科学网

 找回密码
  注册

tag 标签: 国际化学年

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

隔阂惹出尴尬?
热度 1 yolandahongmei 2012-1-12 17:21
隔阂惹出尴尬?
隔阂惹出尴尬 ,这是文汇报上前一段时间一篇文章的大标题。如果不看小标题,我是万万不会联想到他会和化学有所关联。小标题一看, 2011 年度科学盘点之化学篇 ,原来讲的就是化学呀! 今年是国际化学年,在我看来是非常有意义和价值的,而且我相信很多人也从中受益颇多。全球与化学学科相关不相关的机构都举办了不同形式的活动,目的当然是为了普及化学知识,推动化学学科的发展。中国当然也不例外,建立了官方的国际化学年网站( http://iyc2011.cn/ )来对大众宣传化学及日常生活中的化学知识。可这篇文章却将在中国 发生的一系列“巧合”事件, 塑化剂、火锅底料、地沟油 ,牛肉膏等归因于我国的化学家没有尽到宣传化学知识的责任。还质问化学家们: 每年拿着国家这么多经费,搞科研的都在做些啥? 我想写这篇文章的记者一定不是学化学的,否则他就不会这么说。在我看来,化学学科是和我们人类生活最密切相关的学科,如果没有化学,我们的人类世界就会减少很多精彩。举个最简单的例子,人类面临的各种疾病,如果没有化学家的贡献,难道可以攻克一个又一个难关吗? 不知道为什么,在中国,化学总是被很多人认为是一个不好的学科。一提起化学,总让人联想到爆炸危险有毒污染等一系列贬义词。我承认这不是大家的误解,因为这些问题的确存在。但世界万事万物都是具有两面性的,我想也许真的是化学与人类生活关系太密切了,才导致很多门外汉(确认学化学懂化学的人的比例是很少的)看不到化学在人类发展中所起到的关键作用,更是直接忽略了化学家所作出的突出贡献,更有甚者,把目前所存在的环境污染,气候恶劣等直接归因于化学家的失职。 我无从得知这些添加三聚氰胺到婴儿奶粉,往火腿里掺瘦肉精,及回收地沟油成食用油的人是否化学出生,但我知道诺贝尔奖是化学家设立的,是为了奖励 那 些为人类做出突出贡献的科学家 。我也知道,我国和世界上有许许多多的化学家在为实现人类的可持续发展上默默的做着自己的贡献。没有他们的付出和努力,我们知道如何面对环境恶化,如何解决能源短缺,如何攻克一个又一个前所未闻的人类疾病吗?也许我国的化学从业者在推广化学方面做的还不够,但我们不能否认他们所付出的努力和所取得的成绩。隔阂是会惹出尴尬,大家都知道隔行如隔山嘛!但我不希望这种所谓的隔阂是外行看内行,雾里看花,水中捞月。 现在我国这些层出不穷的食品安全问题,都是不良商家为了追求利益最大化而导致,归根结底是道德底线的问题。而跟这种化学物质或者化学方法是否存在是没有关联的,更不能归因于化学家不够努力。我想复旦大学的研究生吴恒所写的掷出窗外应该能激起我们每个人心中的良知;而他和志愿者们所建立的关于中国食品安全的网站更应得到极力的推广和学习 http://www.zccw.info/ 起初他们在婴儿奶粉里掺三聚氰胺, 我还没有养孩子,我不说话; 接着他们在火腿肠里掺瘦肉精, 我不怎么吃火腿肠,我仍不说话; 此后他们使用地沟油, 我很少在外吃饭,我继续不说话; 再后来他们使用牛肉膏, 我决定不吃牛肉了,但还是不说话; 最后,我依然被毒死了, 但没人能告诉我是什么原因, 因为,后来大家都被毒死了。 这是我们期望的地球,但离不开化学家的贡献 文汇报的文章链接: http://www.ccin.com.cn/ccin/news/2012/01/03/215271.shtml
个人分类: 化学新闻|3343 次阅读|3 个评论
[转载]乐以化学(中国化学会)视频
热度 1 yaoronggui 2011-12-17 16:56
2011国际化学年专庆音乐会暨北京大学化学文化节开幕式 乐以化学(一): 乐以化学(二): 乐以化学(三): 乐以化学(四):
个人分类: 化学与生活|3280 次阅读|2 个评论
“国际化学年”N个花絮
cuncaoxin 2011-12-6 16:40
“国际化学年”N个花絮
为纪念化学学科所取得的成就以及对人类文明的贡献,联合国将 2011 年定为“国际化学年”。 2011 年适值居里夫人获诺贝尔化学奖 100 周年,也恰逢国际纯粹与应用化学联合会的前身国际化学会联盟成立 100 周年。 2008 年底,联合国决议将 2011 年定为“国际化学年”,主题为“化学──我们的生活,我们的未来”。 ★ 2008 年 12 月 30 日联合国第 63 届大会决定将 2011 年作为国际化学( IYC2011 ),委托联合国教科文组织( UNESCO )和国际纯粹与应用化学联合会( IUPAC )负责以 “ 化学 —— 人类的生活,人类的未来 ” 为主题在全世界范围内安排,庆祝化学取得的成就和化学为人类文明进步所作出的重要贡献。 ★ 1 月 6 日出版的《自然》杂志刊登专题 —— 《国际化学年》( International Year of Chemistry )。专题说, 2011 年为国际化学年,为此《自然》将搜集聚焦在化学这门 “ 重要科学 ” 的深度新闻报道和评论,并从分子世界中找寻那些最前沿的化学研究。 ★ 1 月 18 日全球几十个国家同时举办女化学工作者共享化学时刻早餐会议,这是国际化学年首个全球性活动。 ★ 1 月 27 日上午,在巴黎联合国教科文组织 (UNESCO) 总部召开了 国际化学年 启动大会。 ★ 1 月 29 日法国巴黎大学举办居里夫人获得诺贝尔化学奖 100 周年庆典活动 ★ 2 月 19 日“国际化学年在中国”科普活动在中国科技馆 www.cstm.org.cn 启动,国际化学年官方网站正式开通,“触摸化学,感受魅力” 2011 国际化学年全国趣味化学实验设计大赛也同时启动。 ★ 3 月, 为纪念化学学科所取得的重要成就以及对人类文明的重大贡献,中国科学院院士工作局策划组织了一系列活动,与国家科学图书馆合作推出“化学,创造美好生活—— 2011 ‘国际化学年’纪念展”。 ★ 4 月 9 日“国际化学年在中国”启动大会在人民大会堂小礼堂隆重举行,组织推出以 “ 化学 —— 我们的生活,我们的未来 ” 为主题的 “ 国际化学年在中国 ” 系列活动。 ★ 5 月 8 日由河南省化学会、河南省化工学会、河南大学主办的“国际化学年在河南”启动仪式在河南大学举行。 ★ 6 月 7 日在北京大学举办了化学百年回顾与展望 ——“ 国际化学年在中国 ” 报告会。 北京大学校长、著名高分子化学家周其凤带头抛砖引玉,参加了 “ 国际化学年 ”“ 化学之歌 ” 征集活动。 ” 化学究竟是什么 化学就是你 化学究竟是什么化学就是我 … ” ★ 8 月 3 日 COLOF ( Chemistry—Our Life, Our Future )暑期社会实践队赶赴内蒙古呼和浩特市,在内蒙古博物院 www.nmgbwy.com 举办《化学 —— 我们的生活,我们的未来 “ 国际化学年 ” 主题科普展》。许多观众慕名前来,特别是有很多家长利用周末带着孩子前来了解化学,体验化学。 ★ 9 月 9 日 “国际化学年在延职”主题活动月启动仪式在延安职业技术学院第一阶梯教室举行,学生们展览了亲手制作的色彩斑斓的肥皂。 ★ 10 月 3 日为庆祝国际化学年并纪念全球著名化学家约翰斯 · 波拉尼 (Johns Polanyi) ,加拿大邮局发行了一枚限量版邮票。 ★ 11 月份,“国际化学年”活动频繁, 4 日印度布巴内斯瓦尔科学中心化学征文比赛; 15 日 -18 日秘鲁国际青年化学大会; 11 月 19 日 2011 日本东京工业 - 政府 - 学术联盟探讨; 23-27 日 泰国曼谷国际化学年学术展 …… ★跨国化工公司通过举办“公众开放日”、“科学日”等活动,拉近化工与公众之间的距离。罗地亚、陶氏化学、巴斯夫、道康宁、朗盛、阿克苏诺贝尔等跨国公司纷纷参加“国际化学年”活动。 ★ “国际化学年”展望 ………… 通过思索现在、探究未来,展望化学将给我们的明天带来更多精彩!化学的世界,宽广深邃、瑰丽神奇。让我们关注化学,关注我们的生活,关注我们的未来。
个人分类: 科普百科|2557 次阅读|0 个评论
GE-RSC杯高校化学演讲比赛精彩瞬间(图片)
热度 2 yolandahongmei 2011-11-25 16:46
GE-RSC杯高校化学演讲比赛精彩瞬间(图片)
GE-RSC杯高校化学演讲比赛于2011年11月18日下午一点半到五点在通用电气研发中心顺利召开(本次比赛由RSC上海办公室全程策划组织,活动网站: www.rsc.org/chemistrycompetition ),以下是一些精彩照片和大家分享。 为了保证比赛的公平公正,本次比赛的评委全部邀请的高校以外的嘉宾担任,但邀请了苏州大学材料与化学化工学部的执行主任郎建平教授及上海交通大学的长江学者特聘教授陈接胜老师作为特邀嘉宾对比赛进行点评。 TheJudgingpanel: 1)WeiCai(GeneralManager,GECTC) 2)KuilingDing( Chairman, RSCShanghailocalsection ;Director,ShanghaiInstiituteofOrganicChemistry,ChineseAcademyScience ) 3)ChuanLin(SeniorScientist,GECTC) 4)RichardMills( HeadofScienceInnovation , BritishConsulate-Generaloffice,Shanghai) 5)EnshanSheng( GeneralSecretary, RSCShanghailocalsection ;TechnicalDirector,AsiaPacific,HuntsmanChemistryRDCenter(Shanghai)Co.,Ltd. ) 6)SarahThomas( InternationalProgrammeManager–Asia , RoyalSocietyofChemistry) 7)AoshuangXiao(Manager-CommunicationsPublicAffairs,GECTC) 金奖获得团队: 同济大学 董川,章启元,王海宴(从左到右); 右一为RSCShanghailocalsection主席,中国科学院上海有机化学研究所丁奎岭所长与金奖获得团队一起切蛋糕庆祝 所有评委和本次比赛获得优胜奖团队合影(上海交通大学: 陈赣,黄彦辉,方文中;浙江大学:金聪,王天行,韩伟;南京大学:郑泽华, 肖旻昱,孙超;苏州大学: 曾皛,王懿,傅裕) 铜奖获得团队: 复旦大学 陈潇杨,马思敏,邹路遥 颁奖嘉宾:左一为英国驻沪总领馆领事Richard Mills;右一为南京大学化学学院党委副书记纪勇教授;右二为GE中国研发中心公共事务总监肖傲霜女士 银奖获得团队: 华东理工大学 周亦欣,邓天旸,董健阳 颁奖嘉宾:左一为GE中国研发中心总经理蔡薇博士;右一为亨斯迈(Huntsman)亚太区技术总监盛恩善博士;右二为上海交通大学长江学者特聘教授陈接胜博士。 金奖获得团队来自同济大学由GE中国研发中心总裁陈向力(右二),上海有机所所长丁奎岭(左一),苏州大学材料与化学化工学部执行主任郎建平教授(右一)一起颁奖 比赛前评委们聚在一起认真讨论评分细节
个人分类: 英国皇家化学会在中国|10488 次阅读|2 个评论
献给国际化学年的得意之作
Amsel 2011-11-12 13:17
在网上嚷了两次,说地球化学应该是应用的化学,地学要的是定量而不是创新——现在想来,后一句话的意思是“shut up and calculate”(有人该知道这句话的来头)。而如果自己不能提供这样的例子,就是光说不练的假把式了。好在今年终于完成了一个可作为范例的工作。 这个工作是解决页岩气(当前热门!)开发过程中发现的碳同位素分馏问题。这个问题的来由是,对页岩气钻井泥浆和岩屑脱出的天然气进行碳同位素测量,发现泥浆气甲烷的碳13同位素比例要少于岩屑气。于是就有了地质地球化学研究中惯常的猜测——认为是吸附气和自由气的含量差别造成的。感兴趣的可以看这个多媒体(倒数第四张幻灯片): http://www.papgrocks.org/ferworn_p.pdf 我们从今年年初开始专心解决这个问题。从化学化工角度出发,当然首先必须列出连续性方程,包含必要的过程,取得必要的参数,然后求解。这个“必要的过程”指的是,如果不能确定某个过程的作用是否可以忽略,那么这个过程必须包含在方程里面。 研究结论很简单,这种同位素差别是由于扩散造成的。 在此之前,之所以多数人会扯到“吸附”、“游离”,除了化学基础的欠缺(不能严格区分adsorption/absorption、desorption/diffusion;认识不到吸附/脱附作用极快,随时处于平衡),再就是受到2006年一篇文章的误导(这篇文章把岩石脱气过程中的同位素分馏归因于吸附而不是扩散)。我上个月和这篇文章的作者交流过几次,他在两三年前也已经想解决上面多媒体提到的这个现象,联系到加拿大的一位搞流体计算的学者。不过我看了一下后者的文章,他首先不见得熟悉同位素公式的推导,其次对吸附过程理解仍有问题——没有考虑到再吸附(在脱附实验中对粉末物质忽略再吸附,这种错误在催化类文章中也屡有出现)。 这项工作是年初两三个月进行的,其实主要就是MATLAB完成的一些计算。不过,这不折不扣地是一门跨学科研究,涉及到的知识点虽然简单,但是跨度却很大: 1. 连续性方程求解; 2.同位素组成的定义; 3. 吸附动力学; 4. 近似平衡; 5. 用等温吸附曲线求取吸附热和吸附熵; 6. 用统计热力学公式检验吸附熵是否合理; 7. 两相之间的同位素分馏; 8. 扩散的微观解释, ——以及必要的油气勘探背景知识。文章三月底投到《地球化学和宇宙化学学报》(GCA),因为学科跨度和竞争者的问题,审稿人当然不好选。投稿时提的审稿人有两位真的审了,一位审得很认真,使得这篇稿子能让地球化学研究者读起来容易些。另一位虽然同意刊发,但是审稿意见彻底是敷衍。所以编辑又找了第三位审稿人——能判断出这是我要求编辑回避的审稿人,他也不出所料地要求拒稿,但是编辑说只要问题能够得到回答,就能接收。 整个投稿过程很顺利,唯一问题就是周期真长。六月底一稿才审毕;八月份二稿投出,十月初同意录用,到现在还是待刊状态,比美国化学学会的刊物实在慢得太多。不过,这篇立足于化学基础、定量解决地球化学问题的得意之作总算是赶在国际化学年登出来了。 论文地址: http://www.sciencedirect.com/science/article/pii/S0016703711006016
个人分类: 科研笔记|2933 次阅读|0 个评论
Scientific American:化学十大难题
热度 5 xcfcn 2011-11-9 12:48
Scientific American:化学十大难题
Scientific American :化学十大难题 博主按:这是 Scientific American 科普杂志为国际化学年推出的专题。化学一直声称自己是中心学科,是因为化学其实也就是分子科学,而无论物理还是生命科学,研究到最后,还是要在分子机制这个层面才能解决问题。下面列出的化学十大难题,其实值得所有科学家关注,大家都能在这个舞台里一显身手,但是,化学家或许能在里面找到最好的切入点,从而找到解决问题的关键! 1. How Did Life Begin? 生命从何而来 ? 2. How Do Molecules Form? 分子如何形成 ? 3. How Does the Environment Influence Our Genes? 环境如何影响人类基因 ? 4. How Does the Brain Think and Form Memories? 大脑如何思考 , 并形成记忆 ? 5. How Many Elements Exist? 到底存在多少种元素 ? 6. Can Computers Be Made Out of Carbon? 我们能用碳元素制造出电脑吗 ? 7. How Do We Tap More Solar Energy? 如何捕获更多太阳能 ? 8 What Is the Best Way to Make Biofuels? 制造生物燃料的最佳途径是什么 ? 9. Can We Devise New Ways to Create Drugs? 我们能研制出全新类型的药物吗 ? 10. Can We Continuously Monitor Our Own Chemistry? 我们能实时监测自身的化学变化吗 ? CHEMISTRY : The 10 Unsolved Mysteries Many of the most profound scientific questions—and some of humanity’s most urgent problems—pertain to the science of atoms and molecules By Philip Ball Philip Ball has a Ph.D. in physics from the University of Bristol in England and was an editor at Nature for more than 20 years. He is the award-winning author of 15 books, including The Music Instinct: How Music Works, and Why We Can’t Do without It. 1 How Did Life Begin? the moment when the first living beings arose from inanimate matter almost four billion years ago is still shrouded in mystery. How did relatively simple molecules in the primordial broth give rise to more and more complex compounds? And how did some of those compounds begin to process energy and replicate(two of the defining characteristics of life)? At the molecular level, all of those steps are, of course, chemical reactions, which makes the question of how life beganone of chemistry.The challenge for chemists is no longer to come up with vaguely plausible scenarios,of which there are plenty. For example, researchers have speculated about minerals such as clay acting as catalysts for the formation of the first self-replicating polymers(molecules that, like DNA or proteins, are long chains of smaller units); about chemical complexity fueled by the energy of deep-sea hydrothermal vents; and about an "RNA world," in which DNA’s cousin RNA—which can act as an enzyme and catalyze reactions the way proteins do—would have been a universal molecule, before DNA and proteins appeared. No, the game is to figure out how to test these ideas in reactions coddled in the test tube. Researchers have shown, for example, that certain relatively simple chemicals can spontaneously react to form the more complex building blocks of living systems, such as amino acids and nucleotides, the basic units of DNA and RNA. In 2009 a team led by John Sutherland, now at the MRC Laboratory of Molecular Biology in Cambridge, England, was able to demonstrate the formation of nucleotides from molecules likely to have existed in the primordial broth.Other researchers have focused on the ability of some RNA strands to act as enzymes,providing evidence in support of the RNA world hypothesis. Through such steps, scientists may progressively bridge the gap from inanimate matter to selfreplicating, self-sustaining systems. Now that scientists have a better view of strange and potentially fertile environments in our solar system—the occasional flows of water on Mars, the petrochemical seas of Saturn’s moon Titan, and the cold, salty oceans that seem to lurk under the ice of Jupiter’s moons Europa and Ganymede—the origin of terrestrial life seems only a part of grander questions: Under what circumstances can life arise? And how widely can its chemical basis vary? That issue is made richer still by the discovery, over the past 16 years, of more than 500 extrasolar planets orbiting other stars—worlds of bewildering variety. These discoveries have pushed chemists to broaden their imagination about the possible chemistries of life. For instance, NASA has long pursued the view that liquid water is a prerequisite, but now scientists are not so sure. How about liquid ammonia, formamide, an oily solvent like liquid methane or supercritical hydrogen on Jupiter? And why should life restrict itself to DNA, RNA and proteins? After all, several artificial chemical systems have now been made that exhibit a kind of replication from the component parts without relying on nucleic acids. All you need, it seems, is a molecular system that can serve as a template for making a copy and then detach itself. Looking at life on Earth, says chemist Steven Benner of the Foundation for Applied Molecular Evolution in Gainesville,Fla.,“we have no way to decide whether the similarities reflect common ancestry or the needs of life universally.”But if we retreat into saying that we have to stick with what we know, he says,“we have no fun.” 2 How Do Molecules Form? molecular structures may be a mainstay of high school science classes,but the familiar picture of balls and sticks representing atoms and the bonds among them is largely a conventional fiction. The trouble is that scientists disagree on what a more accurate representation of molecules should look like. In the 1920s physicists Walter Heitler and Fritz London showed how to describe a chemical bond using the equations of then nascent quantum theory, and the great American chemist Linus Pauling proposed that bonds form when the electron orbitals of different atoms overlap in space.A competing theory by Robert Mulliken and Friedrich Hund suggested that bonds are the result of atomic orbitals merging into“molecular orbitals”that extend over more than one atom. Theoretical chemistry seemed about to become a branch of physics. Nearly 100 years later the molecularorbital picture has become the most common one, but there is still no consensus among chemists that it is always the best way to look at molecules. The reason is that this model of molecules and all others are based on simplifying assumptions and are thus approximate, partial descriptions. In reality, a molecule is a bunch of atomic nuclei in a cloud of electrons, with opposing electrostatic forces fighting a constant tug-of-war with one another, and all components constantly moving and reshuffling. Existing models of the molecule usually try to crystallize such a dynamic entity into a static one and may capture some of its salient properties but neglect others. Quantum theory is unable to supply a unique definition of chemical bonds that accords with the intuition of chemists whose daily business is to make and break them. There are now many ways of describing molecules as atoms joined by bonds. According to quantum chemist Dominik Marx of Ruhr University Bochum in Germany, pretty much all such descriptions“are useful in some cases but fail in others.” Computer simulations can now calculate the structures and properties of molecules from quantum first principles with great accuracy—as long as the number of electrons is relatively small. “Computational chemistry can be pushed to the level of utmost realism and complexity,”Marx says. As a result, computer calculations can increasingly be regarded as a kind of virtual experiment that predicts the course of a reaction. Once the reaction to be simulated involves more than a few dozen electrons, however, the calculations quickly begin to overwhelm even the most powerful supercomputer, so the challenge will be to see whether the simulations can scale up—whether, for example, complicated biomolecular processes in the cell or sophisticated materials can be modeled this way. 3 How Does the Environment Influence Our Genes? the old idea of biology was that who you are is a matter of which genes you have. It is now clear that an equally important issue is which genes you use. Like all of biology, this issue has chemistry at its core. The cells of the early embryo can develop into any tissue type. But as the embryo grows, these so-called pluripotent stem cells differentiate, acquiring specific roles (such as blood, muscle or nerve cells) that remain fixed in their progeny. The formation of the human body is a matter of chemically modifying the stem cells’ chromosomes in ways that alter the arrays of genes that are turned on and off. One of the revolutionary discoveries in research on cloning and stem cells, however, is that this modification is reversible and can be influenced by the body’s experiences. Cells do not permanently disable genes during differentiation, retaining only those they need in a “ready to work” state. Rather the genes that get switched off retain a latent ability to work—to give rise to the proteins they encode—and can be reactivated, for instance, by exposure to certain chemicals taken in from the environment. What is particularly exciting and challenging for chemists is that the control of gene activity seems to involve chemical events happening at size scales greater than those of atoms and molecules—at the so-called mesoscale—with large molecular groups and assemblies interacting. Chromatin, the mixture of DNA and proteins that makes up chromosomes, has a hierarchical structure. The double helix is wound around cylindrical particles made from proteins called histones, and this string of beads is then bundled up into higher-order structures that are poorly understood . Cells exercise great control over this packing—how and where a gene is packed into chromatin may determine whether it is active or not. Cells have specialized enzymes for reshaping chromatin structure, and these enzymes have a central role in cell differentiation. Chromatin in embryonic stem cells seems to have a much looser, open structure: as some genes fall inactive, the chromatin becomes increasingly lumpy and organized. “The chromatin seems to fix and maintain or stabilize the cells’ state,” says pathologist Bradley Bernstein of Massachusetts General Hospital. What is more, such chromatin sculpting is accompanied by chemical modification of both DNA and histones. Small molecules attached to them act as labels that tell the cellular machinery to silence genes or, conversely, free them for action. This labeling is called “epigenetic” because it does not alter the information carried by the genes themselves. The question of the extent to which mature cells can be returned to pluripotency—whether they are as good as true stem cells, which is a vital issue for their use in regenerative medicine—seems to hinge largely on how far the epigenetic marking can be reset. It is now clear that beyond the genetic code that spells out many of the cells’ key instructions, cells speak in an entirely separate chemical language of genetics—that of epigenetics. “People can have a genetic predisposition to many diseases, including cancer, but whether or not the disease manifests itself will often depend on environmental factors operating through these epigenetic pathways,” says geneticist Bryan Turner of the University of Birmingham in England. 4 How Does the Brain Think and Form Memories? the brain is a chemical computer. Interactions between the neurons that form its circuitry are mediated by molecules: specifically, neurotransmitters that pass across the synapses, the contact points where one neural cell wires up to another. This chemistry of the mind is perhaps at its most impressive in the operation of memory, in which abstract principles and concepts—a telephone number, say, or an emotional association—are imprinted in states of the neural network by sustained chemical signals. How does chemistry create a memory that is both persistent and dynamic, as well as able to recall, revise and forget? We now know parts of the answer. A cascade of biochemical processes, leading to a change in the amounts of neurotransmitter molecules in the synapse, triggers learning for habitual reflexes. But even this simple aspect of learning has short and long-term stages. Meanwhile more complex so-called declarative memory (of people, places, and so on) has a different mechanism and location in the brain, involving the activation of a protein called the NMDA receptor on certain neurons. Blocking this receptor with drugs prevents the retention of many types of declarative memory. Our everyday declarative memories are often encoded through a process called long-term potentiation, which involves NMDA receptors and is accompanied by an enlargement of the neuronal region that forms a synapse. As the synapse grows, so does the “strength” of its connection with neighbors—the voltage induced at the synaptic junction by arriving nerve impulses. The biochemistry of this process has been clarified in the past several years. It involves the formation of filaments within the neuron made from the protein actin—part of the basic scaffolding of the cell and the material that determines its size and shape. But that process can be undone during a short period before the change is consolidated if biochemical agents prevent the newly formed filaments from stabilizing. Once encoded, long-term memory for both simple and complex learning is actively maintained by switching on genes that give rise to particular proteins. It now appears that this process can involve a type of molecule called a prion. Prions are proteins that can switch between two different conformations. One of the conformations is soluble, whereas the other is insoluble and acts as a catalyst to switch other molecules like it to the insoluble state, leading these molecules to aggregate. Prions were first discovered for their role in neurodegenerative conditions such as mad cow disease, but prion mechanisms have now been found to have beneficial functions, too: the formation of a prion aggregate marks a particular synapse to retain a memory. There are still big gaps in the story of how memory works, many of which await filling with the chemical details. How, for example, is memory recalled once it has been stored? “This is a deep problem whose analysis is just beginning,” says neuroscientist and Nobel laureate Eric Kandel of Columbia University. Coming to grips with the chemistry of memory offers the enticing and controversial prospect of pharmacological enhancement. Some memory-boosting substances are already known, including sex hormones and synthetic chemicals that act on receptors for nicotine, glutamate, serotonin and other neurotransmitters. In fact, according to neurobiologist Gary Lynch of the University of California, Irvine, the complex sequence of steps leading to long-term learning and memory means that there are many potential targets for such memory drugs. 5 How Many Elements Exist? the periodic tables that adorn the walls of classrooms have to be constantly revised, because the number of elements keeps growing. Using particle accelerators to crash atomic nuclei together, scientists can create new “superheavy” elements, which have more protons and neutrons in their nuclei than do the 92 or so elements found in nature. These engorged nuclei are not very stable—they decay radioactively, often within a tiny fraction of a second. But while they exist, the new synthetic elements such as seaborgium (element 106) and hassium (element 108) are like any other insofar as they have well-defined chemical properties. In dazzling experiments, researchers have investigated some of those properties in a handful of elusive seaborgium and hassium atoms during the brief instants before they fell apart. Such studies probe not just the physical but also the conceptual limits of the periodic table: Do superheavy elements continue to display the trends and regularities in chemical behavior that make the table periodic in the first place? The answer is that some do, and some do not. In particular, such massive nuclei hold on to the atoms’ innermost electrons so tightly that the electrons move at close to the speed of light. Then the effects of special relativity increase the electrons’ mass and may play havoc with the quantum energy states on which their chemistry—and thus the table’s periodicity—depends. Because nuclei are thought to be stabilized by particular “magic numbers” of protons and neutrons, some researchers hope to find what they call the island of stability, a region a little beyond the current capabilities of element synthesis in which superheavies live longer. Yet is there any fundamental limit to their size? A simple calculation suggests that relativity prohibits electrons from being bound to nuclei of more than 137 protons. More sophisticated calculations defy that limit. “The periodic system will not end at 137; in fact, it will never end,” insists nuclear physicist Walter Greiner of the Johann Wolfgang Goethe University Frankfurt in Germany. The experimental test of that claim remains a long way off. 6 Can Computers Be Made Out of Carbon? computer chips made out of graphene—a web of carbon atoms—could potentially be faster and more powerful than silicon-based ones. The discovery of graphene garnered the 2010 Nobel Prize in Physics, but the success of this and other forms of carbon nanotechnology might ultimately depend on chemists’ ability to create structures with atomic precision. The discovery of buckyballs—hollow, cagelike molecules made entirely of carbon atoms—in 1985 was the start of something literally much bigger. Six years later tubes of carbon atoms arranged in a chicken wire–shaped, hexagonal pattern like that in the carbon sheets of graphite made their debut. Being hollow, extremely strong and stiff, and electrically conducting, these carbon nanotubes promised applications ranging from high-strength carbon composites to tiny wires and electronic devices, miniature molecular capsules, and water-filtration membranes. For all their promise, carbon nanotubes have not resulted in a lot of commercial applications. For instance, researchers have not been able to solve the problem of how to connect tubes into complicated electronic circuits. More recently, graphite has moved to center stage because of the discovery that it can be separated into individual chicken wire–like sheets, called graphene, that could supply the fabric for ultraminiaturized, cheap and robust electronic circuitry. The hope is that the computer industry can use narrow ribbons and networks of graphene, made to measure with atomic precision, to build chips with better performance than silicon-based ones. “ Graphene can be patterned so that the interconnect and placement problems of carbon nanotubes are overcome,” says carbon specialist Walt de Heer of the Georgia Institute of Technology. Methods such as etching, however, are too crude for patterning graphene circuits down to the single atom, de Heer points out, and as a result, he fears that graphene technology currently owes more to hype than hard science. Using the techniques of organic chemistry to build up graphene circuits from the bottom up—linking together “ polyaromatic” molecules containing several hexagonal carbon rings, like little fragments of a graphene sheet—might be the key to such precise atomicscale engineering and thus to unlocking the future of graphene electronics. 7 How Do We Tap More Solar Energy? with every sunrise comes a reminder that we currently tap only a pitiful fraction of the vast clean-energy resource that is the sun. The main problem is cost: the expense of conventional photovoltaic panels made of silicon still restricts their use. Yet life on Earth, almost all of which is ultimately solar-powered by photosynthesis, shows that solar cells do not have to be terribly efficient if, like leaves, they can be made abundantly and cheaply enough. “ One of the holy grails of solar-energy research is using sunlight to produce fuels,” says Devens Gust of Arizona State University. The easiest way to make fuel from solar energy is to split water to produce hydrogen and oxygen gas. Nathan S. Lewis and his collaborators at Caltech are developing an artificial leaf that would do just that using silicon nanowires. Earlier this year Daniel Nocera of the Massachusetts Institute of Technology and his co-workers unveiled a silicon-based membrane in which a cobalt-based photocatalyst does the water splitting. Nocera estimates that a gallon of water would provide enough fuel to power a home in developing countries for a day. “Our goal is to make each home its own power station,” he says. Splitting water with catalysts is still tough. “Cobalt catalysts such as the one that Nocera uses and newly discovered catalysts based on other common metals are promising,” Gust says, but no one has yet found an ideal inexpensive catalyst. “ We don’t know how the natural photosynthetic catalyst, which is based on four manganese atoms and a calcium atom, works,” Gust adds. Gust and his colleagues have been looking into making molecular assemblies for artificial photosynthesis that more closely mimic their biological inspiration, and his team has managed to synthesize some of the elements that could go into such an assembly. Still, a lot more work is needed on this front. Organic molecules such as the ones nature uses tend to break down quickly. Whereas plants continually produce new proteins to replace broken ones, artificial leaves do not (yet) have the full chemical synthesis machinery of a living cell at their disposal. 8 What Is the Best Way to Make Biofuels? instead of making fuels by capturing the rays of the sun, how about we let plants store the sun’s energy for us and then turn plant matter into fuels? Biofuels such as ethanol made from corn and biodiesel made from seeds have already found a place in the energy markets, but they threaten to displace food crops, particularly in developing countries where selling biofuels abroad can be more lucrative than feeding people at home. The numbers are daunting: meeting current oil demand would mean requisitioning huge areas of arable land. Turning food into energy, then, may not be the best approach. One answer could be to exploit other, less vital forms of biomass. The U.S. produces enough agricultural and forest residue to supply nearly a third of the annual consumption of gasoline and diesel for transportation. Converting this low-grade biomass into fuel requires breaking down hardy molecules such as lignin and cellulose, the main building blocks of plants. Chemists already know how to do that, but the existing methods tend to be too expensive, inefficient or difficult to scale up for the enormous quantities of fuel that the economy needs. One of the challenges of breaking down lignin—cracking open the carbon-oxygen bonds that link “aromatic,” or benzenetype, rings of carbon atoms—was recently met by John Hartwig and Alexey Sergeev, both at the University of Illinois. They found a nickel-based catalyst able to do it. Hartwig points out that if biomass is to supply nonfossil-fuel chemical feedstocks as well as fuels, chemists will also need to extract aromatic compounds (those having a backbone of aromatic rings) from it. Lignin is the only major potential source of such aromatics in biomass. To be practical, such conversion of biomass will, moreover, need to work with mostly solid biomass and convert it into liquid fuels for easy transportation along pipelines. Liquefaction would need to happen on-site, where the plant is harvested. One of the difficulties for catalytic conversion is the extreme impurity of the raw material—classical chemical synthesis does not usually deal with messy materials such as wood. “There’s no consensus on how all this will be done in the end,” Hartwig says. What is certain is that an awful lot of any solution lies with the chemistry, especially with finding the right catalysts. “Almost every industrial reaction on a large scale has a catalyst associated” with it, Hartwig points out. 9 Can We Devise New Ways to Create Drugs? the core business of chemistry is a practical, creative one: making molecules, a key to creating everything from new materials to new antibiotics that can outstrip the rise of resistant bacteria. In the 1990s one big hope was combinatorial chemistry, in which thousands of new molecules are made by a random assembly of building blocks and then screened to identify those that do a job well. Once hailed as the future of medicinal chemistry, “combi-chem” fell from favor because it produced little of any use. But combinatorial chemistry could enjoy a brighter second phase. It seems likely to work only if you can make a wide enough range of molecules and find good ways of picking out the minuscule amounts of successful ones. Biotechnology might help here—for example, each molecule could be linked to a DNA-based “ bar code” that both identifies it and aids its extraction. Or researchers can progressively refine the library of candidate molecules by using a kind of Darwinian evolution in the test tube. They can encode potential protein-based drug molecules in DNA and then use error-prone replication to generate new variants of the successful ones, thereby finding improvements with each round of replication and selection. Other new techniques draw on nature’s mastery at uniting molecular fragments in prescribed arrangements. Proteins, for example, have a precise sequence of amino acids because that sequence is spelled out by the genes that encode the proteins. Using this model, future chemists might program molecules to assemble autonomously. The approach has the advantage of being “green” in that it reduces the unwanted by-products typical of traditional chemical manufacturing and the associated waste of energy and materials. David Liu of Harvard University and his co-workers are pursuing this approach. They tagged the building blocks with short DNA strands that program the linker’s structure. They also created a molecule that walks along that DNA, reading its codes and sequentially attaching small molecules to the building block to make the linker—a process analogous to protein synthesis in cells. Liu’s method could be a handy way to tailor new drugs. “ Many molecular life scientists believe that macromolecules will play an increasingly central, if not dominant, role in the future of therapeutics,” Liu says. 10 Can We Continuously Monitor Our Own Chemistry? increasingly, chemists do not want to just make molecules but also to communicate with them: to make chemistry an information technology that will interface with anything from living cells to conventional computers and fiber-optic telecommunications. In part, it is an old idea: biosensors in which chemical reactions are used to report on concentrations of glucose in the blood date back to the 1960s, although only recently has their use for monitoring diabetes been cheap, portable and widespread. Chemical sensing could have countless applications—to detect contaminants in food and water at very low concentrations, for instance, or to monitor pollutants and trace gases present in the atmosphere. Faster, cheaper, more sensitive and more ubiquitous chemical sensing would yield progress in all of those areas. It is in biomedicine, though, that new kinds of chemical sensors would have the most dramatic potential. For instance, some of the products of cancer genes circulate in the bloodstream long before the condition becomes apparent to regular clinical tests. Detecting these chemicals early might make prognoses more timely and accurate. Rapid genomic profiling would enable drug regimens to be tailored to individual patients, thereby reducing risks of side effects and allowing some medicines to be used that today are hampered by their dangers to a genetic minority. Some chemists foresee continuous, unobtrusive monitoring of all manner of biochemical markers of health and disease, perhaps providing real-time information to surgeons during operations or to automated systems for delivering remedial drug treatments. This futuristic vision depends on developing chemical methods for selectively sensing particular substances and signaling about them even when the targets occur in only very low concentrations. MORE TO EXPLORE Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering. National Research Council. National Academies Press, 2003. Beyond the Bond. Philip Ball in Nature, Vol. 469, pages 26–28; January 6, 2011. Let’s Get Practical. George M. Whitesides and John Deutch in Nature, Vol. 469, pages 21–22; January 6, 2011.
个人分类: 杂论|813 次阅读|5 个评论
北大校长给力
热度 12 xcfcn 2011-10-18 13:28
北大校长给力 国际化学年,北大化学家周其凤院士作了点实事,用艺术的形式科普了化学,让化学在微博里火了一把,虽然很多人批评《 化学是你,化学是我 》的艺术水平太低,但是做事情还总是要鼓励的。 我忽然想到有不少搞化学的在中国的科研界、教育界掌舵。不完全名单如下: 周其凤 北大 侯建国 科大 白春礼 中科院 陈凯先 上海医科大学 杨玉良 复旦 朱清时 科大、南科大 杨石先 南开 卢嘉锡 中科院 唐敖庆 吉大 基金委 钱思亮 台大 中研院 邓从豪 山东大学 陈裕光 金陵大学 陈可忠 中山大学 庄长恭 台大 胡之德 兰大 吴清辉 浸会大学 张龙翔 北大 黄丽松 香港大学 陈新滋 浸会大学 何炳林 青岛大学 钱旭红 华东理工 王星拱 安徽大学 陈懿 南京大学 潘宗光 香港理工 刘兆玄 东吴大学 行政院 付贤智 福州大学 田昭武 厦门大学 李远哲 中研院 陈至立 国务委员 化学,作为中心的、创造的、实用的学科,似乎没落了。但其实很多物理问题、生物问题需要化学的视角。否则会不得其门而入。以后专门谈谈这个问题吧。
个人分类: 杂论|993 次阅读|19 个评论
“国际化学年在中国”系列活动启动
terahertz 2011-4-10 09:28
中新社消息 :2011年4月9日,“ 国际化学年在中国 ”在北京人民大会堂举行启动大会。中共中央政治局委员、国务委员刘延东出席大会并讲话。全国化学化工领域科研院所、企业代表,高校化学院系代表,社会团体代表等约730人出席启动大会 。 “国际化学年在中国”系列活动包括纪念性活动、学术性活动、科普活动和宣传活动,旨在普及化学知识,宣传化学贡献,展示中国化学化工研究成果,提高公众科学素养。2011年时值居里夫人获得 诺贝尔化学奖 100周年,也恰逢国际纯粹与应用化学联合会的前身国际化学会联盟成立100周年。2008年底,第63届联合国大会通过决议 ,将2011年定为“国际化学年”,其主题为“化学――我们的生活,我们的未来”。 2011 年 1 月 27 日上午 10 点,在 巴黎 联合国教科文组织 (UNESCO) 总部召开了国际化学年启动大会 。第二个报告是中国化学会代表 帅志刚 教授,题目是 “ 化学与文明进步:中国的实例 ” 。报告从冶金、炼丹术、中医、陶瓷、颜料、酒等多个与化学相关的方面,展现了中国在古代已经取得的辉煌成就,给参会者留下了深刻的印象。 2011 年 2 月 19 日, “ 国际化学年在中国 ” 科普活动在中国科技馆正式启动 。为了推动 “ 国际化学年在中国 ” 各项活动的有序开展,扩大 “ 国际化学年 ” 系列活动的社会影响,中国数字科技馆承担建设了 “ 国际化学年在中国 ” 官方网站( www.iyc2011.cn ),有关 “ 国际化学年在中国 ” 各项活动的信息,都可以通过国际化学年官方网站查询。 “ 触摸化学 感受魅力 ” 趣味化学实验设计大赛的报名和文案提交也通过网站进行。 作为“国际化学年在中国”系列活动的重要内容之一,由中国科学院化学部和中国化学会联合主办、中国数字科技馆协办的“2011国际化学年全国趣味化学实验设计大赛”于2011年1月份正式启动 。有关大赛详情可登录“国际化学年在中国”官方网站( http://www.iyc2011 . cn)查询。 2011年1月6日出版的《 自然 》杂志刊登专题——《国际化学年》(International Year of Chemistry)。专题说,2011年为国际化学年,为此《自然》将搜集聚焦在化学这门“中心科学”的深度新闻报道和评论,并从分子世界中找寻那些最前沿的化学研究。专题内容由社论、新闻特写、评论、推荐书籍、新闻与视角、研究进展、其他相关报道、展望8个部分组成 。 2011年3月26日,由南开大学化学学院主办的“2011国际化学年科普宣传系列活动”在该校启动。95岁高龄的中国科学院院士、南开大学化学学院教授 申泮文 还特别提出了25个选题,内容涵盖中国的稀土产业、核电工业、石油工业、光伏产业、纳米科技、天津市化工工业、绿色化学研究等 。 台湾 、香港 等地开通专门网站举行系列活动。 印尼 发邮票启动国际化学年 。 陶氏 化学公司将为“国际化学年”的各类活动提供大力支持 。式支持相关的活动。 巴斯夫 全力支持2011国际化学年 。 参考资料: http://www.cnsphoto.com/NewsPhoto/ShowNewsDetail.asp?Flag=WNID=699553 http://zqb.cyol.com/html/2011-04/10/nw.D110000zgqnb_20110410_6-02.htm?div=-1 http://www.un.org/chinese/News/fullstorynews.asp?NewsID=10965 http://www.ccs.ac.cn/news/?hid=276 http://www.ccs.ac.cn/news/?hid=282 http://www.cas.cn/spzb1/gjhxn/xgxw/201103/t20110325_3093827.html http://www.cas.cn/spzb1/gjhxn/xgxw/201103/t20110325_3093826.html http://www.nature.com/news/specials/chemistry2011/index.html http://www.tianjinwe.com/tianjin/jsbb/201103/t20110326_3485659.html http://iyc2011.tku.edu.tw/Chinese/chome.htm http://www.hkedcity.net/iyc2011/cht/Information%20Highlights.html http://indonesia.caexpo.com/jmzx_yinni/2011/04/08/3530711.html http://www.dow.com/greaterchina/ch/news/2011/20110125a.htm http://www.greater-china.basf.com/apex/GChina/GChina/zh_CN/content/BASF-China/1.5_News_Media_Relations/1.5.1_News/BASF_Supports_the_International_Year_of_Chemistry_2011
个人分类: 化学化工|2268 次阅读|0 个评论
[转载]2011化学年
jitaowang 2011-3-19 20:36
•背景 提出2011国际化学年最早是在2006年4月IUPAC执委会上。由此而成立的筹备组是完成通过联合国教科文(UNESCO)来实行国际化学年的策划。项目由IUPAC教育委员会领导并与2008年4月完成,推动UNESCO批准将2011年作为化学年的提案。 •IUPAC的作用 在2007年8月的IUPAC大会上,IUPAC大会批准向联合国提出2011国际化学年的提议。IUPAC邀请所有成员国学会协助达到这一目的。中国化学会积极支持这一提议。中国化学会在申办过程中,发挥了积极作用,白春礼理事长与联合国教科文中国委员会领导联系,中国化学会写信给联合国教科文中国委员会和中国常驻联合国教科文代表团写信呼吁,积极推动此事。 •UNESCO的支持 紧接着IUPAC大会的批准,埃塞俄比亚化学会与非洲化学学会联合会一起通过埃塞俄比亚向UNESCO提出议案。2008年4月,议案在UNESCO执委会上提出,获得包括中国在内的25个成员国的支持。 •UN 发布 2008年12月30日联合国第63届大会通过议案,将2011年作为联合国国际化学年。联合国教科文组织指出,化学对于人类认识世界和宇宙来说必不可少。2011年“国际化学年”纪念活动将彰显化学对于知识进步、环境保护和经济发展的重要贡献。 教科文组织总干事松浦晃一郎表示,化学是一门基础学科,在人类面临可持续发展的挑战之际,提高公众对于化学的认识尤其具有重要意义。化学在开发可替代能源、养活全世界日益增多的人口方面将起到主要作用,这一点是毫无疑问的。 国际纯粹与应用化学联合会表示,“国际化学年”将在全球范围内对化学科学起到促进作用。国际化联希望活动能够增加公众对于化学的欣赏和了解,提高年轻人对于科学的兴趣,培养对于化学未来发展的热情。 2011年正值国际纯粹与应用化学联合会的前身国际化学会联盟(IACS)成立100周年,也适逢女科学家居里夫人获得诺贝尔化学奖100周年 •目前已定活动 2010年12月15-20日 夏威夷 Pacifichem 大会已纳入庆祝活动。 2011年1月27-28日 巴黎UNESCO总部UNESCO和IUPAC共同举办活动开始庆典(主题:Chemistry - our life, our future) 2011年7月30-8月7日 波多黎各圣胡安 IUPAC 43rd 世界化学大会(主题:Chemistry Bridging Innovation among the Americas and the World) •已决定出席诺奖获得者有: Aaron Ciechanover (2004 Nobel Laureate in Chemistry) Robert Grubbs (2005 Nobel) Roald Hoffmann (1981 Nobel) Richard Ernst (1991 Nobel) Mario Molina (1995 Nobel) 2011年12月 布鲁塞尔 活动结束庆典 汇总的国外有关化学年的创意 对从小学到大学的学生进行化学宣传。 组织公众到工业区参观,包括制造、化学品生产和炼油厂。 通过报刊、电视广播等对公众进行化学对全球经济的贡献的科普。 主办展览,宣传化学的作用和魅力。 组织解决问题的项目,通过项目,学生可以利用他们的知识解决问题。 科普宣传化学在改善生活特别是最近的发展所作的贡献, 举办职业培训,让化学工作者告诉参加者她们在工作中如何使用化学。 组织手把手活动,帮助参与者增加了解在化学相关领域是什么样的。 与政府领导互动,强调化学企业的重要性。 化学大篷车 装有微型实验室的54呎长的“化学卡车”可满足60,000名孩子动手做实验。这是德国化学会2003年化学年组织的活动。在一年的时间里,卡车107天经过60个城镇。 绘画 2006年,韩国化学会组织900名小学生举行墙报绘画比赛,激励学生去思考化学的作用和化学家的影响。同时,韩国化学会还组织“移动化学博物馆”,向公众科普。 西班牙年 2007年, 西班牙科技年。正值门捷列夫逝世100年,利用这一时机,化学得到宣传。1)出纪念邮票 2)元素周期表设计比赛 根据个人的理解设计元素周期表。3)关于门捷列夫生活的喜剧剧本征稿 征集了来自多国的24个剧本。 青年大使 IUPAC教育委员会的一个项目,旨在通过年轻人作为媒介,利用科普让公众熟悉化学,加强化学与社会的联系。 分享安全 这是IUPAC和UNESCO合作开展的安全培训项目,从一线来的安全专家提高公众对安全经验和了解发达国家环境保护的做法。包括中国在内的许多国家已受到培训。 微量化学 这个项目引导老师、环保检查者、教育系统的官员认识到微量化学的优点。项目采取培训班方式。 气候变化科学 最进IUPAC开发了一系列关于互动的,基于网络的材料,帮助学生直观的了解气候变化。 开放日 欧洲化学工业提供了一系列的“开放日”帮助公众了解化学工业。 http://www.ccs.ac.cn/news/?hid=60
个人分类: 化学杂谈|2051 次阅读|0 个评论
中国第一个化学博士:赵承嘏
热度 5 xcfcn 2011-3-7 11:20
中国第一个化学博士:赵承嘏 据说中国第一个物理博士是 李耀邦 (1884-1940),于1914年在芝加哥大学获得PhD,是密立根(Robert Andews Millikan 1868-1953)的学生,密同学测得的电荷大小就有李博士的功劳。但是最近又“出土”了一个物理博士,是 李复几 (1881-1947),1901年毕业于南洋公学中院,1906年进入波恩皇家大学师从凯瑟尔(H.Kayser,1853-1940)从事光谱学研究,于1907年获博士学位 。 (真是神速啊!) 可惜他老先生没有在物理史上留下什么足迹,而且晚景悲惨。当然李耀邦后来也转宗教去了。 应国际化学年的景,我查诸郭保章的《中国现代化学史略》以及1948年中央研究院院士和1955年中国科学院学部委员名单。发现最早获得化学博士学位的是上海药物所的第一任所长赵承嘏(1885-1966)先生。赵于1910年获曼彻斯特大学学士学位,1912年获瑞士工业学院硕士学位,1914年获瑞士日内瓦大学博士学位 。 (学历真是完整啊。) 而且他不是庚子赔款出去的,而是考取江苏省官费留学生考试出去的。出去的时候已经是秀才了。不过到了英国还是补习了一年中学的课程才上大学。 他是1955年的学部委员,1948年的化学科院士都比他晚获得博士学位,名单如下: 吴宪(1893-1959)1919 Harvard PhD 吴学周(1902-1983)1931 CalTech PhD 庄长恭 (1894-1962) 1924 Chicago PhD 曾昭抡 (1899-1967) 1926 MIT PhD 侯德榜 (1890-1974) 1921 Columbia PhD 当然我是玩票的,而且对中国化学史知之甚少。希望专家指正。 参考文献: 1、欧七斤:略述中国第一位物理学博士李复几,中国科技史杂志28(2): 105-113,2007; 2、郭保章:中国现代化学史略 忆上海药物所老所长赵承嘏教授 2009年09月23日11:18:35  来源:新华网 作者:中国科学院院士,中科院上海药物所原所长高怡生 赵承嘏(1885.12.11—1966.08.06),男,中国科学院院士(学部委员)、化学家,江苏江阴人。1910年获曼彻斯特大学学士学位,1912年获瑞士工业学院硕士学位,1914年获瑞士日内瓦大学博士学位。上海药物研究所创始人、第一任所长。中国进行中草药研究的先驱者,在生物碱的分离结晶方向有独到之处。分离所得的延胡索素乙已正式列入药典,在临床上作为镇痛镇静剂使用;分离所得常山碱丙素,具有高出奎宁148倍的抗疟活性;所分离的钩吻素乙,可作为生理实验试剂等。曾系统研究了雷公藤等30多种中草药化学成份,得到了许多新生物碱结晶,其中部分推荐临床使用。建立了一套系统研究整理祖国医药的科学方法,还曾解决了青霉素钾盐结晶的方法,使青霉素得以顺利投产。指导设计试验了一套局麻药普鲁卡因的合成工艺。为发掘和提高祖国的医药学实业作出了卓越的贡献。 我与赵老相识在1940年初,当时我随有机化学家庄长恭先生加入北平研究院药物研究所工作。但早在1939年我们已知其大名,因为庄常提到他研究中药的工作。1945至48年我在他的领导下进行过常山抗疟生物碱研究。直至1966年他去世我们相处二十余年,对他的道德学问略知一二,兹简略介绍如下: 赵承嘏,字石民,江苏省江阴县人,生于1885年阴历11月6日,即阳历12月11日。家庭出身为生药铺主,这对他以后对中药研究有兴趣不无影响。但赵本人则自幼努力读经史之义,并曾在清末考取秀才,故一生古文、书法均相当出色。由于当时提倡新学,他随机补习外文,后竞能于二十岁左右考取江苏省官费留学生考试。由于他在国内无中学基础,赴英之初入英国中学学习,一年以后才入英国曼彻斯特大学,对化学有兴趣。当时该校有机化学教授为柏尔金(William Perkin),是英国有机化学的先驱者,赵得其教诲不少。据说当时罗滨生(Robert Robinson,后为诺贝尔奖获得者,亦为我的教授)教授也在此校学习。 1910年他以优异成绩毕业,当时能获得英国大学学位的中国人是寥寥无几的。他的英文水平很高,基础即是在英国奠定的。毕业后他继续在曼彻斯特大学攻读硕士学位,1912年毕业后转入瑞士日内瓦大学,在当时著名的天然有机化学家匹克特(A. Pictet)教授指导下读博士学位,1914年读完。其研究工作得到校方好评,并留校任助教工作。1916年,受聘于法国罗克药厂研究部任职,计7年,最后升为研究部主任,并在法成婚,生有一女,因此他法语也非常熟。 1923年他只身离法回国,他认为中国人的事业应在国内发展,实际上那时留学生很少留在国外不归的,因为国内人才奇缺,凡留学生学成归来一般均任以高官职或教授,故他回国后即到当时东南有名的大学东南大学任化学教授,教工业化学,吴学周、柳大纲、朱任宏等均上过他的课。1925年到北平协和医学院任药理系教授,他的中药研究即在此校开始,与里得(Read)教授合作。几年之间做出不少工作,大多均登载于该校主编的中国生理学杂志上。在校并讲授药物化学课,周金黄教授在那时上过他的课。他应用的一套提取中药化学成分的方法,是当时英、瑞士等国的经典操作,也是以后国内不少同行向他学习的。 1932年国内成立了两个研究院,在南方的国立中央研究院以国民党元老蔡元培先生为首;另一个是国立北平研究院以国民党元老李石曾先生为首。两院均在网罗人才,赵受李石曾的邀请,创立了国立北平研究院药物研究所。经费则由北平研究院和中法大学共同提供,每年只数千元。故当时的药物所实际上是一个合办的研究所。现在我们还能看到早期药物所的藏书盖有中法大学和北研的图章。其本人薪金也系庚款支付。不久所址由北平迁来上海,初在中法药专借地工作,实验室局促。以后才迁入福开森路(即现在武康路)395号新址。此屋系通过李石曾的关系由北洋军阀时代的交通部长叶公绰所捐赠的私人住宅,那时与北研镭学所共有。当时工作人员甚少,赵兼所长、研究员,另有朱任宏、梅斌夫先生为助研,余为练习生与工友。以后梁普先生、朱子清先生被邀来所。至1942年庄长恭先生来参加为客座研究员(庄的薪水由中华基金支付),我也随庄来所为助理研究员。 在药物所新建时一切条件要从零开始,创业艰难,赵老以有限经费精打细算逐步建立起实验室。他亲自设计,从长远出发,如实验台、药品柜、书橱等均以上等柚木为材料,请高级木工制造,经久耐用,至今仍有保存者。实验台面不用国外常用的苯胺黑而是以国产中国漆涂漆,美观耐用,以后为中央研究院化学所采用。直到现在我所及其它化学实验室仍沿用此漆,外宾来参观也认为是中国特色。 同时他将有限款项逐年购进几种有名的对工作中不可少的国外期刊过期本并设法补全,如美国化学文摘、德国化学文摘以及英、德、美等国的化学期刊在我所均存有全套。所以庄和我来所时已有基本的研究条件了。这些都说明赵老办科研的坚强事业心。 1942年太平洋战争爆发,所谓的租界沦陷,药物所不得不停工。但那时所的全部设备已无法内运,日人与汪伪均曾要接收此所,后经赵老与法人工部局联系(因法国贝当政府已投降)才将所的财产保存下来。此期他与私人药厂合作勉强维持。直至1945年抗战胜利,又顺利地恢复了工作。 关于赵老与庄长恭先生之关系:庄本为东北大学化学系主任,九•一八后到南京中央大学担任化学院长兼有机化学教授,他也是当时重视科学研究者,对赵的中药研究工作颇敬佩,故在庄以后任中央研究院化学研究所所长时,由他提议邀请赵为中央研究院化学研究所评议员(相当于院士),是一个很高的荣誉职,全国化学界只有四人,除庄、赵外尚有候德榜与吴宪二人。故以后庄赵私交甚厚,在学术上也是知心人。 从1945年到1949年解放,这四年是动乱不定之期,1948年我去英进修,国内所中只有三、四人勉撑场面,至解放时只有翁尊尧、王友梅及一位看门工友。 1950年两院均由中国科学院接收。由于药物所人员太少暂并入中科院有机化学研究所成立一药物化学研究室,他一时虽无可奈何,内心是鼎力想恢复原组织的。50年我回所,他开始想把药物所办成一个真正能出药的机构,对人民有所贡献。故除化学人才外设法聘请药理学家来参加工作。丁光生先生即是他通过丁绪贤老先生把他从美国邀请回国的。现在那一封赵亲笔写的邀请信仍保存着,从信中可以看出他为国家药学事业的关怀心情,他说:“我虽老矣(65岁),但希望年轻一代有为者能接上班,为我国药学事业有朝一日大放光彩”。所以之后他在任时邀请了不少年青者来所工作,蔡润生先生不久来所建立了抗生素组,谢毓元同志也是通过张青莲先生从清华大学邀请来的。到了1953年加上当时的药学筹备处的几位人员数已超过三十人。院部正式批准成立中国科学院药物研究所,武康路综合部大楼归药物所外并增加所址隔邻的世界社大楼及岳阳路一部分实验室。1958年迁入现址,武康路所址则由赵老自己使用。因此药物所发展到今天的规模,包括化学与生物学两大学科的研究机构,并以研究天然药物为重点,不能不归功于赵老的远大设想与努力。当然这些成就若没有党的领导和社会主义制度的优越性,他的设想也是不能实现的。 赵老除担任所长外,也是所的学术委员会主任。1955年当选为第一届中国科学院数理化学部委员,并受到党和人民给予的荣誉担任第一、二、三届全国人民代表大会代表。 关于赵老的为人大家都觉得他是一位严肃、严格、严谨的典型学者。他生活俭朴,虽高薪,家庭组成简单。你到他家去看时,其卧室只是简单的床铺与一些旧家具而已,对其继室所生之子、赵体平课教甚严,以后能朴实无华,努力上进颇具父风。赵老很少饮酒,只抽一些名牌香烟为乐。每日按时上班亲自动手作实验,直至临终之日上午仍在实验室转了一转。1966年8月6日在上海家中无疾而终,享年81岁。 在实验方面他从不浪费玻璃器皿与药品。乙醚及其它溶剂均有回收瓶储藏、精制后再用。当时这些试剂器皿均需从国外进口,所以工作人员均非常珍视它们,不轻易打碎一件玻璃器皿,不轻易浪费一点试剂,否则你就工作不了。设计题目首先就以考虑条件来源,而且要求每个人员每年都能发表论文,所以是非常紧张的,不然下一年经费就有问题,工作人员还得考虑下一年度的聘书问题。现在我们是很幸福的,工作条件就连国外来参观者也感到相当不错了。从旧社会来的人更有明显的比较。所以希望老一辈留给我们的好作风能得到发扬光大。 zhuanyuan 2017-5-1 10:41 据我考证,温宗禹(Ching–yu Wen,1919年以工科学长身份代理过北京大学校务)1911年以论文The effect of organic and inorganic ''addition–agents'' upon the electro–deposition of copper from electrolytes containing arsenic获美国哥伦比亚大学化学PhD,比赵承嘏还要早3年。
个人分类: 化学历史|5887 次阅读|4 个评论
化学形象代言人(1):George Pimentel
热度 8 xcfcn 2011-2-22 15:36
化学形象代言人(1): George C. Pimentel 博主按:据说化学已经臭大街了,化学品在大众尤其是所谓营养学家眼里直接就等同于毒品(chemical=drug?)。或许化学这门曾经的“中心的、创造的、实用的”学科( ACS前会长Ronald Breslow语 )现在到需要拯救的时候了,于是“国际化学年”恰逢其时的出现了。或许媒体的宣传能改观大众对化学恶劣的负面印象? 但是现在公关宣传时兴搞“形象代言人”,而我们化学界又有谁能有资格充当“化学形象代言人”的角色呢?我的“化学形象代言人”的系列博文试着提出我心目中的候选人。 化学激光的发现者、伯克利教授、ACS的前会长George.Pimentel是我读硕士时老板杨学锋的博士后老板。杨是他狂热的崇拜者,我现在还清晰记得在组会上杨向我们介绍老P时的激动和激情。 老p同学虽然在基质隔离技术、自由基(HCO/KrF2)、化学激光、氢键、选键化学、火星生命等领域有突出贡献。但是其实他一直在搞的莫过就是 红外/振动光谱 而已。 Biography of George C. Pimentel (The Journal of Physical Chemistry, Vol. 95, No. 7, 1991, 2607) George Pimentel devoted his unbounded energy and passion to science, to his students and colleagues, to his family, and to an occasional ball game. George was born 2 May 1922 in California’s Central Valley. He grew up in a poor section of Los Angeles, attended public schools, and earned a bachelor’s degree in chemistry from the University of California, Los Angeles, in 1943. Following a short stint at Berkeley working on the Manhattan Project, George trained for submarine duty in the Navy. At the close of the war he participated in the formation of the Office of Naval Research and in early consideration of nuclear-powered ships. In 1946 George returned to Berkeley to do graduate work with Kenneth Pitzer on infrared spectroscopy. Three years later he had earned his Ph.D. in chemistry and joined the faculty. During his career George developed methods of vibrational spectroscopy to study molecular bonding and chemical reactivity, to produce the first chemical lasers, and to explore the planet Mars. George attacked the important problems. During the 1950s he developed the matrix-isolation technique to trap free radicals and other reactive species that play a central role in chemical reactions. A solid matrix of inert gas molecules, cooled to the temperature of liquid hydrogen, prevented a free radical embedded inside it from reacting, thus allowing leisurely spectroscopic study of the radical. This method was used first to record spectra of molecular species involving the hydrogen-bonding interaction, which is central to molecular biology. With Aubrey McClellan, George wrote The Hydrogen Bond (1960), the classic book on hydrogen bonding that guided the field for many years. The matrix technique was employed to investigate the HCO free radical, an important intermediate in combustion processes, and later to study rare gas compounds like KrF2, which was discovered in George’s laboratory. Many other interesting new chemical species were produced for infrared spectroscopic characterization using photochemical, metal reaction, and microwave discharge techniques. Matrix-isolation spectroscopy is now employed routinely in chemical laboratories around the world for a wide range of analytical, synthetic, and physical chemical studies. George opened the field of infrared photochemistry in 1960 by showing that cis - trans isomerization could be caused by excitation of specific vibrational transitions of cis-HONO in a matrix. This was the first chemical transformation induced by infrared photons. Later, a similar study was conducted on the light-induced matrix isomerization of unstable forms of N2O3. The much-sought mode-selective excitation of bimolecular chemical reactions has proven to be elusive under normal reaction conditions. George recognized the possibility that cryogenic matrix conditions might provide an environment in which this exciting goal could be demonstrated. A number of bimolecular reactions have now been studied in solid inert gas matrices with tuned-laser, hence vibrationally selective, excitation of one of the reactants. Distinct evidence for mode-specific influence on the quantum yield has been found for reactions such as F2 + C2H4. In the mid- 1960s George’s studies of fast reactions unlocked the secret to converting chemical energy directly into laser light. While searching for the CF3 spectrum he and Jerry Kasper first discovered the iodine-atom photodissociation laser, CF3I + hn → CF3 + I(2P1/2), which lased on the 2P1/2 → 2P3/2 transition. Atomic iodine became a spectacular laser system that was developed into a candidate laser fusion source in its pulsed mode. Atomic iodine has also been scaled into a high-energy laser, with powers in excess of 100 kW, in its continuous wave (CW) mode in which atomic iodine is pumped into its upper spin-orbit fine structure level by energy transfer from singlet oxygen. During the period 1964-1970, many other types of chemical lasers were discovered in George Pimentel’s laboratory: the hydrogen/chlorine (H2/Cl2) chain-reaction chemical laser: C12 + hv → 2C1 C1+ H2→ HCI + H H + C12 → HCl*(n≤6) + C1 the atomic fluorine/molecular hydrogen (F/H,) bimolecular reaction chemical laser: UF6 + hn →F + UFS F + H2 → HF* (n≤3) + H H + F2 → HF* (n≤6)+ F the l,l,1-trifluoroethane (CF3CH3) unimolecular reaction chemical laser: CF3I + hn → CF3 + I CH3I + hn → CH3 + I CF3 + CH3 → CF3CH3* + HF*(n≤3) + CF2CH2 the 1,l-difluoroethylene (CF2=CH2) photochemical laser: CF2=CH2 + hv → HF*(n≤4) + FC≡CH All of these molecular chemical lasers operate in the infrared spectral region on vibration-rotation transitions of vibrationally excited (t) hydrogen halides (and corresponding deuterium halides) “born” in excited states by the process of breaking and making chemical bonds. The diversity of reaction types used to produce chemical laser action was due to George’s creativity and to his ability to stimulate creative efforts by his students and postdoctoral fellows. George and his students also greatly enjoyed developing techniques to measure the energy contents of chemical laser species quantitatively and to understand the intimate details of chemical reaction dynamics that generate characteristic energy distributions in chemical reaction products. During the period 1970-1990, George Pimentel and his group extended chemical laser studies to include operation on overtone (n= 2) vibrational transitions, on pure rotational transitions, and on many other products of chemical reactions. Nearly a hundred elementary chemical reactions that yielded chemical lasers were studied in George’s laboratory. In addition to the impact of the fundamental work on chemical reaction (and relaxation) dynamics that chemical lasers provided, chemical lasers have proven to be useful sources for applications in defense and medicine. The HF and DF chemical lasers have been engineered into the world‘s most powerful high-energy lasers, with megawatt class CW powers. Pulsed HF chemical lasers have also proven to be highly useful for controlled microsurgical removal of tissue. George wanted to know whether there was life on Mars, and so with Ken Herr he persuaded NASA to put one of his rapid-scan infrared spectrometers on a Mariner spacecraft to determine the Chemical constituents of the Martian surface. His instrument was novel and clever, built from scratch on the Berkeley campus to NASA space-flight standard. No evidence for biological material was observed, but much was learned about the planet’s surface and atmosphere. George was chosen as a member of the first group of scientist-astronauts, but he withdrew when he learned that he would probably never get into space. In addition to his legacy of research articles and textbooks, George Pimentel bequeathed his style of doing and enjoying chemistry to thousands of students and colleagues. He was a perfect friend, mentor, and role model. He excelled at selecting and achieving important goals and at motivating his coworkers to do significant work. George Pimentel was strongly intuitive in his research approach and was a great believer in the ability of the individual marcher to devise and perform key experiments needed to advance knowledge markedly. George was fond of pointing out that chemistry is an experimental science and he directed his talents toward conceiving and executing superb experiments that were often the first of their kind. Discoveries and first-generation work were George’s natural domain. George was a national leader in science and science policy. He served as deputy director of the National Science Foundation from 1977 to 1980 and as president of the American Chemical Society in 1986. He organized and edited the National Academy of Sciences report Opportunities in Chemistry, often called the “Pimentel Report”, which was published in 1985 and later revised and released for use in high schools under the title Opportunities in Chemistry: Today and Tomorrow. In George’s final lecture, his Priestley Medal Address, he urged members of the scientific community to mount a massive and ongoing campaign of public education”, so that our society can sensibly weigh the risks and benefits of science and technology. George loved to teach. He brought the significance of chemistry and the excitement of research to Berkeley freshmen, to his research students and collaborators, to national leaders, and, through the CHEM study program, to secondary school teachers and students. He helped each of his research students attain a level of achievement well beyond reasonable expectations. Whether he was in the halls of Congress, in the classroom, or eating a peanut butter sandwich, George’s clear logic, his openness and candor, and his concern for others always won his audience. George Pimentel did everything with tremendous vigor, intensity, commitment, and, above all, desire to succeed. Squash partners and opposing softball teams quickly found this out. George’s idea of relaxation was winning a ball game, mixing concrete, or having a hundred friends over for a party. George Pimentel chose his own epitaph, which is more than an epitaph; it is a description of the man. He went to the ballpark every day And he let them know he came to play W. Lester S. Andrews Bruce S. Ault Michael J. Berry C. Bradley Moore 以Pimentel大师为榜样,做一名合格的博士生导师 杨学锋(大连理工大学教授) Pimentel教授是我一生中近距离接触过的国内外人群中,唯一一位可以用“伟大”来形容的人。 自上世纪六十年代中读研究生以来,我有幸先后在国内外与四位后来成为中科院学部委员及院士的中国学者、两位英国皇家学会院士(FRS)及两位美国科学院院士(其中一位是诺贝尔奖获得者)在一个小组较长期工作过,他们每人都有自己的治学特点,但在全面教书育人方面给我留下最深印象的是Pimentel大师。 George Pimentel(1922-1989)是加州大学伯克利化学系(该系近几十年来化学博士教育一直排名全美第一)教授,化学激光技术和基质隔离光谱技术的发明人,一生中获得过除诺贝尔奖以外的各种最重要的化学大奖。在教学方面他晚年在伯克利主讲最有声望教授方可 担纲的大一新生化学,并曾亲自为全美高中化学实验录制教学演示片。在社会服务方面,他在五十几岁时曾任一届美国家科学基金会(NSF)兼职副主席并荣膺金质服务奖章;六十几岁时曾任一届美国 最大的专业学会—美国化学会(ACS)的会长;八十年代初,他曾领导四百余位美国化学家编写了数百页的“Opportunity in Chemistry(化学中的机遇)”化学学科发展展望报告, 以后美化学史上称此书 为“Pimentel Report ”。他67岁去世时,被誉为“当代最伟大的化学家之一和美国最伟大的化学教育家”,美化学会并以他的名字命名新设立的“化学教育奖”。1982年初至1985年底,我曾两次以访问学者身份在他的实验室工作,依据我与他长达近三年的的亲身接触,我将Pimentel大师在培养博士生方面的经验归纳为五个方面。 一、坚持正面教育,最大限度调动研究生的主观能动性 我当时所在的Pimentel小组中,近十位美国研究生的能力、努力程度等都有相当大差别,我知道Pimentel教授对个别学生也感到相当头痛,但他总是对每一个学生和颜悦色、一视同仁,耐心启发后进者的积极性。我那时算是非常努力的一个,每做出一点成绩,他总 是多次给予最大限度的称赞,如:“Marvelous! (真是神奇)”,“We are proud of you! (我们为你而骄傲)”,“You are a hero of our work! (你是我们工作的英雄)”等。这些话虽已过去二十多年,但仍经常在我耳边响起,成为激励我不断向上的一种动力。 二、开展Pimentel式的研讨型小组学术活动 那三年中开学期间,只要Pimentel教授不出差,每周四晚上全组都会举行小组学术活动,大家轮流主讲,气氛极其随便,通常是边讲、边吃、边喝、边讨论,还夹杂了不少玩笑,而且往往是不等主讲人讲几句,就会被打断进行长时间你一言我一语的讨论。我大约每5个月 讲一次,每次只准备讲40分钟,但边讲边讨论总会延续大约两个小时。Pimentel教授总是问题问得最多也回答得最多,同时他也不断启发在场每一个人最大限度地参加到讨论中来。讨论既涉及有专业深度的问题,也包括非常基础的理化知识。应当说,那三年中从小组学术活动所得到的知识是令人终生难忘的。 三、精益求精撰写每一篇自己以通信作者署名的研究论文 Pimentel教授一生发表了一百余篇研究论文,极其难能可贵的是,每一篇他作为通信作者的论文中的每一句话都是由他反复推敲写成。1983年底,在我日以继夜地工作了近两年之后,他告诉我可以着手写一篇论文了,他先让我写一份非常详细的论文大纲,然后他与我认真讨论并亲笔进行仔细修改(他修改的这份大纲我一直保存了十余年不舍得丢掉)。当我把写了一个月的初稿交给他后,他又用了两个月时间反复加工,这期间又不断就一些实验结果与我反复讨论以提升认识,当他把他写完的秘书打印稿(当时美国的计算机打印也刚刚出现)返给我时,我发现,正像周围研究生事先告诉我的,我写的话他一句也未用,除了实验数据外完全是他另起炉灶,而这是Pimentel教授的一贯写作传统。对他的第一稿,我一口气从科学观点到英文修辞又写了二十多条书面意见,他不但不生气,反倒十分高兴,甚至一再表示感谢。后来我们又不知讨论了多少次才将这篇论文投出,这也是我与Pimentel教授合作发表的唯一一篇论文。这时候的Pimentel教授有多忙?他刚从美国家科学基金会任副主席回到伯克利并仍身兼数职,有三位秘书为其服务。他此时每年平均出国五、六次,每月经常还要去华盛顿和国内他处开会数次,在如此繁重的工作压力下,Pimentel教授仍如此亲自动手撰写每一篇学术论文,他无疑是我一生中见到的对研究论文最为严肃认真的科学家。 四、严把博士生出口质量关 伯克利化学系的每位教师从助教授(即讲师)到副教授都经过严格的选拔和淘汰(淘汰率超过50%),因此几乎每位教授在四十岁左右都会成为自己所在领域国际上的佼佼者。伯克利化学系的博士生毕业既无发表论文要求,也没有任何答辩手续,一般是学位论文经导师修改打印后,导师一签名另两位系内教授看也不看跟着签名就算获得学位。因此,伯克利化学系实行的是最彻底的博士生培养质量导师完全负责制。就在这种导师对学生毕业与否持有绝对权利的情况下,我在伯克利的那几年中,Pimentel的学生(全部是硕博连读)平均是5-6年毕业,最快的一个三年就毕业了, 但有两位我很熟悉的学生都呆到了第八年才毕业,而且到毕业时一篇论文也未能发表。Pimentel教授依据每人不同情况严把博士生出口质量关的认真程度可见一斑。 五、用自己的高尚人格对学生言传身教 Pimentel教授身上有诸多优秀品格, 最突出之一是他的平等待人。在全系举行学术活动时,他不象大多数教授那样坐在第一排,而是永远坐在学生中间,但同时他又是会场上提问最多的教授之一。他把自己的小组当成一个临时大家庭,大约每四个月邀请大家到他家里举行一次“Party”, 这时候他会和年轻人一起唱歌、跳舞、游泳等,并非常周到地与每位与会者个别交谈。对我这个来自发展中国家、但勤奋工作并有独立见解的人,他不但没有丝毫歧视,反倒因为我的努力往往给予特别的礼遇。记得在我离开伯克利时,他不仅在家里举行了有几人共享的迎送“Party”, 而且还破例在小组学术活动时,亲自购买了葡萄酒,专门为我致欢送词并要我发表即席告别演说。他主张东西方文化的融合,在他的办公室里,他的座位左边插着一幅巨大的美国国旗,座位顶上竟是一幅硕大的列宁像,表明了他不简单地拘泥于东西方意识形态冲突的一种政治态度。总之,Pimentel教授是我一生中近距离接触过的国内外人群中,唯一一位可以用“伟大”来形容的人。 在我1995年成为博士生导师后,我也时时注意效仿Pimentel教授,做好研究生培养工作。如,多年来我们坚持每周举行一次 “Pimentel式”的小组学术活动,每次有两名学生主讲(每人准备约半小时讲稿),但每次边讲边讨论总会持续约三个小时。在自己动手撰写论文方面,我每年集中精力写好2-3篇自己作为通信作者的英文论文,认真琢磨每一个实验素材和每一句话,并与学生反复讨论修改数月后尽可能投给国外本学科较高SCI影响因子的杂志。在为人师表方面,考虑到我从学校得到的待遇相对高一点,自1994年到大工以来,我一直把带研究生酬金、研究基金提成的个人份额、市优秀专家及校论文奖励、出国期间的国内工资、津贴全部提供实验室公用。诚然,无论在学识、学术成就和做人等方面要达到Pimentel大师那样的高度对我而言是完全不可能的,但我仍然决心以他为榜样,在十分有限的为学校和学生服务的年限内,努力做一名合格的博士生导师。 此文发表于《大连理工大学学报》
个人分类: 化学历史|3033 次阅读|7 个评论
2011国际化学年:Taylor & Francis推出Chemistry Arena
zhengyongjun 2011-1-8 22:40
2011国际化学年:Taylor & Francis推出Chemistry Arena
早晨打开邮箱,收到一封来自Taylor Francis的邮件。Taylor Francis 是国际知名的学术出版商,每年出版期刊近1000种,图书近1800册。今年是国际化学年,Taylor Francis 积极参与2011国际化学年活动,这封信就是他们向化学工作者投放的宣传材料吧。感兴趣的朋友可以登录他们的网站,查阅他们出版的期刊文献。 Dear Mr. ZHENG 2011 is an exciting year at Taylor Francis, not only are we launching our New Chemistry Arena but we also have monthly and weekly promotions planned in celebration of the International Year of Chemistry! To start the special year off in style is Chemistry Craziness…We’re giving you free access to all current and back content of our Chemistry Journals until 31st January! All the journals in the promotion are listed below, click on the links to take you to the Journal's online contents. Analytical Letters Applied Spectroscopy Reviews Catalysis Reviews Chemical Engineering Communications Chemistry and Ecology Combustion Science and Technology Comments on Inorganic Chemistry Critical Reviews in Analytical Chemistry Crystallography Reviews Drying Technology Environmental Forensics Fullerenes, Nanotubes and Carbon Structures Green Chemistry letters and Reviews High Pressure Research Instrumentation Science and Technology International Journal of Environmental Analytical Chemistry International Journal of Green Nanotechnology International Journal of Green Nanotechnology: Biomedicine International Journal of Green Nanotechnology: Physics Chemistry International Journal of Polymer Analysis and Characterization International Journal of Polymeric Materials International Journal of Smart and Nano Materials International Reviews in Physical Chemistry Isotopes in Environmental and Health Studies Journal of Adhesion Journal of Asian Natural Product Research Journal of Carbohydrate Chemistry Journal of Coordination Chemistry Journal of Dispersion Science and Technology Journal of Energetic Materials Journal of Experimental Nanoscience Journal of Immunoassay and Immunochemistry Journal of Liquid Chromatography and Related Techniques Journal of Macromolecular Science, Part A: Pure and Applied Chemistry Journal of Plant Interactions Journal of Sulfur Chemistry Journal of Wood Chemistry and Technology Liquid Crystals Liquid Crystals Today Molecular Crystals and Liquid Crystals Molecular Physics Molecular Simulation Natural Products Research Nucleosides, Nucleotides and Nucleic Acids Organic Preparations and Procedures International Ozone: Science Engineering Phase Transitions Phosphorus, Sulfur, and Silicon and the Related Elements Physics and Chemistry of Liquids Polycyclic Aromatic Compounds Polymer Reviews Polymer-Plastics Technology and Engineering Preparative Biochemistry and Biotechnology SAR QSAR in Environmental Research Separation and Purification Reviews Separation Science and Technology Soft Materials Solvent Extraction and Ion Exchange Spectroscopy Letters Supramolecular Chemistry Synthesis and Reactivity in Inorganic Metal-Organic, and Nano-Metal Chemistry Synthetic Communications Toxicological and Environmental Chemistry Transaction of the Royal Society of South Africa From the individual journal homepages you will also be able to subscribe to the journal or download a library recommendation form . Taylor Francis Launches New Chemistry Arena! Visit our NEW Chemistry Arena and access all things Chemistry in one place – from high-quality journal reviews and cutting-edge articles to the latest news, conference listings, and interviews with journal editors and experts. WWW.CHEMISTRYARENA.COM Happy New Year! Angela Dickinson Senior Marketing Executive angela.dickinson@tandf.co.uk
个人分类: 文献集萃|4572 次阅读|0 个评论
2011: 国际化学年
chemicalbond 2011-1-6 12:53
【下面的短文是科学网博客化学键为庆祝2011国际化学年而作】 数学是工具,物理是基础,生物是前沿,而化学却是中心学科。 化学是在原子和分子层次认识物质世界及其变化的知识总和,是沟通微观世界和宏观世界的桥梁。 化学是一把双刃剑:它帮助人类获取粮食,材料,药物和能源;同时它也是毒品,污染和战争的帮凶。 化学家的任务便是提升化学的中心学科地位,为物理学提供更多挑战,为生物学创造更多工具,不断挖掘它的价值,减少它的危害,为人类造福。 参考网页 1. 联大宣布2011年为国际化学年 2. 美国化学会网页:庆祝2011国际化学年 3. 中国化学会相关资料 4. 自然杂志:庆祝化学年专刊
个人分类: 科普与新知|1967 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-2 19:12

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部