科学网

 找回密码
  注册

tag 标签: 猜想

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

理论的普适性和效率
yanghualei 2010-8-28 09:55
理论一般具有普适性和抽象性,通俗点是同类的共性,类间的差异性;效率性是理论在解释、预测以及调控现象的能力大小,现在做一个猜想1:是否高度普适的理论即普适度趋近于无穷大时的理论,此理论在解决一体问题时,相对其它低普适度的理论效率是最低? 暂且不理会命题正确与否,做简要分析下: 如果普适性为无穷,则它能解决所有问题,说明理论是高度 抽象 概括 的, 是所有问题共性的 提炼 ,不 偏袒 于任何一具体问题,不带有任何具体问题的差异性 ; 在解决某一个具体问题, 因为其都是共性(参照问题)与差异性(未知问题)的集合体, 必须具体问题具体分析, 不但要 明白它在一个系统内所具有的共性,同时还 的了解其 自身与其他问题的差异性,才能真正做出 最 有效率的方案 ,总之高度普适度的理论是差异性(效率)严重贫瘠的理论,在解决具体问题中,效率最差即不具备实用性;难怪有人不喜欢哲学,原来是因为不实用,距离生产力太远,光说大实话,瞎想不办事,以牺牲效率换来普适度,惨痛啊! 说到这在继续做猜想 2 :理论的的普适度和效率度之和是个常量?即普适度和效率度等效?说的太多了,在想下 简单的符号描述: 取一个理论vi , 普适度函数 为 p, 此 理论 普适度 p i =p(vi) ( i=1,2....n), 然后取一个效率度函数X,vi为理 论的效率度 X i =x(vi) 猜想 1:若 p i 则X i 0 ? 猜想2: p i+ X i=k(i=1,2....n)?
个人分类: 生活随笔|4002 次阅读|0 个评论
超导猜想
liuxiaod 2010-3-27 22:26
个人分类: 生活点滴|4 次阅读|0 个评论
关于相图与结构的猜想(2)
jizw0704 2010-1-10 11:00
在做进一步考虑和猜想之前,先来看看这种科学研究的方法类比的方法。在量子力学方面,爱因斯坦曾创立光的波粒二象性理论,在之后不久的1923年,德布罗意通过类比的方法,大胆地提出了物质波的概念,即物质也具有波粒二象性,最终证明是正确的,并获得诺贝尔物理学奖,在这里,我们也可以大胆的提出这样的猜想 相图与结构有特定的关系。 对于一种材料,假设除温度外其它条件恒定的话,我们可以通过实验和计算机模拟的手段找到这样的一个对照表,即不同温度下发生的转变类型相图结构的对照表,我们以SiO 2 为例,如下图: (转变类型) (相图) (结构) 就是说,以目前的技术手段,我们可以完成对某一种物质不同温度下的相图结构对照表,这样以来对我们的研究带来了极大的方便,也就是可以这样来看,当我们把元素周期表中的每一族中的每一种元素及其组成的主要化合物的对照表研究清楚,我们知道根据元素周期律,同族的元素会具有相似的对照形式,相邻的元素会具有相近的对照形式。把这某一种元素的对照表进一步完善每一阶段的性质,性能分析透彻,组装成册,冠之《标准对照表》,当我们需要某种性质的材料时,不需要大海捞针一样漫天找寻,只需要现在我们的对照表中找到相应的部分,便一目了然了,或者是想了解某材料具有什么样的性质或是不是具有这样的性质,也可以这样。 甚至是,我们可以编写计算机程序帮助我们完成对比,从而极大的提高了工作效率和研究的精确度(完)。 希望大家多多指教,谢谢! 吉宗威
个人分类: 思考|3381 次阅读|0 个评论
关于相图与结构的猜想(1)
jizw0704 2010-1-5 20:06
相变是材料科学与技术中的一个重要的组成部分,材料是多种多样的,如金属,陶瓷,电子和磁性材料,高分子材料(聚合物)和复合材料。它们在制备和使用过程中的许多感念,现象和转变都惊人地相似,诸如相变机理,缺陷行为,平衡热力学,扩散,流变和断裂机理,界面精细结构与行为等等,作为共同点之一的相变是材料中的一个重要现象,相变常常赋予材料以有用的形态和微观结构。因此相变对于通过改变组织结构以获得所需性能的加工处理以及新材料,新工艺的研究开发具有重要的实际意义。 可见相变与材料的结构是有关系的。 那么什么是相和相变呢? 相(phase)在物理化学领域内定义为系统中的任一均匀部分。所谓均匀部分是指化学成分,结构和性能相同的部分,材料中有各种各样的相,如纯组元,固溶体,化合物等,绝大多数材料是多相的,相与相之间以界面分隔,称为相界面,相的种类,形状,大小与分布的总和构成组织。 而相变是指相与相之间的转变,或者说是母相到新相的变化过程。一般的相变过程包括三方面的变化:(1)晶体结构的变化(包括原子、离子或电子位置和位向改变);(2)化学成分的变化;(3)某种物理性质的跃变(或有序程序的变化,包括原子的配位,电子结构的变化),在这三个变化中,只要发生了一种变化,就可以认为发生了相变。 另外,还有一种广义上的相变,它和一般相变的区别在于把组织形体的变化归为相变。 我们再看看相变的分类,其种类很多,常见的分类方法是根据热力学把相变分为一级、二级及高级相变,当我们注意到对于陶瓷学家来说,他们通常还按照结构的变化分为重构型相变和位移型相变,相变是在不伴随有离子长程扩散的情况下发生的,见下图: 这样,我们又可以看见相变与材料的结构变化是有关系的。 那么好了,现在大家已经承认了两个事实,第一个,相变与材料的结构有关系;第二个,相变与材料的结构变化有关系。这两个事实和我们讨论的问题有什么关系呢?再让我们一起看看相图吧,相图,也称相态图、相平衡状态图,是用来表示相平衡系统的组成与一些参数(如温度、压力)之间关系的一种图。它在物理化学、矿物学和材料科学中具有很重要的地位。 原来相图是和相变密切联系在一起的,是不是说明相图和结构也有上述的联系呢?(待续) 吉宗威
个人分类: 思考|3892 次阅读|0 个评论
中国经济十大猜想:网络生活进入物联网阶段
libing 2009-10-5 16:39
  一段60年的时光,是一段人民经历了贫穷短缺、温饱不足,最终进入小康生活的岁月      60年之后,中国经济在金融危机中昂首走在世界前列,中国经济的成绩让全世界刮目相看。展望未来,中国必然以更稳健的姿态迈向前方      【国家领导人对经济发展提出希望】      5月12日胡锦涛出席纪念汶川地震一周年活动时的讲话      我们要继续扎扎实实推动经济社会又好又快发展。把保持经济平稳较快发展作为经济工作的首要任务,认真落实进一步扩大内需、促进经济平稳较快发展的一揽子计划,全力做好保增长、保民生、保稳定各项工作,努力夺取经济社会发展新胜利。7月23日,中共中央政治局召开会议,会议研究了当前经济形势和经济工作。      中共中央总书记胡锦涛主持会议。会议指出,当前,经济运行中的积极因素不断增多,企稳向好的势头日趋明显。刚刚公布的经济数据显示,上半年国内生产总值同比增长7.1%,规模以上工业增加值增长7%,6月份增速更达到10.7%。中国经济正步入企稳回升的新阶段。      形势稍好,尤须兢慎。在充分肯定成绩的同时,会议提出,当前我国经济发展正处在企稳回升的关键时期,我国经济发展面临的困难和挑战仍然很多,经济回升基础还不稳固,国际国内不稳定不确定因素仍然较多。      在中国经济处在保增长的关键阶段,更要增强忧患意识和风险意识,有针对性解决经济运行中存在的突出矛盾和问题,确保全年经济工作任务的完成。      9月10日,国务院总理温家宝在大连出席世界经济论坛第三届新领军者年会(2009年大连夏季达沃斯年会)的企业家座谈会,并回答世界经济论坛主席施瓦布和企业家的提问。新华社记者谢环驰摄      温家宝总理9月份在大连参加2009夏季达沃斯论坛时指出,中国在2009年初确定的经济增长目标现在看来是可以实现的。中国的经济有很大的回旋余地,也有很大的发展潜力,我们不仅要努力实现今年的各项目标,而且要考虑明年、后年国家的平稳较快发展。【经济专家对中国未来十年经济发展做出展望】      10月1日,新中国迎来六十华诞。站在新的历史起点上,展望未来中国经济走向,新华社经济分析师们经过广泛深入的调研,对人民币的国际化进程、新能源对中国汽车业的影响、未来中国能源消费格局、未来中国银行业发展趋势、中国纺织业的前景、文化创意产业的兴盛、网络生活的新阶段、粮食供求的平衡、资本市场的深化和城镇化发展水平等作出了全方位预测。从中不难看出,经济国际化、产业高级化、市场深度化,将贯穿于中国经济未来发展的全过程。      趋势之一:人民币国际化步伐加快      人民币难成自由兑换货币,稳健升值是大势所趋      未来10年,将是人民币加快走向国际化的10年。2020年,人民币在国际贸易结算中的比重将超过10%,在国际储备和外汇交易中的比重甚至将高达15%。到2020年,在美元没有出现崩溃性贬值的情况下,人民币兑美元的汇率将在4.2:1左右,年均升值约4.5%。      今后10年,人民币国际化进程将更多地受到我国经济和外贸持续较快增长的推动,人民币加快国际化将推动我国利率汇率改革、资本市场扩展、货币监管调控水平提高。      相对于我国经济规模和外贸占全球总量的比例,目前我国人民币的国际地位已明显滞后,但人民币国际化水平的提高一直受制于我国经济增长方式和金融监管水平。本次金融危机对全球经济和现有主要国际货币尤其是美元的冲击,为加快人民币国际化提供了难得的契机。      预计今后10年,我国GDP年均增长8%,至2020年,我国经济总量将达到75.7万亿元左右,按目前汇率计算,大约相当于11万亿美元。考虑到人民币升值因素,届时我国经济规模可能接近美国水平,超过日本一倍,相当于全球GDP总量的20%。      贸易方面,我国进出口也将年均增长8%,仍将快于全球5%的平均增速。由此,我国外贸总额至2020年将达到6.4万亿美元,大大超过美国跃居世界第一,占届时全球贸易总额的13%。并且我国外贸将由顺差转为逆差。2020年,人民币在国际贸易结算中的比例将大致与我国外贸占全球贸易的比例相当,而人民币在储备资产中的比例或许更高。      人民币国际化的羁绊依然存在。首先,我国经济增长过于依赖出口和投资,贸易和投资的双顺差阻碍了人民币的输出,而这是本币国际化的首要条件。即使外贸和投资全部以人民币结算,出口和投资双顺差也将吸干通过进口支付和对外投资流出的人民币,造成境外人民币流通的短缺,或只能以大幅增加外汇储备来支持人民币国际流通量的需要,即以美元等外汇的流入换取人民币的输出。      人民币走出去的过程还将伴随着我国资本市场进一步对外开放和拓展,为境外人民币持有者提供较充分的可供投资的资产池。人民币利率和汇率的形成机制也将更加市场化,使得持有人民币的风险降低。资本项下的资金进出管制将放松,以满足人民币资产投资者对投资安全性和盈利性的流动性要求。      这些趋势都将推动我国货币金融调控手段的完善。      10年之内,人民币依然难以成为自由兑换货币。但人民币稳健升值则是大势所趋。预计至2020年对美元将累计升值60%以上,先慢后快,年均升值约4.5%。      趋势之二:新能源助中国成汽车强国      在中低端汽车市场上将孕育出一批世界知名大众品牌      到2020年,我国汽车保有量仍将较大落后于美国,千人汽车保有量仍将不及世界平均水平。      汽车市场高速成长带来的能源和环保压力将推动我国新能源汽车的发展,很可能成为我国汽车工业缩小与汽车强国之间差距的一个契机。      过去10年,我国汽车生产和市场以超过GDP增速近一倍的高速度成长,私人消费成为推动我国汽车市场快速增长最大的动力。10年之后,汽车在我国城市的普及程度将像今天的彩电一样,成为城市居民日常生活的必需品。大城市家庭拥有两部或多部汽车将非常普遍,汽车也将大规模地进入农村地区,一些即可用作代步工具又可作为生产资料的车型,如轻卡、皮卡和越野车等,将在农村开拓出广阔的市场。      中国新车消费市场规模超过美国的时间可能比想象的要快,这一天将在2015年来临。2020年,我国汽车年产量将超过2000万辆,比今年翻一番。届时我国汽车保有量将达到至少1.85亿辆,成为全球仅次于美国的最大的汽车消费市场。      高速成长的中国汽车市场将给能源和环保带来巨大的压力,迫使中国将加快新能源汽车的发展步伐,同时继续提高传统汽车的节能减排技术。技术进步将促使中国汽车工业缩小同世界汽车强国的差距。      如果在发展新能源汽车方面坚持以我为主的发展思路,我国很有可能在新能源汽车领域率先突破,实现我国汽车产业由大到强的转变。2020年,我国将成为世界上拥有各类新能源汽车最多的国家之一。      2020年,我国汽车出口占整个国内生产的比例将会由去年的7.3%提高到20%左右。伴随着汽车的大量出口,中国将在中低端汽车市场上孕育出一批世界知名的大众品牌。      10年前,中国有110家整车生产企业,一汽、二汽和上汽三大汽车集团的产量占整个国内产量的44%。2008年,国内整车生产企业数虽然降到82家,但三大集团的产量占国内总产量的比例只提高不到五个百分点,为48.7%。未来10年,三大集团在国内的地位有可能面临其他企业后来居上的挑战。      趋势之三:能源消费居世界第一      国内能源产出与需求间差距拉大,能源进口占总消费比例进一步提高      未来10年,中国将超过美国成为世界第一大能源消费国,但人均能源消费量仍只有日本和西欧国家的一半,不到美国的1/3,相当于世界的平均水平。我国国内能源产出与需求间的差距将进一步拉大,能源进口占总消费的比例将从目前3%提高到2020年的20%。      我国能源政策将面临巨大压力,国际上要求中国承担更多减排义务的呼声将逐渐高涨。国内民众环保意识也将明显加强。两者将共同推进我国能源结构向清洁化转变,经济结构向低碳化转变。      近年,我国节能减排政策力度加大,能源消费弹性系数自2004年的1.6逐渐回落,2008年降至0.44,在发展中国家和新型经济体极其罕见。如果这一相对于发展中国家超低的能源消费弹性系数能够维持,今后10年我国GDP平均增长8%的情况下,能源消费将年均增长约4%,至2020年我国能源消费总量将超过45亿吨标准煤,相当于32亿桶原油,接近美、英、法、德、意的总和。      国内能源的增产将无法满足需求的增长,我国能源对外依存度将进一步上升,预计到2020年我国能源需求近20%需要通过进口满足。预计2020年,我国能源净进口将超过八亿吨标煤,相当于5.6亿桶油当量,约占全球能源出口总量的1/5。      中国等发展中国家经济快速发展带来的能源需求增长将快速推高能源价格。以石油为例,10年后原油价格将冲上200美元/桶(2008年不变价),至少牢牢站稳在150美元/桶以上。煤炭、天然气、液化气以及铀的实际价格比今天翻番也基本没有悬念。      能源消费增长带来的二氧化碳排放问题正日益成为全球关注的焦点,今后10年全球气候和环境问题将超过恐怖主义成为头号国际议题。据《BP世界能源统计》,2000年至2008年,全球能源年消费增加约20亿桶油当量,其中我国消费增量占一半以上。      大力发展水电、核电、风电乃至太阳能等非碳基能源,并大力发展和推广硫回收、碳捕集等清洁能源技术,是我国走出能源困境的唯一出路。预计到2020年,煤炭占我国能源消费比例将从目前的70%下降到60%以下,相对清洁高效的油气比例将从23%提高到近27%,非碳基能源比例将从7%提高到15%甚至更多。      趋势之四:银行走向金融百货公司      银行杠杆化产品将通过提高资金使用效率对实体经济投资产生积极影响      未来10年,我国商业银行将从传统以融资中介为核心向以财富管理为核心转变,零售业务将成为未来银行的主要利润来源,目前对银行利润贡献最大的对公业务占比将明显下降。      未来银行将减少对靠存款筹集资金的依赖,金融创新带来的高杠杆化金融衍生品将大大提高资金使用效率,传统银行存贷利差的盈利模式将逐渐让位于中间业务的盈利模式。      未来银行对客户的意义不再是存钱罐和贷款批发商,而是以银行业务为核心,辐射保险、证券、基金、产权经营等多个领域的金融百货公司。对客户的财富资产管理将是银行最核心的业务。      未来银行在代客理财时,投资领域将从股票、债券、基金等传统领域扩展到结构性衍生品、商品乃至艺术品。      银行将不再以柜台服务为主,目前在银行网点供客户缴费、存取款、查询的金融终端有望飞入寻常百姓家,网上银行将完成过去只能在银行网点办理的各种业务。作为银行为客户推出的最便捷的支付工具,银行卡在功能和外型上将有大的飞跃。      随着非银行金融机构的业务逐渐向银行渗透,出于追求规模经济和分散风险的考虑,大银行不得不采取兼并、收购等手段,扩大自身规模,以提高竞争力,由此将催生一批以商业银行为主体的从事混业经营的金融控股公司。      作为金融加速器,银行杠杆化产品通过提高资金使用效率对实体经济投资产生积极影响。同时,银行消费信贷推动消费者杠杆化率提高,对扩内需、调结构的经济转型战略发挥积极作用。      趋势之五:由纺织大国迈向纺织强国      创新将促使我国纺织服装产业结构向价值链高端延伸      未来10年,中国将由纺织工业大国跃变为强国。在纺织服装市场整体保持快速增长的同时,家用尤其是产业用纺织品市场的扩展将尤为引人注目。就纤维消费总量而言,服装、家用和产业用纺织品将三分天下。      作为时代变迁的重要符号,服装以非文本的方式记录着历史的变迁。未来10年服装更加多元化是不容置疑的趋势,休闲生活理念将更广泛更深入地渗入服装消费,人们更加追求通过服装显示自己的文化层次和品位。      我国服装市场的发展前景未可限量。回顾改革开放30年,我国服装企业数从仅约两万家增加到近30万家,从业人员从不到百万增加到超过400万,服装产量从不到20亿件增加到超过200亿件,服装出口从约10亿美元发展到超过1000亿美元,我国成衣出口总量占全球出口总量份额超过三成。目前我国城镇人均衣着支出超过1000元,是农村居民的五倍以上。未来城乡服装消费市场都将呈现巨大的发展空间。      相对于服装,家用和产业用纺织品市场空间更为广阔。目前我国服装、家用、产业用纺织品消费纤维的比重为53:33:14,与本世纪初的68:22:10相比,服装占比明显下降,预计10年后,这一比例将演化为40:35:25,类似于当今欧美国家三分天下的格局。      未来10年,我国纺织工业的增长点及对社会的贡献将主要体现在产业用纺织品上。产业用纺织品市场规模将急剧扩张,覆盖交通、铁路、水利、机械、医药卫生、军工等领域。城市化进程和新农村建设也将充分释放装饰用纺织品、床上用品等家用纺织品市场需求。      未来10年,纺织工业在我国国民经济实现本世纪头20年发展目标的进程中仍然具有不可替代的支撑作用。纺织工业产业规模将保持增势,但增长速度有所放缓,产业结构得以优化提升。预计到2020年,我国纤维加工总量将突破4000万吨,保持在全球总加工量中40%的比重。      趋势之六:文化创意产业迅速崛起      潜力最大的是文化与其他产业尤其是制造业的深层次结合      未来10年,文化创意与传统产业将快速融合,形成一种新兴的经济发展范式文化创意经济。文化和创意元素的融入将提升传统产业,而传统产业的产品和服务也将成为文化传播的重要载体。      互联网等数字传播技术的日新月异将极大地激发全民创意,并将加速创意的商业化实现。今后10年大量文化创意企业将层出不穷,并在此基础上形成数个综合性旗舰企业。2020年,这些企业对我国GDP的贡献率将从目前的3%提高到约7%。      今后10年将是我国文化消费高度繁荣的10年。传统文化产业在自身升级发展的同时,将加速向其他产业的渗透。文化和创意将大规模地作用于旅游业、制造业甚至农业等其他产业,全面催生以传统文化产业为基础的文化创意经济,推动中国制造走向中国创造。      未来10年,扩大内需和大力发展服务业的政策,将为文化创意经济的发展添加新的催化剂。潜力最大的还是文化与其他产业尤其是制造业的深层次结合。      高新技术将是文化创意经济的加速器。数字传播技术传入千家万户,使个人随时随地参与和发表创作成为可能,数以亿计的网民是一笔非常巨大的创意资源。      个人化属性强烈的数字传播技术还将催生无数中小文化创意个人和企业。目前,我国已有约32万家注册登记的文化企业,从中将会崛起一批跨行业、跨媒体、跨所有制、跨地区的文化多媒体集团,其中将会产生三到五家跨国界的超大型旗舰集团。      中小文化创意企业将在专业化、精细化的细分市场各领风骚,但大量零散的创意人才和企业趋向于按领域、流派、功能在一定的区域集聚。这些文化创意集聚区也将打造一批具有国际影响力的品牌。      趋势之七:网络生活进入物联网阶段      物联网将引领电子消费进入一个更便捷、人性化、智能化的新时代      最近物联网这三个字开始迅速走红。也是,每天一堆所谓的物联概念往涨停板上封,想不红也不行。      未来10年,计算机、互联网、通信等现代电子信息技术将加速相互融合,我国消费电子产业融合创新的趋势将越来越明显。物联网将在消费电子产品中广泛应用,引领电子消费进入一个更便捷、人性化、智能化的新时代。      消费类数码产品设计将呈现出更加便携化、个性化的趋势。小型化、超薄化并具有时尚、轻巧、简单易用特性的数码产品将成为消费的主流。绿色技术成为消费类电子产业首要关注的焦点,节能、环保、健康的产品设计理念,成为消费类电子产品的主要发展趋势。      未来10年,高科技结合人性化、个性化将成为消费类电子产品的技术追求和研发哲学。信息技术的日新月异催生数字化、网络化、智能化的新应用不断涌现,消费电子产业的边界将日益模糊,产品门类五花八门。满足个性化需求的大屏幕、可上网液晶电视、大容量快速存储技术、高清晰数码影像产品、高度集成的信息终端等产品将实现结构的不断创新和彼此无缝连接,在工艺设计领域趋于实现人与信息的充分完美结合。      数字家庭将成为消费类电子产品未来的强劲增长点。信息技术的家庭应用实现了家电产品高度的数字化和联网化。      数字娱乐产品设计更注重个性和时尚,更强调用户的情感体验和用户界面的设计,追求让用户在使用中得到乐趣甚至是惊喜。工业设计由产品设计转向与商业模式相结合,由硬件设计为主转向软硬件设计融合。超薄产品进入普及时代,无数新产品将以更轻、更小的面貌呈现。      健康消费成为消费类电子产品创新的主流之一。消费者对消费类电子产品特别是家电产品的关注点已从价格向产品、技术、品质和使用成本转移,尤其对节能降耗的关注度普遍提升。      未来10年,物联网这个高科技名词将由概念逐步走向大规模应用,掀起世界信息产业的第三次浪潮。它通过感应器把新一代IT技术充分运用在各行各业之中,形成普遍连接的互联网络,实现人类社会与物理系统的神奇整合。借助物联网,人类能够以更加精细和动态的方式管理生产和生活,全新的网络新体验将实现人与自然的和谐共生。      趋势之八:粮食长期处于紧平衡      良种推广、化肥应用和提高机械化水平仍然是粮食增产的有效手段      未来10年,居民生活水平提高和膳食结构改善,将对我国人均粮食消费量产生一定的影响,但粮食消费增长的主要动力将来自人口总量增加。到2020年,我国人口总数将达到14.1亿左右,粮食工业和出口需求在政策调控下有望保持相对稳定,粮食需求的增长将在10%左右,需求刚性较强。      国家扶持粮食生产的政策措施对保障粮食供应至关重要,而科技进步对粮食单产的贡献有较大提升空间,未来10年我国粮食增产将超过10%。但长远来看,粮食生产受资源、气候、技术、市场等因素影响,大幅增产的难度加大,我国粮食中长期仍处于紧平衡状态。      未来10年应着眼于粮食安全的国际视角,树立互利合作、多元发展、协同保障的新粮食安全观;着眼于我国丰富的食物资源,树立以谷物为中心、粮食为重点的综合化食物安全观,最终构建供给稳定,储备充足,调控有力,运转高效的国家粮食安全保障体系。      当前,影响我国粮食生产的关键因素是粮食播种面积和粮食单产水平。由于工业化和城镇化进程加快等,我国粮食总播种面积呈下降趋势,但随着科技进步、农业投入加大等因素影响,我国粮食作物单产水平却不断上升。2008年我国粮食单产提高对总产提高的贡献率达到81%。预计到2020年粮食单产年均增长1.13%。根据粮食安全战略目标规划,到2020年我国粮食播种面积将稳定在15.5至16亿亩,粮食产量将达到5.7至5.9亿吨。若此期间,粮食单产能保持年均增长1.70%以上的较高水平,到2020年,我国粮食产量将突破六亿吨关口,达到6.1至6.3亿吨,步入一个新台阶。      良种推广、化肥应用和提高机械化水平仍然是粮食增产的有效手段。良种将是提高粮食单产的首要因素,预计未来10年,小麦、玉米、水稻良种覆盖率将接近100%,大豆将提高到95%以上,良种因素可使粮食单产提高10%左右;化肥利用率将会不断提高,预计未来10年,化肥对粮食增产的贡献率在10%左右;农业机械化可解决劳动力不足问题和提高粮食单产,预计到2020年,我国耕种收综合机械化水平将达到70%,实现主要作物关键环节生产机械化。      生态农业和转基因技术对未来10年我国粮食生产不会产生太大的影响。生态农业作为一种可持续和环保的发展模式,是一个长期趋势,短期内还不会成为农业发展的主导模式;对于转基因技术的争议也难以很快得出明确结论,因此主粮大规模转基因商业化种植仍将受到严格限制。      要保障未来10年我国的粮食安全,必须做到四个确保:确保粮食总产量持续稳步上升,全国粮食综合生产能力突破5.5亿吨,人均粮食占有量实现400公斤;确保我国大宗谷物基本自给,大米、小麦和玉米的自给率保持在90%95%,大豆自给率力争恢复到55%60%,豆类、荞麦、谷子等小杂粮扩大出口;确保国家粮食储备规模保持在相当于当年粮食消费总量的25%30%的水平上,小麦和稻谷的储备量分别保持在50%和25%左右;确保形成建全和完善的现代粮食物流系统。      趋势之九:资本市场趋于国际化      资本市场国际化程度的提高,将提升我国在全球资本市场的份额和地位      未来10年,中国资本市场将进一步向市场化、国际化方向发展,基本完成从新兴加转轨向成熟市场的过渡,初步形成完善的、多层次的资本市场格局。      我国资本市场的深度和广度将大为拓展,股票、债券、商品期货和金融衍生品市场全面发展,市场层次更为丰富,在全球资本市场的地位和作用不断发展、提升,成为与中国经济地位相匹配的、在全球资本市场中占有举足轻重地位的国际化的资本市场。      未来10年,上海将跻身于国际上为数不多的几个市场种类比较完备的金融中心,形成包括股票、债券、货币、外汇、商品期货、OTC衍生品、产权交易等在内的金融市场体系。创业板主战场在深圳。创业板上市公司将给中国经济中最具活力的中小企业注入生机。      2020年,沪深市场市值将达到80100万亿元人民币,比目前翻两番,上市公司数量有望从目前的1638家增加到5000家。机构投资者快速发展,其中共同基金、信托基金、企业年金、保险基金和社保资金等机构投资者在证券市场上的份额将占到90%左右。      届时债券市场规模将超过股票市场,可能会是股票市场规模的2至4倍,债券融资占国内金融机构部门融资的比重将从目前的10.8%提高到35%以上。      更多的大宗商品期货品种将陆续推出,能源、金属、农粮畜牧产品等期货品种日趋完善。金融衍生品,如股指期货、利率期货、债券期货和外汇期货也相继推出。      在我国资本市场广度和深度扩展的同时,其市场化改革到2020年也将基本完成。      市场各主体分工更加明确。一是市场在产品、交易工具、募集方式以及监管要求上,将具有可供投资者选择的多个层次。二是监管部门的主要职能将从目前代替市场对发行人和投资者作实质性判断和审批,转变为完善各市场的监管规则并监督市场参与者执行。三是投资者可视其需要自主选择参与哪个金融市场,而不是像现在这样由监管部门决定其参与哪个市场以及如何参与。      未来10年,外国企业和投资者将不断进入中国市场。两年之内,外国企业很可能有望获准在国内资本市场上市融资。预计到2020年,上交所上市的境外公司比率将达15%左右,约为1000家左右,其中世界500强至少有50家;B股市场将有可能与A股合并;同时更多优秀的外国企业可以在债券市场发行人民币债券。      随着资本流动限制的逐渐放松和外汇管制的不断改革,资金雄厚的机构投资者将在全球范围内寻求投资机会。预计到2020年,境外的机构投资者会成为上海、深圳等市场的重要参与者,在中国大陆资本市场掌管投资资金将超过2000亿美元。      外国投资者将成为国内资本市场的重要参与者。中国国债将成为外国央行外汇储备资产的一部分,我国的企业债也将成为大型金融机构全球资产组合的组成部分。其次,人民币外国债券,即国外政府、企业在中国大陆发行以人民币为面值的债券,市场规模将越来越大。第三,到2020年在海外还将出现相当规模的人民币欧洲债券市场,我们认为中国香港最有可能成为人民币欧洲债券的主要市场,上海也将为人民币欧洲债券交易提供离岸市场服务。      趋势之十:城镇化率将接近六成      户籍制度将逐步开放,中小城市将成为吸纳农村人口转移的主力。      未来10年,我国城镇人口将达到八亿,城镇化率将接近60%。与发达国家普遍的80%的城镇化率仍有很大差距。      户籍制度将逐步开放,尤其在中小城市。中小城市将成为吸纳农村人口转移的主力。      计划生育政策将长期实行,因此城镇人口自然增长率很低,城镇人口增加与过去20多年一样,将主要来自农村人口的转移。      按户籍计算,我国目前城镇人口不到五亿,比常住人口少一亿多。这一亿多城镇常住人口属于不完全迁移,其特点是单身、短期流动,人在城市工作,其家庭、消费、权利行使和保障都在农村地区进行。这部分不完全迁移人员今后若得不到制度设计的保障,将成为中国社会重大的不稳定因素。      因此,现有户籍制度的改革以及相关的配套公共服务的完善是大势所趋。预计未来我国户籍制度改革进程将加快,进一步清除农村进城务工劳动力在城市落户的体制和制度障碍。由此,今后10年我国实际城镇化率将从目前的约37%提高到42%以上。      但现有的户籍制度不可能完全取消,否则我国将出现其他不少发展中国家出现的城市大规模贫民窟的现象。      由于户籍制度在大城市放开的阻力较大,而且如果就业环境允许,农民更愿意选择离家较近的城市实现永久性迁移。预计今后更多的资源将向中小城市分配,扩大其就业容纳能力,改善其生活环境,加强其公共服务水平,使这些城市的户籍制度有条件向进城务工人员彻底放开。      城市化进程将推动中国农民人均收入的增长。随着进城务工农民的加速增加,非农务工收入占农村居民收入的比例目前约为40%,预计未来10年将提高到50%。考虑到相当一部分转移劳动力已经实现完全迁移,其收入增长将划归城市部分,因此原有农村居民的收入增长将比统计中的农村居民收入增长更快。
个人分类: IT与网|3047 次阅读|1 个评论
杨世明猜想的简证【梁卷明】
梁卷明 2009-9-25 18:17
杨世明猜想的简证
个人分类: 初等数学研究成果集锦|1335 次阅读|0 个评论
由一个猜想而想到令我最苦恼的事情
whitesun 2009-8-23 01:24
我猜想很多学术论文中的成果经受不起检验,尤其是一些出自国内普通院校的博士毕业论文,这里所指的经受得起检验就是说一篇论文一定能解释一个现象或发现一个规律,或设计出一个新的有效的方法等等,突出论文论述了一个未知的现象或规律,我想这是任何一篇论文应该做到的。 其实,一个学者不一定非要发表很多所谓高水平的论文,即使一篇也没发表过也说不定是一个非常好的学者。原因在于解释一个新的现象或发现一个新的规律是不能按计划安排的,但学者的知识确实可以经过几年而学到的。常常有种现象:那些真正的科研成果很少是3年或5年按照什么经费支持出来的,而更多的是靠对问题的严密分析以及其他相关条件的具备而取得的。此外,目前很多学者很注重发SCI论文,并且喜欢炫耀引用次数。然而想必大家也知道引用多少与对该问题感兴趣的研究者多少关系很大,并非是简单地与论文价值大小有关,有时,很多人会乱引用或出于某种与学术价值无关的目的而引用。 既然一个学者不一定非要发够一定数量的论文,而多数论文又不一定有什么价值,不一定能解释一个现象或发现一个规律,那么自然这些论文经受不起检验。这让我想到的是目前我国博士毕业条件最重要的一条是发一定数量和质量的小论文,而后撰写博士毕业论文。那么按照我前面的论述来说,3-5年的时间一个学者不一定有幸碰到良机去发现一个新规律或找到一个新的现象能解释,为此,很多人只能马马虎虎,忽忽悠悠的发点论文,就那么堂而皇之的毕业了,为此,博士到处可见,但是也没见他们在毕业后几年内,他们发的论文产生了什么价值。 有这些想法,自然会想起自己最苦恼的事,那就是上博发什么样的小论文,怎么做才能发了?应该发什么样的论文?博士毕业大论文该怎么写?这些事情我想不但令我苦恼,想必也令很多博士苦恼过。希望大家能谈谈相关看法,说说怎么做就能达到国内合格的博士?今后能独立从事科研的博士?
个人分类: 上博心得|4466 次阅读|0 个评论
中国社会方程院 旨在提出社会方程猜想 命题和解析社会方程
mg 2009-7-1 10:31
中国社会方程院,旨在提出社会方程猜想,命题和解析社会方程,设计和计算社会工程。 中国社会方程院, 2009 年 7 月 1 日成立。 中国社会方程院是中国社会工程院下属的学术体和社会工程计算体。中国社会方程院的宗旨是:为社会工程提供计算技术支撑。中国社会方程院的任务定位是:提出社会方程猜想,命题社会方程,解析社会方程,设计社会工程,计算社会工程,发布社会方程报告,进行社会方程评价。
个人分类: 人文社科|710 次阅读|0 个评论
博客是学术的桃花源:再答网友Steel的Fe3C问题
大毛忽洞 2009-5-10 15:42
博客是学术的桃花源:再答网友 Steel 的 Fe3C 问题 在一些学术交流会上,由于是面对面,实事求是的批评意见很少能听到。你错了,别人也不好意思当面提出来,别人错了,你也不好意思提出来。 博客就不同了,由于有匿名功能,因此什么意见都能够听到,什么意见都可以发表。 因此,俺要感谢网友对俺的批评,这使俺《点群 / 空间群操作系统》日臻完善。 如果我的口气越强硬,网友越是想把我的观点批倒,这样网友就需要投入一定的精力,这种多边的互动就是最好的学术活动。 如果没有博客,如何考验俺的《点群 / 空间群操作系统》,还真是个问题。 俺贴出的 Fe3C 数据,是去年调试程序时计算的。俺曾经发给研究生,希望他们能挑出个错误,并且答应有奖励,可是没有人能挑出个错误来。需要强调的是,能看出俺的结果和别人的结果不同,这还没有完成挑错的任务。究竟是谁的错了,为什么? 因为我的结果和别人书上的不一样,二者必有一个是错的。指出错的,相当于是一个选择题,做对的概率为 50 %。 因此,俺期待的是那个为什么! 网友 Steel 指出了俺的错误,并且使用 Diamond 软件 画图然后进行验证。为俺找到了为什么! 正如网友 Steel 所说,刘志林和张瑞林的键没有问题。 但是,他们书上的等同键数目仍然有问题。 使用键两端原子各自的配位原子数的概念,比使用等同键数的概念,其物理图像更明确。 在 Fe3C 晶体中,键长小于 6.8498 的键,有 147 条。 这个数目是俺从 Fe3C 晶体的空间扫描出来的,涉及 27 个晶体学晶胞。 在扫描空间,共有 5158 条键,扫描配位数涉及到了12 4 个晶体学晶胞。 附录: 1. 网友提问和质疑 标题:继续提问 发表评论人: Steel ip:59.51.9.* 非常感谢李教授专门回答本人的问题,万分荣幸还列入题目之中!我仔细对比了结果,又发现问题了! 在您的计算中,只包括了一个晶胞内的 16 个原子间成的键,这些键中确实没有 1.8765 的键,但是一个晶胞内的原子和相邻晶胞中原子所成键中是存在 1.8765 的,举个例子: (0.86,0.25,0.47) 位置的 C 原子和 (1.04,0.25,0.833) 位置的 Fe 原子所成键的键长就是 1.8756 ,这是我用 Diamond 软件画出 Fe3C 的晶胞看出来的。 晶胞只是想象的,不应该封闭,所以我认为是您少算了而不是张和刘多算了。看看是否如此? 再次感谢网友 STELL 的提问和花费宝贵的时间来验证数据! 俺用了两天的时间,把程序中的漏掉修补好了。 2. Fe3C 的键参数(前 45 条键) a=,5.0787,b=,6.7297,c=,4.5144 1, ,4c-C,---,4c-Fe, d===,1.8526 4c-C,:,-1.8283,1.6824,.1354, Z=,1 SP coordinates=,.14,.75,.53 配位原子: ,4c-Fe,: ,-.2031,1.6824,-.7539 SP coordinates=,.46,.75,.333 4c-Fe,:,-.2031,1.6824,-.7539, Z=,1 SP coordinates=,.46,.75,.333 配位原子: ,4c-C,: ,-1.8283,1.6824,.1354 SP coordinates=,.14,.75,.53 2, ,4c-Fe,---,4c-C, d===,1.8764 4c-Fe,:,-.2031,1.6824,3.7605, Z=,1 SP coordinates=,.46,.75,1.333 配位原子: ,4c-C,: ,.711,1.6824,2.1218 SP coordinates=,.64,.75,.97 4c-C,:,.711,1.6824,2.1218, Z=,1 SP coordinates=,.64,.75,.97 配位原子: ,4c-Fe,: ,-.2031,1.6824,3.7605 SP coordinates=,.46,.75,1.333 3, ,8d-Fe,---,4c-C, d===,2.0565 8d-Fe,:,-1.6099,-.4374,-.7539, Z=,1 SP coordinates=,.183,.435,.333 配位原子: ,4c-C,: ,-.711,-1.6824,-2.1218 SP coordinates=,.36,.25,.03 4c-C,:,-.711,-1.6824,-2.1218, Z=,2 SP coordinates=,.36,.25,.03 配位原子: ,8d-Fe,: ,-1.6099,-2.9274,-.7539 SP coordinates=,.183,.065,.333 配位原子: ,8d-Fe,: ,-1.6099,-.4374,-.7539 SP coordinates=,.183,.435,.333 4, ,8d-Fe,---,4c-C, d===,2.1502 8d-Fe,:,-.9294,7.1671,1.5033, Z=,1 SP coordinates=,.317,1.565,.833 配位原子: ,4c-C,: ,.711,8.4121,2.1218 SP coordinates=,.64,1.75,.97 4c-C,:,.711,8.4121,2.1218, Z=,2 SP coordinates=,.64,1.75,.97 配位原子: ,8d-Fe,: ,-.9294,7.1671,1.5033 SP coordinates=,.317,1.565,.833 配位原子: ,8d-Fe,: ,-.9294,9.6571,1.5033 SP coordinates=,.317,1.935,.833 5, ,8d-Fe,---,4c-C, d===,2.3091 8d-Fe,:,-.9294,.4374,-3.0111, Z=,1 SP coordinates=,.317,.565,-.167 配位原子: ,4c-C,: ,-.711,-1.6824,-2.1218 SP coordinates=,.36,.25,.03 4c-C,:,-.711,-1.6824,-2.1218, Z=,2 SP coordinates=,.36,.25,.03 配位原子: ,8d-Fe,: ,-.9294,-3.8023,-3.0111 SP coordinates=,.317,-.065,-.167 配位原子: ,8d-Fe,: ,-.9294,.4374,-3.0111 SP coordinates=,.317,.565,-.167 6, ,8d-Fe,---,8d-Fe, d===,2.49 8d-Fe,:,3.4688,-2.9274,-5.2683, Z=,1 SP coordinates=,1.183,.065,-.667 配位原子: ,8d-Fe,: ,3.4688,-.4374,-5.2683 SP coordinates=,1.183,.435,-.667 8d-Fe,:,3.4688,-.4374,-5.2683, Z=,1 SP coordinates=,1.183,.435,-.667 配位原子: ,8d-Fe,: ,3.4688,-2.9274,-5.2683 SP coordinates=,1.183,.065,-.667 7, ,8d-Fe,---,8d-Fe, d===,2.5146 8d-Fe,:,.9294,-7.1671,-6.0177, Z=,2 SP coordinates=,.683,-.565,-.833 配位原子: ,8d-Fe,: ,1.6099,-6.2923,-8.2749 SP coordinates=,.817,-.435,-1.333 配位原子: ,8d-Fe,: ,1.6099,-6.2923,-3.7605 SP coordinates=,.817,-.435,-.333 8d-Fe,:,1.6099,-6.2923,-3.7605, Z=,2 SP coordinates=,.817,-.435,-.333 配位原子: ,8d-Fe,: ,.9294,-7.1671,-6.0177 SP coordinates=,.683,-.565,-.833 配位原子: ,8d-Fe,: ,.9294,-7.1671,-1.5033 SP coordinates=,.683,-.565,.167 8, ,8d-Fe,---,4c-Fe, d===,2.5175 8d-Fe,:,-.9294,.4374,1.5033, Z=,1 SP coordinates=,.317,.565,.833 配位原子: ,4c-Fe,: ,.2031,-1.6824,.7539 SP coordinates=,.54,.25,.667 4c-Fe,:,.2031,-1.6824,.7539, Z=,2 SP coordinates=,.54,.25,.667 配位原子: ,8d-Fe,: ,-.9294,-3.8023,1.5033 SP coordinates=,.317,-.065,.833 配位原子: ,8d-Fe,: ,-.9294,.4374,1.5033 SP coordinates=,.317,.565,.833 9, ,4c-Fe,---,8d-Fe, d===,2.5441 4c-Fe,:,5.2818,-1.6824,5.2683, Z=,2 SP coordinates=,1.54,.25,1.667 配位原子: ,8d-Fe,: ,6.6886,-3.8023,5.2683 SP coordinates=,1.817,-.065,1.667 配位原子: ,8d-Fe,: ,6.6886,.4374,5.2683 SP coordinates=,1.817,.565,1.667 8d-Fe,:,6.6886,.4374,5.2683, Z=,1 SP coordinates=,1.817,.565,1.667 配位原子: ,4c-Fe,: ,5.2818,-1.6824,5.2683 SP coordinates=,1.54,.25,1.667 10, ,8d-Fe,---,8d-Fe, d===,2.5483 8d-Fe,:,-.9294,2.9274,1.5033, Z=,1 SP coordinates=,.317,.935,.833 配位原子: ,8d-Fe,: ,.9294,3.8023,3.0111 SP coordinates=,.683,1.065,1.167 8d-Fe,:,.9294,3.8023,3.0111, Z=,1 SP coordinates=,.683,1.065,1.167 配位原子: ,8d-Fe,: ,-.9294,2.9274,1.5033 SP coordinates=,.317,.935,.833 11, ,4c-Fe,---,4c-Fe, d===,2.6476 4c-Fe,:,4.8756,8.4121,-5.2683, Z=,2 SP coordinates=,1.46,1.75,-.667 配位原子: ,4c-Fe,: ,2.3362,8.4121,-6.0177 SP coordinates=,.96,1.75,-.833 配位原子: ,4c-Fe,: ,7.4149,8.4121,-6.0177 SP coordinates=,1.96,1.75,-.833 4c-Fe,:,7.4149,8.4121,-6.0177, Z=,2 SP coordinates=,1.96,1.75,-.833 配位原子: ,4c-Fe,: ,4.8756,8.4121,-5.2683 SP coordinates=,1.46,1.75,-.667 配位原子: ,4c-Fe,: ,9.9543,8.4121,-5.2683 SP coordinates=,2.46,1.75,-.667 12, ,8d-Fe,---,8d-Fe, d===,2.6476 8d-Fe,:,-1.6099,6.2923,-.7539, Z=,2 SP coordinates=,.183,1.435,.333 配位原子: ,8d-Fe,: ,-4.1493,6.2923,-1.5033 SP coordinates=,-.317,1.435,.167 配位原子: ,8d-Fe,: ,.9294,6.2923,-1.5033 SP coordinates=,.683,1.435,.167 8d-Fe,:,.9294,6.2923,-1.5033, Z=,2 SP coordinates=,.683,1.435,.167 配位原子: ,8d-Fe,: ,-1.6099,6.2923,-.7539 SP coordinates=,.183,1.435,.333 配位原子: ,8d-Fe,: ,3.4688,6.2923,-.7539 SP coordinates=,1.183,1.435,.333 13, ,4c-Fe,---,8d-Fe, d===,2.6665 4c-Fe,:,-.2031,1.6824,-.7539, Z=,2 SP coordinates=,.46,.75,.333 配位原子: ,8d-Fe,: ,1.6099,.4374,.7539 SP coordinates=,.817,.565,.667 配位原子: ,8d-Fe,: ,1.6099,2.9274,.7539 SP coordinates=,.817,.935,.667 8d-Fe,:,1.6099,.4374,.7539, Z=,1 SP coordinates=,.817,.565,.667 配位原子: ,4c-Fe,: ,-.2031,1.6824,-.7539 SP coordinates=,.46,.75,.333 14, ,8d-Fe,---,4c-Fe, d===,2.6782 8d-Fe,:,1.6099,-3.8023,5.2683, Z=,2 SP coordinates=,.817,-.065,1.667 配位原子: ,4c-Fe,: ,2.3362,-5.0473,3.0111 SP coordinates=,.96,-.25,1.167 配位原子: ,4c-Fe,: ,2.3362,-5.0473,7.5255 SP coordinates=,.96,-.25,2.167 4c-Fe,:,2.3362,-5.0473,3.0111, Z=,4 SP coordinates=,.96,-.25,1.167 配位原子: ,8d-Fe,: ,1.6099,-6.2923,.7539 SP coordinates=,.817,-.435,.667 配位原子: ,8d-Fe,: ,1.6099,-6.2923,5.2683 SP coordinates=,.817,-.435,1.667 配位原子: ,8d-Fe,: ,1.6099,-3.8023,.7539 SP coordinates=,.817,-.065,.667 配位原子: ,8d-Fe,: ,1.6099,-3.8023,5.2683 SP coordinates=,.817,-.065,1.667 15, ,4c-Fe,---,4c-C, d===,3.0175 4c-Fe,:,-.2031,1.6824,-.7539, Z=,1 SP coordinates=,.46,.75,.333 配位原子: ,4c-C,: ,.711,1.6824,2.1218 SP coordinates=,.64,.75,.97 4c-C,:,.711,1.6824,2.1218, Z=,1 SP coordinates=,.64,.75,.97 配位原子: ,4c-Fe,: ,-.2031,1.6824,-.7539 SP coordinates=,.46,.75,.333 16, ,4c-C,---,4c-C, d===,3.2239 4c-C,:,-.711,-1.6824,-6.6362, Z=,2 SP coordinates=,.36,.25,-.97 配位原子: ,4c-C,: ,-3.2504,-1.6824,-4.6498 SP coordinates=,-.14,.25,-.53 配位原子: ,4c-C,: ,1.8283,-1.6824,-4.6498 SP coordinates=,.86,.25,-.53 4c-C,:,1.8283,-1.6824,-4.6498, Z=,2 SP coordinates=,.86,.25,-.53 配位原子: ,4c-C,: ,-.711,-1.6824,-6.6362 SP coordinates=,.36,.25,-.97 配位原子: ,4c-C,: ,4.3677,-1.6824,-6.6362 SP coordinates=,1.36,.25,-.97 17, ,8d-Fe,---,4c-C, d===,3.5012 8d-Fe,:,-1.6099,-.4374,-.7539, Z=,1 SP coordinates=,.183,.435,.333 配位原子: ,4c-C,: ,-.711,-1.6824,2.3926 SP coordinates=,.36,.25,1.03 4c-C,:,-.711,-1.6824,2.3926, Z=,2 SP coordinates=,.36,.25,1.03 配位原子: ,8d-Fe,: ,-1.6099,-2.9274,-.7539 SP coordinates=,.183,.065,.333 配位原子: ,8d-Fe,: ,-1.6099,-.4374,-.7539 SP coordinates=,.183,.435,.333 18, ,8d-Fe,---,4c-C, d===,3.5448 8d-Fe,:,-1.6099,-.4374,-.7539, Z=,1 SP coordinates=,.183,.435,.333 配位原子: ,4c-C,: ,.711,1.6824,-2.3926 SP coordinates=,.64,.75,-.03 4c-C,:,.711,1.6824,-2.3926, Z=,2 SP coordinates=,.64,.75,-.03 配位原子: ,8d-Fe,: ,-1.6099,-.4374,-.7539 SP coordinates=,.183,.435,.333 配位原子: ,8d-Fe,: ,-1.6099,3.8023,-.7539 SP coordinates=,.183,1.065,.333 19, ,4c-Fe,---,4c-C, d===,3.5662 4c-Fe,:,-.2031,1.6824,-.7539, Z=,1 SP coordinates=,.46,.75,.333 配位原子: ,4c-C,: ,3.2504,1.6824,.1354 SP coordinates=,1.14,.75,.53 4c-C,:,3.2504,1.6824,.1354, Z=,1 SP coordinates=,1.14,.75,.53 配位原子: ,4c-Fe,: ,-.2031,1.6824,-.7539 SP coordinates=,.46,.75,.333 20, ,4c-C,---,4c-C, d===,3.5831 4c-C,:,-.711,-1.6824,-2.1218, Z=,2 SP coordinates=,.36,.25,.03 配位原子: ,4c-C,: ,-3.2504,-1.6824,-4.6498 SP coordinates=,-.14,.25,-.53 配位原子: ,4c-C,: ,1.8283,-1.6824,-4.6498 SP coordinates=,.86,.25,-.53 4c-C,:,1.8283,-1.6824,-4.6498, Z=,2 SP coordinates=,.86,.25,-.53 配位原子: ,4c-C,: ,-.711,-1.6824,-2.1218 SP coordinates=,.36,.25,.03 配位原子: ,4c-C,: ,4.3677,-1.6824,-2.1218 SP coordinates=,1.36,.25,.03 21, ,8d-Fe,---,8d-Fe, d===,3.6345 8d-Fe,:,-.9294,9.6571,6.0177, Z=,2 SP coordinates=,.317,1.935,1.833 配位原子: ,8d-Fe,: ,-3.4688,7.1671,5.2683 SP coordinates=,-.183,1.565,1.667 配位原子: ,8d-Fe,: ,1.6099,7.1671,5.2683 SP coordinates=,.817,1.565,1.667 8d-Fe,:,1.6099,7.1671,5.2683, Z=,2 SP coordinates=,.817,1.565,1.667 配位原子: ,8d-Fe,: ,-.9294,9.6571,6.0177 SP coordinates=,.317,1.935,1.833 配位原子: ,8d-Fe,: ,4.1493,9.6571,6.0177 SP coordinates=,1.317,1.935,1.833 22, ,8d-Fe,---,8d-Fe, d===,3.6414 8d-Fe,:,-.9294,.4374,1.5033, Z=,1 SP coordinates=,.317,.565,.833 配位原子: ,8d-Fe,: ,.9294,-.4374,-1.5033 SP coordinates=,.683,.435,.167 8d-Fe,:,.9294,-.4374,-1.5033, Z=,1 SP coordinates=,.683,.435,.167 配位原子: ,8d-Fe,: ,-.9294,.4374,1.5033 SP coordinates=,.317,.565,.833 23, ,8d-Fe,---,8d-Fe, d===,3.6614 8d-Fe,:,-1.6099,-.4374,-.7539, Z=,1 SP coordinates=,.183,.435,.333 配位原子: ,8d-Fe,: ,1.6099,.4374,.7539 SP coordinates=,.817,.565,.667 8d-Fe,:,1.6099,.4374,.7539, Z=,1 SP coordinates=,.817,.565,.667 配位原子: ,8d-Fe,: ,-1.6099,-.4374,-.7539 SP coordinates=,.183,.435,.333 24, ,4c-C,---,4c-C, d===,3.663 4c-C,:,1.8283,-1.6824,-.1354, Z=,2 SP coordinates=,.86,.25,.47 配位原子: ,4c-C,: ,3.2504,-5.0473,.1354 SP coordinates=,1.14,-.25,.53 配位原子: ,4c-C,: ,3.2504,1.6824,.1354 SP coordinates=,1.14,.75,.53 4c-C,:,3.2504,1.6824,.1354, Z=,2 SP coordinates=,1.14,.75,.53 配位原子: ,4c-C,: ,1.8283,-1.6824,-.1354 SP coordinates=,.86,.25,.47 配位原子: ,4c-C,: ,1.8283,5.0473,-.1354 SP coordinates=,.86,1.25,.47 25, ,4c-C,---,4c-Fe, d===,3.6676 4c-C,:,1.8283,-1.6824,-.1354, Z=,2 SP coordinates=,.86,.25,.47 配位原子: ,4c-Fe,: ,2.3362,-5.0473,-1.5033 SP coordinates=,.96,-.25,.167 配位原子: ,4c-Fe,: ,2.3362,1.6824,-1.5033 SP coordinates=,.96,.75,.167 4c-Fe,:,2.3362,1.6824,-1.5033, Z=,2 SP coordinates=,.96,.75,.167 配位原子: ,4c-C,: ,1.8283,-1.6824,-.1354 SP coordinates=,.86,.25,.47 配位原子: ,4c-C,: ,1.8283,5.0473,-.1354 SP coordinates=,.86,1.25,.47 26, ,8d-Fe,---,4c-C, d===,3.7086 8d-Fe,:,-6.6886,-.4374,3.7605, Z=,1 SP coordinates=,-.817,.435,1.333 配位原子: ,4c-C,: ,-3.2504,-1.6824,4.379 SP coordinates=,-.14,.25,1.47 4c-C,:,-3.2504,-1.6824,4.379, Z=,2 SP coordinates=,-.14,.25,1.47 配位原子: ,8d-Fe,: ,-6.6886,-2.9274,3.7605 SP coordinates=,-.817,.065,1.333 配位原子: ,8d-Fe,: ,-6.6886,-.4374,3.7605 SP coordinates=,-.817,.435,1.333 27, ,4c-Fe,---,4c-Fe, d===,3.7095 4c-Fe,:,4.8756,-5.0473,3.7605, Z=,2 SP coordinates=,1.46,-.25,1.333 配位原子: ,4c-Fe,: ,5.2818,-8.4121,5.2683 SP coordinates=,1.54,-.75,1.667 配位原子: ,4c-Fe,: ,5.2818,-1.6824,5.2683 SP coordinates=,1.54,.25,1.667 4c-Fe,:,5.2818,-8.4121,5.2683, Z=,2 SP coordinates=,1.54,-.75,1.667 配位原子: ,4c-Fe,: ,4.8756,-11.777,3.7605 SP coordinates=,1.46,-1.25,1.333 配位原子: ,4c-Fe,: ,4.8756,-5.0473,3.7605 SP coordinates=,1.46,-.25,1.333 28, ,8d-Fe,---,4c-Fe, d===,3.7251 8d-Fe,:,-1.6099,-.4374,3.7605, Z=,1 SP coordinates=,.183,.435,1.333 配位原子: ,4c-Fe,: ,.2031,-1.6824,.7539 SP coordinates=,.54,.25,.667 4c-Fe,:,.2031,-1.6824,.7539, Z=,2 SP coordinates=,.54,.25,.667 配位原子: ,8d-Fe,: ,-1.6099,-2.9274,3.7605 SP coordinates=,.183,.065,1.333 配位原子: ,8d-Fe,: ,-1.6099,-.4374,3.7605 SP coordinates=,.183,.435,1.333 29, ,8d-Fe,---,4c-Fe, d===,3.8063 8d-Fe,:,-.9294,.4374,1.5033, Z=,1 SP coordinates=,.317,.565,.833 配位原子: ,4c-Fe,: ,2.3362,1.6824,3.0111 SP coordinates=,.96,.75,1.167 4c-Fe,:,2.3362,1.6824,3.0111, Z=,2 SP coordinates=,.96,.75,1.167 配位原子: ,8d-Fe,: ,-.9294,.4374,1.5033 SP coordinates=,.317,.565,.833 配位原子: ,8d-Fe,: ,-.9294,2.9274,1.5033 SP coordinates=,.317,.935,.833 30, ,8d-Fe,---,4c-C, d===,3.845 8d-Fe,:,-6.0081,7.1671,-3.0111, Z=,1 SP coordinates=,-.683,1.565,-.167 配位原子: ,4c-C,: ,-3.2504,5.0473,-4.6498 SP coordinates=,-.14,1.25,-.53 4c-C,:,-3.2504,5.0473,-4.6498, Z=,2 SP coordinates=,-.14,1.25,-.53 配位原子: ,8d-Fe,: ,-6.0081,2.9274,-3.0111 SP coordinates=,-.683,.935,-.167 配位原子: ,8d-Fe,: ,-6.0081,7.1671,-3.0111 SP coordinates=,-.683,1.565,-.167 31, ,4c-C,---,4c-Fe, d===,3.9727 4c-C,:,.711,-5.0473,-2.3926, Z=,1 SP coordinates=,.64,-.25,-.03 配位原子: ,4c-Fe,: ,2.3362,-5.0473,-6.0177 SP coordinates=,.96,-.25,-.833 4c-Fe,:,2.3362,-5.0473,-6.0177, Z=,1 SP coordinates=,.96,-.25,-.833 配位原子: ,4c-C,: ,.711,-5.0473,-2.3926 SP coordinates=,.64,-.25,-.03 32, ,4c-Fe,---,4c-C, d===,3.9788 4c-Fe,:,-5.2818,-5.0473,3.7605, Z=,2 SP coordinates=,-.54,-.25,1.333 配位原子: ,4c-C,: ,-3.2504,-8.4121,4.379 SP coordinates=,-.14,-.75,1.47 配位原子: ,4c-C,: ,-3.2504,-1.6824,4.379 SP coordinates=,-.14,.25,1.47 4c-C,:,-3.2504,-8.4121,4.379, Z=,2 SP coordinates=,-.14,-.75,1.47 配位原子: ,4c-Fe,: ,-5.2818,-11.777,3.7605 SP coordinates=,-.54,-1.25,1.333 配位原子: ,4c-Fe,: ,-5.2818,-5.0473,3.7605 SP coordinates=,-.54,-.25,1.333 33, ,8d-Fe,---,8d-Fe, d===,4.1085 8d-Fe,:,.9294,-.4374,-1.5033, Z=,4 SP coordinates=,.683,.435,.167 配位原子: ,8d-Fe,: ,1.6099,-3.8023,-3.7605 SP coordinates=,.817,-.065,-.333 配位原子: ,8d-Fe,: ,1.6099,-3.8023,.7539 SP coordinates=,.817,-.065,.667 配位原子: ,8d-Fe,: ,1.6099,2.9274,-3.7605 SP coordinates=,.817,.935,-.333 配位原子: ,8d-Fe,: ,1.6099,2.9274,.7539 SP coordinates=,.817,.935,.667 8d-Fe,:,1.6099,2.9274,.7539, Z=,4 SP coordinates=,.817,.935,.667 配位原子: ,8d-Fe,: ,.9294,-.4374,-1.5033 SP coordinates=,.683,.435,.167 配位原子: ,8d-Fe,: ,.9294,-.4374,3.0111 SP coordinates=,.683,.435,1.167 配位原子: ,8d-Fe,: ,.9294,6.2923,-1.5033 SP coordinates=,.683,1.435,.167 配位原子: ,8d-Fe,: ,.9294,6.2923,3.0111 SP coordinates=,.683,1.435,1.167 34, ,8d-Fe,---,8d-Fe, d===,4.1292 8d-Fe,:,-.9294,2.9274,-3.0111, Z=,2 SP coordinates=,.317,.935,-.167 配位原子: ,8d-Fe,: ,.9294,-.4374,-1.5033 SP coordinates=,.683,.435,.167 配位原子: ,8d-Fe,: ,.9294,6.2923,-1.5033 SP coordinates=,.683,1.435,.167 8d-Fe,:,.9294,-.4374,-1.5033, Z=,2 SP coordinates=,.683,.435,.167 配位原子: ,8d-Fe,: ,-.9294,-3.8023,-3.0111 SP coordinates=,.317,-.065,-.167 配位原子: ,8d-Fe,: ,-.9294,2.9274,-3.0111 SP coordinates=,.317,.935,-.167 35, ,4c-C,---,4c-C, d===,4.203 4c-C,:,3.2504,8.4121,4.6498, Z=,4 SP coordinates=,1.14,1.75,1.53 配位原子: ,4c-C,: ,4.3677,5.0473,2.3926 SP coordinates=,1.36,1.25,1.03 配位原子: ,4c-C,: ,4.3677,5.0473,6.907 SP coordinates=,1.36,1.25,2.03 配位原子: ,4c-C,: ,4.3677,11.777,2.3926 SP coordinates=,1.36,2.25,1.03 配位原子: ,4c-C,: ,4.3677,11.777,6.907 SP coordinates=,1.36,2.25,2.03 4c-C,:,4.3677,5.0473,2.3926, Z=,4 SP coordinates=,1.36,1.25,1.03 配位原子: ,4c-C,: ,3.2504,1.6824,.1354 SP coordinates=,1.14,.75,.53 配位原子: ,4c-C,: ,3.2504,1.6824,4.6498 SP coordinates=,1.14,.75,1.53 配位原子: ,4c-C,: ,3.2504,8.4121,.1354 SP coordinates=,1.14,1.75,.53 配位原子: ,4c-C,: ,3.2504,8.4121,4.6498 SP coordinates=,1.14,1.75,1.53 36, ,8d-Fe,---,4c-C, d===,4.2051 8d-Fe,:,-.9294,.4374,1.5033, Z=,1 SP coordinates=,.317,.565,.833 配位原子: ,4c-C,: ,-.711,-1.6824,-2.1218 SP coordinates=,.36,.25,.03 4c-C,:,-.711,-1.6824,-2.1218, Z=,2 SP coordinates=,.36,.25,.03 配位原子: ,8d-Fe,: ,-.9294,-3.8023,1.5033 SP coordinates=,.317,-.065,.833 配位原子: ,8d-Fe,: ,-.9294,.4374,1.5033 SP coordinates=,.317,.565,.833 37, ,8d-Fe,---,8d-Fe, d===,4.2397 8d-Fe,:,1.6099,2.9274,.7539, Z=,2 SP coordinates=,.817,.935,.667 配位原子: ,8d-Fe,: ,1.6099,7.1671,.7539 SP coordinates=,.817,1.565,.667 配位原子: ,4c-Fe,: ,5.2818,5.0473,.7539 SP coordinates=,1.54,1.25,.667 8d-Fe,:,1.6099,7.1671,.7539, Z=,2 SP coordinates=,.817,1.565,.667 配位原子: ,8d-Fe,: ,1.6099,2.9274,.7539 SP coordinates=,.817,.935,.667 配位原子: ,4c-Fe,: ,5.2818,5.0473,.7539 SP coordinates=,1.54,1.25,.667 38, ,8d-Fe,---,4c-Fe, d===,4.2399 8d-Fe,:,-3.4688,-3.8023,.7539, Z=,2 SP coordinates=,-.183,-.065,.667 配位原子: ,8d-Fe,: ,-3.4688,.4374,.7539 SP coordinates=,-.183,.565,.667 配位原子: ,4c-Fe,: ,.2031,-1.6824,.7539 SP coordinates=,.54,.25,.667 4c-Fe,:,.2031,-1.6824,.7539, Z=,2 SP coordinates=,.54,.25,.667 配位原子: ,8d-Fe,: ,-3.4688,-3.8023,.7539 SP coordinates=,-.183,-.065,.667 配位原子: ,8d-Fe,: ,-3.4688,.4374,.7539 SP coordinates=,-.183,.565,.667 39, ,8d-Fe,---,4c-C, d===,4.2603 8d-Fe,:,-6.6886,6.2923,-5.2683, Z=,1 SP coordinates=,-.817,1.435,-.667 配位原子: ,4c-C,: ,-4.3677,8.4121,-2.3926 SP coordinates=,-.36,1.75,-.03 4c-C,:,-4.3677,8.4121,-2.3926, Z=,2 SP coordinates=,-.36,1.75,-.03 配位原子: ,8d-Fe,: ,-6.6886,6.2923,-5.2683 SP coordinates=,-.817,1.435,-.667 配位原子: ,8d-Fe,: ,-6.6886,10.532,-5.2683 SP coordinates=,-.817,2.065,-.667 40, ,4c-C,---,8d-Fe, d===,4.4067 4c-C,:,-.711,-1.6824,-2.1218, Z=,2 SP coordinates=,.36,.25,.03 配位原子: ,8d-Fe,: ,.9294,-2.9274,-6.0177 SP coordinates=,.683,.065,-.833 配位原子: ,8d-Fe,: ,.9294,-.4374,-6.0177 SP coordinates=,.683,.435,-.833 8d-Fe,:,.9294,-.4374,-6.0177, Z=,1 SP coordinates=,.683,.435,-.833 配位原子: ,4c-C,: ,-.711,-1.6824,-2.1218 SP coordinates=,.36,.25,.03 41, ,4c-Fe,---,8d-Fe, d===,4.4667 4c-Fe,:,-.2031,1.6824,-.7539, Z=,2 SP coordinates=,.46,.75,.333 配位原子: ,8d-Fe,: ,.9294,-.4374,3.0111 SP coordinates=,.683,.435,1.167 配位原子: ,8d-Fe,: ,.9294,3.8023,3.0111 SP coordinates=,.683,1.065,1.167 8d-Fe,:,.9294,3.8023,3.0111, Z=,1 SP coordinates=,.683,1.065,1.167 配位原子: ,4c-Fe,: ,-.2031,1.6824,-.7539 SP coordinates=,.46,.75,.333 42, ,4c-Fe,---,4c-C, d===,4.4753 4c-Fe,:,2.7425,-1.6824,-3.0111, Z=,1 SP coordinates=,1.04,.25,-.167 配位原子: ,4c-C,: ,6.907,-1.6824,-4.6498 SP coordinates=,1.86,.25,-.53 4c-C,:,6.907,-1.6824,-4.6498, Z=,1 SP coordinates=,1.86,.25,-.53 配位原子: ,4c-Fe,: ,2.7425,-1.6824,-3.0111 SP coordinates=,1.04,.25,-.167 43, ,8d-Fe,---,8d-Fe, d===,4.4913 8d-Fe,:,-1.6099,-2.9274,-.7539, Z=,1 SP coordinates=,.183,.065,.333 配位原子: ,8d-Fe,: ,1.6099,-3.8023,-3.7605 SP coordinates=,.817,-.065,-.333 8d-Fe,:,1.6099,-3.8023,-3.7605, Z=,1 SP coordinates=,.817,-.065,-.333 配位原子: ,8d-Fe,: ,-1.6099,-2.9274,-.7539 SP coordinates=,.183,.065,.333 44, ,4c-C,---,8d-Fe, d===,4.5131 4c-C,:,-1.8283,1.6824,.1354, Z=,2 SP coordinates=,.14,.75,.53 配位原子: ,8d-Fe,: ,.9294,-.4374,3.0111 SP coordinates=,.683,.435,1.167 配位原子: ,8d-Fe,: ,.9294,3.8023,3.0111 SP coordinates=,.683,1.065,1.167 8d-Fe,:,.9294,-.4374,3.0111, Z=,1 SP coordinates=,.683,.435,1.167 配位原子: ,4c-C,: ,-1.8283,1.6824,.1354 SP coordinates=,.14,.75,.53 45, ,4c-Fe,---,4c-Fe, d===,4.5144 4c-Fe,:,2.3362,1.6824,-6.0177, Z=,2 SP coordinates=,.96,.75,-.833 配位原子: ,4c-Fe,: ,2.3362,1.6824,-10.5321 SP coordinates=,.96,.75,-1.833 配位原子: ,4c-Fe,: ,2.3362,1.6824,-1.5033 SP coordinates=,.96,.75,.167 4c-Fe,:,2.3362,1.6824,-1.5033, Z=,2 SP coordinates=,.96,.75,.167 配位原子: ,4c-Fe,: ,2.3362,1.6824,-6.0177 SP coordinates=,.96,.75,-.833 配位原子: ,4c-Fe,: ,2.3362,1.6824,3.0111 SP coordinates=,.96,.75,1.167 3. Fe3C 的 5158 条键资料下载 Fe3C的键参数(前147条键) Fe3C的5158条键资料下载
个人分类: EET电子理论|3963 次阅读|3 个评论
华罗庚,0.618,五次对称性
大毛忽洞 2009-4-7 15:27
华罗庚, 0.618,五次对称性 大约 30多年前(60年代末70年代初),数学家华罗庚搞了一阵子优选法和优选法推广,其中就包括一个《0.618法》。我曾经从北京王府井新华书店邮购过一本华罗庚的《优选法》,也见过一本别人写华罗庚推广优选法的小书《0.618法》。 华罗庚是搞代数方程起家的,靠一篇 《苏家驹之代数五次方程式解法不能成立的理由》的论文在清华大学得到了一份工作。(下面的公式就用图像版) (民间足球)
个人分类: 晶体学和空间群|10838 次阅读|0 个评论
Zhang对Wu等在《哲学杂志》上comment的答复
zmwang 2009-3-27 21:53
重复发表也没办法。最近关于猜想的博文都是应要而作。这是应张志东的要求,也是附和dongping2009的提议,“应该同时贴出Comment与Rejoinder之间的Response,这样似乎规范一些。” 请注意,对张志东和伍法岳的电邮要求,我只是复制转贴,不负责更多排版工作。 v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Philosophical Magazine Vol. 88, No. 26, 11 September 2008, 3097–3101 Response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ Z.D. Zhang* Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang, China (Received 20 August 2008; final version received 3 October 2008) This is a Response to a recent Comment on the conjectured solution of the three-dimensional (3D) Ising model . Several points are made: (1) Conjecture 1, regarding the additional rotation, is understood as performing a transformation for smoothing all the crossings of the knots. (2) The weight factors in Conjecture 2 are interpreted as a novel topologic phase. (3) The conjectured solution and its low- and high-temperature expansions are supported by the mathematical theorems for the analytical behavior of the Ising model. The physics behind the extra dimension is also discussed briefly. In the preceding paper, Wu et al. comment on the conjectured solution of the three dimensional (3D) Ising model presented in . The comments that Wu et al. make regarding the presentation (length, usage of some words, placement in Appendix) will not be replied to here. Their comments concerning content concentrate on the low- and high temperature expansions given in and on the different choices of the weight functions wy and wz. The latter problem needs clarification; the first two objections have been anticipated and are rejected in . Although it is not necessary to repeat here what is already in the original paper, I shall underline several issues with new ideas. First of all, as is clear from the references quoted in , I do not contest the statement that the Ising model has been well-studied for over 80 years, mainly in great contributions of many distinguished scientists, including the authors of . However, present knowledge cannot serve as a standard for judging the conjectured solution, because the 3D case is not yet fully understood. There are two ‘dark clouds’: (1) The divergence of the so-called ‘exact’ low-temperature expansions and the existence of an unphysical singularity. (2) The possibility of the occurrence of a phase transition at infinite temperature ( T = , = 1/( k B T ) = 0) according to the Yang-Lee theorems . It is regrettable that the objections of the authors of are limited to the outcome of the calculations and that they did not comment on the topology-based approach underlying the derivation. The putative solution was deduced using (among other steps) two conjectures, which at the moment cannot be qualified as rigorous. Therefore, the validity of the solution hinges on the validity of the conjectures. The logic of Conjecture 1 is very simple: the topologic problem of the 3D Ising system, which is the origin of the difficulties, can be dealt with by introducing a boundary condition; (i.e. an additional rotation matrix V' 4 ) to smooth the crossings of numerous knots hidden in the boundary condition (Equation (15)) for the matrix V V 3 V 2 V 1 . (The equation number in the preceding sentence and those given later in this article refer to equations in ). There are two choices for smoothing a given crossing (x), and thus 2 N states of a diagram with N crossings . Mathematically, the state summation , producing the bracket polynomial, appears as a generalized partition function, defined on the knot diagram, and provides a connection between knot theory and physics . Here, K S is the product of vertex weights, ç – the number of loops in the state S. Therefore, the matrix V consists of two kinds of contributions: those reflecting the local arrangement of spins and others reflecting the non-local behavior of the knots. After smoothing, there will be no crossing in the new matrix V' V' 4 V' 3 V' 2 V' 1 , which precisely includes the topologic contribution to the partition function, which becomes diagonalizable. The intrinsic nonlocal behavior caused by the knots, requires by itself the additional rotation matrix as well as the extra dimension to handle the procedure in the much larger Hilbert space, since in 3D the operators of interest generate a much larger Lie algebra . This merely performs a transformation on the Hamiltonian and the wavevectors of the system. Because the wellrecognized ‘correct’ high- and low-temperature expansions never take into account the global topologic effect, they cannot be correct at finite temperatures in 3D. The only exception is that the high-temperature expansions in 3D can be correct at/near = 0, where the interaction does not exist (or is extremely weak) so that the global effect is negligible. I recognize that one of the key assumptions, Conjecture 2, concerning the weight factors w x , w y and w z , was not presented in a logical sequence in , mainly because the details were moved to the Appendices in view of length considerations. The weight factors were defined in the range and, considering symmetry, their roles can be interchanged without altering the eigenvalues (Equation (29)) or the partition function (Equation (49)) (see p.5372). It is possible to generalize the weight factors in the eigenvectors (Equation (33)) as complex numbers w x , w y , and w z with phases , and . However, only the real part of the phase factors appears in the eigenvalues (29), (30), (31), (49), etc. of the system, so that w x , w y and w z can be replaced by w x Re , w y Re and w z Re , respectively. They may be understood as the results of performing a transformation of the eigenvectors of the 3D Ising system to the ‘quaternion’ Hilbert space and, subsequently, projecting them back to 3D . Various geometrical phase factors, such as the Aharonov-Bohm phase or Berry phase, among others , have been discovered in the past decades, which are related to the global topologic behavior of quantum systems. The potential in quantum mechanics was viewed as a connection that relates to phases at different locations , which should also be true for the 3D Ising interactions. The present phase factor, which originates from the geometrical behavior of the 3D Ising system, is novel. This topologic phase is a function of the interactions and temperature, depending sensitively on whether the knots exist or not. Thus, the value of the weight factors changes at/near T = owing to the change of the geometrical (topologic) structure, while it crosses over from w x Re = 1, w y Re = 0 and w z Re = 0 (their role can interchange, as mentioned, to maintain the four-fold integral) for 3D to ê w x ê º 1, ê w y ê º 0 and ê w z ê º 0 (to reduce to the two-fold integral) for 2D. The latter results in a crossover of the critical exponents. The phase factor is akin to the one appearing in Feynman’s path-integral theory , where the transition amplitude between an initial and a final state is the sum over all paths, connecting two points, of the weight factor , with S the action of the system. Our action here is topologic, which arises from the overall geometry of the path , similar to other topologic phases. One of the criticisms repeatedly voiced in is based on the ‘fact’ that the convergence of the low- and high-temperature series was rigorously proved. It is argued that the expressions (Equations (49), (74) and (99)) cannot be the true solution because the weight factors result in a difference between expressions for the high-temperature limit (Equation (A.12)) and the result for more general temperature (Equation (A.13)), for which w x = 1, w y = 0 and w z = 0, was chosen. But attention has never been paid to the possibility of the existence of a phase transition at/near = 0 ( , page 5371). The Lee-Yang theorems , which are rigorous and very general, can be suitable for the 3D Ising model. It would not violate other rigorous results if the singular behavior at = 0 served as a necessary condition adding to the convergence of the series. Proving only the radius of convergence of the series is insufficient (especially in 3D). Lebowitz and Penrose proved a theorem for the high-temperature series and distinguished 0 and = 0. They stated clearly that, since = 0 lies on the boundary of the region E of ( , z) space, there is no general reason to expect a series expansion of p or n in powers of to converge (p.102 of ). A qualitative picture is given in Griffiths’ review , showing the shape of the region in the T–H plane (Figure 6) where all is analytic, but he started with the condition 0. The inequality (Equation (2B.8)) (or other similar ones) of , which is important for proving rigorous results, is valid only for 0. Actually, if we plotted Griffiths’ T–H plane as a –H plane, there should be a singularity at = 0. Therefore, distinguishing ‘at/near infinity’ and ‘finite temperature’ is reasonable. Sachdev claimed in Figures 4.3 and 11.2 of his book that the so-called ‘lattice high-T ’ phase at very high temperatures has non-universal critical behavior. Though the singularity in the 1D quantum model (mapping to the 2D Ising model) might not be strong enough to give any sort of transition, it is our understanding that the geometrical change in the 2D quantum model (mapping to the 3D Ising model) may introduce a transition at T = . Usually, mathematical theorems prove analytical behaviors in a very general form of functions based on some assumptions (for instance, the Peierls condition, 0 for Theorem 2.1. in Sinai ; sufficiently small or in Theorem 18.1.2, Corollary 18.1.4, Theorem 18.3.1, Proposition 18.4.2, Theorem 18.5.1, and assumptions P1, P2 and E c+5 in Theorems 20.3.1-2, 20.4.1-2 and small in (20.5.4) in Glimm and Jaffe ), which do not guarantee the analytic behavior of the low and high-temperature expansions in their well-known expansion basis, (for example, the divergence of the low-temperature series is contradictory to these theorems). From another angle, we could think that the analytic nature of the expansions for the conjectured solution is supported by these mathematical theorems . In addition, the conjectured solution reduces to Zandvliet et al.’s results of the anisotropic 3D Ising model where two of the three exchange energies are small compared to the third one , which agree with Fisher’s rigorous formulae in this limit . The necessity of introducing the extra dimension can be understood from another angle. The basic issues are that some key points are often overlooked in quantum statistical mechanics. To introduce the concept of thermal equilibrium (strictly speaking, an undefined (or multidefined) concept), our Ising model is made part of a system big enough for statistical concepts to be useful . In a quantum statistics system, besides the average in a quantum state (expectation value), one also averages with respect to the probability distribution of systems in an ensemble ; i.e. a whole collection (a large number N) of identical Ising models of m rows and n columns and l planes connected together by infinitely weak forces, which allow the Ising models to exchange energy but that do not contribute to the total energy of the system. Namely, a piece of substance is isolated from everything; any part of the substance must be in equilibrium with the rest, serving as a heat reservoir that well defines a temperature . But the temperature in statistical mechanics is actually the time in quantum field theory , since the Euclidean time interval can be consistently identified with . The partition function Z = Tr can be represented in the Schrödinger picture as , which is merely the transition amplitude with the identification t = - i . This indicates that the time t is hidden in the framework of the statistical mechanics for an equilibrium system. Therefore, one has a clue that the framework of the statistical mechanics for the 3D Ising systems should include the time, being in the (3+1) dimensional Euclidean spacetime. The same should be true for the 2D quantum model as is shown by the well-known mapping . In quantum mechanics, at any instance of time, the wave function of a truly isolated system can be expressed by a linear superposition of a complete orthonormal set of stationary wave functions n : , where c n is a complex number and is generally a function of time . In quantum statistical mechanics, the wave function depends on both the coordinates of the system under consideration and the coordinates of the external world (an additional dimension is indeed needed). n denotes a complete set of orthonormal stationary wave functions of the system, while cn is interpreted as a wave function of the external world (depending on its coordinates). Thus, the scalar product (c n , c m ) of the nth and the mth wave function of the external world is also a function of time. This means that the average value of a large number of measurements of an operator, instantaneously given its expectation value, depends indeed on the time, although in the laboratory we measure not its instantaneous value but a time average . However, with the postulates of equal a priori probability and random phase, the wave function of the system can be regarded as with the phases of the complex numbers bn being random, to take into account the effect of the external world in an average way. It was emphasized that for this reduction to be effectively valid, the system must interact with the external world. Otherwise, the postulate of random phase is false, because the randomness of the phases means no more and no less than the absence of interference of probability amplitude. However, such a circumstance cannot be true for all time though it may be true at an instant . The postulates of quantum statistical mechanics are regarded as working hypotheses whose justification lies in their agreement with experiments . Such a point of view is not entirely satisfactory and a rigorous derivation is lacking (see pp.184–188 of ). So, the immediate questions are how the system interacts with the external world (it may be somehow inconsistent with what we accepted for infinitely weak forces), and what the missing part is whilst employing the postulates. To answer these questions in detail is beyond the scope of this reply, but the discussions above show the necessity of the extra dimension, and also imply the existence of flaws in the Comment. In summary, admitting that there are some open questions related to the choice of the weight factors, which will need more research, we have argued that the correct reproduction of the high-temperature expansion cannot be a coincidence and the failure in reproducing term by term the low-temperature expansion does not disqualify the new approach to deal with knots by means of an extension into a fourth dimension. Acknowledgement The author appreciates the support of the National Natural Science Foundation of China (under grant numbers 50831006, 10674139 and 50331030). References F.Y. Wu, B.M. McCoy, M.E. Fisher et al., Phil. Mag. 88 (2008) p.3093. Z.D. Zhang, Phil. Mag. 87 (2007) p.5309. C.N. Yang and T.D. Lee, Phys. Rev. 87 (1952) p.404; T.D. Lee and C.N. Yang, Phys. Rev. 87 (1952) p.410. L.H. Kauffman, Rep. Prog. Phys. 68 (2005) p.2829. G.F. Newell and E.W. Montroll, Rev. Mod. Phys. 25 (1953) p.353. Y. Aharonov and D. Bohm, Phys. Rev. 115, (1959) p.485; M.V. Berry, Proc. R, Soc. A 392 (1984) p.45; T.W. Barrett, Topological Foundations of Electromagnetism, World Scientific, Singapore, 2008. A. Das, Field Theory: A Path Integral Approach, World Scientific, Singapore, 1993. Ya.G. Sinai, Theory of Phase Transitions: Rigorous Results, Pergamon Press, Oxford, 1982; Chapter II; J. Glimm and A. Jaffe, Quantum Physics, 2nd ed., Springer, New York, 1987; Chapter 18, 20; R.B. Israel, Commun. Math. Phys. 50 (1976) p.245; M. Zahradnik, J. Stat. Phys. 47 (1987) p.725. J.L. Lebowitz and O. Penrose, Commun. Math. Phys. 11 (1968) p.99. R.B. Griffiths, Rigorous results and theorems, in Phase Transitions and Critical Phenomena, Vol. 1, C. Domb and M.S. Green eds., Academic Press, New York, 1972, p.7. S. Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge, UK, 1999. H.J.W. Zandvliet, A. Saed and C. Hoede, Phase Transitions 80 (2007) p.981. C.-Y. Weng, R.B. Griffiths and M.E. Fisher, Phys. Rev. 162 (1967) p.475; M.E. Fisher, Phys. Rev. 162 (1967) p.480. B.M. McCoy and T.T. Wu, The Two-Dimensional Ising Model, Harvard University Press, Cambridge, MA, 1973. K. Huang, Statistical Mechanics, Wiley, New York, 1963.
个人分类: 随心所欲|2094 次阅读|16 个评论
请科学网编辑部公开注册用户airenao的身份
zmwang 2009-3-27 10:58
现在游客在科学网评论的时候IP会显示出来。但还有一批注册用户完全不提供实名特征,在科学网上很热闹地起哄。在3D伊辛猜想的争辩中有非常活跃的科学网注册用户airenao,取其拼音意思应该是“爱热闹”,他/她在科学网提供的信息如下: 用户名:airenao 发表主题:0 姓 名: 发表回贴:0 电子邮件: 收录精华: 注册日期:2008-12-30 17:28:11 被删主题:0 收录精华:0 用户积分:0 最高学历/职称: 个人主页:暂未开通博客! 也就是说,airenao没有提供任何实名信息却成了科学网注册用户,享受发评论不显示IP地址的优待。请科学网对此作出解释,以促进公开公正的争议讨论。成为科学网注册用户的标准是什么?是不是任何人不用提供任何实名信息就可以注册发言?特别是在发现“爱热闹”这样的注册ID的时候,编辑部是否应该更加谨慎处理?如果科学网编辑部有这样的ID的实名信息,在这样的情形下,是否应该公开? 答yunping: 我非常同意你的观点,游戏规则应该是事前定。这和我在曹操烧信博文里表达是一个意思。但是,由于匿名注册用户的存在,科学网编辑部最近游戏规则的改变就没有意义了。游客如果不想显示IP,博主如果不想LOGIN评论,就可以注册一个彻底匿名的ID,譬如kanrenao,就可以不受科学网新规则的限制发言了。所以科学网编辑部应该出面解释或补修规则(我在博文里提到了),也可以杀一儆百震慑他人再利用规则的漏洞(我在博文题目里的意思)。科学网编辑部的后台程序是会对所有用户行为有记录的。保留公开个别用户信息的权利也是自我保护的必然手 段。 科学网编辑部一直也是如此说的,不是事后改变规则。 答monsoon1001: 感谢你对我期刊编辑思想的赞同。最近的PPR试验也是我期刊编辑探索的一部分。PPR后同行评议和学术评估直接相关,必然会涉及论文的作者,也就是文责自负。这也是针对“垃圾论文”越来越多的科技出版现象而采取的有效手段。
个人分类: 随心所欲|2783 次阅读|12 个评论
Wu和Fisher公开电邮里Comment和rejoinder附件
zmwang 2009-3-27 10:34
伍法岳先生在发给我的公开电邮里是有PDF附件的,comment和rejoinder。我尝试了几次,也没能上传到博客上来。今天,伍先生又把附件排出我可以复制剪贴的方式发给我,现在我再发到博客上来,供真正对3D猜想在学术上感兴趣的参考。 Philosophical Magazine Vol. 88, No. 26, 11 September 2008, 3093–3095 Comment on a recent conjectured solution of the three-dimensional Ising model F.Y. Wu a , B.M. McCoy b , M.E. Fisher c * and L. Chayes d a Department of Physics, Northeastern University, Boston, USA; b C.N. Yang Institute for Theoretical Physics, State University of New York, New York, USA; c Institute for Physical Science and Technology, University of Maryland, MD, USA; d Department of Mathematics University of California, Los Angeles, USA ( Received 9 July 2008; final version received 3 October 2008 ) In a recent paper published in Philosophical Magazine , the author advances a conjectured solution for various properties of the three-dimensional Ising model. Here, we disprove the conjecture and point out the flaws in the arguments leading to the conjectured expressions. Keywords : 3D Ising model; exact solution; conjectured results The Ising model is a well-known and well-studied model of magnetism. Owing to its apparent simplicity, the model has attracted the concerted attention of physicists for over 80 years. Ising solved the model in one dimension in 1925. In 1944, Onsager obtained the exact free energy of the two-dimensional (2D) model in zero field and, in 1952, Yang presented a computation of the spontaneous magnetization. But, the three-dimensional (3D) model has withstood challenges and remains, to this date, an outstanding unsolved problem. In a recent 111-page paper published in Philosophical Magazine, Zhang advanced conjectured expressions for the free energy and spontaneous magnetization of the 3D model. Here, we show that the conjectures are false. Zhang considered the nearest-neighbor 3D Ising model on the simple cubic lattice: see his Equations (1) and (2) and associated text where the notations are established with, specifically, three coupling constants K =J/ k B T , K ’ , and K ’’ : Arguments leading to the conjectured solutions are roughly as follows y : The author presents an expression, Equation (49), in the form of a four-fold integral (which reduces to equation (74) in the isotropic case) as the exact free energy. But this expression contains yet-to-be-determined, unknown weight functions w x , w y , w z : The argument next jumps to Appendix A, where the author sets w x = 1 and expands w y = w z in the form of a square root of a series: see Equation (A2). Also in the Appendix, the author demonstrates that the expansion coefficients of the first 11 terms of the series ______________________________________________________________ *Corresponding author. Email: xpectnil@umd.edu y Key assumptions made in are not presented in a logical sequence but are often hidden in inconspicuous places, making it difficult for a reader to see what is really going on. 3094 F.Y. Wu et al. can be fitted, as shown in (A2), to ensure that Equation (74) reproduces the known 11 terms of the exact high-temperature expansion of the free energy obtained by Guttmann and Enting ; see also line 1, p.5326. Almost as if in ‘fine print’, the author then sets w y = w z = 0 (see line 7 on p.5326 just before Equation (50)) and uses the resulting form of (49) as the conjectured solution of the free energy throughout the ensuing analysis where conclusions on the critical point, etc. are drawn. The reason given for taking w y = w z = 0 is what the author calls ‘‘ Ansatz 1 ’’ in Appendix A (p.5399). Under this ansatz, the author argues (lines 7–9, p.5400), the series inside the square root would become negative making w y and w z imaginary. Since imaginary quantities are ‘‘ physically not meaningful ’’, w y and w z ‘are always equal to zero’ (p.5400). It must be emphasized that this argument for choosing the weights w y = w z = 0 is deeply flawed. Indeed, in light of the fitting of the series in Equation (A2) to reproduce the known high-temperature expansions, one knows that the choice w y = w z = 0 will not reproduce the exact high-temperature expansions. Hence, the resulting expressions (49) and (74) cannot be the true solution of the free energy. By the same token, the ‘‘ putatively determined ’’ critical point relations (see the Abstract, etc.) carry no credence. For the spontaneous magnetization, the author presents the expression (99) (reducing to Equation (102) in the isotropic case) as the exact solution. But this expression is again obtained by using the flawed choice of w y = w z = 0 (see four lines below Equation (86), p. 5339). This mistaken procedure leads to a critical exponent beta = 3 / 8 for the magnetization of the 3D model. But it also gives the same exponent 3/8 for the 2D model – since Equation (99) reduces to 2D by setting K ’’ = 0 or x 4 = 1 : This is clearly wrong, since we know from the exact solution of Yang that the 2D exponent is 1/8. Moreover, the expansion of the expression (102), namely, 1 – 6 x^8 - 12 x^{10} - 18 x^{12} - .. (see Equation (103)), fails to agree with the exact low-temperature expansion of the spontaneous magnetization of the simple cubic lattice , which is 1 – 2 x^6 - 12 x^{10} + 14 x^{12} - … : A cardinal, golden rule for verifying the validity of any proposed exact solution is that it must yield, term by term, the correct high and low temperature expansions. Indeed, in many cases, including, in particular, the case of the three-dimensional Ising ferromagnet, this is the subject of a mathematical theorem (see Sinai ). Since the author clearly realizes that his conjectured expressions fail in this test, he has assembled a variety of reasons to justify the failure. He states that the test works in d = 2 dimensions because ‘‘ in the 2D case, we are extremely lucky because both the high- and low-temperature expansions are exact and convergent ’’ (section 8.2.3, p.5382, 13th line in second paragraph). To explain the failure of the conjectured free energy, for example, the author argues that the known exact high-temperature expansion holds only ‘‘ at/near ’’ infinite temperature (see line 1, p.5331 and four lines below Equation (A13), p.5406) and thus for finite temperatures one must use the weights w y = w z = 0. This argument of arbitrarily dividing ‘‘ at/near infinite ’’ and ‘‘ finite temperatures ’’ is flawed. Indeed, the suggestion contradicts general rigorous results establishing the finite radii of convergence of the high- T and low- T expansions and their exact representation of the thermodynamic limit for all d = 2 . To explain the incorrect prediction of beta = 3 / 8 for the 2D spontaneous magnetization, the author argues in section 4.2 that there exists a certain region in the interaction parameter space where the exponent beta crosses over from the 3D value 3/8 to the 2D value 1/8. This suggestion is contrary to well-established understanding of critical phenomena and crossover behavior and is, thus, implausible. To patch up the disagreement of (102) with the exact low-temperature expansion, the author states as his opinion ‘‘ that the requirement, Philosophical Magazine 3095 where the exact expression must be equal, term by term, to the so-called exact low-temperature expansion has, for a long time, reflected a pious hope ’’ (see the first paragraph of section 8.2.2, p.5377). This opinion, as noted above, contradicts a host of long established rigorous results for Ising and more general models . In summary, Zhang’s suggestion that the free energy be expressed as a four-fold integral has not produced a solution to the 3D Ising model. Specifically, the conjectured expressions (74) and (102), in which the crucial temperature-dependent weights w y and w z have been set to zero, cannot be exact solutions. Furthermore, the arguments advanced for this step are unsupported and, hence, carry no conviction. In conclusion, the various conjectured relations for the value of T c , for critical exponents, etc., including others not discussed in this note (such as the true range of correlation in section 5.4) are false. Acknowledgement We are grateful to Professor Michael Aizenman for advice in connection with the reference listed below under . References E. Ising, Z. Phys. 31 (1925) p.253. L. Onsager, Phys. Rev. 65 (1944) p.117. C.N. Yang, Phys. Rev. 85 (1952) p.808. Z.-D. Zhang, Phil. Mag. 87 (2007) p.5309. A.J. Guttmann and I.G. Enting, J. Phys. A 26 (1993) p.807. See, for example, J.W. Essam and M.E. Fisher, J. Chem. Phys. 38 (1963) p.802, Appendix A. Ya. G. Sinai, Theory of Phase Transitions : Rigorous Results , Pergamon Press, Oxford, 1982, Chapter II; J. Glimm and A. Jaffe, Quantum Physics , 2nd ed. Springer, New York, 1987, Chapters 18, 20, et seq .; R.B. Israel, Commun. Math. Phys. 50 (1976) p.245; M. Zahradnik, J. Stat. Phys. 47 (1987) p.725. Philosophical Magazine Vol. 88, No. 26, 11 September 2008, 3103 Rejoinder to the Response to ‘Comment on a recent conjectured solution of the three-dimensional Ising model’ F.Y. Wu a , B.M. McCoy b , M.E. Fisher c * and L. Chayes d a Department of Physics, Northeastern University, Boston, USA; b C.N. Yang Institute for Theoretical Physics, State University of New York, New York, USA; c Institute for Physical Science and Technology, University of Maryland, MD, USA; d Department of Mathematics, University of California, Los Angeles, USA ( Received 30 September 2008; final version received 3 October 2008 ) We add here a few sentences concerning the author’s Response to our Comment criticizing his original claims regarding his conjectured solution of the three-dimensional Ising model . First, we stand by our summary in , where the main purpose was to refute claims made in on the basis of a putative 4-dimensional integral representation. In summarizing his rebuttal, Professor Zhang now admits that ‘‘more research’’ is needed. He goes on, however, to assert that ‘‘the correct reproduction of the high-temperature expansion cannot be a coincidence.’’ We consider this remark to be quite misleading: indeed, we point out in that the reproduction of the high- T series in is merely a fit of 11 unknown expansion coefficients (for the weights w y and w z ) to ensure agreement with the 11 exactly known high- T terms. Notably, no further high- T series coefficients are proposed in ; however, since this fit turns out to play no further role, it remains true that the conjectured solution does not reproduce the exact high- T expansion. We do not find the majority of the issues addressed in the Response to be relevant to our disproof of , which also stressed the failure of the conjectured solution to generate the correct low- T expansions. In our view, a refusal to accept the conclusions of the rigorous work (cited in ) for the applicability of the long-known expansions – at high enough and low enough T – to the exact solution for the thermodynamic limit, constitutes a denial of the mathematical basis of statistical mechanics. References Z.-D. Zhang, Phil. Mag. 88 (2008) p.3097. F.Y. Wu, B.M. McCoy, M.E. Fisher et al., Phil. Mag. 88 (2008) p.3093. Z.-D. Zhang, Phil. Mag. 87 (2007) p.5309. _____________________________ *Corresponding author. Email: xpectnil@umd.edu
个人分类: 随心所欲|1465 次阅读|5 个评论
我对三维伊辛猜想的立场态度
zmwang 2009-3-26 12:53
由于对张志东的三维伊辛猜想的后同行评议PPR实验,我几乎成了科学网的公敌。而我也自己说过不想再涉及猜想这个话题。请注意,最近我有关的三篇博文,都是伍法岳先生通过我的博客和科学网在交流。 鬼王李亚辉一再劝说我向大家解释一下,表明我的立场态度。我从来都是从善如流的:-)。 第一,我以自封的编辑身份组织PPR实验,完全是个人行为,与任何组织机构无关。 第二,我的PPR实验结论是,张志东的三维伊辛猜想不被同行认可,fail to pass the peer-review。此结论合理与否,请参考我的博客,张志东的博客,和《科学新闻》报道。任何人如果对此有异议,欢迎和我交流。这个结论没有任何官方色彩,至多算是我吃饱了撑的。 第三,我没有资格也从来没有去判断张志东的三维伊辛猜想的对错。那是他们同行内部的事情。 此次PPR后同行评议一开始就和《科技导报》的年度十大科学进展联系到了一起。这和PPR对学术评估合理化的深层含义是一致的。一个没有被同行认可的研究,至少在现阶段和这样的荣誉是不符的。 有人建议我应该因PPR实验而向张志东道歉。 让我们首先来分析一下张志东因这PPR实验的得失。张志东失去的是2008年度十大科学进展之一这个荣誉。若果张志东认为我应该为此向他道歉,请表明态度,我立马道歉。张志东还失去了什么呢?张志东更加清楚的认识到同行对他的猜想到底是个什么态度,到底应该算是失还是得呢?如果同行能够最终说服张志东,张就不用花费自己后半辈子去研究根本就是错的东西,这应该算是得吧?如果同行不能说服张志东,张也应该会在以后的研究里更加谨慎,而更有可能找到正确的道路,这也应该算是得吧? 老实说,我实在不知道PPR实验让张志东真正失去了什么,从而也找不到一个道歉的理由。 我个人非常希望有人能组织对我的学术论文或博客文章进行PPR后同行评议。其实我关于如何办期刊的博文比张志东的更反传统,也可能引起更大的争议。科学网上已经有编辑对我的博文进行PPR分析了。我个人非常欢迎,也希望有更多这样的PPR分析。 PPR是对成果和观点同行求真的有效手段。 我对PPR有可能导致的乱局是有所预料的,这和我关于科学网三个层面的分析中第一和第二层面的存在是一致。但是,对猜想PPR而引起的乱局的规模仍然是出乎我的预料。我反对此次PPR没有学术之说。请科技编辑作者审稿人想一想,自己经手的论文有多少曾经受到过如此认真的同行评审?连同行评审的科普版都有了:-)。在科学网这样一个开放系统下进行PPR学术讨论,必然是乱中求真,先入世再出世。对猜想的PPR入世是做到了,能不能出世现在还很难说。我也看到此次PPR实验引来了很多博主公正客观的理性探讨,譬如王鸿飞,周可真,李宁,刘立等等。我想这对以后的PPR规范化都有好处。
个人分类: 随心所欲|1750 次阅读|18 个评论
Wu和Fisher关于3D伊辛模型的最新公开电邮
zmwang 2009-3-26 10:40
Dear Professor Wang: I thought it would add value to your blog on the 3D Ising fiasco, if you could post a recent email by Professor Michael Fisher and myself. In January 2008, Dr. Z.D. Zhang emailed 100 or so prominent physicists around the world announcing the publication of his article on the 3D Ising model in the journal Philosophical Magazine (PM), and attached an electronic copy of the reprint with that email. Since some among the recipients may not be aware of the subsequent PM publications of the Comments and Rejoinders by myself, Fisher, and others, Professor Fisher and I have very recently, on March 12, 2009, sent an email to those who received Dr. Zhang's email, to call their attention to the subsequent publications and our view on the value of the Zhang article. I am attaching the email by Professor Fisher and myself below - I was able to get hold of Dr. Zhang's recipient list since I was on the receiving end of his email. Please feel free to post the 3 attachments also, if they have not appeared previously on any of the relevant blogs. With regards, F. Y. Wu _______________________________________ Dear Colleague: You may recall in January last year you received an email from Z.D. Zhang attaching a 111-page paper he published in the Philosophical Magazine (PM), presenting his "conjectured exact solution " of the 3D Ising model. It is sad and unfortunate that PM chose to publish the Zhang paper. In our opinion, the paper is without any merit or value;and, as far as we can tell, the manuscript had previously received serious, strongly negative reviews explaining its deficiencies from a number of journals. After long consideration and at the invitation of PM, wesubmitted a Comment on Zhang's paper. The Comment was written in collaboration with Barry McCoy and Lincoln Chayes.Our Comment was followed by a brief Rejoinder in response to Zhang’s quite lenghthy Reply. We are attaching both our Comment and Rejoinder for your infomation. Also attached is a PM Erratum correcting some editorial errors. Zhang’s Reply to our Comment appeared on pp. 3097-3101 of the same PM issueand can also befound atarXiv 0812.2330, if you are interested. We have since learned that Jacques Perk also commented on Zhang’s paper. His Comment and subsequent Rejoinderare to appearin PM Vol. 89, 761-764,769-770 (2009) (also at arXiv:0811.1802; arXiv:0901.2935 and its updates). We sincerely hope that with these publications the saga of the Zhang conjecture can be put to rest. With regards, Fred Y. Wu and Michael E. Fisher
个人分类: 学术交流|2160 次阅读|2 个评论
本人在开展猜想工作时没有拿到国家一分钱是事实
张志东 2009-3-13 15:13
有 Potsdam 和 新abc 在几处留言, 对本人开展猜想工作的经费资助提出质疑。本人特此声明如下: 本人在开展猜想工作时没有拿到国家一分钱是事实 , 但这不影响本人在猜想原文中致谢使我能活命的基金资助(所有的项目均按时圆满完成,与猜想无关) 。 本人主要是从感恩的心态出发 . 在猜想原文中致谢基金如下 : The author acknowledges the continuous support of the National Natural Science Foundation of China since 1990 (under grant numbers 59001452, 59371015,19474052, 59421001, 59725103, 59871054, 59831010, 50171070, 10274087,10674139, 50331030, and 50332020) and the support of the Sciences and Technology Commission of Shenyang since 1994. 另外, 在最近的答伍法岳等人和Perk教授的答复意见文章中我感谢中国国家自然科学基金委员会的资助(项目号: 50831006, 10674139 和 50331030 )。猜想是在 2007 年底发表的 , 可以看出仅 50831006 是 2008 年申请成功 , 项目的 题目和研究内容与猜想也无关 . 在这里致谢的目的仍然是感恩 ! 当然 , 由于猜想的严格证明是个长期的工作 , 我希望以后猜想的工作能够得到国家的支持 !
个人分类: 追梦|6687 次阅读|14 个评论
致张志东、王志明先生的公开信
王铮 2009-3-13 09:09
张志东、王志明二位学者: 你们两位都是很正直的人,而且执着。《猜想》之争,已经超出了科学问题,涉及到一些职业道德。道德问题最好是自悟,不然追下去就有仇恨了。因此二位最好冷一冷,自己先反省一下,相信你们不是为了扬名立万来科学网而是因为科学热情来的,有自悟的可能性。至于张先生说的科学网编辑失误,可能是小青年还不了解职业操守(科学时报社已经两次让实习生桶漏洞了,看来要加强职业教育了)。说清楚了就是。其实仅仅是科学问题,在这里是争论不清楚的。 《科技导报》从职业操守角度对自己做了反省,值得我们学习。 敬礼 王铮
个人分类: 生活点滴|8422 次阅读|3 个评论
赞成结束这场猜想之间的争论
shiyu 2009-2-26 18:18
最近在科学网博客上,王志明先生和张志东先生的两个猜想系列之间的争论,可谓是沸沸扬扬,在原本就不平静的湖面上吹出了一场轩然大波。我个人很佩服王志明先生追求真理的精神,因为从他的博文中看出他发起这场争辩的初衷是为了在科学上能去伪存真。不过一直没有弄清他的去伪存真具体所指为何物?他是怀疑张志东先生所提出猜想的科学性?还是承认有关猜想的工作是科学的,只是对其正确与否心存疑虑?如果是第一层意思,请直接跳至最后两 段;若为 第二层,请继续往下看。 科学中正确的部分,通常称之为真理。因为背景不同,王志明和张志东两位先生对真理的评价标准显然存在非常大的差异。也许是从事编辑这个职业的缘故,只要有投稿经历的人都知道,审稿人的意见是决定你的稿件能否被编辑接收的唯一因素, 王先生 更习惯于把科学界权威的意见用作自己评判真理的标准。这本是无可厚非之事,因为你的事情你做主。 而张先生,作为一个科研人员,而且是思想很有见地,具备批判精神不迷信权威的那一类,对科研有 自己的坚持,并不会因为某个或者某一些权威的反对,就轻易放弃自己的观点。除非有确凿的证据,不论是数学推导还是实验证明, 才能让他缴械投诚。正是因为对真理评价标准的不同理解,王志明先生和张志东先生对何为真理的看法相左本是很寻常之事。 若两 人都老老实实的待在自己的院子里,倒也相安无事。无奈,有一天,志明先生耐不住寂寞,红杏出墙了一把,结果弄得狼烟四起。。。我认为在志 东先生的工作没有完全严格证明之前,而志明先生也不能提供类似证明的情况下,这场争论必然是无解的,所以早点结束也未尝不是件美事。 科学不总是对的,真理只是科学的子集。科学中那些后来被证明是错误的部分,依然属于科学范畴。正如戴维林德伯格在《西方科 学的起源》一书中所言:我们需要对科学下一个相当宽泛的定义,这个科学的定义将允许我们对范围广泛的实践及其基于的信念进 行研究,并帮助我们更好地理解现代科学事业。我们所需要的科学概念应是宽泛的,具有包容性的,而不是狭义的,具有排斥性的。 。。只要是人类在对未知的自然规律积极探索这一方向上所做的努力,都应该是科学的。 不管将来,志东先生对三维Ising 精确解的猜测被证明是对或错,他在此方面所做的工作,为以后的科学家彻底解决这个问题是奠定了基础的。鉴于此,他的工作是科学 的。如果王志明先生想在张志东先生的此项工作中找出非科学的成分,那么,他必将会徒劳无获,所以趁早鸣金收兵,不失为明智之举 。他日,若志明先生寻得一绝世秘籍,或受世外高人指点,且勤学苦练,从而功力精进,自信能找出志东先生的破绽,届时,再觅山头鏖战,也不迟哈。
个人分类: 观点评述|2990 次阅读|1 个评论
好样的!张志东,你用实际行动证明了俺的理论
大毛忽洞 2008-5-7 12:36
好样的! 张志东 ,你用实际行动证明了俺的理论 《 资本论》,马克思著,学术分母=1,马克思 1=马克思; 《聊斋志异》,蒲松龄著,学术分母= 1,蒲松龄 1=蒲松龄; 《昆虫记》,法布尔著,学术分母= 1,法布尔 1=法布尔; 由此可见,大师就是一个完整的人! Conjectures on exact solution of three - dimensional (3D) simple orthorhombic Ising lattices , 张志东著, 学术分母= 1, 张志东 1= 张志东。 我国科学家提出三维伊辛模型精确解猜想 请看俺的拙文: 大师,分母= 1;权威,分母=N http://www.sciencenet.cn/blog/user_content.aspx?id=23044 大师,分母= 1;权威,分母=N 我们对着报纸喊,大师啊,你在哪里? 我们对着电视喊,大师啊,你在哪里? 我们对着网络喊,大师啊,你在哪里? 一时半会是找不到大师的。 为什么? 因为含苞待放的大师都被学术分母切割为学术权威了。 学术权威随处可见,要多少有多少! 什么是学术分母呢? 什么是学术权威呢? 请看众所周知的例子: 如果有一篇举世闻名文章:《 12生肖导论》 署名作者: 子鼠,丑牛,寅虎,卯兔,辰龙,巳蛇,午马,未羊,申猴,酉鸡,戌狗,亥猪 从左到右: 第 1作者,鼠;第2作者,牛;第3作者,虎;第4作者,兔; 第 5作者,龙;第6作者,蛇;第7作者,马;第8作者,羊; 第 9作者,猴;第10作者,鸡;第11作者,狗;第12作者,猪。 从右到左: 第 1通讯作者,猪;第2通讯作者,狗;第3通讯作者,鸡; 第 4通讯作者,猴;第5通讯作者,羊;第6通讯作者,马; 第 7通讯作者,蛇;第8通讯作者,龙;第9通讯作者,兔; 第 10通讯作者,虎;第11通讯作者,牛;第12通讯作者,鼠。 第 1作者老鼠最倒霉,如果文章出了问题(被控剽窃),一般要开除老鼠。如果文章很值钱,一般归功于第1通讯作者,猪。 这篇文章的学术分母 N=12,对于第1通讯作者来说: 猪 12 = 十二分之一的猪 充其量是一个东坡肘子,和苏东坡相差 12倍,去哪找大师啊!
个人分类: 思想和方法|4866 次阅读|5 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-25 15:40

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部