科学网

 找回密码
  注册

tag 标签: 吉布斯

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

[转载]杨振宁论统计力学
bhwangustc 2015-10-31 10:59
杨振宁论统计力学 我的9月29日科学网博客:“吉布斯名作《統計力學基本原理》中譯版的校者前言 ” 一文引起敖平教授(上海交通大学)、汤雷翰教授(北京计算科学中心,香港浸会大学)、于禄院士(中科院物理研究所)诸位统计力学专家的关注与评论。特别是汤雷翰教授告知了 杨振宁先生在19 95 年由郝柏林院士(中科院理论物理所,复旦大学理论生命科学研究中心)组织的厦门第19届国际统计物理大会的开幕演讲中曾经提到此书及爱因斯坦对吉布斯评价的链接: https://www.hep.wisc.edu/~ldurand/715html/courseinfo/yangstatmechhistory.html 既然是名人佳作,岂敢秘赏独享。特转载于下,供各位感兴趣者特别是青年学子鉴赏学习与参考。 C. N. Yang on statistical mechanics C. N. Yang made part of his early reputation in statistical mechanics, calculating, for example, the magnetization in the two-dimensional Ising model of a ferromagnet. He subsequently worked on particle physics, inventing modern gauge field theory (Yang-Mills theory), and winning the 1957 Nobel Prize for his formulation with T. D. Lee of tests for parity violation in weak interactions. Yang and Lee also did considerable work together on statistical and solid state problems. Yang's influence and the techniques he introduced still persist, e.g., in the Yang-Baxter equations which appear in many problems and were first introduced by Yang (Phys. Rev. Letters 19 , 1312 (1967)). The following is the written version of a short talk Yang gave on some historical developments in statistical mechanics in the twentieth century. It is well worth reading to get an overall picture of some of the principal developments as seen by a master of the subject (and of many other subjects), and for his commentary on some of the leading theorists of the era. Remarks About Some Developments in Statistical Mechanics Chen Ning Yang SUNY-Stony Brook and the Chinese University of Hong Kong (Talk given at the Xiamen Conference, July 31-August 4, 1995) Gibbs and Equilibrium Statistical Mechanics In 1901, at the age of 62, Gibbs (1839-1903) published a book called Elementary Principles in Statistical Mechanics (Dover, New York). It was remarkable in several ways. First, it had as a subtitle The Rational Foundation of Thermodynamics . Gibbs chose this subtitle because he knew his theory did not agree with experiments, as he emphasized in the preface to the book. Yet he believed there were no other possible rational basis to thermodynamics. Second, the style of writing of the book has an elegance akin to a long poem, which is quite unique in the history of physics. Third, it was to become the fundamental basis of twentieth century equilibrium statistical mechanics. A year before Einstein's death in 1955, he was asked who were the most powerful thinkers he had known. He replied (Ref. 1), ``Lorentz'', and added, ``I never met Willard Gibbs; perhaps, had I done so, I might have placed him beside Lorentz''. Origin of Bose-Einstein and Fermi-Dirac Statistics In the last chapter of Gibbs' book mentioned above, he found it necessary to insert a factor N! in the formula for the free energy: This factor made F an extensive quantity. Furthermore it was convenient for treating mixtures of atoms. Later on the factor h^N was inserted in the denominator to make the quantity under the logarithm dimensionless. But the factor N! remained mysterious and was called the problem of the ``absolute entropy constant''. It was believed to be related to the fact that for identical particles, the phase space should not be multiply counted, but the precise meaning of this factor, especially for small N, was not clarified. In June 1924 Bose's paper was published. He derived Planck's radiation law by counting states of photons in a novel way. As soon as Einstein saw this paper, he generalized it to the counting of states of atoms, thereby predicting the phenomena of Bose-Einstein condensation, a most daring and insightful extrapolation which has only now been brilliantly experimentally confirmed. A year and a half after Bose's and Einstein's papers, upon reading Pauli's article on the exclusion principle, Fermi realized in 1926 that he had now the concepts in hand to discuss the thermodynamics of a collection of electrons. The results were such fundamental concepts like the Fermi sea, the Fermi energy, etc.. According to Rasetti (Ref. 2), Fermi was not influenced by the earlier work of Bose and of Einstein. Also in 1926, Heisenberg pointed out that the difference between the singlet and triplet energy levels of the (1s) (2s) states of He was due to the difference of the symmetry of the space wave function, which in turn was caused by the requirement of antisymmetrization of the total wave function of the two spinning electrons. Finally in August 1926 Dirac developed the general theory of the symmetry of wave functions of Bose-Einstein and Fermi-Dirac particles. Incidentally this chain of papers Einstein-Fermi-Heisenberg-Dirac reveals in a dramatic way the differences of styles of these four great physicists: Einstein's prediction of Bose-Einstein condensation of free particles was against all intuitive concepts of phase transitions at that time. To make such a prediction, without full mathematical rigor, based on a novel counting method extrapolated from photons to atoms, required a perception and a boldness that was uniquely Einstein's. Fermi's paper formed the basis of all subsequent theories about condensed matter physics. It has the hallmark of Fermi's physics: the ability to capture the fundamentals of the problem at hand and extract from it the essence that will affect all future developments. Solidity and imagination marched hand-in-hand in Fermi's work. Heisenberg's work produced the key idea that on the one hand linked the symmetry of wave functions to Pauli's exclusion principles and on the other hand resolved the great puzzle of how the spin alignment of two electrons can affect the Coulomb energy of the He atom. Furthermore the idea of the ``exchange integral'' which originated in this paper later produced another great achievement of Heisenberg's: the mechanism of ferromagnetism. However, Heisenberg's paper was long on originality but short on elegance and precision, a characteristic of all of Heisenberg's papers. In contrast, Dirac's papers were always elegant and precise. They also tend to be the final word in the problems that they address. In the case of his 1926 paper, very little can be added later to his masterly analysis. Early Discussions of Phase Transitions in Statistical Mechanics The development of quantum mechanics in 1925-1927 removed the difficulties that Gibbs had to face in checking his rational foundation against experimental facts. Thus was born quantum statistical mechanics. In the late 1920's and early 1930's, physicists and chemists applied the new quantum statistical mechanics to many problems in dilute gases and dilute solutions with great success. Then in the mid 1930's, because of the discovery of peaks in the C(p) versus T curve in alloys, the theory of order-disorder transformations became quite fashionable. An ``order parameter'' was introduced for the discussion of phase transitions. Such theories are now called mean field theories, which actually was first used by Weiss (Ref. 3) in 1907 for describing ferromagnetic transitions. In 1937 J. Mayer attempted to formulate a theory of liquid-gas transition without introducing mean fields by examining the convergence properties of the virial series. There was a ``vigorous discussion'' of his ideas at the Van der Waals Centenary Congress (Ref. 4) on November 26, 1937 in Amsterdam, followed in the next months by elaborations/alternations of Mayer's theory. Incidentally, my own entry into statistical mechanics was related in a way to Mayer's theory. I was an undergraduate student in Kunming in 1941-1942 when Professor J.S. Wang gave several lectures on this theory of Mayer's and on subsequent developments. I did not then quite understand the complexities of the theories, but became fascinated with the subject (Ref. 5). That led to my working with Wang for my Master degree thesis on statistical mechanics. As to Mayer's theory, some ten years later in two papers (Ref. 6) Lee and I cleared up the confusion in this field. Onsager and the ``Ising Disease'' I n 1944, in an amazing paper, Onsager solved the two dimensional Ising model rigorously. It was the first in a field which undoubtedly will be covered in many presentations at this Conference. His paper was very difficult to read because he did not describe his strategy. He seemed to have a predilection for calculating the commutators of every other expression in sight without telling what he was aiming at. I still remember vividly today how I was frustrated in trying to understand that paper, first when I was a graduate student in China and then a graduate student in Chicago. It was many years later, in March 1965, that I finally learned (Ref. 7) how it had come about that Onsager was so fond of calculating those commutators. Young physicists today may find it surprising, even unbelievable, that in the 1950's the Ising model and similar problems were not deemed important by most physicists. They were considered arcane exercises, narrowly interesting, mathematically seducing, but of little real consequence. There was the phrase (Ref. 8), for example, of ``contracting the Ising disease''. In a recent article by Dyson in my Festschrift (edited by S.T. Yau, published by the International Press) he recalled how, in 1952, when he read my article about the magnetization of the Ising model, he was impressed by the beautiful complexity of the calculation and the beautiful simplicity of the result, but felt I was wasting my time. The situation dramatically changed around 1960 because of several developments:(1) the experimental discoveries (Ref. 9) of divergences of specific heats near various phase transition points; (2) theoretical work on the critical exponents led gradually to the concept of universality and to some very useful inequalities among the critical exponents; and (3) the proposal of a scaling law (Ref. 10). With all these developments equilibrium statistical mechanics finally became respectable and was considered physically important in the 1960's. A. Pais, Subtle is the Lord, the Scientific Biography of Albert Einstein , (1982). R. Rasetti in Collected Papers of Enrico Fermi , vol. 1, p. 178 (University of Chicago Press, 1965). P. Weiss, J. of Physics 6 , 667 (1907). M. Born and K. Fuchs, Proc. Roy. Soc. A166 , 391 (1938). Chen Ning Yang, Int. J. Mod. Phys. B2 , 1325 (1988). C. N. Yang and T.D. Lee, Phys. Rev. 87 , 404 (1952); T.D. Lee and C. N. Yang, Phys. Rev. 87 , 410 (1952). Chen Ning Yang, Selected Papers 1945-1980 with Commentary , p. 11-13 (Freeman, 1983). A. Pais, Nucl. Phys. 5 , 297 (1958). W.M. Fairbank, M.J. Buckingham and C.F. Kellers, Proceedings of the Fifth International Conference on Low Temperature Physics (Madison, Wisconsin) p. 50. See also W.M. Fairbank and C.F. Kellers in Critical Phenomena , National Bureau of Standards Miscellaneous Publication 273 (1965); W.K. Robinson and S.A. Friedberg, Physical Review 117 , 402 (1960); M.I. Bagatskii, A.V. Voronel and V.G. Gusak, J. Exp. Theor. Phys. (in Russian), 43 , 728 (1962). B. Widom, J. Chem. Phys. 12C , 3898 (1965). Back to COURSE INFORMATION Send comments or questions to: ldurand@theory2.physics.wisc.edu
个人分类: 统计物理复杂系统研究进展|2800 次阅读|0 个评论
吉布斯名作《統計力學基本原理》中譯版的校者前言
热度 2 bhwangustc 2015-9-29 21:08
校 者 前 言 約西亞.威 拉德 . 吉布斯(Josiah Willard Gibbs)的經典之作《統計力學基本原理》(Elementary principles in statistical mechanics)由美國 Scribner's sons , New York 出版社在 1902年出版。 吉布斯是美国著名理论物理学家、物理化学家。他推导出相律,建立了统计力学的基本原理,并把统计力学与热力学结合起来而創立统计热力学,为其後一個世紀的理论物理学和物理化学的发展做出重大贡献。他是美国科学院、美国艺术和科学研究院以及欧洲14个科学机构的院士或通讯院士。他一生淡泊名利,献身于科学事业,不愧为科学史上的伟人。 在 《統計力學基本原理》 一書中,吉布斯使用刘维尔的成果,对玻尔兹曼提出的系综这一概念进行扩展,从而将热力学建立于统计力学基础之上。在这本著作中,吉布斯运用支配体系性质的统计力學原理阐明了他曾經从完全不同的观点所导出的热力学方程。正是在这本书中,第一次闡明了如今在社会科学和自然科学中依然受到無比重视的有关熵的“混乱度”的解释。 吉布斯,1839年2月11日生于美国康涅狄格州纽黑文城,1903年卒于同地。他1854年入耶鲁大学学习,19岁以优秀成绩毕业,并在数学和拉丁文方面获奖。1863年吉布斯以使用几何方法进行齿轮设计的论文在耶鲁学院获得工程学博士学位,使他成为美国的第一个工程学博士。随后留校任拉丁文助教两年,自然哲学助教一年。1866~1869年吉布斯前往欧洲留学,分别在巴黎、柏林、海德堡各学习一年,卡尔 • 魏尔施特拉斯、基尔霍夫、克劳修斯和亥姆霍兹等大师开设的课程让他受益匪浅,給予他深刻的科學啟示,奠定了他其後創建與發展统计热力学與物理化学的學術基礎。1869年回国后一直在耶鲁大学执教,1871年吉布斯成为耶鲁学院数学物理学教授,也是全美第一个这一学科的教授。吉布斯担任这一教职一直到去世。1873年34岁的吉布斯发表他的第一篇重要论文,采用图解法来研究流体的热力学,并在其后的论文中提出了三维相图,受到当时声望极高的科学家麦克斯韦的高度赞赏。1876年吉布斯在康涅狄格科学院学报上发表了奠定化学热力学基础的经典之作《论非均相物体的平衡》的第一部分。1878年他完成了第二部分。这一长达三百余页的论文被认为是化学史上最重要的论文之一,其中提出了吉布斯自由能,化学势等概念,阐明了化学平衡、相平衡、表面吸附等现象的本质。1892年由奥斯特瓦尔德將此文译成德文,1899年由勒 • 沙特列翻译为法语。從而使这篇文章得到美国大陆之外特別是欧洲大陆同行的廣泛了解與日甚一日的重视。1901年吉布斯获得当时的科学界最高奖赏柯普利奖章。早在吉布斯的工作在美国本土受到重视之前,Gibbs的學術貢獻已经在欧洲得到承认。那个时代的杰出理论家麦克斯韦就在自己的著作中反复引证Gibbs的一篇热力学论文。奥斯特瓦尔德认为“无论从形式还是内容上,他推動了物理化学整整一百年。” 朗道认为吉布斯“对统计力学给出了适用于任何宏观物体的最彻底、最完整的形式”。2005年5月4日美国发行“美国科学家”系列纪念邮票,包括吉布斯、冯 • 诺伊曼、巴巴拉 • 麦克林托克和理查德 • 费曼。吉布斯终身未婚,始终和妹妹与妹夫住在离耶鲁不远的一间小屋子里,过着平静的生活。 中國科技大學出版社從2012年起決定翻譯這本名著,列為《物理學名家名作譯叢》出版計劃之一。由當時本校基礎物理中心主講熱力學統計物理的沈惠川教授擔綱翻譯。但沈老師不幸于2013年4月6日深夜因心臟病突發而去世。於是,翻譯此書的重擔落到了聽過沈老師授課的87級工程熱物理專業毛俊雯博士身上。 毛俊雯現在浙江省湖州師範學院理學院任教 。 毛俊雯為翻譯此書,可謂披星戴月 廢寢忘食 ,嘔心 沥血 艱辛勞動一年有餘,務求 忠實于原著 。但是本書原著出版于 113 年前,其中許多 統計力學概念的定義與闡述以及数学表示在一百多年后的今天已經發生很大變化。例如本書中的模量( )实际是现在的玻爾茲曼常數與溫度之乘積: k B T 。又如原著中用 表示阶乘符号,其中的 實際表示 v 的阶乘,即 v ! 。如果不詳加說明,今天的學生是無法看懂本書的。毛俊雯為了盡可能保留原著表述,對於全書的概念闡述與數學表示作了统一的修订和注释。 幾位博士生也參與了本書的校訂工作,他們是:李明、謝家榮、魏宗文,聶森,王旭文、周斌、 顏登程、 赫哲。 汪秉宏 2015-9-19
个人分类: 统计物理复杂系统研究进展|5538 次阅读|3 个评论
蒸汽热量计量用什么好?吉布斯能?还是焓?
wdfzacw 2013-4-19 07:34
通常计量蒸汽热量使用焓,但是有时取得吉布斯能比较方便,在热量表中使用吉布斯能是否更符合实际情况?有无经验?或者理论根据?哪位高士可以告诉我?谢谢了!谢谢了!
个人分类: 生活|2180 次阅读|0 个评论
[转载]伟大的Gibbs功绩
热度 2 jitaowang 2012-7-2 14:40
应网友的要求, 把我"现代热力学"一书第二章热力学发展史中有关Gibbs的介绍列于下方附件一. 此外过 去至少有两本书也用过相同的 “ 现代热力学 (Modern Thermodynamics)” 的书名 , 它们分别是在 1933 年 和在 1998 年 出版发行的 . 前者的副标题是 “ 采用吉布斯的方法 (by the methods of W. Gibbs)” 而后者的副标题是 “ 从热机到耗散结构 (from heat engines to dissipative structures)”. 显然 , 这两本书名中的 “ 现代热力学 ” 都是泛指热力学在当时的现状 , 即前一本书实际上就是 “19 世纪的热力学 ”, 而后一本书就是 “20 世纪的热力学 ”. 1. Gibbs JW. The Corrected Works of J.W. Gibbs, Vol I . New York : Longmans, Green, 1931. 2. Kondepudi D, Prigogine I. Modern Thermodynamics — From Heat Engines to Dissipative Structures . New York : John Wiley Sons, 1998. 附件一
个人分类: 现代热力学|3013 次阅读|9 个评论
用吉布斯自由能解释人之初性本善
热度 3 mfq1986 2012-3-29 21:03
人之初,性本善 ---- 之自由能 今天和同学去会场的路上,讨论起来社会上面为什么养成好的习惯那么难,但是坏习惯缺很容易而且不经意间就学会了,用古人的话讲就是“由奢入俭难,由俭入奢易”。突然想起来这个现象其实如果运用自由能的理论来解释的话,也许就变的简单多了。 事物总是按照自由能最低的方式排列 ΔG = ΔH – TΔS 也就是公式的结果趋于最小。 如果我们用这个公式来看我们社会中的不好现象的时候,或许也能得到比较搞笑的解释。比如我们来讨论好习惯和坏习惯(这里都已成年人位例子)。 坏习惯就像“熵”,人为改正坏习惯的能力就像“焓”。 只有我们不断的做功,保持“焓”值始终大于“熵”,这样子得到的自由能才是大于零的,也就是个人评价中的“好”,如果功过相抵,也就是自由能为零的情况,就是“不好不坏”。如果让自由能小于零,就是“坏”了。 就像自然界熵值总是趋于最大(混乱度最高)一样,坏习惯是自然而然就能形成的,只有自己的努力才能改变这样的趋势,让自己的自由能变大。最简单的例子:冬天大早晨起床,如果你不强制脱离温暖的被窝,你就会慢慢养成赖床的坏习惯。 其实这个理论也可以应用于辩证人之初性本善的问题。其实社会中自由能最低的状态就是一种混乱状态,但是我们通过全人类的努力,才让这个社会秩序变的有序,但是一旦松懈,相信最终要趋于自由能最低的状态。 所以“性本善”其实有点违背科学规律的。 纯属个人理解,不存在卖弄的成分,因为也没有资本卖弄。可以当成笑话谈一下,辩论一下。
6426 次阅读|6 个评论
沈惠川:统计力学“隐关联”之麦克斯韦、玻尔兹曼和吉布斯
ShenHuiChuan 2012-3-15 10:53
沈惠川:统计力学“隐关联”之麦克斯韦、玻尔兹曼和吉布斯
沈惠川:统计力学“隐关联”之麦克斯韦、玻尔兹曼和吉布斯 三个麦克斯韦“系统”之间的隐关联 三个玻尔兹曼“系统”之间的隐关联 三个吉布斯“系统”之间的隐关联 从各组“隐关联”可以看出,这种隐关联相互作用并不“微弱”。 “量子势”或“量子焓”是量子力学“关联度”的量度,同样,“隐关联势”则是统计力学中“系统”之间“关联度”的量度 . 这种“关联度”并不体现在“系统”的 Hamiltonian 表达式中,因而它被称为“隐关联”是名副其实的 . Schrdinger 所述之“系统之间有微弱的相互作用”一语中,除了定语“微弱的”需要考证外,其余都是对的 . 从以上分析可以看出,“系统”之间的“隐关联”问题是与“系综诠释”密切相联的;“隐关联”问题必然导致“系综诠释”;也只有“系综诠释”才能解决“隐关联”问题 . 甚至统计力学之所以成立,也与这些“隐关联”的存在有关 . 不可能设想粒子不运动,也不可能设想运动的(非“完全相对论”的或非“局域”的)粒子之间没有“隐关联” . 诚如 L. D. Landau 和 E. M. Lifshitz 所说:“统计平衡之得以建立,归根到底就是全靠这些比较微弱的相互作用 . ”他们所指的“微弱的相互作用”,就是 “系统”之间的“隐关联”,只不过由于没有详加计算而故作含糊而已 . 至于是否“ 微弱 ”,则又当别论 . -------------以上摘自沈惠川《统计力学》第一章
个人分类: 统计力学|6088 次阅读|0 个评论
什么是科学技术的实质性进展?
热度 1 jitaowang 2011-4-28 16:16
作者 王季陶 一. 我支持曹天德博士的一句话 曹博士在他的一篇博文 “ 谁敢跟我打赌? ” 中说到 : “ 实质性的进展(预言的新现象被证实或者更好地解释了现象间的联系,这是最重要的标志) ”. 我认为这是比较好的提法 . 当然 , 什么是预言还是猜测 ? 是预言指导下得到的 , 还是独立得到的 ? 如何是更好地解释 ? 以及所解释的新现象广泛性或重要性 , 都还需要界定等 . 重要的是实际上提到了当前非常重要的 “ 科学评价 ” 问题 . 好就好在 曹博士没有选用 SCI, Science 和 Nature 等的所谓 “ 客观 ” 或 “ 定量 ” 的标准 . 这是正确的 , 也可能是多数学者们的共识 . 更完整地说应该是 : 领域的实质性进展是要经得起该领域的客观实验事实 ( 有时还要经受时间或历史 ) 的检验 . 二. 五十年代科技成果鉴定标准的缺陷 就我所知 , 从五十年代开始甚至到我国改革开放的初期 , 科学技术的成果是要通过鉴定的 . 鉴定的标准通常分成四个等级 : 1. 国际领先 . 2. 国际先进 . 3. 国内领先 . 4. 国内先进 . 在这一标准中最大的漏洞是没有明确的领域覆盖面 . 但是在五十年代我国的高度集中的权力指引下 , 没有暴露出它的严重后果 . 为什么 ? 因为当时任何科学技术鉴定会都必须是政府的相关部门来确定和组织的 . 如果各级领导部门没有认为有价值就不可能召开科学技术鉴定会 . 而且这个 “ 价值 ” 也往往是带有政治性的 , 也就是领导部门需要以此来宣传的 . 就连下级领导部门没有上级领导的指示或认可 , 也不敢轻易地进行鉴定的 . 在改革开放的初期 , 也还是比较严谨的 . 例如 , 1979 年我的低压化学气相淀积 (LPCVD) 项目鉴定就是由上海市科委出面来组织科学技术鉴定会的 . 但是随着改革开放的 “ 思想解放 ”, 就成为人人都可以来组织科学技术鉴定会 . 于是就出现了 , 所谓 的说法 . 当然现在涨价了 , 必须 . 窍门何在 ? 专家们就在于把适用领域无限制地缩小 , 然后签字 . 最后 , 连个别研究生的毕业论文中也学会了这类表述 . 例如 , “ 我的这条实验曲线是世界上唯一的 , 因此是国际领先的 ”( 大意 ) 等 . 工厂的老总们只要糊弄几个 “ 国际领先 ” 字眼就够做广告 , 这更是易如反掌 . 三. 区别统计和个别的差异 SCI 和影响因子是对期刊来说的 , 鼓励大家多向 SCI 和影响因子高的期刊投稿是可以的 , 但是不能作为一篇具体成果或论文的评价标准 . 例如, 1989年Nature上就有一篇低压金刚石生长理论是不正确的, 对该文在次年的Science上就有评论. 对具体成果的评价还是应该采用一个比较完整的客观标准 : + + . 覆盖领域面就可以分为一级学科 , 二级学科 , 三级学科等 , 还可以有时间范围 . 例如 Nobel 化学等大学科的奖项评选就是挑选当年认为 ( 成果并不限定于当年 ) 该大学科中最突出的进展和贡献 . 四 . 历史的借鉴 1824 年法国 28 岁的卡诺自费出版了 他一生中唯一的一本科学小册子或著作 “ 火力对作功以及作功机械的影响 ”, 总共是 600 本 . 1832 年卡诺因为感染霍乱而不幸身亡 . 次年 , 克拉贝隆发现并阅读了卡诺的著作 , 1834 年在杂志上转述了卡诺的主要工作 , 才先后引起了开尔文和克劳修斯的注意 , 发展成为一门完全不同于牛顿力学的新学科 — 热力学 . 卡诺、开尔文和克劳修斯都是这门学科的奠基人 . 再看在 19 世纪 70 年代美国不是世界的科学和技术的中心. 一位美国学者吉布斯 (J.W. Gibbs, 1839--1903) ,他是那个世纪中极少数的能够得到国际声誉美国物理学家中的一位 , 也是其中唯一能作出基础性重大理论贡献的 . 可是他在 1875 年和 1878 年发表的两篇科学论文 , 却是刊登在一本连在美国也很少有读者 , 在欧洲就更少读者的杂志上 . 吉布斯现在已经被列入 19 世纪最伟大的科学家之一 . 等到他的论文在 1892 年被翻译成德文 ( 这是在当时的化学界处于领导的语言 ) 以及 1899 年被翻译成法语以后 , 并最后被提名诺贝尔奖时 , 不久吉布斯就去世了 . 为了纪念吉布斯的贡献 , 人们把态函数等温等压自由能命名为吉布斯函数 G . 一句话的结语 : 就是要树立正确的科学技术的价值观 .
个人分类: 科学发展|3043 次阅读|1 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-18 22:31

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部