was too tempting for some physicians, and the tight stewardship slowly broke down. Inevitably, mutant, resistant microbes flourished, and even the carbapenems effectiveness waned. Now microbes are appearing far outside their environmental niches. Acinetobacter thrives in warm, humid climates, like Honduras, as well as in parts of Iraq, and is normally found in soil. An article published in the military magazine Proceedings in February reported that more than two hundred and fifty patients at U.S. military hospitals were infected with a highly resistant strain of Acinetobacter between 2003 and 2005, with seven deaths as of June, 2006, linked to Acinetobacter -related complications. In 2004, about thirty per cent of all patients returning from Iraq and Afghanistan tested positive for the bacteria. Its a big problem, and its contaminated the evacuation facilities in Germany and a lot of the V.A. hospitals in the United States where these soldiers have been brought, Moellering said. Patients evacuated to Stockholm from Thailand after the 2004 tsunami were often infected with resistant gram-negative microbes, including a strain of Acinetobacter that was resistant even to colistin, the antibiotic used, to variable effect, in the outbreak at Tisch Hospital. The practice of clinical tourism, in which patients travel long distances for more advanced or more affordable medical centers, may introduce resistant microbes into hospitals where they had not existed before. Meanwhile, antibiotic use in agricultural industries has grown rapidly. Seventy per cent of the antibiotics administered in America end up in agriculture, Michael Pollan, a professor of journalism at Berkeley and the author of In Defense of Food: An Eaters Manifesto, told me. The drugs are not used to cure sick animals but to prevent them from getting sick, because we crowd them together under filthy circumstances. These are perfect environments for disease. And we also have found, for reasons that I dont think we entirely understand, that administering low levels of antibiotics to animals speeds their growth. The theory is that by killing intestinal bacteria the competition for energy is reduced, so that the animal absorbs more energy from the food and therefore grows faster. The Food and Drug Administration, which is often criticized for its lack of attention to the risks of widespread use of antibiotics, offers recommended, non-binding guidelines for these drugs but has rarely withdrawn approval for their application. A spokesman for the Center for Veterinary Medicine at the F.D.A. told me that the center believes that prudent drug-use principles are essential to the control of antimicrobial resistance. A study by David L. Smith, Jonathan Dushoff, and J. Glenn Morris, published by PLoS Medicine , from the Public Library of Science, in 2005, noted that the transmission of resistant bacteria from animal to human populations is difficult to measure, but that antibiotics and antibiotic-resistant bacteria ( ARB ) are found in the air and soil around farms, in surface and ground water, in wild-animal populations, and on retail meat and poultry. ARB are carried into the kitchen on contaminated meat and poultry, where other foods are cross-contaminated because of common unsafe handling practices. The researchers developed a mathematical model that suggested that the impact of the transmission of these bacteria from agriculture may be more significant than that of hospital transmissions. The problem is that we have created the perfect environment in which to breed superbugs that are antibiotic-resistant, Pollan told me. Weve created a petri dish in our factory farms for the evolution of dangerous pathogens. Ten years ago, the Institute of Medicine of the National Academy of Sciences, in Washington, D.C., assessed the economic impact of resistant microbes in the United States at up to five billion dollars, and experts now believe the figure to be much higher. In July, 2004, the Infectious Diseases Society of America released a white paper, Bad Bugs, No Drugs: As Antibiotic Discovery Stagnates . . . A Public Health Crisis Brews, citing 2002 C.D.C. data showing that, of that years estimated ninety thousand deaths annually in U.S. hospitals owing to bacterial infection, more than seventy per cent had been caused by organisms that were resistant to at least one of the drugs commonly used to treat them. Drawing on these data, collected mostly from hospitals in large urban areas which are affiliated with medical schools, the Centers for Disease Control and Prevention found more than a hundred thousand cases of gram-negative antibiotic-resistant bacteria. No precise numbers for all infections, including those outside hospitals, have been calculated, but the C.D.C. also reported that, among gram-negative hospital-acquired infections, about twenty per cent were resistant to state-of-the-art drugs. In April, I visited Dr. Stuart Levy, at Tufts University School of Medicine. Levy is a researcher-physician who has made key discoveries about how bacteria become resistant to antibiotics. In addition to the natural cell envelope of Klebsiella , Levy outlined three primary changes in bacteria that make them resistant to antibiotics. Each change involves either a mutation in the bacteriums own DNA or the importation of mutated DNA from another. (Bacteria can exchange DNA in the form of plasmids, molecules that are shared by the microbes and allow them to survive inhibitory antibiotics.) First, the bacteria may acquire an enzyme that can either act like a pair of scissors, cutting the drug into an inactive form, or modify the drugs chemical structure, so that it is rendered impotent. Thirty years ago, Levy discovered a second change: pumps inside the bacteria that could spit out the antibiotic once it had passed through the cell wall. His first reports were met with profound skepticism, but now, Levy told me, most people would say that efflux is the most common form of bacterial resistance to antibiotics. The third change involves mutations that alter the inner contents of the microbe, so that the antibiotic can no longer inactivate its target. Global studies have shown how quickly these bacteria can develop and spread. This has been a problem in Mediterranean Europe that started about ten years ago, Dr. Christian Giske told me. Giske is a clinical microbiologist at Karolinska University Hospital, in Stockholm, who, with researchers in Israel and Denmark, recently reported on the worldwide spread of resistant gram-negative bacteria. He continued, It started to get really serious during the last five or six years and has become really dramatic in Greece. A decade ago, only a few microbes in Southern Europe had multidrug resistance; now some fifty to sixty per cent of hospital-acquired infections are resistant. Giske and his colleagues found that infection with a resistant strain of Pseudomonas increased, twofold to fivefold, a patients risk of dying, and increased about twofold the patients hospital stay. Like other experts in the field, Giskes team was concerned about the lack of new antibiotics being developed to combat gram-negative bacteria. There are now a growing number of reports of cases of infections caused by gram-negative organisms for which no adequate therapeutic options exist, Giske and his colleagues wrote. This return to the preantibiotic era has become a reality in many parts of the world. 文章分段,下边算第二篇译文原文 Doctors and researchers fear that these bacteria may become entrenched in hospitals, threatening any patient who has significant health issues. Anytime you hear about some kid getting snatched, you want to find something in that story that will convince you that that family is different from yours, Dr. Louis Rice, an expert in antibiotic resistance at Louis Stokes Cleveland VA Medical Center, told me. But the problem is that any of us could be an I.C.U. patient tomorrow. Its not easy to convey this to people if its not immediately a threat. You dont want to think about it. But its actually anybody who goes into a hospital. This is scary stuff. Rice mentioned that he had a mild sinusitis and was hoping it would not need to be treated, because taking an antibiotic could change the balance of microbes in his body and make it easier for him to contract a pathogenic organism while doing his rounds at the hospital. Genetic elements in the bacteria that promote resistance may also move into other, more easily contracted bugs. Moellering pointed out that, while Klebsiella seems best adapted to hospital settings, and poses the greatest risk to patients, other gram-negative bacteriaspecifically E. coli , which is a frequent cause of urinary-tract infection in otherwise healthy peoplehave recently picked up the genes from Klebsiella which promote resistance to antibiotics. In the past, large pharmaceutical companies were the primary sources of antibiotic research. But many of these companies have abandoned the field. Eli Lilly and Company developed the first cephalosporins, Moellering told me, referring to familiar drugs like Keflex. They developed a huge number of important anti-microbial agents. They had incredible chemistry and incredible research facilities, and, unfortunately, they have completely pulled out of it now. After Squibb merged with Bristol-Myers, they closed their antibacterial program, he said, as did Abbott, which developed key agents in the past treatment of gram-negative bacteria. A recent assessment of progress in the field, from U.C.L.A., concluded, FDA approval of new antibacterial agents decreased by 56 per cent over the past 20 years (1998-2002 vs. 1983-1987), noting that, in the researchers projection of future development only six of the five hundred and six drugs currently being developed were new antibacterial agents. Drug companies are looking for blockbuster therapies that must be taken daily for decades, drugs like Lipitor, for high cholesterol, or Zyprexa, for psychiatric disorders, used by millions of people and generating many billions of dollars each year. Antibiotics are used to treat infections, and are therefore prescribed only for days or weeks. (The exception is the use of antibiotics in livestock, which is both a profit-driver and a potential cause of antibiotic resistance.) Antibiotics are the only class of drugs where all the experts, as soon as you introduce them clinically, we go out and tell everyone to try to hold it in reserve, Rice pointed out. If there is a new cardiology drug, every cardiologist out there is saying that everyone deserves to be on it. In February, Rice wrote an editorial in the Journal of Infectious Diseases criticizing the lack of support from the National Institutes of Health; without this support, he wrote, the big picture did not receive the attention it deserved. Rice acknowledges that there are competing agendas. As loud as my voice might be, there are louder voices screaming AIDS , he told me. And there are congressmen screaming bioterrorism. Rice came up with the acronym ESKAPE bacteria Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and the Entero-bacter speciesas a way of communicating the threat these microbes pose, and the Infectious Diseases Society is lobbying Congress to pass the Strategies to Address Antimicrobial Resistance Act, which would earmark funding for research on ESKAPE microbes and also set up clinical trials on how to limit infection and antibiotic resistance. Rice has also proposed studies to determine the most effective useat what dosage, and for how longof antibiotics for common infections like bronchitis and sinusitis. Dr. Anthony Fauci is the director of the National Institute of Allergy and Infectious Diseases, which chairs the federal interagency working group on microbial resistance. Fauci told me that the government is acutely aware of the severity of the problem. He pointed out that the N.I.H. recently issued a call for proposals to study optimal use of antibiotics for common bacterial infections. It has also funded so-called coperative agreements, including one on Klebsiella , to facilitate public-private partnerships where the basic research from the institute or from university laboratories can be combined with development by a pharmaceutical or a biotech company. Even so, the total funding for studying the resistance of ESKAPE microbes is about thirty-five million dollars, a fraction of the two hundred million dollars provided by the NIAID for research on antimicrobial resistance, most of which goes to malaria, t.b., and H.I.V. The difficulty that we are faced with is that our budget has been flat for the last five years, Fauci told me. In real dollars, weve lost almost fifteen per cent purchasing power, because of an inflation index of about three per cent for biomedical research and development. Since September 11, 2001, significant funding has been directed toward the study of anthrax and other microbes, like the one that causes plague, which could be used as bioweapons. Although there is little concern that Klebsiella or Acinetobacter might be weaponized, the basic science of their mutation and resistance could be useful in helping us to understand these threats. Fauci hopes to make the case that funds for biodefense should be used to study the ESKAPE bugs, but, for now, he is quick to point out the challenge posed by a lack of resources. The problem is, it is extremely difficult to do a prospective controlled trial, because when people come into the hospital they immediately get started on some treatment, which ruins the period of study, he said, referring to research into the treatment of common infections. The culture of American medicine makes a study like that more difficult to execute. These types of studieson how often, and for how long, antibiotics should be prescribedare much easier to conduct in countries where medicine is largely socialized and prescriptions are tightly regulated. Recently, researchers in Israel, where most citizens receive their care through such a system, showed that refraining from empirically prescribing antibiotics during the summer months resulted in a sharp decline in ear infections caused by antibiotic-resistant microbes. (In the United States, a 1998 study estimated that fifty-five per cent of all antibiotics prescribed for respiratory infections in outpatients22.6 million prescriptionswere unnecessary.) In Sweden, the government closely monitors all infections, and has the power to intervene as needed. Our infection-control people have a lot of authority, Giske said. This is power from the legislation. Once a resistant microbe is identified, stringent protocols are put in place, with dramatic results. Fewer than two per cent of the staphylococci in Sweden are MRSA , compared with sixty per cent in the United States. Of course, its only around ten million people, so its possible to intervene because everything is smaller, Giske said, adding, Maybe Swedes are more used to this type of intervention and regulation. Stuart Levys laboratory occupies the eighth floor of a renovated building on Harrison Avenue in Bostons Chinatown, across the street from Tufts Medical Center. As I passed from his office into the corridor, I detected the acrid smell of agar, which is used to grow bacteria. That day, a laboratory technician was testing specimens taken from the eyes of people with bacterial conjunctivitis who had been given an antibiotic eye drop containing fluoroquinolone. Levy was comparing the bacteria from the infected eyes with those in the noses, cheeks, and throats of the same patients. His technician held up a petri dish with a cranberry-colored agar base. The patients specimen was growing bacteria that were susceptible to the antibiotic; the drug had created a large oval clear zone on the plate which resembled the halo around the moon. The study investigates whether an antibiotic applied to the eye would affect bacteria in the nose and mouth as well, which might indicate that what seems to be an innocuous and limited treatment may profoundly change a wider area of the body and foster resistant microbes. Levy has also received funding from the N.I.H. to study Yersinia pestis , the microbe that causes plague; the Department of Agriculture has sponsored his study of Pseudomonas fluorescens , a soil-based bacterium that has the potential to protect plants from microbial infection. He plans to develop it as a biocontrol agent, so that farmers can be weaned off the potent antibiotics and chemicals they use to treat their fields. We need to treat biology with biology, not chemistry, he said. In other studies, Levy and his team are looking at ways to render bacteria nondestructive and noninvasive, so that they might enter the body without harmful effects. This makes it necessary to identify virulence factorswhich parts of the bacteria cause damage to our tissues. Levys laboratory is targeting a protein in gram-negative organisms called MAR , which appears to act as a master switch, turning on both virulence genes and genes that mediate resistance, like the efflux pump. In collaboration with a startup company called Paratek, of which Levy is a co-founder, his laboratory is screening novel compounds in the hope of finding a drug that blocks MAR . Frederick Ausubel, a bacterial geneticist at the Massachusetts General Hospital, in Boston, is searching for drugs to combat bacterial virulence, using tiny animals like worms, which have intestinal cells that are similar to those in humans, and which are susceptible to lethal microbial infection. The worm that Ausubel is studying, Caenorhabditis elegans , is one and a half millimetres in length. You are probably going to have to screen millions of compounds and you cant screen millions of infected mice, Ausubel said. So our approach was to find an alternative host that could be infected with human pathogens which was small enough and cheap enough to be used in drug screens. Whats remarkable is that many common human pathogens, including Staphylococcus and Pseudomonas , will cause intestinal infection and kill the worms. So now you can look for a compound that cures it, that prevents the pathogen from killing the host. Ausubel first screened some six thousand compounds by hand and found eight, none of them traditional antibiotics, that may protect the worms. He is also attempting, among other potential solutions, to find a compound that would block what is called quorum sensing, in which bacteria release small molecules to communicate with one another and signal when a critical mass is present. Once this quorum is reached, the bacteria turn on their virulence genes. Bacteria dont want to alert their host that they are there by immediately producing virulence factors which the host would recognize, triggering the immune system, Ausubel explained. When they reach a certain quorum, there are too many of them for the host to do anything about it. Bonnie Bassler, a molecular biologist at Princeton University, has recently shown that it is through quorum sensing that cholera bacteria are able to accumulate in the intestines and release toxins that can be fatal; Pseudomonas is also known to switch on its virulence genes in response to signals from quorum sensing. Moellering is enthusiastic but cautious about this avenue of research. Its a great idea, but so far nobody has been able to make it work for human infections, he told me. With certain types of staphylococci , Moellering said, mutations have occurred spontaneously in nature that cut down on a number of virulence factors . . . but they still cause serious infections. Im not sure that we have a way yet to use what we know about virulence factors to develop effective antimicrobial agents. And we almost certainly will have to use these agents in combination with antibiotics. No one, Moellering said, has developed a way to disarm bacteria sufficiently to allow the human body to naturally and consistently defend against them. I asked him what we should do to combat these new superbugs. Nobody has the answer right now, he said. The fact of the matter is that we have found all the easy targets for drug development. He went on, So the only other thing we can do is continue to work on antibiotic stewardship. Meanwhile, new resistant bacteria, Moellering asserted, arent going to go away. We can temper things, we might be able to slow the rate of emergence of resistance, but its unlikely that we will ever be able to conquer it. 标签: 微生物 , 翻译
个人分类: 医学|1735 次阅读|0 个评论
科学“疯子”和他们的“全球凉快”计划
songshuhui 2008-9-3 11:52
waterOrO 发表于2008-05-26 星期一 8:31 分类: 环境 | | 降低二氧化碳排放,京都议定书,少吃牛肉多种树 这些似乎就是大部分人印象里对付全球变暖的所有对策。 但是,科学家们比想象得更富有创造力,他们正在严肃的思考一些看上去疯狂想法的可行性。这些想法之所以疯狂,就是因为他们不再被动的减少排放,减缓地球升温的速度,而是主动的出击,降低当前的温室气体在大气层中的含量。这需要勇气和疯狂。 铁豆腐渣工程 美国加利福尼亚的Planktos公司(该公司网站貌似挂了)正在进行一项鲜为人知的实验。前不久,他们的知天鸟二号轮船在太平洋深处倾倒了50吨的铁垃圾。这些铁屑会是超微型浮游生物(picoplankton)的大餐 (超微型浮游生物:从英文意思来看是皮米级的浮游生物,实际上通常指0.2 and 2 微米尺寸的浮游生物。),从而制造一起有预谋的赤潮。这些水中的贪吃鬼会像恶性肿瘤一样无限制的自我繁殖,覆盖大片的海面。他们通过光合作用可以吸收空气中的二氧化碳,释放氧气,从而减少温室气体在大气中的含量。 图1:超微型细菌 这个想法来源于著名的IPCC (Intergovernmental Panel on Climate Change)。由于他们对全球变暖的结论性科学总结和数年的统计研究工作,去年该组织和美国前副总统戈尔分享了诺贝尔和平奖。IPCC在一份2001年的报告中提出了这一个想法。但是他们也预见到这个方法带来的巨大负面效应海洋生态环境的灭顶之灾。 美国历史最悠久的海洋研究机构斯克里普斯海洋研究所(Scripps Institute of Oceanography)的教授蒂姆巴内特说,倾倒铁渣引起赤潮会使海洋表面和深处的温差扩大。而我们知道,这种分层会导致海洋表面的氧气不能有效的扩散到下层的海水里。渐渐的,海洋深处的氧气耗尽,所有的海洋生物要么远走他乡要么就死无葬身之地。所以,更多的科学家呼吁,在真正进行这个项目之前应该多做一些地质工程和海洋科学的研究。 然而,Plantos公司的CEO乔治说,他们公司已经咨询了很多国家的政府,而且只会重复已有的研究,所有的活动都会在严格控制下在公海进行,不会对任何人有不利的影响。更重要的是,我们只是撒一点点铁屑在海面上。相对浩瀚的太平洋来说,这就是九牛一毛。如果因为要保证海洋绝对的生态平衡这已经无法实现而停止我们的研究和试验的话,真的是太不公平了。我们要做的就是给全球变暖一个绿色的答案。 根据该公司的估计,每吨铁屑会减少大气中十万吨的二氧化碳。仅他们这第一次的大规模试验就会清除掉全球每年一半的二氧化碳减排目标,成果喜人。也有科学家抨击他们说,这太高估了那些微生物们的本领了。 这个公司冒着这么大的环境风险来从事这个项目,主要因为该项目背后有那些每年需要花大把金钱为二氧化碳排放买单的大户们在撑腰。 人造火山 除了能提供温泉和制造经典的科幻大片,我实在想不出火山能给人带来哪些好处了。但是有这么一群人正在琢磨着怎么造一座人造的火山 从诺贝尔奖得主保罗库兹到核冷战战士爱德华泰勒都在为一个伟大的计划而激动不已。他们准备建造一座由喷气式发动机,加农炮或者气球组成的火山。这个火山可以为大气层带来大量的硫化物。这些硫化物可以形成一个地球的遮阳伞,反射掉太阳光从而降低地面的温度。 他们的想法来源于16年前菲律宾的一次火山大喷发。这次喷发释放了大量的硫化物微粒,使当地凉快了一年。 但是当科学家们把预期的目标输入一个气候模拟模型以后发现,这个办法不是那么的可靠,更不是想象中的那么便宜。人造火山需要把上万吨的硫化物喷射到上层的大气层。而且这个主意也并不能降低大气中的二氧化碳含量。空气中的二氧化碳带来的一些其他问题无法得到解决,例如海洋酸化二氧化碳溶解到水中会形成碳酸严重威胁珊瑚的生长。 但是这个想法并非一无是处,科学家们还在寻找其他更有效的化学物质来代替硫化物,从而降低项目成本。 (Ted.com 上有一个关于这个想法的演讲 http://www.ted.com/talks/view/id/243 ,语速较快 适合雅思听力六点五以上) 星际太阳伞计划 听到这个名字,估计女生们要偷着乐了。是不是再也不怕被晒黑了? 去年夏天,亚利桑那大学开始了一项研究。研究人员试图分析在太阳和地球之间建立一个可以上下浮动的飞碟形太空船的可行性。他被覆盖上反光材料,扮演一个太阳伞的角色。科学家们认为无论从发射能力,材料,还是控制角度考虑,这个方案都是可行的。他们把这种飞行器设计成一个二十几克重,直径十几厘米,带三个耳朵的碟子。耳朵用来控制姿态。 这个项目估计耗资四十亿美元,分三十年完成。这和把一个家伙送到火星需要的时间和金钱差不多。想想人类的灾难吧!亚利桑那大学的科学家安琪儿说,花这么一点钱还是很值得的。 世界的大滤嘴 美国哥伦比亚大学的教授克劳斯莱克纳从他女儿高中的课程作业得到灵感建造一个二氧化碳化学固定的小装置。他着手建立一个二氧化碳固定的大装置。这个装置其实并不复杂,要不然怎么高中生的作业就能搞定。这个的难点在于,通过制造更多的垃圾来减少二氧化碳很不厚道。布什基金会一直以来致力于二氧化碳固定后的处理研究。现在可行的办法是将二氧化碳深埋地下,例如通过废弃的油井或者矿井。不知道地球喝了这么多的碳酸饮料会不会打嗝,但是有一点可以肯定这样做特别昂贵。 后记 伟大的想法刚开始大都脱胎于荒谬。没准那一天我们还要真的依靠这些想法来拯救自己。不过现实一点来看,如果你真的想出一个好点子来降低大气中的二氧化碳含量,你就有机会赢得亿万富翁理查德布兰森去年设立的两千五百万美元大奖。这个奖项将授予第一个发明有效而且可行的二氧化碳处理技术的人。如果你得了奖,别忘了请我吃饭啊!最后,附上一个绿色和平组织全球要凉快的抗议艺术视频。 参考文献: http://www.foxnews.com/story/0,2933,259590,00.html http://www.treehugger.com/files/2006/02/planktos.php 绿色和平的全裸抗议: Hundreds strip naked on glacier in global warming protest http://www.youtube.com/watch?v=0RVp8Q6H9e0 标签: 全球变暖 , 太空 , 微生物 , 海洋学 , 环保 , 环境科学 , 航天
个人分类: 环境|2295 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-23 12:40

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部