科学网

 找回密码
  注册

tag 标签: 多肽合成

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]肽易于修饰、定位和取代
ontores001 2016-4-12 10:21
由于内源性蛋白酶的快速降解导致多肽的临床应用受到限制。通过对多肽骨架的修饰能制备具有增强蛋白水解稳定性的功能类似物。目前对低聚物设计体系主要集中在有效的功能模拟。在最小的非自然状态的残留含量下,为了工程最大化的提高蛋白水解稳定性,一个比较好的合成策略是引入推理研究法。 W. Seth Horne等报道了四个主链修饰(用于设计复式褶皱模型的稳定性蛋白酶多肽类似物)以抑制蛋白水的系统性比较。 他们提出了几个开放性问题: (1) 主链切割位点的链修饰类型和修饰位置怎么影响蛋白酶效率? (2) 不同修饰主链的多肽发挥蛋白水解保护作用的分子学机制? (3)多重主链修饰怎么防止多肽水解?对于上述问题的深入理解可开发新的 多肽合成 策率,以获得最小非自然状态下残留量的多样化主链非天然异构体的最大化蛋白水解保护。 原文地址: http://blog.sina.com.cn/s/blog_132fb62500102w8r3.html
697 次阅读|0 个评论
[转载]浙江鸿拓生物技术有限公司
ontores001 2016-3-4 11:08
浙江鸿拓生物技术有限公司 (Ontores)创立于2009年,是世界领先的生物科技公司。Ontores致力于为全球客户提供专业的高质量多肽产品和多肽定制服务。Ontores的产品线更新非常及时,可以提供业内最新的多肽产品,同时我们拥有丰富的多肽生产经验,可以满足您的各种难肽需求。 浙江鸿拓生物技术有限公司(ONTORES)拥有世界顶级的多肽合成制备平台,包括多台多通道多肽合成仪(automated peptide synthesizer),高效液相色谱(HPLC)系统,以及质谱仪(Mass Spectrometer)等,从而确保鸿拓生物(ONTORES)多肽产品的高质量、快速交货和具有竞争力的价格。 2009年至今,浙江鸿拓生物技术有限公司(ONTORES)由近20位有机合成博士、硕士为骨干的合成团队,已经为全世界30多个国家的900多位科学家和研发人员以及生物制药公司提供了超过100,000条高质量定制多肽。除了常规线性肽之外,经过5年的多肽合成技术的研发经验积累,鸿拓生物(ONTORES)现足以满足您对多种难肽、修饰肽和特殊肽的定制需求。 鸿拓生物(ONTORES)用心为您定制每一条多肽! 原文地址: http://blog.tianya.cn/post-7092494-112516247-1.shtml
1030 次阅读|0 个评论
[转载]海洋胶原肽在保养品中的作用
ontores001 2016-2-24 10:38
新一代生物美容材料“海洋胶原 肽 ”对皮肤的渗透性十分强,可灵敏补偿皮肤丢掉的胶原质,激起真皮层的成纤维母细胞加速组成胶原蛋白,抵达多种护肤美容作用。因此,海洋胶原肽被生物专家们称为“生命之源、皮肤之泉”。 海洋胶原肽作为顶级保养品的首要成分,具有以下6大功能: (1)、保湿: 海洋胶原肽的肽链中含有许多的亲水基团(氨基、羟基、羧基等),处于分子立体结构的表面,能吸收许多的水分,在皮肤表面构成皮膜,对皮肤具有出色的保湿性,而且其保湿作用不受环境(温度、湿度等)改变的影响。 (2)、 营养: 海洋胶原肽对皮肤的渗透性强,可透过角质层与皮肤上皮细胞联络,参与和改善皮肤细胞的代谢,使皮肤中的胶原蛋白活性加强,保持角质层水分及纤维结构的完整性,改善皮肤细胞生存环境和推动皮肤组织的移风易俗,增强血液循环,抵达润泽皮肤的意图。 (3)、 抗老除皱: 皱纹及小细纹的发作与胶原质天然丢掉有关,海洋胶原肽可直接渗透到皮肤真皮中补偿丢掉的胶原质,重整皮肤纤维组织结构,回复皮肤弹性,推动细胞移风易俗,推迟细胞变老,使皮肤柔润润滑,纤细皱纹得到舒展。 (4)、美白: 海洋胶原肽中的多肽成分可按捺酪氨酸酶的活性,减少黑色素的生成。体外细胞实验发现海洋胶原肽对酪氨酸酶的按捺作用十分明显,在对照实验中其按捺作用率超越熊果苷。德国专家Domsch等人的研讨证实,用平均分子量为2000的胶原蛋白多肽配成10%的溶液,每隔必定国际揉搓皮肤一次,经48小时后能够使紫外线诱发的皮肤色素斑减少25%支配。以海洋胶原肽作为首要活性剂并与其它美容材料调制而成的保养品,在改善晦暗肤色、美白皮肤、批改嫩肤等方面有极好的作用。 (5)、批改: 海洋胶原肽能直接进入皮肤底层,且与周围组织的亲和性好,可协助细胞制造胶原蛋白的成胶原细胞,推进皮肤细胞正常生长。一同,海洋胶原肽本身还具有消炎和更新皮肤的作用。 (6)、抗敏: 海洋胶原肽与皮肤具有出色的相容性,能够调度和安稳产品的酸碱度,舒缓冷静皮肤,增强皮肤的抗影响才能 原文地址: http://blog.tianya.cn/post-7092494-112039155-1.shtml
1365 次阅读|0 个评论
[转载]多肽合成的方法不同,产品的功能就不同
ontores001 2016-2-24 10:32
五六十年代,首要是从动物脏器获取肽。如胸腺肽,其出产方法是将刚生下来的小牛宰杀今后,割下其胸腺,然后用轰动分别的生物技术,将小牛胸腺中的肽轰动分别出来,制成胸腺肽针剂。这种胸腺肽首要用于人体免疫。现在,这种肽已处于挑选状况。因现在世界上盛行“疯牛病”,这种病毒首要吞噬动物大脑中的蛋白质,损坏其脑组织、细胞及神经。人体一旦染上此病毒,比患上癌症还可怕,毕竟变成“植物人”或很快去世。还有从人体血液中提炼出来的肽 ,其副作用也很大,它不只简单使人体染上甲肝、乙肝、丙肝、丁肝、艾滋病毒、性病病毒,并且有排异过敏反应,这种反应一旦出现,生命就危在旦夕。 世界上有固相构成法、液相构成法出产的肽。用这种方法出产肽的公司在美国硅谷就有一家。他们首要是采购世界上一些精细化工厂出产的氨基酸为材料定向构成某种单肽,属医药材料中间体,首要用于西药配方,以增强药效、增强人体对药的吸收速度和吸收率。 酸解法或碱解法出产的 多肽 。这种肽首要出现在日本。日本不二油脂股份有限公司,用酸解法出产的“大豆多肽”,属“食物添加剂”,首要用于老人和孩童食物,其意图是增强这两种人群对食物营养的吸收。现在,世界上具有“大豆多肽”的国家只需日本和中国。但其所用的材料、水解法和产品性质大有不一样。日本不二油脂股份有限公司所用材料是豆粕,水解方法是酸法,出产的肽酸性化学物质难以除尽,并且有苦味,需用活性炭吸附、脱苦,而活性炭免不了会侵入肽体。 酶法出产的生物活性肽。这种肽首要产在中国,代表着当今世界肽研讨、开发、出产、立异的水平缓潮流。酶法出产的生物活性肽是用人体所需求的食物级植物蛋白酶,将人体平常所食的食物蛋白质酶解成小分子活性多肽。它具有极强的生物活性和多样性,已在世界范围内致使重视,变成当今世界追崇的热门。 原文地址: http://blog.tianya.cn/post-7092494-112038414-1.shtml
1221 次阅读|0 个评论
[转载]多肽制造业的全球领导者——鸿拓生物
ontores001 2016-2-18 11:17
多肽合成服务 鸿拓生物拥有世界顶级的多肽合成制备平台,包括多台多通道多肽合成仪、高效液相色谱(HPLC)系统,以及质谱仪等,从而确保鸿拓生物多肽产品的高质量、快速交货和具有竞争力的价格。 鸿拓生物多肽服务类型 普通线性肽、普通修饰肽、抗原肽、多肽文库 不同纯度范围:粗品、脱盐,>75%、>80%、>85%、>90%、>95%、>98% 普通修饰、高难修饰 (CMK、FMK、Cy5、Cy3、醛肽等) 鸿拓生物多肽合成优势: ISO9001认证企业 IS进工艺缩短合成周期,交货质量有保证 价格具有市场竞争力 原文地址: http://blog.tianya.cn/post-7092494-111548357-1.shtml
730 次阅读|0 个评论
[转载]多肽定制合成——浙江鸿拓生物技术有限公司
ontores001 2016-2-18 11:10
Ontores创立于2009年,是世界领先的生物科技公司。Ontores致力于为全球客户提供专业的高质量多肽产品和多肽定制服务。Ontores的产品线更新非常及时,可以提供业内最新的多肽产品,同时我们拥有丰富的多肽生产经验,可以满足您的各种难肽需求。 Ontores始终坚持“提供最好的质量,为客户利益服务”为宗旨,从点滴做起,用一流的服务成为您最好的实验帮手。 肽定制服务 规模多肽合成服务 然/非天然氨基酸生产 公司地址:浙江鸿拓生物技术有限公司(总部) 浙江省杭州市余杭区仓前街道龙潭路 16 号四号楼 4 楼, 311121 公司网站:www.ontoresinc.com 订购热线:400-600-5066(免费) 电子邮件:sales@ontores.com 原文地址: http://blog.tianya.cn/post-7092494-111546932-1.shtml
1247 次阅读|0 个评论
[转载]鸿拓生物-公司简介
ontores001 2016-2-17 11:07
浙江鸿拓生物技术有限公司 (Ontores)总部位于浙江杭州海创园,拥有3350平方米的现代化研发中心和生产基地,配备多肽合成仪、核酸合成仪、HPLC、质谱仪、荧光定量PCR、磷闪仪和脉冲场电泳仪等大型仪器。 浙江鸿拓生物技术有限公司(Ontores)是一家新成立的致力于为客户提供专业、优质、高效的生物医药技术服务的公司,总部位于风景优美的浙江杭州海创园。海创园规划面积113平方公里,位于杭州市中心西侧,毗邻西溪国家湿地公园和浙江大学,区位优越、环境优美、资源丰富、空间广阔,公司总面积2000多平方米,有7个实验室。公司秉持“以人为本,追求卓越”的理念,组建了一支具有一流的生物精英人才的技术服务团队,精心打造顶级生物医药技术服务平台。 公司总裁邹克勇博士师曾于2009年诺贝尔生理医学奖获得者美国哈佛大学医学院教授Jack W. Szostak,公司团队以科研型和知识型人员为主,小课题组负责人中有美国留学归国博士10位,团队中硕士学历以上的人员超过80%。同时公司还邀请国内外顶级生物医学科学家担任科学顾问。 浙江鸿拓生物技术有限公司(ONTORES)拥有世界顶级的多肽合成制备平台,包括多台多通道多肽合成仪(automated peptide synthesizer),高效液相色谱(HPLC)系统,以及质谱仪(Mass Spectrometer)等,从而确保鸿拓生物(ONTORES)多肽产品的高质量、快速交货和具有竞争力的价格。 2009年至今,ONTORES由近20位有机合成博士、硕士为骨干的合成团队,已经为全世界30多个国家的900多位科学家和研发人员以及生物制药公司提供了超过100,000条高质量定制多肽。除了常规线性肽之外,经过5年的多肽合成技术的研发经验积累,鸿拓生物(ONTORES)现足以满足您对多种难肽、修饰肽和特殊肽的定制需求。 鸿拓生物(ONTORES)用心为您定制每一条多肽! 原文地址: http://blog.tianya.cn/post-7092494-111411584-1.shtml
1313 次阅读|0 个评论
[转载]CRIF1调节线粒体氧化磷酸化多肽合成和整合
ontores001 2016-1-7 11:07
线粒体蛋白CRIF1通过与新生的氧化磷酸化多肽及分子伴侣相互作用调节线粒体编码的氧化磷酸化 多肽的合成 和插入线粒体内膜过程。 虽然对线粒体DNA编码多肽表达机制的研究已经取得了很大的进展,参与线粒体核蛋白体介导的多肽合成和将线粒体氧化磷酸化(OXPHOS)多肽自发插入线粒体内膜过程的调控因子目前还不清楚。 在本研究中,干扰编码线粒体蛋白的小鼠Crif1基因表达,可导致体内因氧化磷酸化亚基和复合物消失所造成的氧化磷酸化的严重缺陷。CRIF1与线粒体核蛋白体大亚基联系在一起,定位在靠近多肽输出隧道的出口处,消除CRIF1的表达导致线粒体DNA编码的氧化磷酸化新生多肽的异常合成和有缺陷地插入线粒体内层膜。CRIF1与新生的氧化磷酸化多肽及分子伴侣,例如,Tid1,相互作用。 这些结果表明,CRIF1在哺乳动物氧化磷酸化多肽整合入线粒体膜的过程中发挥关键作用。 原文地址: http://blog.tianya.cn/post-7092494-102322293-1.shtml
1555 次阅读|0 个评论
[转载]多肽合成是怎样形成的
ontores001 2015-12-29 10:40
多肽固相合成法是 多肽合成 化学的一个重大的突破。它的最大特点是不必纯化中间产物,合成过程可以连续进行,进而为多肽合成的自动化奠定了基础。目前全自动多肽的合成,基本都是固相合成。其基本过程如下: 基于Fmoc化学合成,先将所要合成的目标多肽的C-端氨基酸的羧基以共价键形式与一个不溶性的高分子树脂相连,然后以这一氨基酸的氨基作为多肽合成的起点,同其它的氨基酸已经活化的羧基作用形成肽键,不断重复这一过程,即可得到多肽。根据多肽的氨基酸组成不同,多肽后处理方式不同,纯化方式也有差异。 1.做免疫用的多肽多长为合适? 一般约10-15个氨基酸,当然长一些免疫效果好一些,不过合成费用也会增加。MAP多肽则希望长度在15aa以上,效果较好。另外,10aa以下的多肽免疫效果比较差。 2.免疫用多肽的纯度需要很高吗? 一般而言,免疫用Peptide,70-85%即可。 3.我们合成的多肽溶解性不好,多肽就有问题对吗? 很难准确预测一个多肽的溶解性及合适的溶剂是什么。如果多肽难以溶解就认为多肽合成有问题这个观念并不正确。 4.多肽状态是如何?如何保存储存? 我们提供的多肽是粉末状,一般为灰白色,组成不同,多肽粉末的颜色有差异,多肽一般长期保存需要避光保存,并应保存在-20度,短期可以保存在4度。可以短时间的话是以室温运输。 5.如何溶解多肽 溶解多肽是非常复杂的事情,一般很难一下子确定合适的溶剂。通常是先取一点试验,在没有确定合适的溶剂前千万不要合部溶解。 下列方法有助于您选择合适的溶剂: (1)判定多肽的电荷特定,设定酸性氨基酸Asp(D),Glu(E)和C端COOH为-1;碱性氨基酸Lys(K),Arg(R),His(H)及N端NH2为+1,其它氨基酸的电荷为0。计算出将电荷数。 (2)如果净电荷数0,多肽为碱性,用水溶解:如果不溶解或溶解性不大,加入醋酸(10%以上);如果多肽还不能溶解,加入少量TFA(25ul)溶解,然后加入500ul水稀释。 (3)如果净电荷数0,多肽为酸性,用水溶解;如果不溶解或溶解性不大,加入氨水(25ul)溶解,然后加入500ul水稀释。 (4)如果净电荷数=0,多肽为中性,一般需要用有机溶剂如乙腈,甲醇或异丙醇,DMSO等溶解。还有人建议需要尿素来溶解疏水性很大的多肽。 6.非HPLC纯化的多肽中有哪些杂质? 粗品和脱盐级别的多肽中多肽和非多肽类杂质:如非全长多肽和多肽后处理的一些原料如DTT、TFA等。 7.HPLC纯化的多肽有哪些杂质? 经过HPLC纯化的多肽,仍会有一些一些杂质存在,其中的杂质主要是短肽和微量TFA。 8.多长的多肽为合适? 多肽合成需要考虑多肽的长度,电荷,亲疏水性等因素。长度越长,合成粗品的纯度和产率都随着降低,纯化的难度和无法合成的几率就会大些。当然多肽功能区的序列是无法改变的,但是为了多肽的顺利合成,有时不得不在功能取的上下游增加一些辅助氨基酸,以改善多肽的溶解性和亲疏水性。如果多肽太短,合成也可能有问题,主要问题是合成的多肽在后处理过程中有一定的难度,5肽以下的多肽,一般要有疏水的氨基酸,否则后处理难度加大。15个氨基酸残基以下的多肽一般都可以得到满意的产率和得率。 9.如何从多肽序列中判定多肽的溶解性? (1)多肽中如果含有高比例的疏水性很强的氨基酸如和Leu,Val,IIe,Met,Phe和Trp,多肽很难溶解与水性溶液中或根本不可能溶解。这些氨基酸无论是纯化或合成,都有可能有问题。 (2)一般情况下疏水性氨基酸的比例50%,不能连续5个连续aa为疏水性,带电荷的氨基酸的(正电荷K,R,H,N-terminus,负电荷D,E,C- terminus)的比例达到20%,在多肽的N或C短如果能增加极性氨基酸,也可以改善溶解性。 11.为什么含有Cys,Met,或Trp的多肽难合成? 含有Cys,Met,或Trp的多肽难以合成,同时难以获得高纯度的产品。主要因为这些基团不稳定,易氧化。这些多肽的使用和储存都需要特别注意,避免反复开启盖子。 10.为什么有些多肽的合成产率或纯度会比较低? 多肽合成与引子合成有比较大的区别,不能合成的引子很少,但是不能合成的多肽经常有。如Val,Ile,Tyr,Phe,Trp,Leu,Gln,和Thr这些氨基酸比邻或重复时,多肽链在合成过程中不能完全舒展溶解,合成效率下降。以下几种情形,合成效率和产物的纯度都比较低,如:重复Pro,Ser-Ser,重复Asp,4个连续Gly等。 11.多肽是如何纯化的? 多肽纯化一般使用反相柱(如C8,C18等),214nm。缓冲体系通常为含TFA的溶剂,pH2.0。Buffer A为含0.1%TFA in ddH2O,Buffer B为1%TFA/ACN/pH2.0。纯化前用Buffer A溶解;如果溶解不好,用Buffer B溶解后,然后用Buffer A稀释;对疏水性强的多肽,有时还需要加入少量的Formic Acid或醋酸。HPLC分析多肽粗产物,如果多肽不长(15aa以下),一般会有主峰,主峰通常为全长产物;对于20aa以上的长肽,如果没有主峰,HPLC需搭配Mass来判定分子量,进而确定哪个峰是所要合成的多肽。 原文地址: http://blog.sina.com.cn/s/blog_132fb62500102vz6a.html
1264 次阅读|0 个评论
[转载]多肽合成中的原料氨基酸
ontores001 2015-12-25 10:58
在 多肽合成 中用的最多的原料氨基酸时蛋白质中存在的二十来种L-氨基酸,作为原料氨基酸的纯度一般应该是层析纯和光学纯的。在50年代初期近代多肽合成开始的时候,要获得大量的纯的氨基酸还是比较困难的,我国在1958年开始胰岛素合成马上的第一项准备工作就是组织生产原料氨基酸。60年代以后,氨基酸的得到就容易多了。 今天,随着氨基酸在医药工业,食品工业和畜牧业等各方面用途的扩大及氨基酸的分离,合成,拆分和发酵发生产等生产工艺上的改进和革新,大量光学纯的氨基酸的生产已经是一件不成问题的事情了。浙江鸿拓生物技术有限公司已经能够生产供应蛋白质中的全部L-氨基酸和大部分D-氨基酸,国内还有一些其他的工厂也能生产供应部分的原料氨基酸。 原文地址: http://blog.tianya.cn/post-7092494-107258149-1.shtml
1221 次阅读|0 个评论
[转载]多肽类药的不稳定性
ontores001 2015-12-10 13:48
生物技术越来越走在前沿,多肽作为药物在临床上的应用也越来越广泛,相应的制剂学研究也日益受到重视。与传统的小分子有机药物相比,多肽具有稳定性差,那我们就来讲下多肽有哪些不稳定和如何提高 多肽 稳定的途径。 1 多肽的稳定性研究 1.1 引起多肽不稳定的原因 (1)脱酰胺反应 在脱酰反应中,Asn/Gln 残基水解形成Asp/Glu。非酶催化的脱酰胺反应的进行。在Asn-Gly-结构中的酰胺基团更易水解,位于分子表面的酰胺基团也比分子内部的酰胺基团易水解。 (2)氧化 多肽溶液易氧化的主要原因有两种,一是溶液中有过氧化物的污染,二是多肽的自发氧化。在所有的氨基酸残基中,Met、Cys和His、Trp、Tyr等最易氧化。氧分压、温度和缓冲溶液对氧化也都有影响。 (3)水解 多肽中的肽键易水解断裂。由Asp参与形成的肽键比其它肽键更易断裂,尤其是Asp-Pro和Asp-Gly 肽键。 (4)形成错误的二硫键 二硫键之间或二硫键与巯基之间发生交换可形成错误的二硫键,导致三级结构改变和活性丧失。 (5)消旋 除Gly外,所有氨基酸残基的α碳原子都是手性的,易在碱催化下发生消旋反应。其中Asp残基最易发生消旋反应。 (6)β-消除 β-消除是指氨基酸残基中β碳原子上基团的消除。Cys、Ser、Thr、Phe、Tyr 等残基都可通过β-消除降解。在碱性PH下易发生β-消除,温度和金属离子对其也有影响。 (7)变性、吸附、聚集或沉淀 变性一般都与三级结构以及二级结构的破坏有关。在变性状态,多肽往往更易发生化学反应,活性难以恢复。在多肽变性过程中,首先形成中间体。通常中间体的溶解度低,易于聚集,形成聚集体,进而形成肉眼可见的沉淀。 蛋白质的表面吸附是其贮存、使用过程中遇到的另一个令人头痛的问题,如riL-2在进行曲灌注时会吸附在管道表面,造成活性损失。 1.2 提高多肽稳定性的途径 (1)定点突变 通过基因工程手段替换引起多肽不稳定的残基或引入能增加多肽稳定性的残基,可提高多肽的稳定性。 (2)化学修饰 多肽的化学修饰方法很多,研究最多的是PEG修饰。PEG是一种水溶性高分子化合物,在体内可降解,无毒。PEG与多肽结合后能提高热稳定性,抵抗蛋白酶的降解,降低抗原性,延长体内半衰期。选择合适的修饰方法和控制修饰程度可体质或提高原生物活性。 (3)添加剂 通过加入添加剂,如糖类、多元醇、明胶、氨基酸和某些盐类,可以提高多肽的稳定性。糖和多元醇在低浓度下迫使更多的水分子围绕在蛋白质周围,因而提高了多肽的稳定性。在冻干过程中,上述物质还可以取代水而与多肽形成氢键来稳定多肽的天然构象,而且还可以提高冻干制品的玻璃化温度。 此外表面活性剂如SDS、Tween、Pluronic,能防止多肽表面吸附、聚集和沉淀。 (4)冻干 多肽发生的一系列化学反应如脱酰胺、β-消除、水解等都需要水参与,水还可以作为其它反应剂的流动相。另外,水含量降低可使多肽的变性温度升高。因此,冻干可提高多肽的稳定性。 原文地址: http://blog.tianya.cn/post-7092494-105468848-1.shtml
1001 次阅读|0 个评论
[转载]多肽合成的作用
ontores001 2015-11-27 14:16
多肽合成 是一种 相合成 固 顺序一般从 C 端向 N 端合成。在以前,多肽合成是在溶液中进行的称为液相合成法。从 1963 年 Merrifield 研发成功了固相多肽合成方法以来,经过长期的实验和完善,到今天固相法已成为多肽和 蛋白质合成 中的一种常用技术技术,表现出了经典液相合成法无法比拟的优点,从而大大的减轻了研发人员每步产品提纯的难度。多肽合成总的来说分成这两种:固相合成和液相多肽合成。 原文地址: http://www.dxy.cn/bbs/topic/32175969
732 次阅读|0 个评论
[转载]多肽合成都需要哪些技术?
ontores001 2015-11-23 14:05
用的白蛋白 多肽 、胸腺肽、血清胸腺因子( FTS )等均可以引起免疫 T 细胞的分化;近日来在中国及日本已开始使用的糖肽辅助治疗肿瘤,其作用机理是使淋巴系统活化等等。应用多肽技术开发的医用蛋白质芯片(肽芯片)只有指甲盖大小,放置了与肾炎、胃溃疡和胃癌等相关的抗原分子,只要通过芯片阅读仪便可检测到有关疾病的功能状态与变异情况。其功能已相当于一个大型或中型实验室、化验室,效率是传统医学检测的成百上千倍,受检者几乎没有任何痛苦。肽芯片的广泛应用,已在医学临床检测业引发一场技术革命。 自从 1963 年 MERRIFIELD 发展成功了固相多肽合成( SPPS )方法以来,经过不断的改进和完善,到今天这个方法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。 固相合成的主要设计思想是:先将所要合成肽链的未端氨基酸的羧基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上。氨基酸作为氨基组分经过脱去氨基保护基,并同过量的活化羟基组分反应接长肽链。重复(缩合—洗涤—去保护—中和和洗涤—下一轮缩合)操作,达到所要合成的肽链长度;最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。 原文地址: http://blog.tianya.cn/post-7092494-102441601-1.shtml
970 次阅读|0 个评论
[转载]多肽合成知识介绍
ontores001 2015-11-23 14:01
1 . 多肽合成 的基本原理 答: 多肽固相合成法是多肽合成化学的一个重大的突破。它的最大特点是不必纯化中间产物,合成过程可以连续进行,从而为多肽合成的自动化奠定了基础。目前全自动多肽的合成,基本都是固相合成。基本过程如下: 基于 Fmoc 化学合成,先将所要合成的目标多肽的 C- 端氨基酸的羧基以共价键形式与一个不溶性的高分子树脂相连,然后以这一氨基酸的氨基作为多肽合成的起点,同期它的氨基酸的羧基(已经活化)作用形成肽键,不断重复这一过程,即可得到目标多肽。根据多肽的氨基酸组成不同,多肽后处理方式不同,纯化方式也有差异。 2 .关于 Antigen Grade 多肽必须在在多肽的一端增加 Cysteine 吗? 答:不一定,偶连的方式与偶连的活化剂和氨基酸组成有关。 EDC: 通过 C 端 COOH 连接,一般要求序列中无 Glu (E), Asp (D), 或 an amidated C-terminus ; Act. EDC Method: 通过 N 端的氨基偶连,要求序列中无 Lys (K) 或 N 端没有被乙酰化; MBS: 通过 Cys 的基团载体中其他 SH 连接形成 S-S. 如果序列中无 Cys, 就需要添加 Cys 基团,最好增加在 N 端。 3 .制备多肽抗体,常用的载体有那些?如何选择? 答:多肽分子量很小,免疫应答效果差 , 需要与载体偶连以提高免疫源性。载体大多数为高分量的蛋白质,常用的载体有 KLH ( 铜蓝蛋白 ) , BSA, OVA 等。 KLH 为首选。 ELISA 测定多肽抗体效价时,有些多肽直接包板有困难,需要与 BSA 等偶连后再包板。 4 .做免疫用的多肽多长为合适? 答: 10-15 个氨基酸,当然长一些免疫效果好一些,不过合成费用会上去。 10aa 以下的多肽免疫效果比较差。 5 .为什么多肽抗体有时不能用于 Western Blot? 答:这比较常见, Elisa 一般都没有什么问题。 6 .免疫用多肽的纯度要很高吗? 答:纯度高当然好,但是代价也高。问题是如果纯度为 90-95% 的多肽能产生抗体, 65-75% 纯度的多肽,一般也不对失败。 7 .我们合成的多肽溶解性如何? 答:很难准确预测一个多肽的溶解性及合适的溶剂是什么。如果多肽难以溶解就认为多肽合成有问题就大错特错了。那么如何判断多肽的溶解性? 8 .多肽状态如何?如何保存储存? 答:我们提供的多肽是粉末状,一般为灰白色,组成不同,多肽粉末的颜色有差异。多肽一般需要避光保存。长期保存应保存在 -20 度,短期可以保存在 4 度。可以短时间室温运输。 9 .多肽的量是怎么确定? 答:一般用天平直接称重。 原文地址: http://blog.tianya.cn/post-7092494-102439880-1.shtml
1562 次阅读|0 个评论
[转载]抗菌肽在基本前景
ontores001 2015-11-20 14:05
抗菌肽 具有广谱抗菌活性,可以快速查杀靶标,并且其中很多是纯天然的肽,使它迅速成为潜在的治疗药物,抗菌肽的治疗范围为:革兰氏阴性细菌、革兰氏阳性细菌、真菌、寄生虫、肿瘤细胞等。 抗菌肽原指昆虫体内经诱导而产生的一类具有抗菌活性的碱性多肽物质,分子量在2000~7000左右,由20~60个 氨基酸残基 组成。这类活性多肽多数具有强碱性、热稳定性以及广谱抗菌等特点。世界上第一个被发现的抗菌肽的是 1980 年由 瑞典科学家G.Boman等人经注射阴沟通杆菌及大肠杆菌诱导惜古比天蚕蛹产生的具有抗菌活性的多肽,定名为Cecropins。 最初,人们在研究北美天蚕的免疫机制时,发现其滞育蛹经外界刺激诱导后,其血淋巴中产生了具有抑菌作用的多肽物质,这类抗菌多肽被命名为天蚕素(Cecropins)。后来,从其他昆虫以及两栖类动物、哺乳动物中,也分离到结构相似的抗菌多肽,有70多种抗菌多肽的结构被测定。1980年后的数年间,人们相继从细菌、真菌、两栖类、昆虫、高等植物、哺乳动物乃至人类中发现并分离获得具有抗菌活性的多肽。由于这类活性多肽对细菌具有广谱高效杀菌活性,因而命名为“antibacterial pepitides,ABP”,中文译为抗菌肽,其原意为抗细菌肽。随着人们研究工作的深入开展,发现某些抗细菌肽对部分真菌、原虫、病毒及癌细胞等均具有强有力的杀伤作用,因而对这类活性多肽的命名许多学者倾向于称之为”peptide antibiotics”一多肽抗生素。 目前,所有的常规抗生素都出现了相应的抗药性致病株系,致病菌的抗药性问题已经日益严重地威胁着人们的健康。寻找全新类型的抗生素是解决抗药性问题的一条有效途径。抗菌肽因为抗菌活性高,抗菌谱广,种类多,可供选择的范围广,靶菌株不易产生抗性突变 等原因,而被认为将会在医药工业上有着广阔的应用前景。目前,已有多种多肽抗生素正在进行临床前的可行性研究,其中magainins已经进入三期临床试验阶段。一些多肽抗生素在医药研究中的进展情况。 原文地址: http://blog.sina.com.cn/s/blog_132fb62500102w0h7.html
1270 次阅读|0 个评论
[转载]抗菌肽在基本前景
ontores001 2015-11-18 14:47
抗菌肽 具有广谱抗菌活性,可以快速查杀靶标,并且其中很多是纯天然的肽,使它迅速成为潜在的治疗药物,抗菌肽的治疗范围为:革兰氏阴性细菌、革兰氏阳性细菌、真菌、寄生虫、肿瘤细胞等。 抗菌肽原指昆虫体内经诱导而产生的一类具有抗菌活性的碱性多肽物质,分子量在2000~7000左右,由20~60个 氨基酸残基 组成。这类活性多肽多数具有强碱性、热稳定性以及广谱抗菌等特点。世界上第一个被发现的抗菌肽的是 1980 年由 瑞典科学家G.Boman等人经注射阴沟通杆菌及大肠杆菌诱导惜古比天蚕蛹产生的具有抗菌活性的多肽,定名为Cecropins。 最初,人们在研究北美天蚕的免疫机制时,发现其滞育蛹经外界刺激诱导后,其血淋巴中产生了具有抑菌作用的多肽物质,这类抗菌多肽被命名为天蚕素(Cecropins)。后来,从其他昆虫以及两栖类动物、哺乳动物中,也分离到结构相似的抗菌多肽,有70多种抗菌多肽的结构被测定。1980年后的数年间,人们相继从细菌、真菌、两栖类、昆虫、高等植物、哺乳动物乃至人类中发现并分离获得具有抗菌活性的多肽。由于这类活性多肽对细菌具有广谱高效杀菌活性,因而命名为“antibacterial pepitides,ABP”,中文译为抗菌肽,其原意为抗细菌肽。随着人们研究工作的深入开展,发现某些抗细菌肽对部分真菌、原虫、病毒及癌细胞等均具有强有力的杀伤作用,因而对这类活性多肽的命名许多学者倾向于称之为”peptide antibiotics”一多肽抗生素。 目前,所有的常规抗生素都出现了相应的抗药性致病株系,致病菌的抗药性问题已经日益严重地威胁着人们的健康。寻找全新类型的抗生素是解决抗药性问题的一条有效途径。抗菌肽因为抗菌活性高,抗菌谱广,种类多,可供选择的范围广,靶菌株不易产生抗性突变 等原因,而被认为将会在医药工业上有着广阔的应用前景。目前,已有多种多肽抗生素正在进行临床前的可行性研究,其中magainins已经进入三期临床试验阶段。一些多肽抗生素在医药研究中的进展情
1253 次阅读|1 个评论
[转载]抗菌肽的来源分类
ontores001 2015-11-18 14:42
自从发现 抗菌肽 以来,已对抗菌肽的作用机理进行了大量研究。目前已知的是,抗菌肽是通过作用于细菌细胞膜而起作用的,在此基础上,提出了多种抗菌肽与细胞膜作用的模型。但严格地说,抗菌肽以何种机制杀死细菌至今还没有完全弄清楚。 抗菌肽具有广谱抗菌活性,对细菌有很强的杀伤作用,尤其是其对某些耐药性病原菌的杀灭作用更引起了人们的重视。 抗菌肽可分为以下六类: (1)昆虫抗菌肽 昆虫是种群最大的生物种类,抗菌肽的数量难以估量。现在,仅在鳞翅目、双翅目、鞘翅目和蜻蜓目等8个目的昆虫中发现超过200多种昆虫抗菌肽类物质,仅从家蚕这一种昆虫获得了40个抗菌肽基因。 (2)哺乳动物抗菌肽 1989年, 首次从猪小肠中分离到哺乳动物抗菌肽Cecropin P1。 目前 , 从猪中分离出至少 18 种 , 绵羊中至少 30 种 , 牛中至少 30 种抗菌肽。人类机体中发现的 防御素 属于抗菌肽中的一个大家族 , 根据其氨基酸的空间结构和分泌部位的差别又分为三大类 : 人 α- 防御素 (humandα-defensin) 、人 β- 防御素 (human β-defensin, HβD) 、人 θ- 防御素 (humanθ-defensin) , 现已发现人防御素达 35 种以上 , 其中非常重要的防御素有 10 种。 (3)两栖动物抗菌肽 两栖类动物裸露的具多种功能,在皮肤的分泌物中存在的大量皮肤活性肽具有多样的生物学活性,其中大多数多肽类物质均具有一定的抗微生物活性,在进化上是一类非常古老而有效的天然 防御物质 , 往往归为抗菌肽。在非洲爪蟾中就有十多种抗菌肽 , 不仅在皮肤颗粒腺表达 , 也有存在于胃粘膜和小肠道细胞。在非洲爪蟾皮肤中发现的小分子抗菌肽 ——— 爪蟾素 (magainins) 是较早发现的两栖动物抗菌肽 , 具有很高的抗菌活性 , 此后相继发现了多种蛙类抗菌肽。据不完全统计 , 目前已经从无尾两栖动物 8 个属约 40 多种两栖类动物的皮肤中提取出了数百种抗菌肽 , APD 数据库 中就收录了其中的 548 种。大量研究发现蛙类抗菌肽具有协同效应 , 但不同的蛙类抗菌肽很少具有 同源性 。 (4)鱼类、软体动物、甲壳类动物来源的抗菌肽 1986年,从豹鳎分离到一种含有35个氨基酸残基抗菌肽Pardaxin是最早从鱼类分离得到的两亲性阳离子α螺旋结构具有穿膜作用的多肽,该肽是离子型神经毒素,由该肽衍生出了一系列具有比蜂毒素抗菌活性更强,溶血活性更低的抗菌活性肽。1998年, 报道了鲶(Parasilurus asotus)受伤时上皮粘膜细胞层分泌一种19个氨基酸残基的组蛋白H2A抗菌肽parasinⅠ,具有广谱强抗菌活性,其抗菌活性是 蛙皮素 mainin 2 的 12~100 倍。目前 , 从鱼类分离得到 49 种以上抗菌肽。 防御素 是贻贝等海洋软体动物的重要抗微生物肽 , 迄今发现的贻贝防御素根据其初级结构、性质和共有的半胱氨酸序列分为 Defensin 、 mytilin 和 myticin 3 种。虾经细菌感染后可诱导多种基因表达 , 其中含有多种抗菌肽基因。自 1997 年首次报道甲壳动物抗菌肽氨基酸全序列以来 , 从甲壳类动物如对虾血细胞中分离出多种抗菌肽。 (5)植物抗菌肽 植物中也存在一些结构上与昆虫、哺乳动物防御素结构相似的植物抗菌肽,称为植物防御素。大多数植物抗菌肽对植物病原具有良好活性,部分植物抗菌肽对 革兰氏阳性菌 、阴性菌、真菌、酵母及 哺乳动物细胞 均有毒性。 Thi-onins 是最早从植物中分离的抗菌肽。 ( 6 )细菌抗菌肽 细菌抗菌肽又称细菌素 (bacteriocin), 包括阳离子肽和中性肽 , 革兰氏阳性菌和 革兰氏阴性菌 均可分泌。细菌中已发现的抗菌肽有杆菌肽 (Bacitracin) 、 短杆菌肽 S (Gramicidin S) 、多粘菌素 E(Polymyxin E) 和 乳链菌肽 (Nisin)4 种类型。目前 ,APD 数据库中就收录的细菌素有 119 种 , 其中 乳酸链球菌肽 nisin 是由乳球菌产生的含 3~4 个 氨基酸残基 的 短肽 , 它是一种耐酸性物质 , 即使在胃这样低 pH 环境中稳定性也很高 , 能抑制革兰氏阳性菌如梭状芽孢杆菌和李氏杆菌。 Bacillus spp. 产生的杆菌肽 mersacidin 对 “ 超级耐药菌 ”——— 耐 甲氧西林 葡萄球菌 (MRSA) 具有良好的 抑制作用 , 通过腹腔给药可以清除 MRSA 感染小鼠血液、肺、肝、肾、脾等脏器中的细菌 , 并且对小鼠各器官没有造成明显的损害。 抗菌肽要成为药物,目前还需要解决一些问题。首先是来源问题。由于昆虫抗菌肽的天然资源有限,化学合成和基因工程便成为获取抗菌肽的主要手段。化学合成肽类,成本较高。而通过基因工程,在微生物 中直接表达抗菌肽基因,可能造成 宿主 微生物自杀而不能获得表达产物。以 融合蛋白 的形式表达抗菌肽基因,虽然可以克服这一缺点,但仍有表达产物少的问题。尽管来自青蛙皮肤的抗菌肽 maganin 类作为基因工程药物已进入临床 II , III 期实验,但人们认为,只有每克价格低于 10 美元,抗菌肽才可能商品化。因此,如何提高抗菌肽的生产效率,降低成本,是应用抗菌肽必须解决的问题。其次,与传统抗生素相比,昆虫抗菌肽的抗菌活性还不够理想。改造已有抗菌肽和设计新抗菌肽分子是创造高活力抗菌肽的有效途径。这就需要进一步研究抗菌肽结构与活性的关系和作用机理,为抗菌肽分子的改造和设计提供足够的理论依据。 本文转载:http://blog.sina.com.cn/s/blog_132fb62500102w0hc.html
1407 次阅读|0 个评论
[转载]多肽都有哪些用处
ontores001 2015-11-17 14:43
多肽 是涉及生物体内各种细胞功能的生物活性物质,伴随着分子生物学、生物化学技术的飞速发展,多肽的研究取得了惊人的、划时代的进展。人们发现存在于生物体的多肽已有数万种,并且发现所有的细胞都能合成多肽。同时,几乎所有细胞也都受多肽调节,它涉及激素、神经、细胞生长和生殖等各个领域。今后相当一段时间,人类对多肽的研究和应用将出现一个辉煌的时期,所以说本世纪是一个多肽的世界。 1、抗肿瘤多肽 肿瘤的发生是多种原因作用的结果,但最终都要涉及及癌基因的表达调控。不同的肿瘤产生时所需要的酶等调控因子不同,选择特异性小肽作用于肿瘤发生时所需的调控因子等,封闭其活性位点,可防止肿瘤发生。现在已发现很多肿瘤相关基因及肿瘤产生调控因子,筛选与这些靶点特异结合的多肽,已成为寻找抗癌药物的新热点。美国学者发现了一个小肽(6个氨基酸),它在体内能显著抑制腺癌的生长,包括肺、胃及在大肠腺癌为治疗这一死亡率很高的恶性肿瘤开辟了一条新路。瑞士科学家发现另外一个小肽(8个氨基酸),它能进入肿瘤细胞,激活抗癌基因P53,诱导肿瘤细胞的凋亡。 2、抗病毒多肽 病毒感染后一般要经历吸附(宿主细胞)、穿入、脱壳、核酸复制,转录翻译,包装等多个阶段。阻止任一过程均可防止病毒复制。最有效的抗病毒药物应该是作用在病毒吸附及核酸复制两个阶段,因此筛选抗病毒药物主要集中在病毒复制的这两个阶段。病毒通过与宿主细胞上的特异受体结合吸附细胞,依赖其自身的特异蛋白酶进行蛋白加工及核酸复制。因此可从肽库内筛选与宿主细胞受体结合的多肽或能与病毒蛋白酶等活性位点结合的多肽,用于抗病毒的治疗,这将成为是替代抗生素药的最大市场。 3、多肽导向药物 已知很多毒素(如绿脓杆菌外毒素),细胞因子(如白细胞介素系列)等有较强的肿瘤细胞毒性,但在人类长期或大量使用量时也可损伤正常细胞。将能和肿瘤细胞特异结合的多肽与这些活性因子进行融合,则可将这些活性因子特异性地集中在肿瘤部位,可大大降低毒素、细胞因子的使用浓度,降低其副作用。比如,在很多肿瘤细胞表面存在表皮生长因子的受体,其数量较正常细胞上的数目高几十倍,甚至上百倍,将毒素或抗肿瘤细胞因子与表皮生长因子融合,可将这些活性因子特异地聚集到肿瘤细胞,国内外已有几家将表皮生长因子与绿脓杆菌外毒素融合表达成功。同从肽库内筛选出能与肿瘤抗原特异结合的小肽,也可用于导向药物,因其分子量小,比鼠源性的单克隆抗体更适合用于导向药物。 4、细胞因子模拟肽 利用已知细胞因子的受体从肽库内筛选细胞因子模拟肽,近年成为国内外研究的热点。国外已筛选到了人促红细胞生成素,人促血小板生成素,人生长激素、人神经生长因子及白细胞介素1等多种生长因子的模拟肽,这些模拟肽的氨基酸序列与其相应的细胞因子的氨基酸序列不同,但具有细胞因子的活性,并且具有分子量小的优点。这些细胞因子模拟肽正处于临床前或临床研究阶段。 5、抗菌性活性肽 ? 当昆虫受到外界环境刺激时产生大量的具有抗菌活性的阳离子多肽,已筛选出百余种抗菌肽,体内外实验证实,多个抗菌肽不仅有很强的杀菌能力还能杀死肿瘤细胞。例如,从蚕体内筛选的抗菌肽D表现了很好的应用前景,并能利用基因工程技术生产。蛇毒内也存在多种活性多肽,从蛇毒内分离出一个13个氨基(INKAIAALAKKLL)小肽,其对G+及G-菌均有极强的杀菌能力 6、用于心血管疾病的多肽 很多植物中药有降血压、降血脂、溶血栓等作用,不仅可用作药物,亦可用作保健食品。但由于其作用成份不能确定。其应用受到很大限制。现已发现很多有效成分是小分子多肽,比如我国科学家从大豆内加工分离出的活性多肽,可通过小肠直接吸收,能防治血栓,高血压和高血脂,还能延缓变老,提高肌体肿瘤力。从人参、茶叶、银杏叶等植物内也分离出很多用于心血管疾病的小肽。 7、其它药用小肽 小肽药物除在上述几大方面已取得较大进展外,在其它很多领域也取得一些进展。比如stiernberg等发现一个合成肽(TP508)肽能促进伤口血管的再生,加速皮肤深度伤口的愈合。Pfister等发现一个小肽(RTR)4能防止碱损伤角膜内炎症细胞的侵润,抑制炎症反应。Carron等证实其筛选的2个合成肽能抑制破骨细胞对骨质的重吸收。 8、诊断用多肽 多肽在诊断试剂中最主要的用途是用作抗原检测病毒、细胞、支原体、螺旋体等微生物和囊虫、锥虫等寄生虫的抗体,多肽抗原比天然微生物或寄生虫蛋白抗原的特异性强,且易于制备,因此装配的检测试剂,其检测抗体的假阴性率和本底反应都很低,易于临床应用。现在用多肽抗原装配的抗体检测试剂包括:甲、乙、丙、庚或肝病毒、艾滋病病毒、人巨细胞病毒、单纯疱疹病毒、风疹病毒、梅毒螺旋体、囊虫、锥虫、莱姆病及类风湿等。使用的多肽抗原大部分是从相应致病体的天然蛋白内分析筛选获得,有些是从肽库内筛选的全新小肽。 9、多肽疫苗 多肽疫苗与核酸疫苗一样是目前疫苗研究领域内较受重视的研究方面之一。尤其是对病毒多肽疫苗进行了大量研究。目前对人类危害极大的两种病毒性疾病艾滋病和丙型肝炎均无理想的疫苗,核酸疫苗和多肽疫苗的研究结果令人鼓舞。1999年美国NIH公布了两种HIV-I病毒多肽疫苗,对人体进行的Ⅰ期临床试验结果,证实两种多肽能刺激机体产生特异性抗体和特异性细胞免疫,并有较好的安全性。我国清华大学也证实HIV-I膜蛋白内一段多肽有很强的免疫原性。丙肝病毒多肽疫苗也显示有良好的发展前景,国外学者从丙肝病毒(HCV)外膜蛋白E2内筛选出一般多肽,它可刺激机体产生保护性抗体。其它病毒(如甲肝、麻疹、辛德毕斯病毒等)的多肽疫苗及抗肿瘤,避孕等多肽疫苗的研究也取得了较大进展。例如,美国学者NaZ等从噬菌体肽库内筛选出一个12氨基酸小肽,它能特异性地与人卵子结合,阻止精子与卵子的结合,可用于避孕疫苗。 10、多肽药物载体 多肽用作药物载体,既可以用作药物载体的修饰剂,也可以作为药物载体的主要组成部分。Law等设计了蛋白酶断裂点连接的肽段在合适的溶剂中自组装后将药物包覆在微球内,遇到靶向蛋白酶使得断裂点断开,实现药物的靶向释放。彭师奇等将精氨酸-甘氨酸-天氨酸-丝氨酸(Arg-Gly-Asp-Ser,RGDS)四肽修饰脂质体用作药物载体导向溶栓。运用血小板的纤维蛋白原(FG)受体配基RGDS肽作为导向归巢装置,偶联于包裹尿激素UK的脂质体。载体与药物之间以酸敏感性共价键的形式连接,在自然界或人体内能生物降解成内源性物质Glu,不易产生积蓄和毒副作用。 11、组织工程材料 一些不具有生物活性的高分子多肽,如聚天冬氨酸、聚赖氨酸、聚谷氨酸等,由于具有良好的生物相容性、可控生物降解速率、可修饰性、设计的可塑性、结构的可控性等优点,逐渐成为组织工程中极具应用前景的一类新型材料。Langer等制备了聚(乳酸-赖氨酸),将RGD肽接枝到聚合物中赖氨酸的-NH2上,有效提高了聚合物表面的细胞粘附能力,克服了主链无活性基团的不足,获得的组织工程支架材料既便于细胞识别,又能支持细胞生长。 12、多肽营养食品 活性肽类食品作为一种新型保健食品或食品添加剂,具有独到的特性和功能,在营养学上也有着许多优点,在食品工业中具有广阔的应用前景。 13、化妆品多肽 三肽是生长因子,四肽有消炎效果,五肽可促进胶原蛋白增加皮肤厚度,六肽是类肉毒杆菌素,可放松皱纹,至于九肽则可阻断促黑激素,有美白效果。就目前的研究结果来看,应用在化妆品的多肽主要是六个氨基酸残基以内的多肽,如果肽链超过六个残基,皮肤已经不容易吸收,因此可以临床应用的氨基酸数目重迭性相当高。而且除了五肽(Matrixyl)、六肽(Argireline)有少许的临床及基础研究以外,一些新的多肽,特别是组合肽,疗效成谜。
1397 次阅读|0 个评论
能合成多肽的人造小分子机器
biophysicalchem 2013-1-11 08:55
核糖体按照信使RNA指定的氨基酸序列来构建蛋白质。在这里,研究人员设计、合成了一个小分子机器,该机器沿着的分子链按照序列特异性方式进行多肽合成。该小分子机器的化学结构是基于一个轮烷,分子环拧到一个分子桥。环带有硫醇盐基团,可以反复按照特定顺序删除氨基酸,并将它们运送到的多肽 生长延长位点。实验结果表明大约有10 18 的小分子机器在并行进行合成;这一过程会产生毫克量级多肽。串联质谱实验确认只产生了单一多肽序列。 英文全文见: http://www.sciencemag.org/content/339/6116/189.full Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine Bartosz Lewandowski 1 , Guillaume De Bo 1 , John W. Ward 1 , Marcus Papmeyer 1 , Sonja Kuschel 1 , María J. Aldegunde 2 , Philipp M. E. Gramlich 2 , Dominik Heckmann 2 , Stephen M. Goldup 2 , Daniel M. D’Souza 2 , Antony E. Fernandes 2 , David A. Leigh 1 , 2 , * The ribosome builds proteins by joining together amino acids in an order determined by messenger RNA. Here, we report on the design, synthesis, and operation of an artificial small-molecule machine that travels along a molecular strand, picking up amino acids that block its path, to synthesize a peptide in a sequence-specific manner. The chemical structure is based on a rotaxane, a molecular ring threaded onto a molecular axle. The ring carries a thiolate group that iteratively removes amino acids in order from the strand and transfers them to a peptide-elongation site through native chemical ligation. The synthesis is demonstrated with ~10 18 molecular machines acting in parallel; this process generates milligram quantities of a peptide with a single sequence confirmed by tandem mass spectrometry.
个人分类: 药物设计|3903 次阅读|1 个评论
[转载]转载-多肽合成 基础知识汇编 -给自己看的
wzq19810930 2011-3-9 08:36
百度上down到好文,正好给自己用的,特特抄来 ----------------------------------------------------------------------------------------- 多 肽 合 成 基础知识汇编 编制 : 合成部 ----------------------------------------------------------------------------------------- 一 、多 肽 合 成 概 论 1 .多肽化学合成概述:   1963 年, R.B.Merrifield [ 1 ]创立了将氨基酸的 C 末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的 . 克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础 . 为此, Merrifield 获得 1984 年诺贝尔化学奖 .   今天,固相法得到了很大发展 . 除了 Merrifield 所建立的 Boc 法 (Boc: 叔丁氧羰基 ) 之外,又发展了 Fmoc 固相法 (Fmoc:9- 芴甲氧羰基 ). 以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善 .    Merrifield 所建立的 Boc 合成法[ 2 ]是采用 TFA( 三氟乙酸 ) 可脱除的 Boc 为 α- 氨基保护基,侧链保护采用苄醇类 . 合成时将一个 Boc -氨基酸衍生物共价交联到树脂上,用 TFA 脱除 Boc ,用三乙胺中和游离的氨基末端,然后通过 Dcc 活化、耦联下一个氨基酸,最终脱保护多采用 HF 法或 TFMSA( 三氟甲磺酸 ) 法 . 用 Boc 法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等 . 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物 , 由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。  多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。  从 1963 年 Merrifield 发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α - 氨基用 BOC (叔丁氧羰基)保护的称为 BOC 固相合成法,α - 氨基用 FMOC ( 9- 芴甲氧羰基)保护的称为 FMOC 固相合成法, 2 .固相合成的基本原理  多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从 C 端(羧基端)向 N 端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。现在多采用固相合成法,从而大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。化学合成方法有两种,即 Fmoc 和 tBoc 。由于 Fmoc 比 tBoc 存在很多优势,现在大多采用 Fmoc 法合成,如图:   具体合成由下列几个循环组成:  一、去保护: Fmoc 保护的柱子和单体必须用一种碱性溶剂( piperidine )去 除氨基的保护基团。    二、激活和交联:下一个氨基酸的羧基被一种活化剂所活化。活化的单体与游离的氨基反应交联,形成肽键。在此步骤使用大量的超浓度试剂驱使反应完成。循环:这两步反应反复循环直到合成完成。  三、洗脱和脱保护:多肽从柱上洗脱下来,其保护基团被一种脱保护剂( TFA ) 洗脱和脱保护。 2.1 树脂的选择及氨基酸的固定   将固相合成与其他技术分开来的最主要的特征是固相载体,能用于多肽合成的固相载体必须满足如下要求:必须包含反应位点(或反应基团),以使肽链连在这些位点上,并在以后除去;必须对合成过程中的物理和化学条件稳定;载体必须允许在不断增长的肽链和试剂之间快速的、不受阻碍的接触;另外,载体必须允许提供足够的连接点,以使每单位体积的载体给出有用产量的肽,并且必须尽量减少被载体束缚的肽链之间的相互作用。用于固相法合成多肽的高分子载体主要有三类:聚苯乙烯 - 苯二乙烯交联树脂、聚丙烯酰胺、聚乙烯 - 乙二醇类树脂及衍生物,这些树脂只有导入反应基团,才能直接连上(第一个)氨基酸。根据所导入反应基团的不同,又把这些树脂及树脂衍生物分为氯甲基树脂、羧基树脂、氨基树脂或酰肼型树脂。 BOC 合成法通常选择氯甲基树脂,如 Merrifield 树脂; FMOC 合成法通常选择羧基树脂如王氏树脂。氨基酸的固定主要是通过保护氨基酸的羧基同树脂的反应基团之间形成的共价键来实现的,形成共价键的方法有多种:氯甲基树脂,通常先制得保护氨基酸的四甲铵盐或钠盐、钾盐、铯盐,然后在适当温度下,直接同树脂反应或在合适的有机溶剂如二氧六环、 DMF 或 DMSO 中反应;羧基树脂,则通常加入适当的缩合剂如 DCC 或羧基二咪唑,使被保护氨基酸与树脂形成共酯以完成氨基酸的固定;氨基树脂或酰肼型树脂,却是加入适当的缩合剂如 DCC 后,通过保护氨基酸与树脂之间形成的酰胺键来完成氨基酸的固定。    氨基、羧基、侧链的保护及脱除   要成功合成具有特定的氨基酸顺序的多肽,需要对暂不参与形成酰胺键的氨基和羧基加以保护,同时对氨基酸侧链上的活性基因也要保护,反应完成后再将保护基因除去。同液相合成一样,固相合成中多采用烷氧羰基类型作为α氨基的保护基,因为这样不易发生消旋。最早是用苄氧羰基,由于它需要较强的酸解条件才能脱除,所以后来改为叔丁氧羰基( BOC )保护,用 TFA (三氟乙酸)脱保护,但不适用含有色氨酸等对酸不稳定的肽类的合成。 1978 年, chang Meienlofer 和 Atherton 等人采用 Carpino 报道的 Fmoc(9- 芴甲氧羰基 ) 作为α氨基保护基, Fmoc 基对酸很稳定,但能用哌啶 -CH2CL2 或哌啶 -DMF 脱去,近年来, Fmoc 合成法得到了广泛的应用。羧基通常用形成酯基的方法进行保护。甲酯和乙酯是逐步合成中保护羧基的常用方法,可通过皂化除去或转变为肼以便用于片断组合;叔丁酯在酸性条件下除去;苄酯常用催化氢化除去。对于合成含有半胱氨酸、组氨酸、精氨酸等带侧链功能基的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。保护基的选择既要保证侧链基团不参与形成酰胺的反应,又要保证在肽合成过程中不受破坏,同时又要保证在最后肽链裂解时能被除去。如用三苯甲基保护半胱氨酸的 S- ,用酸或银盐、汞盐除去;组氨酸的咪唑环用 2,2,2- 三氟 -1- 苄氧羰基和 2,2,2- 三氟 -1- 叔丁氧羰基乙基保护,可通过催化氢化或冷的三氟乙酸脱去。精氨酸用金刚烷氧羰基( Adoc )保护,用冷的三氟乙酸脱去。   固相中的接肽反应原理与液相中的基本一致,将两个相应的氨基被保护的及羧基被保护的氨基酸放在溶液内并不形成肽键,要形成酰胺键,经常用的手段是将羧基活化,变成混合酸酐、活泼酯、酰氯或用强的失去剂(如碳二亚氨)形成对称酸酐等方法来形成酰胺键。其中选用 DCC 、 HOBT 或 HOBT/DCC 的对称酸酐法、活化酯法接肽应用最广。 裂解及合成肽链的纯化 BOC 法用 TFA+HF 裂解和脱侧链保护基, FMOC 法直接用 TFA ,有时根据条件不同,其它碱、光解、氟离子和氢解等脱保护方法也被采用。合成肽链进一步的精制、分离与纯化通常采用高效液相色谱、亲和层析、毛细管电泳等。 4 .固相合成的特点及存在的主要问题   固相合成法对于肽合成的显著的优点:简化并加速了多步骤的合成;因反应在一简单反应器皿中便可进行,可避免因手工操作和物料重复转移而产生的损失;固相载体共价相联的肽链处于适宜的物理状态,可通过快速的抽滤、洗涤未完成中间的纯化,避免了液相肽合成中冗长的重结晶或分柱步骤,可避免中间体分离纯化时大量的损失;使用过量反应物,迫使个别反应完全,以便最终产物得到高产率;增加溶剂化,减少中间的产物聚焦;固相载体上肽链和轻度交联的聚合链紧密相混,彼此产生一种相互的溶剂效应,这对肽自聚集热力学不利而对反应适宜。固相合成的主要存在问题是固相载体上中间体杂肽无法分离,这样造成最终产物的纯度不如液相合成物,必需通过可靠的分离手段纯化。 5 .固相合成的研究发展前景 固相多肽合成已经有 40 年的历史了,然而到现在,人们还只能合成一些较短的肽链,更谈不上随心所欲地合成蛋白质了,同时合成中的试剂毒性,昂贵费用,副产物等一直都是令人头痛的问题,而在生物体内,核糖体上合成肽链的速度和产率都是惊人的,那么,是否能从生物体合成蛋白质的原理上得到一些启发,应用在固相多肽合成(树脂)上,这是一个令人感兴趣的问题,也许是今后多肽合成的发展。 在 Boc 合成法中,反复地用酸来脱保护,这种处理带来了一些问题:如在肽与树脂的接头处,当每次用 50%TFA 脱 Boc 基时,有约 1.4% 的肽从树脂上脱落,合成的肽越大,这样的丢失越严重;此外,酸催化会引起侧链的一些副反应 .Boc 合成法尤其不适于合成含有色氨酸等对酸不稳定的肽类 .1978 年, Chang 、 Meienlofer 和 Atherton 等人采用 Carpino [ 3 ]报道的 Fmoc(9- 芴甲氧羰基 ) 基团作为 α- 氨基保护基,成功地进行了多肽的 Fmoc 固相合成 .Fmoc 法与 Boc 法的根本区别在于采用了碱可脱除的 Fmoc 为 α- 氨基的保护基 . 侧链的保护采用 TFA 可脱除的叔丁氧基等,树脂采用 90%TFA 可切除的对烷氧苄醇型树脂和 1%TFA 可切除的二烷氧苄醇型树脂,最终的脱保护避免了强酸处理 . 6. HPLC 分析和纯化   分析 HPLC 使用柱子和泵系统,可以经受传递高压,这样可以用极细的微粒( 3-10μ m )做填料。由此多肽要在几分钟内高度被分析。    HPLC 分两类:离子交换和反相。 离子交换 HPLC 依靠多肽和固相间的直接电荷相互作用。柱子在一定 PH 范围带有特定电荷衍变成一种离子体,而多肽或多肽混合物,由其氨基酸组成表现出相反电荷。 分离是一种电荷相互作用,通过可变 PH , 离子强度, 或两者洗脱出多肽,通常, 先用低离子强度的溶液,以后逐渐加强或一步一步加强,直到多肽火柱中洗脱出。离子交换分离的一个例子使用强阳离子交换柱。如 sulfoethylaspartimide 通过酸性 PH 中带正电来分离。   反相 HPLC 条件与正常层析正相反。多肽通过疏水作用连到柱上,用降低离子强度洗脱, 如增加洗脱剂的疏水性。通常柱子由共价吸附到硅上的碳氢烷链构成,这种链长度为 G4-G8 碳原子。 由于洗脱是一种疏水作用。大的疏水肽用短链柱洗脱好。 然而,总体实践中, 这两类柱互变无多少显著差别,别类载体由碳水化合物构成, 比如苯基。   典型的操作常由两绶冲剂组成, 0.1%TFA-H2o 和 80% acetonitrile 0.1%TFA--H2o 稀 acetonitrile 。用线型梯变以每分钟 0.5% 到 1.0% 改变的速度混合。常见分析和纯化用柱为 4.6×250mm(3-10μ m) 和 22×250mm(10μ m). 如果用径向填柱,那么大小是 8×100 ( 3-10μ m )和 25×250mm(10μ m)   大量各种缓冲剂含许多不同试剂,比如 heptafluorobutyric 酸, 0.1% 磷酸, 稀 He formic 酸 (5-6%, pH2-4), 10-100mM NH4HCO3, 醋酸钠 / 氨, TFA/TEA ,磷酸钠或钾,异戊酚。这样许多不同组合可形成缓冲剂,但要注意一点:硅反相柱料不能长时间暴露于高 pH ,甚至微碱 pH , 因为这样会破坏柱子。 7. Fmoc― 氨基酸的制备和侧链保护    Fmoc 基团是在有 NaHCO3 或 Na2CO3 存在的二氧六环溶液中,通过以下反应引入到氨基酸中的:   理想的 Fmoc- 氨基酸的侧链保护基应在碱性条件下稳定,在酸性条件下脱除 . 下面对其做一介绍 . 7.1   Asp 和 Glu    Asp 和 Glu 侧链羧基常用 t-Bu 保护 . 可用 TFA 、 TMSBr 等脱除 . 但是用 t-Bu 保护仍有侧链环化形成酰亚胺的副反应发生 . 近年来,发展了一些新的保护基如环烷醇酯、金刚烷醇酯等可减轻这一副反应,这些保护基可用 TMSOTf( 三氟甲磺酸三甲硅烷酯 ) 除去 . 7.2   Ser 、 Thr 和 Tyr    ser 、 Thr 的羟基及 Tyr 的酚羟基通常用 t-Bu 保护 . 叔丁基的引入比较麻烦,首先 ser 制成苄氧羰基酯,再在酸催化下与异丁烯反应 .Ser 和 Thr 还可用苄基保护, Ser 用苄醇引入苄基、 Thr 用溴苄引入苄基 . 7.3   Asn 和 Gln    Asn 和 Gln 侧链的酰胺键在肽合成中一般不加以保护 . 但合成大肽时, Asn 和 Gln 的 α- 羧基活化时可能会发生分子内脱氢反应生成氰基化合物 . 碱性时 Gln 的侧链可以环化生成酰胺 . 而且不保护的 Fmoc-Gln 和 Fmoc-Asn 在 DCM 中溶解度很差 . 为了避免这些问题,可以用 9- 咕吨基, 2 , 4 , 6- 三甲氧苄基, 4 , 4′― 二甲氧二苯甲基或三苯甲基等保护,这四种基因均可用 TFA 脱除 . 7.4   His    His 是最容易发生消旋化的氨基酸,必须加以保护 .   对咪唑环的非 π-N 开始用苄基 (Bzl) 和甲基磺酰基 (TOS) 保护 . 但这两种保护基均不太理想 .TOS 对亲核试剂不稳定, Bzl 需要用氢解或 Na/NHs 除去,并且产生很大程度消旋 .Boc 基团是一个较理想的保护基,降低了咪唑环的碱性,抑制了消旋,成功地进行了一些合成 . 但是当反复地用碱处理时,也表现出一定的不稳定性 . 哌啶羰基在碱中稳定,但是没能很好地抑制消旋,而且脱保护时要用很强的亲核试刘如 .   对咪唑环 π-N 保护,可以完全抑制消旋, π-N 可以用苄氧甲基 (Bom) 和叔丁氧甲基 (Bum) 保护, (Bum) 可以用 TFA 脱除, Bom 更稳定些,需用催化氢解或强酸脱保护, Bum 是目前很有发展前途的 His 侧链保护基,其不足之处在于 Fmoc(His)Bum 在 DCM 和 DMF 中的溶解度较差 . 7.5   Cys    Cys 的- SH 具有强亲核性,易被酰化成硫醚,也易被氧化为二硫键,必须加以保护 . 常用保护基有三类:一类用 TFA 可脱除,如对甲苄基、对甲氧苄基和三苯甲基等;第二类可用 (CF3CO)3T1 / TFA 脱除,对 TFA 稳定 . 如 t-Bu 、 Bom 和乙酰胺甲基等 . 第三类对弱酸稳定,如苄基和叔丁硫基 (stBu) 等, Cys(StBu) 可用巯基试剂和磷试剂还原, Cys(Bzl) 可用 Na/NH3(1) 脱保护 . 7.6   Arg    Arg 的胍基具有强亲核性和碱性,必须加以保护 . 理想的情况是三个氮都加以保护,实际上保护 1 或 2 个胍基氮原子 . 保护基分四类: (1) 硝基 (2) 烷氧羰基 (3) 磺酰基 (4) 三苯甲基 .   硝基在制备、酰化裂解中产生很多副反应,应用不广 . 烷氧羰基应主要有 Boc 和二金刚烷氧羰基 (Adoc)2 、 Fmoc(Arg)Boc 的耦联反效率不高,哌啶理时不处稳定,会发生副反应; Adoc 保护了两个非 π - N ,但有同样的副反应发生 . 对磺酰基保护,其中 TOS 应用最广,但它较难脱除 . 近年来 2 , 3 , 6- 三甲基 -4- 甲氧苯横酰基 (Mtr) 较受欢迎,在 TFA 作用下, 30 分钟即可脱除,但是它们都不能完全抑制侧链的酰化发生 . 三苯甲基保护基可用 TFA 脱除 . 缺点是反应较慢,侧链仍有酰化反应,且其在 DCM 、 DMF 中溶解度不好 . 7.7   Lys    Lys 的 ε-NH2 必须加以保护 . 但与 α - NH2 的保护方式应不同,该保护基要到肽链合成后除去 .ε - NH2 的保护无消旋问题,可以采用酰基保护基,其它常用的保护基有苄氧碳基和 Boc.    7.8   Fmoc 基团的脱除    Fmoc 基团的芴环系的吸电子作用使 9-H 具有酸性,易被较弱碱除去,反应条件很温和 . 反应过程可表示如下:   哌啶进攻 9-H,β 消除形成二苯芴烯,很容易被二级环胺进攻形成稳定的加成物 .Fmoc 基团对不同的碱稳定性不同,可根据实际条件选用 . 7.9  耦联反应   固相中的接肽反应原理与液相中基本一致 . 将两个相应的氨基被保护的及羧基被保护的氨基酸放在溶液内,并不形成肽键 . 要形成酰胺键,经常用的手段是将羧基活化,其方法是将它变成混合酸酐,或者将它变为活泼酯、酰氯,或者用强的失去剂 ( 碳二亚胺 ) 也可形成酰胺键,耦联反应可表示如下: (A :羰基活泼试剂 ) 碳二亚胺是常用的活化试剂,其中 Dcc 使用范围最广,其缺点是形成了不溶于 DCM 的 DCH ,过滤时又难于除尽 . 其他一些如二异丙基碳二亚胺 (DCI) 、甲基叔丁基碳二亚胺也用于固相合成中,它们形成的脲 溶于 DCM 中,经洗涤可以除去 . 其他活化试剂,还有 Bop(Bop - C1) 、氯甲酸异丙酯、氯甲酸异丁酯、 SOC12 等 . 其中 Dcc 、 Bop 活化形成对称酸酐、 SOC12 形成酰氯,其余三种形成不对称酸酐 . 7.10  对称酸酐法   用 Dcc 形成对称酸酐的方法使用较广 . 其缺点是有些氨基酸在 DCM 中不易溶解,生成的 Fmoc 氨基酸酐溶解度更差 . 同时还有些副反应,如形成二肽、消旋等 . 7.11  混合酸酐法   最常用试剂是氯甲酸的异丙基酯和异丁基酯 . 前者得到的酸酐稳定性好 . 只产生很少消旋,在适当的化学计量及溶剂条件下,耦联反应很快 . 而且,在此反应中使用的 N- 甲基吗啉和 N- 甲基哌啶对 Fmoc 基团无影响 . 7.12  酰氯法   在 Boc 法中不常用的酰氯,因为比较激烈,一些保护基如 Boc 不稳定 . 但是, Fmoc 基团可以耐受酰氯处理,生成的 Fmoc 氨基酰氯也很稳定 . 在三甲基乙酸/三胺或苯并三氮唑/二异丙基乙二胺中,反应速度很快,消旋很少 . 酰氯法在固相合成中应用还不多,但已表明, Fmoc -氨基酰氯适用于合成有立体障碍的肽序列 . 7.13  活化酯法   活化酯法在固相合成中应用最为广泛 . 采用过的试剂也很多,近来最常用的有 HOBt 酯、 ODhbt 酯、 OTDO 酯等 .    HOBt 酯反应快,消旋少,用碳二亚胺很容易制得; ODhbt 酯很稳定,容易进行分离纯化,与 HOBt 酯具有类似的反应性和消旋性能,它还有一个优越之处,在酰化时有亮黄色、耦联结束时颜色消失,有利于监测反应; OTDO 酯与 ODhbt 酯类似,消旋化极低,易分离,酰化时伴有颜色从桔红色到黄色的变化等 . 7.14  原位法   将碳二亚胺和 α - N 保护氨基酸直接加到树脂中进行反应叫做原位法 .   用 DIC 代替 Dcc 效果更好 . 其他的活化试剂还有 Bop 和 Bop-C1 等 . 原位法反应快、副反应少、易操作 . 其中 DIC 最有效,其次是 Bop 、 Bop-C1 等 . 遗憾的是 Bop 酰化时生成致癌的六甲基磷酰胺,限制了其应用 . 7.15  裂解及侧链保护基脱除    Fmoc 法裂解和脱侧链保护基时可采用弱酸 .TFA 为应用最广泛的弱酸试剂,它可以脱除 t-Bu 、 Boc 、 Adoc 、 Mtr 等;条件温和、副反应较少 . 不足之处: Arg 侧链的 Mtr 很难脱除, TFA 用量较大;无法除掉 Cys 的 t-Bu 等基因 . 也有采用强酸脱保护的方法:如用 HF 来脱除一些对弱酸稳定的保护基,如 Asp 、 Glu 、 Ser 、 Thr 的 Bzl( 苄基 ) 保护基等,但是当脱除 Asp 的吸电子保护基时,会引起环化副反应 . 而 TMSBr 和 TMSOTf 在有苯甲硫醚存在时,脱保护速度很快 . 此外,根据条件不同,碱、光解、氟离子和氢解等脱保护方法也有应用 .    Fmoc 基团用于固相合成多肽已经有了十多年的历史,在合成一些含有在酸性条件下不稳定的氨基的残基的肽时,具有特别优越之处 . 将 Fmoc 法和 Boc 法互相补充,定会在合成更多、更大的生物分子中发挥。 二、常用保护氨基酸数据 缩写 名称 分子量 缩写 名称 分子量 A-Ala Fmoc- Ala 329.3 M-Met Fmoc-Met 371.5 R-Arg Fmoc-Arg(Pbf) 648.77 F-Phe Fmoc- Phe 387.4 N-Asn Fmoc- Asn (Trt) 596.7 (D)F-Phe Fmoc-D-Phe 387.4 D-Asp Fmoc-Asp(OtBu) 411.46 P-Pro Fmoc- Pro 337.4 C-Cys Fmoc-Cys(Trt) 585.7 S-Ser Fmoc- Ser (tBu) 383.4 Q-Gln Fmoc- Gln (Trt) 610.7 T-Thr Fmoc-Thr(tBu) 397.5 E-Glu Fmoc- Glu (OtBu) 425.48 W-Trp Fmoc- Trp (Boc) 526.59 G-Gly Fmoc- Gly 297.3 (D)W-Trp Fmoc-D-Trp(Boc) 526.59 H-His Fmoc- His (Trt) 619.7 D-Tyr Fmoc-Tyr(tBu) 459.5 I-Ile Fmoc- Ile 353.4 V-Val Fmoc-Val 339.4 L-Leu Fmoc- Leu 353.4 pGlu PyroGlu 129.1 K-Lys Fmoc-Lys (Boc) 468.5 常用试剂种类及数据 名称 分子量 名称 分子量 密度( g/ml ) HOBt 135.1 DIPCDI(DIC) 126.3 0.806 TBTU 321.1 DIPEA(DIA) 129.4 0.76 HATU 380.3 Ac2O 102.1 1.08 DMAP 122.1 Pyridine 79.1 0.983 HOAT 136.1 TFA 114.2 1.44 TMP 121.18 0.92 EDT 94.24 1.123 TIS 158.4 NMM 101.15 0.9168 常见保护基团结构及数据 缩写 分子量 缩写 分子量 缩写 分子量 Fmoc- 222 tBu- 56 Acm- 57 Pbf- 253 OtBu- 72 Mz- 165.1 Trt- 242.3 Ac- 43 Boc- 101.1 Z- 134.1 三、常用氨基酸结构及性质 Name Symbol MW MW (-H2O) Structure Three Letter Code One Letter Code Alanine Ala A 89.09 71.08 Arginine Arg R 174.20 156.19 Asparagine Asn N 132.12 114.10 Aspartic Acid Asp D 133.10 115.09 Cysteine Cys C 121.15 103.15 Glutamic Acid Glu E 147.13 129.12 Glutamine Gln Q 146.15 128.13 Glycine Gly G 75.07 57.05 Histidine His H 155.16 137.14 Isoleucine Ile I 131.17 113.16 Leucine Leu L 131.17 113.16 Lysine Lys K 146.19 128.17 Methionine Met M 149.21 131.20 Phenylalanine Phe F 165.19 147.18 Proline Pro P 115.13 97.12 Serine Ser S 105.09 87.08 Threonine Thr T 119.12 101.11 Tryptophan Trp W 204.23 186.21 Tyrosine Tyr Y 181.19 163.18 Valine Val V 117.15 99.13 四、常见保护基团结构 Name Structure Symbol Formula Residue Wt Acetamidomethyl Acm C3H6NO 72.1 Acetyl Ac C2H3O 43.0 Allyloxycarbonyl Aloc C4H5O2 85.1 6-Amidohexanoate LC C4H7NO 85.1 7-Amido-4-methylcoumaryl AMC C10H8NO2 174.2 7-Amido-4-trifluoromethyl-coumaryl AFC C10H5F3NO2 228.2 5- -naphthalene-1-sulfonic acid EDANS C12H13N2O3S 265.3 Benzoyl Bz C7H5O 105.1 Benzyl Bzl C7H7 91.1 Benzyloxycarbonyl Z (Cbz) C8H7O2 135.1 Benzyloxymethyl Bom C8H9O 121.2 (+)-Biotinyl Biotin C10H15N2O2S 227.3 2-Bromobenzyloxycarbonyl 2-Br-Z C8H6BrO2 214.0 tert-Butyl tBu C4H9 57.1 tert-Butyloxycarbonyl Boc C5H9O2 101.1 tert-Butylthio StBu C4H9S 89.2 2-Chlorobenzyloxycarbonyl 2-Cl-Z C8H6ClO2 169.6 Cyclohexyl cHex C6H11 83.1 2,6-Dichlorobenzyl 2,6-di-Cl-Bzl C7H5Cl2 160.0 4-(4-Dimethylaminophenyl-azo)benzoyl DABCYL C15H14N3O 252.3 2,4-Dinitrophenyl Dnp C6H3N2O4 167.1 9-Fluorenylmethyl Fm C14H11 179.1 9-Fluorenylmethyloxy-carbonyl Fmoc C15H11O2 223.3 Fluorescein Isothiocyanate FITC C21H12NO5S 390.4 Lissamine Rhodamine LR C31H38N2O6S2 598.8 Mesitylene-2-sulfonyl Mts C9H11O2S 183.3 4-Methoxybenzyl Mob C8H9O 121.2 (7-Methoxycoumarin-4-yl)acetyl Mca C12H9O4 217.2 4-Methoxy-2,3,6-trimethyl-benzenesulfonyl Mtr C10H13O3S 213.3 4-Methoxytrityl Mmt C20H17O 273.4 4-Methylbenzyl MBzl C8H9 105.2 4-Methyltrityl Mtt C20H17 257.4 4-Morpholinecarbonyl Mu C5H8NO2 114.1 p-Nitroanilide pNA C6H5N2O2 137.1 2,2,4,6,7-Pentamethyldihydro-benzofuran-5-sulfonyl Pbf C13H17O3S 253.3 2,2,5,7,8-Pentamethyl-chroman-6-sulfonyl Pmc C14H19O3S 267.4 Rhodamine 110 R110 C20H13N2O3 329.3 Succinyl Suc C4H5O3 101.1 4-Toluenesulfonyl Tos C7H7O2S 155.2 Trityl Trt C17H15 243.3 Xanthyl Xan C13H9O 181.2 五、多肽常识 Reconstitution and Storage of Peptides Peptides are usually supplied as a fluffy, freeze-dried material in serum vials. Store peptides in a freezer after they have been received. In order to reconstitute the peptide, distilled water or a buffer solution should be utilized. Some peptides have low solubility in water and must be dissolved in other solvents such as 10% acetic acid for a positively charged peptide or 10% ammonium bicarbonate solution for a negatively charged peptide. Other solvents that can be used for dissolving peptides are acetonitrile, DMSO, DMF, or isopropanol. Use the minimal amount of these non-aqueous solvents and add water or buffer to make up the desired volume. After peptides are reconstituted, they should be used as soon as possible to avoid degradation in solution. Unused peptide should be aliquoted into single-use portions, relyophilized if possible, and stored at -20°C. Repeated thawing and refreezing should be avoided. Methods to Dissolve Peptides The best way to dissolve a peptide is to use water. For peptides that are not soluble in water, use the following procedure: 1. For acidic peptides, use a small amount of base such as 10% ammonium bicarbonate to dissolve the peptide, dilute with water to the desired concentration. Do not use base for cysteine-containing peptides. 2. For basic peptides, use a small amount of 30% acetic acid, dilute with water to the desired concentration. 3. For a very hydrophobic peptide, try dissolving the peptide in a very small amount of DMSO, dilute with water to the desired concentration. 4. For peptides that tend to aggregate (usually peptides containing cysteines), add 6 M urea, 6 M urea with 20% acetic acid, or 6 M guanidine•HCl to the peptide, then proceed with the necessary dilutions. Preparation of HBTU/HOBt Solution for the Peptide Synthesizer 1. Preparation of 0.5 M HOBt in DMF: o Weigh 13.5 g anhydrous HOBt (0.1 mol, MW 135.1) into a 250 mL graduated cylinder. o Add DMF until the 200 mL level is reached. 2. Preparation of 0.45 M HBTU/HOBt solution: o Add the solution prepared in step 1 to 37.9 g HBTU (0.1 mol, MW 379.3) contained in a beaker or an Erlenmayer flask. 3. Stir for about 15 min with a magnetic stirring bar until HBTU is dissolved. 4. Filter the solution through a fine pore size sintered glass funnel. 5. Pour the filtered solution into an appropriate bottle for attachment to a peptide synthesizer. * This solution is stable at room temperature for at least six weeks. Biotinylation of Amino Group 1. Wash 0.1 mmol resin with DMF. 2. Dissolve 0.244 g (+)-biotin (1 mmol, MW 244.3) in 5 mL DMF-DMSO (1:1) solution. A little warming is necessary. 3. Add 2.1 mL 0.45 M HBTU/HOBt solution and 0.3 mL DIEA to the solution prepared in step 2. 4. Add the activated biotin solution to the resin and let stir overnight. 5. Check resin to make sure coupling is complete as evidenced by negative ninhydrin test (colorless). 6. Wash resin with DMF-DMSO (1:1) (2x) to remove excess (+)-biotin. 7. Wash resin with DMF (2x) and DCM (2x). 8. Let the resin dry before proceeding to cleavage. Procedure for Loading Fmoc-Amino Acid to 2-Chlorotrityl Chloride Resin 1. Weigh 10 g 2-chlorotrityl chloride resin (15 mmol) in a reaction vessel, wash with DMF (2x), swell the resin in 50 mL DMF for 10 min, drain vessel. 2. Weigh 10 mmol Fmoc-amino acid in a test tube, dissolve Fmoc-amino acid in 40 mL DMF, transfer the solution into the reaction vessel above, add 8.7 mL DIEA (50 mmol), swirl mixture for 30 min at room temperature. 3. Add 5 mL methanol into the reaction vessel and swirl for 5 min. 4. Drain and wash with DMF (5x). 5. Check substitution. 6. Add 50 mL 20% piperidine to remove the Fmoc group. Swirl mixture for 30 min. 7. Wash with DMF (5x), DCM (2x), put resin on tissue paper over a foam pad and let dry at room temperature overnight under the hood. Cover the resin with another piece of tissue paper, press lightly to break aggregates. 8. Weigh loaded resin. 9. Pack in appropriate container. Procedure for Checking Substitution of Fmoc-Amino Acid Loaded Resins 1. Weigh duplicate samples of 5 to 10 mg loaded resin in an eppendorf tube, add 1.00 mL 20% piperidine/DMF, shake for 20 min, centrifuge down the resin. 2. Transfer 100 μL of the above solution into a tube containing 10 mL DMF, mix well. 3. Pipette 2 mL DMF into each of the two cells (reference cell and sample cell), set spectrophotometer to zero. Empty the sample cell, transfer 2 mL of the solution from step 2 into the sample cell, check absorbance. 4. Subs = 101(A)/7.8(w) A = absorbance w = mg of resin 5. Check absorbance three times at 301 nm, calculate average substitution. Manual Fmoc Synthesis (0.25 mmol) 1. Wash resin with DMF (4x) and then drain completely. 2. Add approximately 10 mL 20% piperidine/DMF to resin. Shake for one min and drain. 3. Add another 10 mL 20% piperidine/DMF. Shake for 30 min. 4. Drain reaction vessel and wash resin with DMF (4x). Make sure there is no piperidine remaining. Check beads using ninhydrin test, beads should be blue. 5. Coupling Step - Prepare the following solution: 1 mmol Fmoc-amino acid 2.1 mL 0.45 M HBTU/HOBT (1mmol) 348 μL DIEA (2 mmol) Add above solution to the resin and shake for a minimum of 30 min. This coupling step can be longer if desired. 6. Drain reaction vessel and wash resin with DMF (4x). 7. Perform Ninhydrin test: o If negative (colorless), proceed to step 2 and continue synthesis. o If positive (blue), return to step 5 and re-couple the same Fmoc-amino acid. Increase the coupling time if necessary. Synthesis of Phosphotyrosine-Containing Peptides Using Fmoc-Phosphotyrosine Reagent: N- a -Fmoc-O-phosphotyrosine 1. For 0.1 mmol or 0.25 mmol synthesis, use 0.483 g Fmoc-Tyr(PO3H2)-OH (1 mmol, MW 483.4) . For ABI synthesizers, pack Fmoc-Tyr(PO3H2)-OH in a cartridge. 2. The cycle program for coupling Fmoc-Tyr (PO3H2)-OH is the same as for other Fmoc-amino acids except for the coupling time (see step 3). (Note: ABI synthesizers use HBTU/HOBT as the activating reagent.) 3. The coupling time for Fmoc-Tyr(PO3H2)-OH needs to be increased. For ABI model 430A peptide synthesizer, insert several steps (i.e., vortex on, wait 990 sec, vortex off, to increase the coupling time). For ABI model 431A peptide synthesizer, add additional "I"s. Overnight coupling may be necessary for some sequences. 4. After the coupling step for Fmoc-Tyr(PO3H2)-OH, perform ninhydrin test to ensure complete coupling. Negative (colorless) ninhydrin test indicates complete coupling, while a positive (blue) ninhydrin test indicates incomplete coupling. 5. Increase the coupling time of the amino acid residues after the phosphotyrosine or perform double coupling. (Note: The coupling of amino acids after the phosphotyrosine can be difficult.) 6. There is a limit on the number of amino acid residues that can be coupled after the hosphotyrosine. Since the phospho group is unprotected, side reactions are likely to ccur. (Note: Peptides have been successfully coupled with sequences containing up o ten additional amino acids following the phosphotyrosine residue.) Simultaneous Synthesis of Peptides Which Differ in the C-Termini Using 2-Chlorotrityl Resin and Wang Resin* Peptides which differ in the C-termini can be simultaneously synthesized in one reaction vessel by employing resins that possess different cleavage properties. The resins used were the weak acid labile 2-chlorotrityl resins and the TFA labile Wang resins. The success of this approach was shown by the co-synthesis of ACTH (4-10) with ACTH (4-11) and Neuropeptide Y, a C-terminal amide peptide with its corresponding C-terminal free acid analog. *Hong A., Le T., and Phan T. Techniques in Protein Chemistry VI, 531-562 (1995). Cleavage Protocol to Produce Fully Protected Peptide Starting Resin: Chlorotrityl resins Reagents for 1 g Peptide-Resin: 1 mL acetic acid (AcOH) 2 mL trifluoroethanol (TFE) 7 mL dichloromethane (DCM) 1. Prepare above mixture. 2. Add peptide-resin to the mixture and let it stir at room temperature for 1 h. 3. Filter and wash resin with 10 mL TFE:DCM (2:8) (2x) to ensure that all of the product is recovered. 4. Evaporate the solvent until there is less than 5 mL of liquid. 5. Add ether to a test tube containing about 100 m L of the above solution. Check solubility of the fully protected peptide in ether. If the product precipitates, proceed to step 6. If no precipitate is observed, proceed to step 7. 6. Add cold ether to the residual liquid in step 4 to precipitate the fully protected peptide. Filter through a fine sintered funnel to obtain the product. 7. Some fully protected peptides are soluble in ether. In this case, add water to precipitate them out. Filter through a fine sintered funnel to obtain the product. Procedure for FITC Labeling of Peptides Reagents: FITC Fmoc- e -Ahx-OH 1. Couple Fmoc- e -Ahx-OH to the amino terminal of the peptide-resin using standard coupling conditions. 2. "De-Fmoc" with piperidine using the standard 20% piperidine procedure. 3. Wash resin with DMF (3-4x). 4. Swell resin with DCM and drain. 5. Prepare solution of 1.1 equivalent of FITC in pyridine/DMF/DCM (12:7:5). Use just enough solution to form a slurry with the resin. Do not use too much solution since the rate of the reaction is proportionate to the concentration of the solution. 6. Add the solution prepared in step 2 to the resin. 7. Let mix overnight. 8. Check the completion of the reaction using ninhydrin test. 9. If the coupling of FITC to the amino group is not complete, ninhydrin test will give a blue color. Repeat the coupling with FITC (steps 5-7) if necessary. 10. Wash resin with DMF (2x), isopropanol (2x), and DCM (2x). Procedure for Removing Mtt group from Fmoc-Lys(Mtt) on Solid Phase Reagent: Fmoc-Lys(Mtt)-OH 1. Swell resin in DCM. 2. Wash resin with 3% TFA/DCM (2x) (since the resin is swollen in DCM, this step of washing the resin quickly with 3% TFA/DCM ensures that the actual concentration of TFA is 3%). 3. Shake the resin in 3% TFA for 10 min. 4. Repeat step 3. 5. Wash resin with DCM (3x), DMF (3x), isopropanol (3x), and DCM (3x). 6. Let the resin dry in air. Procedure for Fluorescein Labeling of Peptides Reagent: 5-carboxyfluorescein (5-FAM) [0.1 g, AnaSpec Catalog # 24623; 0.5 g, AnaSpec Catalog # 24624) Use standard coupling method to couple 5-carboxyfluorescein to the amino group of the peptide. For cost saving purposes, use 2x excess compared to the mmol of resin, instead of the standard 4x excess used for Fmoc-amino acids. For 0.1 mmol synthesis, use 75 mg 5-carboxyfluorescein, 76 mg HBTU, and 70 mL DIEA. 六、常用试剂 及非天然氨基酸 (一)缩合剂 1 . Name: EDC.HCl Category: Peptide Coupling Reagent 2 . 6- 氯 -1- 羟基 - 苯并 - 三氮唑 Name: Cl-HOBt Category: Peptide Coupling Reagent 3 . Name: N,N'-Diisopropylcarbodiimide (DIC) Category: Peptide Coupling Reagent   4 . 二环己基碳化二亚胺 Name: Dicyclohexylcarbodiimide (DCC) Category: Peptide Coupling Reagents 5 . Name: BOP Reagent Category: Peptide Coupling Reagent 6 . 六氟磷酸苯并三唑 -1- 基 - 氧基三吡咯烷基磷 Name: PyBOP Category: Peptide Coupling Reagent 7 . N,N'- 羰基二咪唑 Name: N,N'-Carbonyldiimidazole (CDI) Category: Peptide Coupling Reagent 8 . Name: DEPBT Category: Peptide Coupling Reagent 9 . Name: 4,5-Dicyanoimidazole Category: Peptide Coupling Reagent   10 . Name: HBTU Category: Peptide Coupling Reagent 11 . Name: HOBt (anhydrous) Category: Peptide Coupling Reagent 12 . Name: HOOBt Category: Peptide Coupling Reagent 13 . Name: TBTU Category: Peptide Coupling Reagent (二)链接剂 1 . Name: Sieber Linker Category: Linkers for Solid Phase Synthesis   2 . Name: Weinreb Linker Category: Linkers for Solid Phase Synthesis   3 . Name: DHP Linker Category: Linkers for Solid Phase Synthesis   4 . Name: HMP Linker Category: Linkers for Solid Phase Synthesis 5 . Name: Rink Amide Linker Category: Linkers for Solid Phase Synthesis (三) 树脂 Resin 1 . Name: 2-Chlorotrityl Chloride Resin Category: Resins 2 . Name: Aminomethyl polystyrene Resin Category: Resins 3 . (用于合成肽醇) Name: DHP HM Resin Category: Resins 4 . Name: HMPA-AM Resin Category: Resins 5 . (用于合成肽酰胺) Name: Knorr Resin Category: Resins 6 . (用于合成肽酰胺) Name: Knorr-2-Chlorotrityl Resin Category: Resins 7 . Name: MBHA Resin Category: Resins 8 . Name: Merrifield Resin Category: Resins 9 . Name: Oxime Resin Category: Resins 10 . Name: PAM Resin Category: Resins 11 . Name: Rink amide-AM Resin Category: Resins 12 . Name: Rink amide-MBHA Resin Category: Resins 13 . Name: Sieber Resin Category: Resins 14 . Name: Wang Resin Category: Resins 15 . (用于合成肽醛) Name: Weinreb AM Resin Category: Resins (四)保护剂 1 . 9- 芴甲醇 Name: 9-Fluorenylmethanol Category: N-Protecting Reagents 2 . Boc- 酸酐 Name: Boc Anhydride Category: N-Protecting Reagents 3 . 4,4'- 二甲氧基三苯基氯甲烷 Name: DMT-Cl Category: N-Protecting Reagents 4 . Name: N,N'-Disuccinimidyl carbonate(DSC) Category: N-Protecting Reagents 5 . 芴甲氧羰酰氯 Name: Fmoc-Cl Category: N-Protecting Reagents 6 . 芴甲氧羰酰琥珀酰亚胺 Name: Fmoc-OSu Category: N-Protecting Reagents 7 . 叔丁基二甲基氯硅烷 Name: tert-Butyldimethylsilyl Chloride Category: N-Protecting Reagents 8 . Name: Trityl Chloride Category: N-Protecting Reagents 9 . 苯甲氧羰酰氯 (Cbz-Cl) Name: Z-Cl Category: N-Protecting Reagents 10 . 苯甲氧羰酰琥珀酰亚胺 (Cbz-OSu) Name: Z-OSu Category: N-Protecting Reagents 11 . Name: Z(2Cl)-OSu Category: N-Protecting Reagents 12 . Name: Z(2-Br)-OSu Category: N-Protecting Reagents (五) 非天然氨基酸 1 . Name: Fmoc-Dap(Boc)-OH Category: Unusual Amino Acids 2 . Name: 3-Chloro-L-Phenylalanine Category: Unusual Amino Acids 3 . Name: 3-Cl-Tyr-OH Category: Unusual Amino Acids 4 . Name: 4-Amino-L-Phenylalanine Category: Unusual Amino Acids 5 . Name: 4-Chloro-L-Phenylalanine.HCl Category: Unusual Amino Acids 16 . Name: 3,4-Dichloro-phenylalanine Category: Unusual Amino Acids 6. Name: 4-Fluoro-L-Phenylalanine Category: Unusual Amino Acids 7. Name: Boc-4-Iodo-L-phenylalanine Category: Unusual Amino Acids 8. Name: 4-Methoxyphenylalanine Category: Unusual Amino Acids 9. Name: 3-NH2-Tyr-OH Category: Unusual Amino Acids 10. Name: 4-Nitro-L-Phenylalanine Hydrate Category: Unusual Amino Acids 11. Name: 3-(3-Pyridyl)-L-alanine.HCl Category: Unusual Amino Acids 12. Name: DL-m-Tyrosine category: Unusual Amino Acids 13. Name: Fmoc-Tyr(3-NO2)-OH Category: Unusual Amino Acids   14. Name: Boc-Homo-L-Tyrosine Category: Unusual Amino Acids 15. Name: Sarcosine tert-butyl ester.HCl Category: Unusual Amino Acids (六)标记试剂 1 . 7- 氨基 -4- 甲基香豆素 Name: 7-Amino-4-methylcoumarin ( AMC) Category: Labeling Reagents (七)修饰及标记 1. 标记 Aminocoumarin Bodipy Lissamine Rhodaliiine NBD Fluorescein Tetramethylrhodamine 2. 修饰 Acetylation Formylation Amidation(C—terminal) Nitronation Fatty acid Phosphorylation-Serine Phosphorylation-Threonine Phosphorylation-Tyrosine Benzyloxycarbonylation Biotin Dansvlation Succinylation Dinitrobenzoylation Sulfonation 3. 蛋白载体联接 KLH(KeyhOlelimpetlleiiiocyanin) BSA(Bovine serum albUnin) 4. 复合抗原多 (MAP) Asymmetric 4 branches Asymmetric 8 branches Symmetric 4 branches Symmetric 8 branches 七、 Overview of Peptide Synthesis Introduction Proteins are present in every living cell and possess a variety of biochemical activities. They appear as enzymes, hormones, antibiotics, and receptors. They compose a major portion of muscle, hair, and skin. Consequently, scientists have been very interested in synthesizing them in the laboratory. This interest has developed into a major synthetic field known as Peptide Synthesis. The major objectives in this field are four-fold: 1. To verify the structure of naturally occurring peptides as determined by degradation techniques. 2. To study the relationship between structure and activity of biologically active protein and peptides and establish their molecular mechanisms. 3. To synthesize peptides that are of medical importance such as hormones and vaccines. 4. To develop new peptide-based immunogens. Solid Phase Peptide Synthesis (SPPS) The fundamental premise of this technique involves the incorporation of N- a -amino acids into a peptide of any desired sequence with one end of the sequence remaining attached to a solid support matrix. While the peptide is being synthesized usually by stepwise methods, all soluble reagents can be removed from the peptide-solid support matrix by filtration and washed away at the end of each coupling step. After the desired sequence of amino acids has been obtained, the peptide can be removed from the polymeric support. The general scheme for solid phase peptide synthesis is outlined in Figure 1. The solid support is a synthetic polymer that bears reactive groups such as -OH. These groups are made so that they can react easily with the carboxyl group of an N- a -protected amino acid, thereby covalently binding it to the polymer. The amino protecting group (X) can then be removed and a second N- a -protected amino acid can be coupled to the attached amino acid. These steps are repeated until the desired sequence is obtained. At the end of the synthesis, a different reagent is applied to cleave the bond between the C-terminal amino acid and the polymer support; the peptide then goes into solution and can be obtained from the solution. Fmoc Strategy in SPPS The crucial link in any polypeptide chain is the amide bond, which is formed by the condensation of an amine group of one amino acid and a carboxyl group of another. Generally, an amino acid consists of a central carbon atom (called the a -carbon) that is attached to four other groups: a hydrogen, an amino group, a carboxyl group, and a side chain group. The side chain group, designated R, defines the different structures of amino acids. Certain side chains contain functional groups that can interfere with the formation of the amide bond. Therefore, it is important to mask the functional groups of the amino acid side chain. The general scheme which outlines the strategy of Fmoc synthesis is shown in Figure 2. Initially, the first Fmoc amino acid is attached to an insoluble support resin via an acid labile linker. Deprotection of Fmoc, is accomplished by treatment of the amino acid with a base, usually piperidine. The second Fmoc amino acid is coupled utilizing a pre-activated species or in situ activation. After the desired peptide is synthesized, the resin bound peptide is deprotected and detached from the solid support via TFA cleavage. Fmoc Cleavage The removal of peptides in solid phase peptide synthesis is primarily done by acidolysis. The Fmoc chemistry employs the use of weak acids such as TFA or TMSBr. Various scavengers are included to protect the peptide from carbocations generated during cleavage which can lead to side reactions. These additives usually include thiol compounds, phenol, and water. The following protecting groups are compatible with TFA and TMSBr cleavage: Arg(Boc)2 Cys(Acm) Lys (Boc) Arg(Mtr) Cys(Trt) Lys (Fmoc) Arg(Pbf) Gln(Tmob) Lys (Mtt) Arg(Pmc) Gln(Trt) Ser(tBu) Asn(Tmob) Glu(OtBu) Thr(tBu) Asn(Trt) His(Boc) Tyr(tBu) Asp(OtBu) His(Trt) Depending on the type of protecting groups present, certain combinations of scavengers must be used. For instance, when either Boc and t-Butyl groups are present, their carbocation counterparts (t-butyl cations and t-butyltrifluoroacetate) can react with Trp, Tyr, and Met to form their t-butyl derivatives. While EDT is a very efficient scavenger for t-butyl trifluoroacetate, it does not protect Trp from t-butylation. Therefore, water must be added in order to suppress alkylation. The indole ring of Trp and the hydroxyl group of Tyr are especially susceptible to the reactivity of the cleaved Pmc group. Again, water has been shown to be effective in suppressing this reaction. Similar occurrences can happen with the Trt and Mtr groups. Therefore, scavengers in the appropriate combination will greatly reduce the amount of side reactions. Boc Strategy in SPPS The general scheme which outlines the strategy of Boc synthesis is shown in Figure 3. Initially, the first Boc amino acid is attached to an insoluble support resin via a HF cleavable linker. Deprotection of Boc, is accomplished by treatment of the amino acid with TFA. The second Boc amino acid is coupled utilizing a pre-activated species or in situ activation. After the desired peptide is synthesized, the resin bound peptide is deprotected and detached from the solid support via HF cleavage. Boc Cleavage The Boc chemistry employs the use of strong acids such as HF, TFMSOTf, or TMSOTf. Various additives, usually thiol compounds are added to protect the peptide from the carbocations generated during cleavage. The following protecting groups are compatible with HF cleavage: Arg(Mts) Cys(4-MeOBzl) His(Z) Arg(Tos) Glu(OBzl) Lys (Cl-Z) Asp(OBzl) Glu(OcHex) Ser(Bzl) Asp(OcHex) His(Bom) Thr(Bzl) Cys(Acm) His(Dnp) Trp(CHO) Cys(4-MeBzl) His(Tos) Tyr(Br-Z) Asp(OtBu) His(Trt) The following protecting groups are compatible with TFMSOTf cleavage: Arg(Mts) His(Bom) Met(O) Asp(OBzl) His(Dnp)) Ser(Bzl) Cys(Acm) His(Tos) Thr(Bzl) Cys(4-MeBzl) His(Z) Trp(CHO) Glu(OBzl) Lys (Cl-Z) Tyr(Br-Z) The following protecting groups are compatible with TMSOTf cleavage: Arg(Mts) Glu(OcHex) Trp(CHO) Arg(Mbs) His(Bom) Trp(Mts) Asp(OBzl) Lys (Cl-Z) Tyr(Br-Z) Asp(OcHex) Met(O) Tyr(Bzl) Cys(Acm) Ser(Bzl) Tyr(Cl-Bzl) His(Bom) Thr(Bzl) General Coupling Methods in SPPS Coupling reactions in SPPS require the acylation reactions to be highly efficient to yield high-purity peptides. Coupling Methods in Fmoc SPPS The most widely used coupling method in Fmoc SPPS is the activated ester method either pre-formed (pre-activated species) or in situ (without pre-activation). Initially, the p-nitrophenyl and N-hydroxysuccinimide (ONSu) activated esters were the predominantly used forms (1-2). However, even in the presence of HOBt, the coupling reactions tended to be slow. In addition, ONSu esters of Fmoc amino acids were prone to the formation of the side product succinimido-carbonyl- b -alanine-N-hydroxysuccinimide ester (3-4). The most commonly used activated esters presently are the pentafluorophenyl (OPfp) ester and the 3-hydroxy-2,3-dihydro-4-oxo-benzo-triazone (ODhbt) ester (5-7). In the presence of HOBt, the rate of reaction is very rapid and the reaction is efficient with minimal side product formation. On the other hand, many coupling reactions can be done in situ using activating reagents such as DCC, HBTU, TBTU, BOP, or BOP-Cl. The direct addition of carbodiimide is considered to be the best choice (8-13). HBTU and TBTU would rank second, followed by BOP and finally BOP-Cl. With regards to ester coupling, the following order was found: BOP/HOBt carbodiimide/HOBt ~ carbodiimide/ODhbT DCC/OPfp (14-15). More recently, 1-hydroxy-7-azabenzotriazole (HOAt) and its corresponding uronium salt analog O-(7-azabenzotrizol-1-yl)-1,1,3,3, tetra-methyluronium hexafluorophosphate (HATU) have been developed and found to have a greater catalytic activity than their HOBt and HBTU counterparts. The use of HOAt and HATU enhances coupling yields, shortens coupling times, and reduces racemization. Consequently, these reagents are suitable for the coupling of sterically hindered amino acids, thereby ensuring greater success in the synthesis of difficult peptides (16-17). Coupling Methods in Boc SPPS The carbodiimides, primarily DCC, were the coupling reagents of choice for many years (18). The major drawbacks encountered were the precipitation of dicyclohexylurea during the activation and acylation processes and the numerous side reactions associated with its usage. Several carbodiimides which produced soluble ureas were developed, such as diisopropylcarbodiimide (DIC), t-butyl methyl- and t-butylethyl-carbodiimides (19-22), but these did not resolve the problem of side reactions. Consequently, new types of activating agents were developed. The first of these was BOP (23), PyBroP (24-25) PyBOP (26), HBTU (27), TBTU (28), and HATU (29). All of these reagents require bases for activation. All of the DCC and DCC-related derivatives discussed previously work by the formation of the symmetrical anhydride. The symmetrical anhydrides are usually very reactive and have been used extensively in SPPS, especially in Boc synthesis (30-33). Attempts at incorporating symmetrical anhydrides to Fmoc amino acids were met with some difficulties (34-36). For instance, symmetrical anhydrides prepared from N-(3-dimethylamino propyl)-N'-ethyl-carbodiimide•HCl, upon formation of the 2-alkoxy-5(4H)-oxazolone intermediate, rearranged in the presence of carbodiimides and tertiary amines (37). Also, not all of the Fmoc symmetrical anhydrides are soluble in DCM or remain insoluble regardless of the solvent used (38). An alternative to the symmetrical anhydride is the mixed anhydride which is a carboxylic-carbonate or carboxylic-phosphinic mixed anhydride. Typically, these anhydrides are prepared by reacting either isobutyl- or isopropyl-chloroformate and substituted phosphinic chlorides with the N- a -protected amino acid (39-42). The reaction is typically rapid with little or no side reactions (43-46). A type of mixed anhydride, N-carboxyanhydrides (NCA's), also known as Leuchs' anhydride have been widely used for the preparation of polyamino acids (47). This class of compounds combines N- a -protection with carboxyl group activation. Once reacted with another amino acid or peptide residue, the NCA releases carbon dioxide as its only by-product. NCA derivatives are easily prepared by treating a -amino acids with phosgene (48-51). The resulting NCA derivatives usually crystallize out and are ready for use under strictly defined conditions. These conditions require the pH to be carefully controlled during synthesis. At pH 10, the peptide-carbamate (produced by the reaction between the NCA and the peptide or amino acid residue) tends to lose carbon dioxide with the generation of a free a -amino end group with resulting polymerization. At pH 10.5, hydrolytic decomposition of the NCA occurs. Therefore, the reaction is performed at pH 10.2. Another required condition is that the reaction proceeds for 2 minutes at 0°C with vigorous stirring. The resulting product is free of racemization and bears a free a -amino group that can be extended by addition of another anhydride. Solution Phase Synthesis Stepwise condensation is based on the repetitive addition of single N- a -protected amino acids to a growing amino component, generally starting from the C-terminal amino acid of the chain to be synthesized. The process of coupling individual amino acids can be accomplished through employment of the carbodiimide (52-53), the mixed carbonic anhydride (54-55), or the N-carboxyanhydride methods (56-57). The carbodiimide method involves coupling N- and C- protected amino acids by using DCC as the coupling reagent. Essentially, this coupling reagent promotes dehydration between the free carboxyl group of an N-protected amino acid and the free amino group of the C-protected amino acid, resulting in the formation of an amide bond with precipitation of the by- product, N,N'-dicylcohexylurea. This method, however, is hampered by side reactions which can result in racemization (58-59) or in the presence of a strong base, the formation of 5(4H)-oxazolones (60) and N-acylureas (61). Fortunately, these side reactions can be minimized, if not altogether eliminated, by adding a coupling catalyst such as N-hydroxysuccinimide (HOSu) or 1-hydroxybenzotriazole (HOBt). In addition, this method can be employed to synthesize the active ester derivatives of N-protected amino acids (62). In turn, the resulting activated ester will react spontaneously with any other C-protected amino acid or peptide to form a new peptide. In cases where separation of the activated ester from the by-product dicyclohexylurea proves to be difficult, the mixed carbonic anhydride method can be employed. This method consists of two stages: the first stage involves activating the carboxyl group of an N- a -protected amino acid with an appropriate alkyl chlorocarbonate, such as ethylchlorocarbonate (63), or preferably isobutylchlorocarbonate (64). Activation occurs in an organic solvent in the presence of a tertiary base. The second stage involves reacting the carbonic anhydride with a free amine component of an amino acid or a peptide unit. The carbonic anhydride is usually added at a 14-fold excess over the amine component. The mixed carbonic anhydride method is noted for being highly effective at low temperatures, resulting in high yields and pure products. However, it does have its short-comings. For instance, there is a tendency for the anhydride derivative to undergo racemization as a result of the strong activation of the carbonyl group. This problem does not occur when N- a -urethane protecting groups, such as Cbz or t-Boc, are employed (65-66). Furthermore, as a result of their high reactivity, mixed carbonic anhydrides are prone to the formation of 5(4H)-oxazolones (67), urethanes (68-69), diacyimides (70-71), esters (72), and are subject to disproportion (73-74). Conditions which prompt such side reactions to occur are high temperatures, prolonged activation times (the time interval between the addition to the alkylchlorocarbonate and the amine component after the mixed anhydride is formed), steric bulk of the amine component, and incomplete formation of the mixed anhydride. Fortunately, most of these side reactions, except for oxazalone and urethane formation, can be substantially reduced by performing the reaction at low temperature (~ -15°C) and allowing for shorter activation times (~ 1-2 min). To minimize the formation of oxazolone and urethane derivatives, the following conditions must be implemented: 1) dried organic solvents such as ethyl acetate, tetrahydrofuran, t-butanol, or acetonitrile must be used (75); 2) the tertiary base, N-methylmorpholine, should be used (76); and 3) Cbz- or Boc-N- a -protected amino acids must be utilized (77). Although isobutyl- and ethylchlorocarbonate are typically used to form carbonic anhydrides, other coupling reagents do exist. For example, N-ethyloxycarbonyl-2-ethyloxy-1,2-dihydroquinoline (EEDQ) (78) and N-isobutyloxy-carbonyl-2-isobutyloxy-1,2-dihydroquinoline (IIDQ) (79) were developed to react with the carboxyl component to form the ethyl- or isobutylcarbonate derivative. Unlike the classical anhydride procedure, EEDQ and IIDQ do not require base nor low reaction temperatures. Typically, the procedure involves reacting equimolar amounts of the carboxyl and amine components in an organic solvent (a wide variety of solvents can be used) (80) at 0.1 M to 0.4 M concentrations. Then EEDQ or IIDQ is added in 5-10% excess and the mixture is allowed to stir for 15-24 hours at room temperature. After removal of the solvent, in vacuo, the residue is dissolved in ethyl acetate and washed with 1N NaHCO3, 10% citric acid, and salt water, then dried with Na2SO4 (anhydrous), and evaporated. The product can then be recrystallized or purified by chromatography. While this method circumvents the use of base, it is still subject to racemization and urethane side product formation at levels comparable to those found in the classical anhydride approach. Consequently, its only advantage may be that it is easy and convenient to use. It should be noted that a detailed comparison of the two methods has not been carried out to this date. HPLC Analysis and Purification (81-84) Analytical HPLC utilizes columns and pumping systems that can withstand and deliver very high pressures enabling the use of very fine particles (3-10 microns) as packing material. Consequently, peptides can be resolved with a high degree of resolution in a short time interval (i.e., minutes). Two common HPLC purification methods are, ion exchange and reverse phase. Ion exchange HPLC is based on direct charge interactions between the peptide and the stationary phase. The column support is derivatized with an ionic species that maintains a particular charge over a certain pH range, while the peptide or peptide mixture exhibits an opposite charge which is dependent on its amino acid composition. Separation is dependent on charge interactions. The peptide is eluted by changing the pH, the ionic strength, or both. Typically, a solution of low ionic strength is used; the ionic strength of the solution is then gradually or step-wise increased until the peptide is eluted from the column. One example of ion exchange separation incorporates the use of strong cation exchange columns such as sulfoethylaspartimide which separates on the basis of positive charge at an acidic pH. Reverse phase HPLC conditions are essentially the reverse of normal phase chromotography. The peptide binds on the column through hydrophobic interactions and is eluted by decreasing the ionic strength (i.e., increasing the hydrophobicity of the eluent). Generally, the column supports are composed of hydrocarbon alkane chains which are covalently attached to silica. These chains range from C4 to C18 carbon atoms in length. Since elution from the column is a function of the hydrophobicity, the longer chain hydrocarbon columns are better for small, highly charged peptides. On the other hand, large hydrophobic peptides elute better using short chain hydrocarbon supports. However, in general practice, these two types of columns can be used interchangeably with little significant differences. Other types of supports consist of aromatic hydrocarbons such as phenyl groups. A typical run usually consist of two buffers, 0.1% TFA-H2O and 80% acetonitrile/0.1% TFA-H2O, which are mixed using a linear gradient with a flow rate which will give a 0.5% to 1.0% change per minute. Typical columns for analytical and purification runs are 4.6 x 250 mm (3-10 microns) and 22 x 250 mm (10 microns), respectively. If radial packed columns are used, then column sizes are 8 x 100 mm (3-10 microns) and 25 x 100 mm (10 microns), respectively. A variety of other buffers can contain many different types of reagents such as 0.1% heptafluorobutyric acid, 0.1% phosphoric acid, dilute HCl, formic acid (5-60%, pH 2-4), 10-100 mM NH4HCO3, sodium/ammonium acetate, TFA/TEA, sodium or potassium phosphate, or triethylammonium phosphate (pH 4-8). In addition, water miscible eluents can also be added such as methanol, propanol, and isopropanol. Therefore, many combinations of solvents and additives for a buffer are possible. It should be noted that silica-based reverse phase column packing must not be exposed to high pH's or even slightly basic pH's for extended periods of time because the column can be destroyed at those pH levels. The crude peptide obtained from SPPS will contain many by-products which are a result of deletion or truncated peptides as well as side products stemming from cleaved side chains or oxidation during the cleavage and deprotection process. Earlier purification methods included ion exchange, partition, and counter current chromatography. Recent purification methods include reverse phase HPLC which is generally successful with peptides containing 60 residues or less. In conjunction, ion exchange HPLC can be used in cases where reverse phase HPLC does not work. Typically, analytical HPLC results are used to determine the purification conditions. For example, if a peptide elutes out at 30% (0.1% TFA) aqueous acetonitrile (determined by analytical HPLC analysis), a buffer containing a lower concentration of acetonitrile is chosen such that the peptide peak will come out 4-5 minutes after the solvent peak under isocratic conditions (e.g., 28% (0.1% TFA) aqueous acetonitrile). The purification conditions will entail using a linear gradient of 16-35% (0.1% TFA) aqueous acetonitrile over one or two hours depending on the type of column chosen. The collected fractions will then be checked by analytical HPLC, using the buffer chosen for isocractic conditions. Handling and Storage of Peptides Peptides have widely varying solubility properties. The main problem associated with the dissolution of a peptide is secondary structure formation. This formation is likely to occur with all but the shortest of peptides and is even more pronounced in peptides containing multiple hydrophobic amino acid residues. Secondary structure formation can be promoted by salts. It is recommended first to dissolve the peptide in sterile distilled or deionized water. Sonication can be applied if necessary to increase the rate of dissolution. If the peptide is still insoluble, addition of a small amount of dilute (approximately 10%) acetic acid (for basic peptides) or aqueous ammonia (for acidic peptides) can facilitate dissolution of the peptide. For long-term storage of peptides, lyophilization is highly recommended. Lyophilized peptides can be stored for years at temperatures of -20°C or lower with little or no degradation. Peptides in solution are much less stable. Peptides are susceptible to degradation by bacteria so they should be dissolved in sterile, purified water. Peptides containing methionine, cysteine, or tryptophan residues can have limited storage time in solution due to oxidation. These peptides should be dissolved in oxygen-free solvents. To prevent the damage caused by repeated freezing and thawing of peptides, dissolving the amount needed for the immediate experiment and storing the remaining peptide in solid form is recommended. 八、多肽大规模生产工艺 Peptide Manufacturing Method Chemical Synthesis Solution Phase: Convergent method in which the desired sequence is constructed by fragment condensation. These peptides usually contain 3 to 5 amino acids or less than 10 amino acids. This method is easy for scale up to hundreds of kilograms of product but limited in number of amino acids and costly development. Solid Phase: Stepwise method, in which a peptide is constructed by the addition of the protected amino acids constituting its sequence to an insoluble polymeric support. This method is very fast to have product but the scale up may be costly. Solid Phase Peptide Synthesis (SPPS) Boc Synthesis tert-Butyloxycarbonyl (Boc) Strategy: The Boc method has been exclusively used during the first 15 years of SPPS. The Boc protecting group on the alpha amino of the amino acid is removed by Trifluoroacetic acid (TFA) and the final cleavage of the peptide from the resin along with the removal of the amino acid side chain protecting groups requires strong acid, such as hydrogen fluoride (HF) or trifluoromethanesulfonic acid (TFMSA). Dichloromethane (DCM) is the primary solvent used for resin deprotection, coupling, and washing. In peptide synthesis, t-Butyloxycarbonyl (Boc) protected amino acid residues (in excess millimole quantities) are sequentially bound to a resin support. These residues are assigned individual coupling cycles in accordance to their respective positions within the given peptide chain. Once a residue has been successfully coupled as evidenced by the Ninhydrin test, the compound is deprotected and neutralized for the next coupling cycle. More or less peptide can be synthesized by varying quantities of reactants and solvents proportionately. Additionally, coupling intervals may be varied from 30 minutes to 72 hours; peptide resin washing intervals may range from 1 to 30 minutes. Resin: Modified polystyrene resins are used for Boc peptide synthesis. In usually, the small particle sized resin of low cross-linking is favored. The cross-linked with 1% divinylbenzene (DVB) is most common used: A higher level of cross-linking would reduce the swelling. The old most popular resin is 200-400 mesh (38-75 m m) these resins allow for rapid diffusion of reagents inside the beads. The 100-200 mesh (75-150 m m) resins are very popular now these resins allow for fast draining the reagents. The substitution of resins should approximately 0.5-0.6 meq/gm. The higher substitution resins are available for short and large quality of peptide. The Chloromethyl polystyrene resin (Merrifield resin) is most common for acid peptide. The phenylacetamidomethyl resin (Pam resin) is more stable to TFA deprotection than the benzyl ester linker but HF cleavage may give yields as low as 70%. The 4-methylbenzhydrylamine resin (MBHA resin) is most common for amide peptide. The resins with 100-200 mesh, 1%DVB, 0.5-0.6 meq/gm are most common used at our lab. Amino Acids A: Ala C: Cys(4-Me-Bzl), Cys(4-Me-OBzl), Cys(Acm) D: Asp(OBzl), Asp(OcHex), Asp(Fmoc) E: Glu(OBzl), Glu(OcHex) F: Phe G: Gly H: His(Tos), His(Bom), His(Dnp) I: Ile(1/2H2O) K: Lys(2-Cl-Z), Lys(Fmoc), Lys(Alloc) L: Leu(H2O) M: Met N: Asn * , Asn(Xan) P: Pro Q: Gln * , Gln(Xan) R: Arg(Tos) S: Ser(Bzl) T: Thr(Bzl) V: Val W: Trp, Trp(Formyl) Y: Tyr(2-Br-Z), Tyr(2,6 Di-Cl-Bzl) Note: 1. Asn Gln, * : need HOBT. Asn can not add with HBTU or BOP. 2. Asp: Asp-Gly, Asp-Asn, Asp-Ala, Asp-Ser, and Asp-Leu, use the cyclohexyl ester Asp(OcHex) instead the Asp(OBzl) to prevent to lost water during HF cleavage. His(Tos): 1 hour deprotection after His. No HOBT should add after His for 2 to 3 amino acids. Coupling Reagents The most commonly reagents are DCC, DIC, HBTU, BOP. BOP, HBUT, TBTU, PyBOP, and HATU, are in situ activating reagents. The coupling reaction is very fast. To avoid peptide termination, the ratio of amino acid to coupling reagent should be 1 to 0.9 for HBTU, TBTU or HATU. DCC and DIC are traditionally Equipment and Materials Automated C S Bio peptide synthesizer Test tube heating block Dichloromethane (DCM) N-Dimethylformamide (DMF) Methylsulfoxide (DMSO) 1-Methyl-2-Pyrrolidione (NMP) Ethanol (ETOH) Diisopropylethylamine (DIEA) Triethylamine (TEA) Trifluoroacetic acid (TFA) Indole Dicyclohexylcarbodiimide (DCC) Diisopropylcarbodiimide (DIC) Benzotriazol-1-yl-Oxy-Tris-(Dimethylamino) phosphonium Hexafluorophosphate (BOP) 2-(1H-Benzotriazol-1-yl)-1,1,3,3-Tetramethyluronium Hexafluorophosphate (HBTU) 1-Hydroxybenzotriazole monohydrate (HOBT) Boc Amino Acids Acetic anhydride Ninhydrin Phenol Pyridine (Pyr) Air 60 psi (4.14 bar or 413.8 kPa) Nitrogen 20 psi (1.38 bar or 137.9 kPa) Synthesis Protocols t-Boc + DCC / DIC: Cycle No Solvent Time (min.) 1 2 – 3 DCM 1 - 3 2 1 40% TFA in DCM 1 - 3 3 1 40% TFA in DCM 25 - 30 4 1 – 2 DCM 1 - 3 5 1 – 2 ETOH or DMF 1 - 3 6 1 – 2 DCM 1 - 3 7 2 10% DIEA in DCM 3 - 5 8 2 – 3 DCM 1 - 3 9 1 Coupling 60 - 999 10 1 – 2 DCM 1 - 3 11 1 – 2 10% DIEA in DCM 1 - 3 12 1 – 2 DCM 1 – 3 Re-coupling: t-Boc and DCC / DIC: Cycle No Solvent Time (min.) 1 1 – 2 DCM 1 - 3 2 2 10% DIEA in DCM 3 - 5 3 2 – 3 DCM 1 - 3 4 1 Coupling 60 - 999 5 1 – 2 DCM 1 - 3 6 1 – 2 10% DIEA in DCM 1 - 3 7 1 – 2 DCM 1 - 3 t-Boc + BOP / HBTU / TBTU: Cycle No Solvent Time (min.) 1 2 – 3 DCM 1 - 3 2 1 40% TFA in DCM 1 - 3 3 1 40% TFA in DCM 25 - 30 4 1 – 2 DCM 1 - 3 5 1 – 2 ETOH or DMF 1 - 3 6 1 – 2 DCM 1 - 3 7 1 10% DIEA in DCM 1 - 3 9 1 Coupling 60 - 999 10 1 – 2 DCM 1 - 3 11 1 – 2 10% DIEA in DCM 1 - 3 12 1 – 2 DCM 1 - 3 Re-coupling: t-Boc and BOP / HBTU / TBTU: Cycle No Solvent Time (min.) 1 1 - 2 DCM 1 – 3 2 1 10% DIEA in DCM 1 – 3 3 1 Coupling 60 – 999 4 1 - 2 DCM 1 – 3 5 1 - 2 10% DIEA in DCM 1 – 3 6 1 - 2 DCM 1 – 3 Aceylation protocol. Cycle No Solvent Time (min.) 1 1 - 2 DCM 1 - 3 2 1 10% DIEA AcOH in DCM 5 - 20 3 2 - 3 DCM 1 – 3 Note: 1. DIEA can be substituted with TEA. 2. Net TFA for 2 to 5 minutes deprotection with DMF flow wash by Kent’s method. Ninhydrin Test A small sample of resin (Approx. 3-10 mg) is removed from the synthesizer’s reaction vessel and placed in a test tube. The resin is washed with 3-4 mL 10% DIEA/DCM solution one time and 2 times with 3-4 ml ETOH. Washing is accomplished by addition of solution, mixing, and decanted. One drop from each of the following reagents are added to each tube: Ninhydrin Solution (5.0 gm Ninhydrin in 100 mL ETOH). Phenol Solution (80 gm Phenol in 20 mL ETOH). Pyridine. The contents of each tube are then mixed thoroughly. All tubes are placed in a heating block and heated at 120 ° C for 3 min. The tubes are then promptly removed. Holding each tube against a white background and evaluating the solution color interpret test results. Results for the sample-containing tubes are compared with that of the standard. A blue, purple, or red color is indicative of free amine (positive result). The absence of color - as exhibited by the clear polystyrene blank solution - is indicative of no free amine (negative result). Samples are re-tested when variable results are obtained. A negative test results means that the synthesis can continue to the next cycle. A positive test results means a determination will be made by the chemist to either re-couple the same amino acid using a double couple program or that the resin will be acylated using the acylation program. Hydrogen Fluoride Cleavage The resin bound peptides or side chain protected peptides are treated with liquid hydrogen fluoride. This cleaves the peptide from the resin and protecting groups from the constituent amino acid moieties. An HF cleavage apparatus consists of Kel-F or Teflon reaction vessels, valves and tubing. A high vacuum pump is employed in this process. The peptide resin is weighed and transferred to the HF reaction vessels. Anisole or P-Cresol is added to the resin, 1 mL per gram of peptide resin. If Cysteine, Methionine or Tryptophan is present in the peptide, DMS or 1.2 Ethanedithiol is also added, 0.25 mL per gram resin. The HF reaction vessel is attached to the HF apparatus and placed in a dry ice/acetone batch for approximately 5 minutes. During this time turn on vacuum pump and check the HF apparatus for any vacuum leaks. (IF THERE IS A LEAK DO NOT PROCEED UNTIL THIS IS FIXED) The pump valve is then turned off creating a closed system between the HF cylinder and reaction vessel, which is regulated by the HF cylinder valve. This valve is then opened permitting approximately 5 - 10 mL of HF per gram of peptide resin to accumulate in the reaction vessel. When adequate HF has collected, the HF cylinder valve is closed, and the reaction vessel is warmed to 0 ° C in an ice bath. The reaction vessel contents are then magnetically stirred at this temperature for 45 - 90 minutes completing the reaction. HF is evacuated from the reaction vessel into a trap containing calcium oxide; HF is absorbed as calcium fluoride. While stirring at 0 ° C, evacuation continues until all HF has been removed. After evacuation, the reaction vessel is removed from the HF apparatus. Approximately 50 - 100 mL of anhydrous ether per gram of resin are added and the mixture is agitated. When dispersed, the resin and cleaved peptide are collected by filtration using a sintered glass funnel. This washing procedure is repeated twice before extracting the peptide with acetic acid, Buffer B of purification, or TFA and water. The resulting filtrate contains the crude peptide then lyophilize. Equipment and Materials HF apparatus High vacuum pump Freeze Dryers (Lyophilizer) Anisole Dimethyl sulfide (DMS) 1, 2 Ethanedithiol (EDT) P-Cresol Ether, anhydrous Acetic acid (AcOH) Acetonitrile (CH3CN) Trifluoroacetic acid (TFA) Water - Distilled water and deionized water Ice Dry Ice Acetone Filter funnel Filtering flask ---------------------------------------------------------------------------------------- Fmoc Synthesis 9-Fluorenylmethyloxycarbonyl (Fmoc) Strategy: The Fmoc protecting group is deprotected by mild base treatment of 20% piperidine in N-Dimethylformamide (DMF), 2% DBU, 2% piperidine in DMF and the final cleavage of the peptidyl resin and side chain groups deprotection by Trifluoroacetic acid (TFA). N-Dimethylformamide (DMF) is the primary solvent used for resin deprotection, coupling, and washing. N,N-Dimethylacetamide (DMA) or 1-Methyl-2-Pyrrolidione (NMP) may also be used. In peptide synthesis, Fmoc protected amino acid residues (in excess millimole quantities) are sequentially bound to a resin support. These residues are assigned individual coupling cycles in accordance to their respective positions within the given peptide chain. Once a residue has been successfully coupled as evidenced by the Ninhydrin test, the compound is deprotected for the next coupling cycle. By the methods employed, material of equivalent quality in larger or smaller amounts can be obtained while varying quantities of reactants and solvents proportionately. Additionally, coupling intervals may be varied from 30 minutes to 72 hours; peptide resin washing intervals may range from 1 to 30 minutes. Resin: The hydroxymethyl-based resins (Wang, HMPA, HMPB resins) are the most common used except the Cys, His and Pro residues at the C-terminus, in this case Trityl-based resins such as 2-chlorotrityl resin should be used. The Rink amide MBHA resin consist 4-methylbenzydrylamine (100-200 mesh, 1% DVB) polystyrene, derivatized sequentially with norleucine and the Fmoc protected modified form of the Rink amide linker, which incorporates an acetic acid spacer, is not degraded by TFA, and is therefore compatible with the standard 95% TFA cleavage reaction. The resins with 100-200 mesh, 1%DVB, 0.5-0.6 meq/gm are most common used at our lab. Amino Acids A: Ala C: Cys(Trt), Cys(Mmt), Cys(Acm) D: Asp(OtBu) E: Glu(OtBu) F: Phe G: Gly H: His(Trt) I: Ile K: Lys(Boc), Lys(Fmoc), Lys(Alloc) L: Leu M: Met N: Asn * , Asn(Trt) P: Pro Q: Gln * , Gln(Trt) R: Arg(Pbf), Arg(Pmc) S: Ser(tBu), Ser(Trt) T: Thr(tBu), Thr(Trt) V: Val W: Trp, Trp(Boc) Y: Tyr(tBu) Note: Asn and Gln: need HOBT. Coupling Reagents The most commonly reagents are DCC, DIC, HBTU, BOP. BOP, HBUT, TBTU, PyBOP, and HATU, are in situ activating reagents. The coupling reaction is very fast. To avoid terminus the peptide, the ratio of amino acid to coupling reagent should be 1 to 0.9 for HBTU, TBTU, or HATU. DCC and DIC are traditional. Equipment and Materials Automated C S Bio peptide synthesizer Test tube heating block Dichloromethane (DCM) N-Dimethylformamide (DMF) 1-Methyl-2-Pyrrolidione (NMP) Methylsulfoxide (DMSO) Piperidine N,N-Dimethylacetamide (DMA) Ethanol (ETOH) Diisopropylethylamine (DIEA) Trifluoroacetic acid (TFA) Dicyclohexylcarbodiimide (DCC) Diisopropylcarbodiimide (DIC) Benzotriazol-1-yl-Oxy-Tris-(Dimethylamino) phosphonium Hexafluorophosphate (BOP) 2-(1H-Benzotriazol-1-yl)-1,1,3,3-Tetramethyluronium Hexafluorophosphate (HBTU) 1-Hydroxybenzotriazole monohydrate (HOBT) Fmoc Amino Acids Acetic anhydride (AcOH) Ninhydrin Phenol Pyridine (Pyr) Air 60 psi Nitrogen 20 psi Synthesis Protocols Fmoc amino acid and DCC or DIC: Cycle No Solvent Time (min.) 1 2 – 3 DMF 1 - 3 2 1 20% Piperidine in DMF 5 - 10 3 1 20% Piperidine in DMF 5 - 20 4 2 – 3 DMF 1 - 3 5 1 – 2 DCM 1 - 3 6 2 DMF 1 - 3 7 1 Coupling 60 - 999 8 2 – 3 DMF 1 - 3 Doubling coupling: Fmoc + DCC or DIC: Cycle No Solvent Time (min.) 1 2 - 3 DMF 1 - 3 2 1 Coupling 60 - 999 3 2 – 3 DMF 1 - 3 Fmoc + BOP or HBTU or TBTU: Cycle No Solvent Time (min.) 1 2 - 3 DMF 1 - 3 2 1 20% Piperidine in DMF 5 - 10 3 1 20% Piperidine in DMF 5 - 20 4 2 - 3 DMF 1 - 3 5 1 - 2 DCM 1 - 3 6 2 DMF 1 - 3 7 1 Coupling 60 - 999 8 2 – 3 DMF 1 - 3 Double coupling: Fmoc + BOP or HBTU or TBTU: Cycle No Solvent Time (min.) 1 2 - 3 DMF 1 – 3 2 1 Coupling 60 – 999 3 2 – 3 DMF 1 – 3 Aceylation protocol. Cycle No Solvent Time (min.) 1 1 - 2 DMF 1 - 3 2 1 10% DIEA AcOH in DMF 5 - 30 3 2 - 3 DMF 1 - 3 Note: 2% DBU in DMF may substitute the 20% Piperidine in DMF. TFA Cleavage for Fmoc Synthesis Before acid cleavage of the peptidyl resin can be performed, the N-terminal Fmoc group must be removed using piperidine. Having successfully synthesized a protected peptide, one is confronted with a difficult task of having to simultaneously detach the peptide from the resin support and remove all the side chain protecting groups of the amino acid residues to yield the desired peptide. In Fmoc SPPS, this step is normally carried out by treating the peptidyl resin with TFA. The peptide resin is weighed and transferred to the reaction vessels. If Cysteine, Methionine and Tryptophan are present in the peptide, Reagent K (TFA / water / phenol / thioanisole / EDT = 82.5 : 5 : 5 : 5: 2.5) will be applied. Otherwise TFA / water / TIS = 95 : 2.5 : 2.5 will be used. Place dry resin in a flask and add TFA solution containing appropriate scavengers (10 - 25 ml/gm) resin. Stopper the flask and leave to stand at room temperature with occasional swirling. React for 2-4 hours. Remove the resin by filtration under pressure. Wash the resin twice with TFA. Combine filtrates, and add (drop-wise) an 8 -10-fold volume of cold ether. Sometimes it is necessary to evaporate most of the TFA to achieve a good precipitation of the crude peptide. The Ether can be cooled with ice to further assist precipitation. Filter the precipitated peptide through hardened filter paper in a Hirsch funnel or filter funnel under a light vacuum. Wash the precipitate further with cold ether, dissolve the peptide in a suitable aqueous buffer and lyophilize. Equipment and Materials Trifluoroacetic acid (TFA) Phenol Thioanisole Triisopropylsilane (TIS) 1, 2 Ethanedithiol (EDT) Ether, anhydrous Ice Dry Ice Acetone Acetic acid (AcOH). Rotary evaporator Centrifuge Freeze Dryers (Lyophilizer) Filter funnel Stirrer or stir bar Filtering flask Round bottom flask Cyclization (Oxidation) Cyclization is accomplished by oxidizing free sulfhydril groups among constituent amino acids within the peptide chain. To detect the presence of sulfhydril groups, a sample of the uncyclized peptide is evaluated with Ellman’s test. Ellman’s test Reagent 1: Ellman reagent - 40.0 mg of 5,5’-dithio-bis (2-nitrobenzoic acid), DTNB, are dissolved in 10 mL of pH 8 phosphate buffer. Make up fresh before use. Reagent 2: 0.1 N Sodium phosphate Na2PO4 buffer, pH 8. Make 4.60 gm sodium phosphate monohydrate NaH2PO4-H2O and 307.4 mL of 0.1 N NaOH to 1 L distilled water. Standard sulfhydril compound: 0.24 mg of Cysteine is dissolved in 10 mL of distilled water. Peptide sample: 0.24 mg of peptide is dissolved in 10 mL of distilled water. Test solutions are prepared in glass tubes by combining the following: 0.1 mL of standard or peptide solution 0.1 mL of reagent 1 5 mL of reagent 2 A blank solution of 0.1 ml reagent 1 and 5 ml reagent 2 is compared to the test solution. More yellow is the test solution is indicative of free S-H. Method 1: Disulfide bridge formation with potassium ferricyanide. The bulk cleaved peptide is transferred to an appropriate size container and dissolved in water to a concentration of 1 L – 5 L per gram of peptide. After thoroughly mixing the solution, the pH is adjusted to 7.4 - 7.6 with ammonium hydroxide. From a separatory funnel, 0.01 M K3Fe(CN)6 is added to the peptide solution at a rate of approximately 5 drops per minute. Upon addition of the oxidizing agent, the reaction mixture will exhibit a yellow color that dissipates. The reaction is complete when this color persists for 30 minutes. The pH of the reaction mixture is adjusted to 4.5 with acetic acid. If Lysine or Arginine residues are present in the peptide Bio-Rex 70 resin may be used. Add the Bio-Rex 70 resin (80 - 150 gm/m mole peptide) into solution and stir overnight. Or pass the solution through C-18 column. Extract the peptide from Bio-Rex 70 resin or C-18 column. Method 2: Disulfide bridge formation with air pump or without air pump: The bulk cleaved peptide is transferred to an appropriate size container and dissolved in water to a concentration 1 L - 5 L per gram of peptide. After thoroughly mixing the solution, the pH is adjusted to 8.0 - 8.3 with ammonium hydroxide. By using the air pump, pump the air into the solution for 20 to 60 hours. The pH of the reaction mixture is adjusted to 4.5 with acetic acid. If Lysine or Arginine residues are present in the peptide Bio-Rex 70 resin may be used. Add the Bio-Rex 70 resin (80 - 150 gm/m mole peptide) into solution and stir overnight. Or pass the solution through C-18 column. Extract the peptide from Bio-Rex 70 resin or C-18 column. Method 3: Disulfide bridge formation with Iodine: The bulk cleaved peptide is transferred to an appropriate size container and dissolved in water to a concentration of 1 L – 5 L per gram of peptide. After thoroughly mixing the solution, drop a drop of the solution of 10 gm Iodine in 100 ml methanol slowly. Upon addition of the oxidizing agent, the reaction mixture will exhibit a yellow color that dissipates. The reaction is complete when this color persists for 30 minutes then adds the absorbic acid until the solution color is clear. If Lysine or Arginine residues are present in the peptide Bio-Rex 70 resin may be used. Add the Bio-Rex 70 resin (80 - 150 gm/m mole peptide) into solution and stir overnight. Or pass the solution through C-18 column. Extract the peptide from Bio-Rex 70 resin or C-18 column. Equipment and materials Container (2 L to 100 L) Stirrer Stirrer bar pH meter or pH paper Glass filter funnel (1 L to 3L) Vacuum filtration flask Air pump Separator funnel Ammonium hydroxide (NH4OH) Acetic acid (AcOH) Trifluoroacetic acid (TFA) Potassium ferricyanide (K3Fe(CN)6) Iodine Methanol Bio Rex 70 resin Reverse phase resin: C-18 Water – Distilled water / deionized water ------------------------------------------------------------------------------------------------------------------ Purification A revolution in purification techniques for many peptides and proteins is high performance liquid chromatography (HPLC). It is highly cost effective in that it is able to replace multiple steps in conventional purification processes, thus eliminating handling, labors costs, and also able to perform purifications which can not be carried out by any other process. Method 1. 1: Ion Exchange Chromatography (CM-52 or DE-52). Cation exchanger CM-52 or anion exchanger DE-52 as appropriate may treat the crude peptide. The mobile phase of cation exchange chromatography consists of: Buffer A: 0.05 M - 0.1 M Ammonium acetate. Buffer B: 0.1 M - 1 M ammonium acetate. The mobile phase of anion exchange chromatography consists of: Buffer A: 0.05 M - 0.1 M Ammonium bicarbonate. Buffer B: 0.1 M - 1 M ammonium bicarbonate. In either, the buffer molarity may be varied to accommodate the particular peptide in maximizing yield and purity. Also 0 - 6 M urea can be used in buffer A or Buffer B depending on the solubility of the peptide. Stir and pour ion exchanger into Buffer A. Stir the slurry with a magnetic stirrer in a stopper flask connected to a pump until no more bubbles appear. Set up the glass column vertically containing about 3 - 4 cm Buffer A at the bottom. The resin slurry in buffer A is then poured into the column to a depth of 20 cm. Additional buffer A is passed through the column and then elulant is monitored until its pH is comparable with that of the buffer. The peptide in buffer A solution is then applied to the column and eluted with a gradient of 0 - 100 percent buffer B by gravity. Fractions of the sample are collected in appropriately sized tubes. TLC or analytical HPLC analyzes these fractions for purity. Pure fractions are lyophilized and forwarded to QC; impure fractions are subjected to further purification steps. Method 1.2 : Ion Exchange Chromatography (Bio-Rex 70). The Bio Rex 70 resin used in the extraction must be in the sodium free form. 1 kg of resin first washed with 1 L of 1 N HCl then washed D.I. water until pH of washing solution equal to D.I. water pH should be used. The crude peptide (after cyclization contains Lys, Arg, Orn, or positive charged group) may be absorbed by chloride form Bio-Rex 70 after stirring over night. The resin is filtered and packed into a column. Elute with 70% AcOH isocratically by gravity. It takes approximately 10 times of column volume until the peptide is completely eluted out from the column. Fractions of the sample are collected in appropriately sized tubes. These fractions are analyzed for purity by analytical HPLC. Pure fractions are lyophilized and forwarded to QC; impure fractions are subjected to further purification steps. Method 1.3: Ion Exchange Chromatography (AG1-X8). An anion exchange resin AG1-X8 is used for the conversion of Trifluoroacetic or fluoride to acetate as the counter anion for peptides. Pack a column with AG1-X8 (size of column is dependent on the quantity of peptide. Peptide : AG1X8 = 1 gm : 25 gm). Solubilize peptide in elution buffer (10% to 70% AcOH) and load onto column. Elute isocratically by gravity with the same buffer. It takes approximately 10 times of column volume until the peptide is completely eluted out from the column. Fractions of the sample are collected in appropriately sized tubes. These fractions are analyzed for purity by analytical HPLC. Pure fractions are lyophilized and forwarded to QC; impure fractions are subjected to further purification steps. Method 2 : Gel Filtration Chromatography. Bio-gel P series resin P-2, P-4, P-6 and Sephadex G-series - G-25, G-50 serve as matrices in this technique. The mobile phase consists of a 5 - 70% acetic acid buffer. Prior to use, this buffer is vacuum filtered through a membrane of 0.45 micron pore size and degassed. The column matrix is prepared by adding the resin to the acetic acid buffer and allowing it to stand 20 - 30 minutes. A glass column (size of column is dependent on the quantity of peptide) is then primed with additional buffer before filling 50 - 70% of glass column capacity with the swollen resin. Once packed, the column is equilibrated with acetic acid buffer (about 5 times of column volume). The crude or partial pure peptide, in solution, is then applied to the column and eluted isocratically by gravity. Fractions of the sample are collected in appropriately sized tubes. These fractions are analyzed for purity by analytical HPLC. Pure fractions are lyophilized and forwarded to QC; impure fractions are subjected to further purification steps. Method 3.1 : Reverse phase Chromatography (Low pressure). The silane or polystyrene reverse phase (C-18, C-8, or C-4) resin (60 Å to 300 Å) is used as matrices in this procedure. The resin is slurry with MeOH and packed into glass column (size of column is dependent on the quantity of peptide. Peptide : resin = 1 gm : 50 gm). Typically, the mobile phase may consist of buffer A and B as follows: Buffer A1 - 0.1% TFA in water. Buffer A2 - 0.05 M NH4OAc in water. Buffer A3 - 1% AcOH in water. Buffer A4 - 0.05 M NaH2PO4 (Sodium Phosphate monobasic) pH 4.5 in water. Buffer A5 - 1% H3PO4 (Phosphoric acid) Buffer A6 - TEAP pH 2.5 or pH 4.5 or pH 6.5 Buffer A7 - 0.1% HCl in water Buffer B - 5% to 99% CH3CN with same ion pairing of Buffer A The ion pairing concentration and pH changes reversed phase selectivity for peptide purification. The buffer molarity may be varied to accommodate the particular peptide in maximizing yield purity. The column is equilibrated with buffer A. The peptide is dissolved in buffer A, and if necessary small quantities of buffer B, AcOH or TFA can be added. The clear peptide solution is loaded onto the column and eluted linearly on a gradient from 0 -100% buffer B. Fractions of the sample are collected in appropriately sized tubes. These fractions are analyzed for purity by analytical HPLC. Pure fractions are lyophilized and forwarded to QC; impure fractions are subjected to further purification steps. Method 3.2 : Reverse phase Chromatography (Preparative). The silane or polystyrene reverse phase (C-18, C-8, or C-4) resin (60Å to 300Å) is used as matrices in this procedure. The resin is slurry with MeOH, IPA or other suitable solvents and packed into steel column (size of column is 1” to 8” diameter with 10” to 40” long). Typically, the mobile phase may consist of buffer A and B as follows: Buffer A1 - 0.1% TFA in water. Buffer A2 - 0.05 M NH4OAc in water. Buffer A3 - 1% AcOH in water. Buffer A4 - 0.05 M NaH2PO4 (Sodium Phosphate monobasic) pH 4.5 in water. Buffer A5 - 1% H3PO4 (Phosphoric acid) Buffer A6 - TEAP pH 2.5 or pH 4.5 or pH 6.5 Buffer A7 - 0.1% HCl in water Buffer B – 0% to 100% CH3CN in buffer Ax (x = 1 or 2 or 3). The buffers are vacuum filtered through a membrane of 0.45 micron pore size or degassed prior to use. The buffer molarity may be varied to accommodate the particular peptide in maximizing yield purity. The column of choice is configured to an HPLC instrument having dual pumps and equilibrated with buffer A. The peptide is dissolved in buffer A, and if necessary small quantities of buffer B, ion can be added. The clear peptide solution is loaded onto the column and eluted linearly using on a gradient that is varied to accommodate to particular peptide. Fractions of the sample are collected in appropriately sized tubes. These fractions are analyzed for purity by analytical HPLC. Pure fractions are lyophilized and forwarded to QC; impure fractions are subjected to further purification steps. Equipment and Materials Glass columns with coarse (60 u) filters. The selection of the column and filter size is based on the quantity of the peptide to be purified. Preparative HPLC columns Solvent reservoirs Peristaltic pumps for delivering the solvents HPLC system Magnetic stirrer stir bar Lab jack Fraction collector Rotary evaporator Freeze Dryers (Lyophilizer) Beakers flask Ammonium acetate (NH 4 OAc) Ammonium bicarbonate (NH4HCO3) Acetic acid (AcOH) Hydrogen chloride (HCl) Acetonitrile (CH3CN) Ethanol (ETOH) Trifluoroacetic acid (TFA) Methanol (MeOH) Hydroxymethyl Aminomethane - Tris Phosphoric Acid (H3PO4) Triethylamine (TEA) Ammonium acetate (NH4Ac) Ammonium bicarbonate (NH4HC3) Water: Deionized water (D. I. water) / Distilled water Whatman diethylmethyl cellulose DE-52 Whatman carboxymethyl cellulose CM-52 Bio-Rad 70 AG1-X8 Bio-gel, P-series (P-2, P-4, P-6) Sephadex G-series (G-25, G-50) Silica gel with octadecyl boned phase resin - C-18 (from 5 m m to 40 m m): 60 Å to 300 Å Silica gel with octyl boned phase resin - C-8 (from 5 m m to 40 m m): 60 Å to 300 Å Silica gel with butyl boned phase resin - C-4 (from 5 m m to 40 m m): 60 Å to 300 Å
0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-4 10:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部