科学网

 找回密码
  注册

tag 标签: 器官芯片

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

前沿科技:器官芯片
sciencepress 2019-11-28 14:48
​什么是微流控器官芯片? 微流控器官芯片简称为器官芯片。器官芯片是一种多通道,包含有可连续灌流腔室的三维细胞培养装置。器官芯片由两大部分组成,一是本体,由相应的细胞按实体器官中的比例和顺序搭建;二是微环境,包括器官芯片周边的其它细胞,分泌物和物理力。器官芯片是人工器官的一种类型。 器官芯片是芯片实验室技术的发展和细胞生物学紧密结合的结果,这种结合使人们有可能在特定器官的背景下研究人类生理学过程,并因此引入了一种新的体外多细胞人类有机体模型。 微流控器官芯片的研究背景 器官芯片的原始推动起于制药产业。一个原创新药一般要耗费十几亿美元,耗时十几年,效率极低,一个重要的原因就是动物实验存在的种属差异。动物试验是现今新药开发的一个必需环节,但其存在成本过高,周期偏长,伦理等诸多问题。特别在许多情况下,当候选药物进入临床试验时,往往发现在动物试验中看似很有希望的对像并不总是能对人类产生相同的结果,甚至显示了严重的毒副作用,并因此造成前期研究的大量心血和巨额资金毁于一旦,付之东流。 人们或许会说,开展动物试验是类似于美国或中国的食品和药品管理局(FDA或CFDA)这样的监管机构对制药企业的要求,是的,但这只是因为现阶段这些监管机构拿不出更好的办法。 因此,制药业需要更多的预测工具,以使候选药物在更早阶段、更少消耗时失败。而微流控器官芯片就被认为是替代,至少是部分替代,动物试验一种极有可能的选择。 微流控器官芯片的发展历史 早在2000年代前期,康奈尔大学的Mike Shuler等首次提出用人体不同器官的细胞在芯片上构建人体组织,模拟人体环境的设想。2010年,哈佛大学Donald Ingber等构建芯片肺的工作在Science上发表,产生了显著的影响,具有代表性。在这些工作基础上,2011年9月16日,时任美国总统奥巴马亲自宣布启动由NIH,FDA和国防部牵头,第一期总额为1.4亿美金的基于芯片器官的“微生理系统”(microphysiological system,MPS system),“以确保美国未来20年在新药发现领域的全球领先地位”,并认为,“仿生微流控芯片”能够以令人难以想象的幅度降低新药发现的成本和周期,给新药开发带来一次革命。项目自2012年正式启动,经费在此后的执行过程中被不断追加,一批核心高校参与了项目的主要工作,其中包括哈佛大学的肺芯片,威斯康星大学的脑芯片,加州大学伯克利分校的心芯片,霍普金斯大学的肠芯片,匹兹堡大学的肝芯片,华盛顿大学的肾芯片,杜克大学的血管芯片和哥伦比亚大学的皮肤芯片等。 2007-2009年期间,中国科学院大连化学物理研究所的微流控芯片团队完成一系列的细胞培养,多种细胞的共培养和三维细胞共培养工作,课题组关于细胞水平高通量和高内涵药物筛选的研究,细胞水平药物代谢研究,以及模式生物水平高通量药物筛选研究的工作,在一年多时间内连续三次被Lab on Chip杂志作为封面文章刊登,引起国际微流控芯片和药物筛选领域的广泛关注。2009-2010年,他们又先后完成兔软骨组织培养,以及带有肝微粒体的药物代谢等工作;2010年10月北京香山会议上,林炳承提出并正式启动微流控芯片仿生组织-器官的研究;2011年,大连理工大学罗勇微流控芯片药学研究团队成立,开始器官芯片研究;2012年,大连医科大学刘婷姣团队开始微流控肿瘤芯片研究;2013年,科技部新药重大专项课题“基于微流控芯片的新药研究开发关键技术”启动,大连团队的器官芯片研究正式纳入国家重大计划。在差不多同一个时期,中科院纳米中心蒋兴宇团队也开始在血管芯片等方面开展了很好的工作。 微流控器官芯片的工作原理 这儿,以肺芯片为例加以说明,见下图。 典型的肺芯片设计 制作一块芯片,在芯片的槽道中设置三个并列的流体通道,两边的通道通真空,中间的用于植入细胞。在中间通道的正中间加一层有通透性的生物膜,膜上布满小孔。用细胞外基质的分子包裹薄膜,在这张薄膜的上面铺满一层肺细胞,细胞从肺的气囊,肺泡中提取,薄膜的另一面铺满人肺毛细血管细胞。让空气在薄膜上面流通,培养基则在下面流动。由此可以产生组织,因为组织是由连生细胞及与之结合的细胞间物质集合而成一种构造。两个或两个以上的组织聚集在一起,会形成不同的组织-组织界面,有可能产生功能。多种不同组织联合构成具有功能的结构,可以被认为是器官。为了产生功能,设计了一个中空的侧室,用循环吸力使两侧真空通道收缩,同时带动中间的通道一起伸展和放松,并让伸展和放松的程度和频率与人细胞在肺中呼吸时所做的类似,由此实现了培养皿等不可能实现的呼吸运动功能,这就模拟了人体肺泡在呼吸过程中收缩的生理过程。在此基础上,还可模拟肺部感染的时候白细胞抵御细菌入侵的过程。在铺有肺细胞的上层通道释放病原菌,然后在下层通道里加入人体白细胞。当白细胞感觉到病原菌侵入时,它们会从血液中进入肺部,吞噬病原菌。如果要使整个免疫过程可视化,也可以对白细胞和病原菌进行标记,于是就可以在显微镜下看到白细胞在“血管”中穿梭,进而穿过薄膜上的小孔,吞噬侵染肺细胞中被绿色标记的病原菌。 用类似的思想,可以开发出不同的器官芯片,用以深入了解药品、化学物质、食物甚至是化妆品对人体的影响。 微流控器官芯片中的微环境 前已提及,微环境指的是器官周边的细胞,周边的各种因子,比如小肽,和周边的物理力,在芯片器官基本确定之后,对微环境的精准操控是器官芯片构建成功与否的关键。 在上述肺芯片的案例中,有两点值得关注。一是细胞从肺的气囊,肺泡和肺毛细血管中提取,分置于薄膜两侧,配有空气和培养基流动,形成肺的核心结构;二是用循环吸力使整个结构产生呼吸运动,实现肺的关键功能。换句话说,毛细血管细胞、气囊细胞及其周边分子,以及膜所提供的柔韧、能够伸展和弯曲的特性,连同流动所产生的各种物理力等所有这些因素结合所产生的生理微环境,实际上可以创造一种组织-组织界面,对细胞功能的实现产生有力的影响,甚至有可能诱导这些细胞表现出非常类似于身体特定器官的功能。这样一种观点具有普适性。因为实际上其他芯片器官也会具备类似的特征,比如芯片肝,芯片肠等等。对肠而言,当然谈不上呼吸运动,但是相应的微环境能使我们得到蠕动这样一种关键特征,并能因此组织成手指状的交叉或突起的绒毛,增加肠道吸收的表面积,排出粘液,实现吸收功能。长期以来,人们没能充分理解张力,压力和剪切力等这些物理力在微环境中的重要性,但是事实是,正是这些物理力有力地促成了器官功能的显现。因此,在分子层面,细胞层面,或是组织和器官层面,不可能只考虑化学因素,而把各种物理因素排斥在外。 最近Cell杂志报道,日本京都大学人诱导性多能干细胞(hiPSC)研究与应用中心的Koji Eto及其团队发现,血流的剪切应力是血小板生成过程的一个关键的物理因素,而特别是当这种剪切应力形成湍流环境时,利用人诱导性多能干细胞可大规模产生多达1000亿个血小板。这也是理解微流控器官芯片中力学微环境影响的一个案例。 类器官微流控芯片 类器官(Organoid)是用干细胞制造出来的微型器官,或称迷你器官,它们是在体外产生的三维的微型和简化版的器官,具有器官的某些功能。类器官来源于组织、胚胎干细胞或诱导的多能干细胞中的一种或几种细胞,具有自我更新和分化能力,可以在三维培养中自我组织。自2010年代初以来,类器官的生长技术得到了迅速的改进,研究人员已经能利用人的胚胎干细胞和其他干细胞培育多种类器官,包括肝、肾、胰腺、食管、肺、胃、肠、大脑、膀胱等,其中以类肝脏最为成功。类器官已被认为是2013年最大的科学进步之一,也已被用于在实验室研究疾病发生和治疗。 把上述类器官置于微流控芯片上,使其受到可控的微量流体的作用,即可成为所说的类器官微流控芯片,Science杂志专门刊登一篇review论文,题目即为organoid-on-a-chip。类器官微流控芯片是器官芯片发展的最前沿之一。 微流控器官芯片的产业化 美国政府从2012年正式提出以器官芯片为基础的“微生理系统”计划,由DARPA和NIH等分别在5年的时间里提供了1.4亿美元和7600万美元的资金从国家层面来支持这项技术的发展。与此同时,自2012年以来,科技开发商已向投资者筹集了逾8000万美元用于同样的目的。中国政府也在2012年前后通过科学技术部做出了安排,并从2016年起,支持力度显著增加。 器官芯片的产业化尚在起步阶段,2016年器官芯片设备和服务产品的总销售额还不足1000万美元。现有的公司大都是从大学实验室分拆出来的,目前正在通过与工业界的合作升级他们的芯片器官模型。 2010年代的前期,零星的器官芯片公司开始出现。Oxford的CN Bio公司用装有12个微型肝脏的芯片做药物的毒性试验, 已经发现做同样的试验,器官芯片所需的成本要较动物试验大幅度下降。2015年前后,哈佛Wyss研究所组建了一家专门研究人体器官芯片的公司——Emulate Inc,并率先推出了器官芯片技术。Emulate拥有哈佛大学在全球范围内的独家授权,可为该技术及相关系统提供强大而广泛的知识产权组合。以器官芯片技术为基础,该公司提出一种由器官芯片、仪器和软件组成的人体仿真系统,可为人体内部的生理运作提供了高仿真窗口。这样一种系统可为研究人员提供预测人类对疾病、药物、化学物质和食物产生的反应,比细胞培养或动物测试方法具有更高的精确度和控制能力,也可为“重现真实人体生物环境”设立新的标准,用于推进相关产品的创新设计和安全保障。网上已有Emulate公司和美国FDA合作开展研究的报道。这家公司创立之初便获得DARPA的3700万美元的拨款,以及1200万美元的A轮融资。2018年7月,他们又获得3600万美元的C轮募资,由风险投资公司Founders Fund领投。 除了Emulate之外,也已有一些国家成立了一些小型公司开始类似的操作,包括中国在内,但目前看来,发展的套路和进程还是以Emulate为好。 一般认为,从2017年到2022年,市场可能以38-57%的复合年增长率增长,到2022年达到6000万至1.17亿美元。当然,这只是第一步。毫无疑问,器官芯片技术在中长期内可望成为一个数十亿美元的市场,因为它们每年都可能帮助制药和化妆品等行业节省大量的研发费用。伦理和道德问题也可能是这个新市场的核心,全世界每年都有几亿只动物被用于实验室实验,而这些实验很有可能被一些微流控技术所取代。业界和政府机构对一些获得大量资金支持的器官芯片技术开发商寄予了巨大的期望。政府的支持在不断增加,欧莱雅、辉瑞、罗氏和赛诺菲等公司已经与器官芯片开发商建立了合作关系,相信这项技术将改变现有和正在开发的产品的功效和毒理学测试前景,而随着大型制药和化妆品公司开始使用器官芯片,这些投资很可能会继续下去。 器官芯片技术仍面临许多技术挑战。首先,它必须证明能够成功地将多个器官连接起来,准确地模拟对药物的全身反应。有几家公司正在研发多器官模型,但整体来说,“人体芯片”还远没有成为现实。第二,为满足不同的需求,器官芯片公司要通过不同类型的器官、设备类型和流程管理实现产品的多样化。可以考虑一种基于药物研发不同阶段对关键标准进行技术细分,并由此开展系列产品的批量生产。根据市场需求的实际情况,大幅度提升产出水平。第三,要考虑设计的重要性,鉴于器官芯片对微流控技术的依赖性,微流控公司可和更多初创企业建立合作关系,甚至,可为器官芯片提出量身定做的方法,以显示它们在这方面的巨大潜力。最后,要及时考虑标准化及与现有设备的兼容性。 总而言之,产业化的最终目标是建立一个由器官芯片、仪器和软件组成的人体仿真系统,为人体内部的生理过程提供高仿真窗口和技术平台。这个技术平台可为研究人员提供预测人类对疾病、药物、化学物质和食物产生的反应,比培养皿细胞培养或动物测试方法具有更高的精确度和控制能力。波及到药物开发、农业、化妆品、食品和化学消费品等广泛领域应用对象的器官芯片领域,将为真正重现真实人体生物环境提供希望,设立标准。 《 器官芯片 》 作者: 林炳承,罗勇,刘婷姣,陆瑶 责任编辑:杨震,刘冉 北京: 科学出版社,2019.11 ISBN: 978-7-03-062093-4 这是一本关于器官芯片的专著。 全书共分14章,第1、2章分别介绍微流控芯片和微流控器官芯片,第3章为器官芯片的检测系统,从第4章到第13章,逐一介绍各种不同器官的芯片形式以及它们的组合,第14章则专门阐述以3D生物打印为基础构建的器官芯片。 全书以作者实验室二十年在微流控芯片领域,特别是近十年在微流控器官芯片领域的积累为主轴,结合同期国内外其他实验室的工作,对器官芯片这一极为重要的新兴领域作了力所能及的介绍,尤其是包含了作者们在先行的研究实践中所得到的种种感悟和体会,逻辑严密,行文流畅,可读感很强。 本期编辑丨小文 一起阅读科学! 科学出版社│微信ID:sciencepress-cspm 专业品质 学术价值 原创好读 科学品味 更多好素材,期待您的来稿 与科学相约 | 科学出版社征稿启事 点击文中 书名、作者、封面 可购买本书。
个人分类: 科学书摘|5276 次阅读|0 个评论
EFL课题组生物3D打印研究阶段性工作总结
heyongzju 2019-6-15 09:10
EFL课题组生物3D打印研究阶段性工作总结 生物 3D 打印( 3DBioprinting )又称“生物增材制造”,从广义上来分,生物 3D 打印大致可划分为四个层次:第一层次为制造无生物相容性要求的结构,比如目前有广泛应用的手术路径规划用产品的 3D 打印、手术导板等;第二层次为制造有生物相容性要求,不可降解的制品,比如钛合金关节、缺损修复的硅胶假体等;第三层次为制造有生物相容性要求,可降解的制品,比如活性陶瓷骨、可降解的血管支架等;第四层次就是狭义生物 3D 打印,即操纵活细胞构建仿生三维组织,比如打印药物筛选及机理研究用的细胞模型、肝单元、皮肤、血管等。 开发合适的生物墨水一直是生物 3D 打印中的一个核心问题,浙江大学贺永教授课题组多年从事生物 3D 打印研究,已成功实现 GelMA 基“生物墨水”的产业化,解决了生物墨水的批次差异性大、批量化稳定性差等问题,被国内外百余个课题组所应用。生物墨水作为典型的软物质材料,可打印性一直是研究的焦点所在,该课题组对可打印性进行了系统的研究,从墨水的调控、打印中的误差控制、研究精准成形工艺等角度对生物墨水的可打印性展开了系列研究,实现了水凝胶精确打印及单细胞分辨率的操控(图 1 ) 。 图 1 GelMA 水凝胶复杂结构打印 GelMA基生物墨水 活性组织内遍布的各类血管是器官保持活性的根本,只有有效的加工出相似的血管网络才有可能实现营养的有效输送,确保 3D 打印后形成一个真正的活性器官。 常见的方法是先制造类似血管的流道结构,然后包覆在凝胶结构中,或者是基于牺牲工艺的流道构建技术。但是这些方法需要的工艺过程复杂,无法实现支架结构和流道网络的同时打印,难以在内部构造有效的流道。贺永课题组提出了一种全新的基于中空凝胶纤维融合工艺的细胞打印方法,实现了支架结构和流道网络的同时成形(图 2 )。通过课题组自行研发的三维打印机,利用同轴喷头制造出中空凝胶纤维,通过三维打印平台控制中空凝胶纤维的沉积位置以及控制凝胶反应的交联时序,使中空凝胶纤维融合一起形成具有内置流道的三维结构。课题组通过大量的工艺实验,系统解决了凝胶融合工艺;证实了融合后的凝胶结构强度适合于器官打印要求;并通过后续的细胞培养验证了营养通道的有效性 。在本方法的基础上,课题组提出了一种血管 3D 打印工艺,该工艺能实现宏微跨尺度血管结构的打印,宏观流道可用于各种机械力的加载,微观通道可用于营养输送以及化学物质的加载。课题组通过大量的工艺实验,系统解决了跨尺度血管结构的成型问题,成功构建出了含成纤维、平滑肌及内皮细胞的三层血管结构 ,进一步的课题组建立了体外血管模型, CD31 、 Vinculin 及 Ve-Cadherin 抗体染色表明,已成功构建出了接近体内血管功能的血管芯片。随后通过炎症诱导因子的加载,模拟了动脉粥样硬化等病理条件下血管的炎症反应 。在相关工作的推动下,同轴生物 3D 打印方法已经发展成为一个新兴的研究方向。 图 2 同轴生物 3D 打印方法 类器官是药物评价、器官病变机制等研究的有效工具,课题组发 明了一种气流辅助异质螺旋微球类器官的成型工艺(图 3 ), 首次实现了 在微球内构造出复杂的活性结构 。该方法 精度可达到单细胞分辨率,为类器官的高效及精准构建提供新思路,相关工作刊登在 Small 杂志上并被选为封底论文 。 课题组受到旋绳效应的启发,实现了 GelMA 材料异质微纤维的制造,可打印多种组分,多种形态的纤维状迷你组织。在微纤维中包裹了内皮细胞,内皮细胞在很短的时间内即可迁移到纤维表面,形成螺旋等各种微血管结构 。此外,课题组提出了电场辅助的 GelMA 微球制造方法,解决了低浓度 GelMA 成形的难题。通过细胞包裹、药物控释、生物 3D 打印三个典型案例展示了 GelMA 微球在组织工程领域的潜在应用 。 图 3 气流辅助异质微球类器官的成型工艺 生物 3D 打印的组织结构除了在器官发育机制、病变机理、药物评价领域有众多应用外,课题组一直在思考如何将载细胞打印变成成标准的临床产品。从临床产品视角出发,我们认为打印的结构需要满足: 1 )包裹细胞的水凝胶材料生物性能优异,便于让包裹的细胞发育出功能; 2 )打印工艺简单稳定,可量化稳定制造; 3 )打印后的结构可长期储存,能像创可贴一样随取随用。由于水凝胶纤维结构简单,易于营养渗透及包裹细胞的功能化,我们认为水凝胶纤维是非常有潜力成为临床产品的结构。围绕这三个需求,课题组选用高生物活性的 GelMA 水凝胶作为细胞包裹材料,在纤维上成功实现了血管类器官、毛细管新生(血管出芽)、血管化肿瘤等结构的构造,证明了 GelMA 载细胞结构可以高效的实现细胞的功能化;开发了同轴打印工艺,可稳定、大批量地制造 GelMA 纤维,实现载细胞纤维的量化生产;制备的载细胞纤维还可通过冻存长期稳定的保存,取出后又可快速恢复功能,这样可建立一个载细胞微纤维银行,实现随取随用。相关工作刊登在 Advanced Heathcare Materials 杂志上并被选为封底论文 。 图 4 产品化载细胞 GelMA 纤维的要求 基于以上研究,课题组已发表相关论文 20 余篇( 3 篇封面),撰写著作 1 部 ,如图 5 所示。此外,为了降低医学人员使用生物 3D 打印机的门槛,课题组还联合苏州智能制造研究院产业化了 EFL-BP 系列模块化生物 3D 打印机(图 6 ),其最大特点是可直接置入超净工作台,功能通过模块可灵活配置,操作简单易用。可搭载气动、挤出、高精度直写( 3 到 5 微米打印精度)、光固化等喷头,支持细胞、水凝胶、生物陶瓷、 PLA 、 PVA 、 PBS 等材料。 图 5 课题组撰写的专著及发表的论文封面 图 6 苏州智能制造研究院推出的 EFL-BP 系列生物 3D 打印机 ( a ) BP66 系列挤出式打印机;( b ) BP58 系列高精度(2微米精度)打印机;( c ) BP86 系列(全球首款商业化投影式光固化生物 3D 打印机) He Y, Yang F F, Zhao H M, et al. Research on theprintability of hydrogels in 3D bioprinting . Scientific reports, 2016, 6:29977. Gao Q, Niu X, Shao L, et al. 3D printing of complexGelMA-based scaffolds with nanoclay . Biofabrication, 2019,11: 035006 . Gao Q, He Y, Fu J, et al. Coaxial nozzle-assisted 3Dbioprinting with built-in microchannels for nutrients delivery .Biomaterials, 2015, 61: 203-215. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-likestructures with multilevel fluidic channels . ACS biomaterials science engineering, 2017, 3(3): 399-408. Nie J, Gao Q, Wang Y, et al. Vessel ‐\ on ‐\ a ‐\ chip with Hydrogel ‐\ based Microfluidics .Small, 2018, 14(45): 1802368. Zhao H, Chen Y, Shao L, et al. Airflow ‐\ Assisted 3D Bioprinting ofHuman Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle .Small, 2018, 14(39): 1802630. Shao L, Gao Q, Zhao H, et al. Fiber ‐\ based mini tissue withmorphology ‐\ controllableGelMA microfibers . Small, 2018, 14(44): 1802187. Xie M, Gao Q, Zhao H, et al. Electro-Assisted Bioprintingof Low-Concentration GelMA Microdroplets . Small, 2018: 1804216. Shao L , Gao Q , Xie C , etal. Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product? . Advanced Healthcare Materials, 2019: 1900014 贺永,傅建中,高庆著. 生物3D打印:从医疗辅助制造到细胞打印,华中科技大学出版社,2019
个人分类: 论文|4284 次阅读|0 个评论
生物3D打印课题组2018年度回顾
heyongzju 2019-1-1 20:21
生物3D打印课题组2018年度回顾 回顾18年,课题组收获满满。应该说这几年我们脚踏实地,一步一个台阶。经过几年的积累,课题组今年可稳定的在高水平期刊上发表系列的生物3D打印学术论文,出版了一本生物3D打印专著。在技术转化方面,课题组提供的生物墨水及生物3D打印解决方案也已在国内外几十个课题组成功应用。 感谢课题组各位同学的辛苦工作,感谢各位师长,各位同事的关心和帮助。 1. Small (IF=9.6) 封底,类器官的生物3D打印新方法 一句话概括 :多细胞异质结构可以在微球上打印,精度可达单细胞分辨率,为类器官的高效及精准构建提供新思路; 论文信息 : ZHAO, Haiming, et al. Airflow ‐ Assisted 3D Bioprinting of Human Heterogeneous Microspheroidal Organoids with Microfluidic Nozzle. Small , 2018, 14.39: 1802630. 2. Small (IF=9.6),以水凝胶为材质的微流控芯片及其上构建的血管芯片 一句话概括 :为水凝胶微流控芯片提供了一种可行的制造方法,构建了血管芯片,建立了动脉粥样硬化的体外疾病模型。 论文信息 : NIE, Jing, et al. Vessel ‐ on ‐ a ‐ chip with Hydrogel ‐ based Microfluidics. Small , 2018, 14.45: 1802368. 3. Small (IF=9.6),基于微纤维的迷你类器官 一句话概括:以GelMA生物水凝胶为生物墨水,发展出异质凝胶纤维的高通量打印方法,建立了体外的血管模型。 论文信息: SHAO, Lei, et al. Fiber ‐ Based Mini Tissue with Morphology ‐ Controllable GelMA Microfibers. Small , 2018, 14.44: 1802187. 4. Small (IF=9.6),电场辅助生物打印高生物活性微球 一句话概括 :发展了一套可量化生产的微球制造方法,可用于载细胞微球、药物控释及生物3D打印。 论文信息 : XIE, Mingjun, et al. Electro‐Assisted Bioprinting of Low‐Concentration GelMA Microdroplets. Small , 2018, 1804216. 5. Biofabrication (IF=6.8),可像乐高积木式进行模块化组装的3D微流控芯片 一句话概括 :提出了模块化芯片3D打印新方法,以毛细驱动液体的方式解决了原有思路中易漏液、难组装等瓶颈。 论文信息 : NIE, Jing, et al. 3D printed Lego®-like modular microfluidic devices based on capillary driving. Biofabrication , 2018, 10.3: 035001. 6. ACS Applied Materials Interface (IF=8.0),液体金属3D打印新思路 一句话概括 :提出液态金属同轴3D打印新思路,解决打印中液态金属易氧化,难封装等瓶颈问题。 论文信息 : ZHOU, Luyu, et al. 3D Printed Wearable Sensors with Liquid Metals for the Pose Detection of Snakelike Soft Robots. ACS applied materials interfaces , 2018. 7. Journal of Dental Research (IF=5.4),颌面缺损的个性化定制修复 一句话概括 :首次实现了可降解骨的个性化修复,解决了可降解骨缺损修复中强度过低、降解过快等导致的系列难题。 论文信息 : SHAO, Huifeng, et al. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds. Journal of dental research , 2018, 97.1: 68-76. 8. Materials Design (IF=4.5),纳米结构可控形貌制造 一句话概括 :将静电纺丝与3D打印模具相结合,通过可控发泡实现了三维纳米支架的可控制造。 论文信息 : GAO, Qing, et al. Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Materials Design , 2018, 157: 159-169. 8. 生物3D打印专著:生物3D打印:从医疗辅具制造到细胞打印,华中科技大学出版社
个人分类: 论文|6166 次阅读|0 个评论
水凝胶三维微流控芯片及在其上构建的血管芯片
热度 3 heyongzju 2018-10-16 16:32
水凝胶三维微流控芯片及在其上构建的血管芯片 65 Vessel‐on‐a‐chip with Hydrogel-based Microfluidics.pdf 摘要:水凝胶是细胞三维培养及组织体外构建的最理想材料,显然也是构造器官芯片(微流控+微组织)的最理想平台。然而目前的微加工工艺多用来加工硅、硅橡胶、聚合物等材料,迄今为止缺乏稳定可靠的水凝胶微制造方法,这也严重制约了水凝胶在微流控芯片中的应用。 有没有可能发展出稳定的水凝胶微流控芯片制造方法? 这几年课题组一直在探索有无可能基于全水凝胶构造微流控芯片,并在这种高生物相容性的芯片上进一步构造出器官芯片,为器官芯片的制造提供全新的思路。 我们提出了一种制备水凝胶基微流控芯片的新方法:设计了芯片二次交联策略,可实现具有任意复杂内部流道的凝胶基三维微流控芯片的制造。该芯片的一个显著特点是:不同层芯片间的键合强度和芯片本体一致。 我们采用常用的细胞三维培养用的水凝胶:海藻酸盐、明胶、GelMA制造了水凝胶芯片,并对其机械性能及生物学性能进行了系统的分析,研究发现 采用课题组所产业化的GelMA生物水凝胶制造的芯片具有最佳的性能,可快速促进芯片上细胞的功能化形成 。 利用这种新型的水凝胶微流控芯片,我们建立了体外血管模型,CD31、Vinculin及Ve-Cadherin抗体染色表明,我们成功构建出了接近体内血管功能的血管芯片。随后通过炎症诱导因子的加载,模拟了动脉粥样硬化等病理条件下血管的炎症反应。本芯片可于组织血管化过程、心血管疾病、器官芯片、肿瘤药物筛选等领域。 浙江大学机械工程学院贺永教授课题组发明了一种基于二次交联的凝胶基微流控芯片制造新方法,能够构造具有不同复杂内部流道的凝胶芯片,进而接种血管内皮细胞,形成具有血管形态和功能的血管模型。通过凝胶基血管芯片的构建不仅可以模拟血管的主要功能,还可以借助微流控手段施加各种流体剪切及生物因子的刺激。实现在时间和空间上重现体内的血管环境,它可以应用于血管化过程研究,心血管疾病研究,体外组织工程器官芯片的构建,肿瘤药物筛选等。本方法可实现微流道高强度封装,便于物理剪切力、生物因子等施加刺激;同时水凝胶也为营养渗透以及分子扩散提供了高效支撑。 相关论文 Vessel-on-a-chip with Hydrogel-based Microfluidics 近日刊登在 WILLY 旗下的 SMALL 杂志上。第一作者为聂晶博士生、高庆博士后、王怡栋生,通讯作者为贺永教授和转化医学院的陈伟教授。 基于二次交联的凝胶基微流控芯片制造工艺及原理 一直以来,器官芯片的基底材质通常是 PDMS ,塑料、硅等适合于微加工的材料, 水凝胶可否作为微流控芯片的材料呢? 我们设计了一种 Bottom-Up 的芯片制造策略,先加工出带有微槽的水凝胶层(每层水凝胶含有两种水凝胶材料,一种用于固化,一种用于后续的二次交联),然后将水凝胶层堆叠拼装,进行二次交联,实现三维水凝胶微流控芯片制造。用这种方法,可制造带有螺旋形流道、分叉流道、蛇形流道、多层互通流道等的水凝胶芯片。 带有复杂内部流道的水凝胶芯片 基于二次交联方法构造的水凝胶基血管芯片 流道上的内皮细胞逐渐贴壁,增殖,轴向及径向布满整个流道,自发对齐,形成网络结构,流道开始实现血管化,Vinculin蛋白(一种细胞与细胞外基质/细胞与支架之间相互作用的关键蛋白细胞)的表达验证了细胞与流道材料间联系的产生,细胞间连接蛋白VE-Cadherin的表达表明了细胞之间形成紧密的相互连接,细胞之间实现明显的交流,内皮细胞功能蛋白CD31的表达进一步验证了血管功能化的实现。此外,通过炎症诱导因子的加载,模拟了动脉粥样硬化等病理条件下血管的炎症反应。 本方法的优点有: 1. 凝胶基微流控芯片的构建得益于水凝胶材料的固有交联性质,无需引入任何其他材料。 2. 二次交联原理可以应用于任意具有不同交联体系的水凝胶组合。 3. 获得的凝胶基微流控芯片没有任何结合面分界线,完全结合为一个整体。 4.方便构建各种复杂形式的内部流道。 5. 具有良好的生物相容性,可以实现血管功能化。 论文链接: https://onlinelibrary.wiley.com/doi/10.1002/smll.201802368
个人分类: 论文|13663 次阅读|5 个评论
基于3D打印的微流控芯片模块化快速制造
heyongzju 2017-9-16 11:09
基于 3D 打印的微流控芯片模块化快速制造 摘要: 微流控芯片作为集成化学、生物领域中的样片制备,检测分析及细胞培养等功能的平台,在当今的医学研究中具有广阔的发展前景。而目前基于传统技术的3D微流控芯片加工面临加工周期长,制造成本高,芯片功能结构单一的问题,如果能够在短时间内基于实验方案个体化定制3D微流控芯片,将会为生物医学研究,尤其是体外微环境构建研究提供高效工具。浙江大学浙江省三维打印工艺与装备重点实验室贺永、傅建中教授团队经过两年多的研究探索,提出了一种基于模块化结构设计的3D微流控芯片定制工艺,该工艺能实现基于芯片功能设计的微流控芯片快速制造。本工艺结合生物制造技术,可以快速制造器官芯片,为后续芯片上不同器官的集成模拟提供了一种可行方案。本研究受到国家基金联合基金-浙江省两化融合重点项目、国家优秀青年基金、浙江省杰出青年基金项目资助。 52 Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure.pdf 3D 微流控芯片的制造方法一直是微加工领域的研究热点,常见的方法包括:传统技术加工 2D 结构层叠得到 3D 芯片, 3D 打印技术直接制造 3D 微流控芯片和预先制造芯片模组组装 3D 芯片。虽然这些方法制造得到的 3D 微流控芯片在一定程度上可以满足实验需求,但是它们无法兼顾医学研究中对芯片材料生物兼容性和芯片制造快速简便的要求,故对于不同的实验环境和实验要求,这些方法制造的 3D 芯片结构和功能需要不断优化及改进,影响芯片内细胞、组织的培养和检测,进而延长实验周期。 我们 课题组 提出了一种全新的 3D 微流控芯片制造方法,其特点是根据实验需求快速组装芯片模块,在保证生物兼容性的前提下实现 3D 微流控芯片的快速重构。通过课题组前期自行研发的糖打印机,利用糖挤出喷头制造流道图案,浇注 PDMS 固化后翻模得到 PDMS 基的芯片模组。根据实验需求设计,将不同功能的 PDMS 芯片模组及柔性电路、生物支架等附属部件整合,利用快速可逆封装的技术构建完整功能的 3D 微流控芯片。不同功能的芯片设计只需依据设计更换不同功能的模组即可。通过大量的工艺实验,系统解决了 PDMS 模组的成型问题;通过芯片重构实验演示了基于功能设计的芯片快速定制;并通过后续的细胞培养、细胞氧化应激损伤及器官芯片快速构建展示了该方法在生物医学应用中的可能性。 图 1 基于模块化结构设计的 3D 微流控芯片快速制造原理图 图 2 一种适于生物医学应用的集成芯片的快速制造 图 3 基于功能设计的微流控芯片快速重构 图 4 快速定制芯片内的细胞培养研究 图 5 快速定制芯片内的细胞氧化应激损伤研究 图 6 器官芯片的快速构建研究 目前该成果已在 ACS 旗下的 ACS Biomaterials Science Engineering 期刊发表,题为“ Rapid Customization of 3D Integrated Microfluidic Chips via Modular Structure-BasedDesign ”, DOI: 10.1021/acsbiomaterials.7b00401 。
个人分类: 论文|7482 次阅读|0 个评论
ACS Biomaterials封面:从纸基微流控芯片到纸基生物芯片
heyongzju 2017-4-23 16:34
45 From Microfluidic Paper-Based Analytical Devices to Paper-Based Biofluidics w.pdf ACS Biomaterials 封面:从纸基微流控芯片到纸基生物芯片( From Microfluidic Paper-Based AnalyticalDevices to Paper-Based Biofluidics with Integrated Continuous Perfusion ) 毛细驱动的纸基微流控芯片在化学分析中有广泛的应用,常用于污染物的检测等领域,由于其流体驱动依赖于纸的毛细效应,具有体积小,成本低等诸多优势。我们课题组在做生物 3D 打印的时候,一直在思考设计一款简易、小巧的细胞乃至器官灌流设备,以避免现有系统庞大、复杂的体积所造成的诸多不便。经过一年多的设计及实验,我们提出并实现了一种可并行,实现多个打印器官的生物灌流系统,首次实现了在纸基芯片上细胞的三维培养、肿瘤球的药物筛选(乳腺癌的药物筛选为例),演示了该平台在药物筛选上的潜力,很高兴这篇文章被 ACS Biomaterials 选为 第三卷第四期的封面。这个平台很容易与生物3D打印技术集成,在细胞的立体培养、药物筛选、器官芯片等领域有着光明的应用前景。 整个系统设计时就考虑了方便其他研究人员的重现,我们开源了整个设计图纸及软硬件控制代码,除电控部分外所有的结构都可用桌面式 3D 打印机打印,很容易自己在实验室 DIY 。 第三卷第四期封面 系统解构及原理 基于该平台的细胞立体培养 基于该平台的3D肿瘤药物筛选
个人分类: 论文|8449 次阅读|0 个评论
3D打印微流控芯片及其在化学、生物中的应用进展综述
热度 1 heyongzju 2016-5-3 05:17
3D 打印微流控芯片及其在化学、生物中的应用进展(Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology a Review) 36 Developments of 3D Printing Microfluidics and Applications in Chemistry and B.pdf 去年受 Electroanalysis 杂志副主编 José MPingarrón 教授的约稿,花了大半年的时间对 3D 打印微流控芯片的研究进展进行了梳理,结合了自己在研究过程中的一些理解,写了这篇综述 “Developments of 3D Printing Microfluidics and Applications in Chemistryand Biology: a Review” 。虽然尽力查阅了相关文献,但仍不免有所遗漏,尤其是由于发表周期的问题,近期的一些进展可能没有述及。 微流控芯片 (MicrofluidicChip) 是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域,又称为微全分析系统、微流体芯片等。基于 MEMS 工艺的微制造技术在微流控芯片中获得了广泛的应用,但随着时间的发展现有的微流控制造方法也慢慢暴露了很多缺点。主要体现在维度限制(制造三维微流控芯片比较困难)及小批量制造的成本居高不下。因而随着 3D 打印技术的发展,采用 3D 打印制造微流控芯片越来越可行与方便。 本篇综述的目的主要有:( 1 )梳理现有的 3D 打印技术,对各类 3D 打印技术适合于制作那种类型的微流控芯片进行分析,目的是帮助微流控研究人员更好的选择适合的 3D 打印工艺;( 2 )梳理现有 3D 打印微流控芯片进展,包括其在化学及生物学中的应用;( 3 )结合自己的理解,对 3D 打印微流控芯片的发展做些展望与预测,特别是以后可能会获得大幅发展的 3D 打印微流控芯片技术。 1 熔融沉积( FDM ) 3D 打印方式的微流控芯片制造 挤出成型 3D 打印方法中, FDM 打印技术目前应用最为普遍,成本也最为低廉,售价通常在 3000RMB-1000RMB ,故而常被称为桌面式 3D 打印机。如能使用 FDM 打印机很好的解决微流控芯片的制造问题,无疑非常实用、非常方便。当然 FDM 桌面式 3D 打印机的缺点是精度不高,直接用来打印芯片通常会出现泄漏等问题,使用合适的打印材料,可以部分的避免这个问题。另一个方法是使用 FDM 打印打印模具,如觉得模具精度不高,可进行二次抛光,用作快速制造微流控芯片还是比较方便的,需要声明的是,该方法制造芯片的精度大概在几百微米之间。 基于 FDM 工艺打印的微流控芯片 2 光固化 3D 打印方式的微流控芯片制造 光固化 3D 打印方式中 SLA 价格比较贵,不够亲民。而 DLP 工艺近几年发展迅速,有普及的趋势,目前价格也就在 1 万 RMB-5 万 RMB 左右,精度也可控制在几十微米。个人觉得 DLP 工艺的 3D 打印机比较适合于微流控芯片制造,当然光固化树脂的一些特性可能会限制光固化打印微流控芯片的部分应用,而这也是研究人员可以努力的方向哈。基于 DLP 工艺,透明的微流控芯片、内置的 3D 流道相对容易制造出来,具体的部分技术细节还需进一步探索。我比较看好 DLP 技术在微流控芯片制造中的应用。 基于光固化工艺制造的微流控芯片 3 选择性激光烧结 3D 打印方式的微流控芯片制造 由于该方式主要烧结金属材料,价格较贵,在微流控中报道不多,主要见于微反应器的报道。个人觉得用于燃料电池的制氢微反应器可考虑使用这个工艺制造。 4 基于喷墨 3D 打印方式的微流控芯片制造 喷墨 3D 打印有两类成型方式,一类是通过喷射粘结剂粘附颗粒实现 3D 结构制造,这个工艺中液体渗漏是一个问题,个人认为不太适合于芯片制造。另一类是喷射光固化液滴,利用 UV 光固化,这个制造方式接近于前述的光固化工艺,但由于多喷头的作用使得彩色 3D 结构的打印不再是难题。该工艺制造微流控芯片同样有不少报道,理论上将可基于该工艺实现芯片上一些抗体、反应物等的同时打印,我们期待后续会出现这方面的报道。 基于喷墨光固化的微流控芯片 3D 打印 5 叠层制造 3D 打印方式的微流控芯片制造 叠层制造原来是指将切好截面的纸张叠加起来实现 3D 结构的制造,基于该原理可手工制造出芯片的每部分,然后将其叠加起来。个人觉得如果是手工制作,归类于 3D 打印有点勉强。不过目前的有一种融合了基于切纸的叠层制造及喷墨打印工艺的 3D 打印机有望在 3D 纸芯片的制造中获得应用,理论上讲使用喷墨打印头可方便的在纸上沉积各种试剂、而切纸工艺可方便的制造三维纸芯片结构,我很期待后续会有这方面的报道。 6 双光子聚合 3D 打印方式的微流控芯片制造 该工艺精度高,能制造微纳米尺度的流道,可惜受限于设备成本及商业化应用稍显狭窄的问题,该方法还需要成熟期,未来能否有较多的应用还有待观察。 基于叠层制造及双光子聚合的微流控芯片 3D 打印 7 3D 打印生物微流控芯片 /3D 打印生物 MEMS 3D 打印生物微流控可大体分为器官芯片打印及生物打印中的血管化。前者主要目标是在芯片上模拟出器官组织,用于药物筛选等。而后者主要是为了解决器官制造中的营养输送或者说是血供问题。 课题组的生物打印血管化研究工作,同样可用于器官芯片的直接打印 参考文献 116 的血管化工作 8 3D 打印微流控芯片优缺点 Method Principle Material Advantages Disadvantages Suitable microfluidics FDM Extrusion -based Thermoplastic, eutectic metal,ceramics, edible material, etc. Simple using and maintaining, low cost, easily accessible Rough surface, low resolution Mold casting, channel size larger than 200μm, Low-cost chips SLA DLP Photocuring Liquid photosensitive resin High accuracy Limited resin, unbio-compatible Mold casting, Channel size larger than 100μm 3DP-LR Inkjet-based Liquid photosensitive resin High accuracy Very expensive Transparent chips SLS SLM Photomelting Powdered plastic, metal, ceramic, PC, acrylic styrene, PVC, ABS wax, etc. Wide adaptation of materials, high accuracy, high strength Very expensive Reactor with high temperature LOM Paper cutting Sheet material (paper, plastic film, metal sheets, cellulose etc.) Low cost, easy to manufacture large parts Time-consuming, low material utilization 3D μPADs with different agents 3DP-P Inkjet-based Powdered plaster, ceramics sugar etc. Colorful printing Post surface treatment, low strength Unsuitable LDW Two-Photon Polymerization Process Laser-based Glass, fused silica etc. High accuracy Expensive Situations need high accuracy 9 3D 打印微流控芯片展望 个人认为后续 3D 打印微流控芯片有 6 个趋势 其一、从二维面芯片过渡到三维体芯片;其二、直接打印凝胶材质的微流控芯片;其三、针对微流控需要的 3D 打印工艺将会开发得到更多的重视;其四、基于打印工艺直接集成传感器及制动器到微流控芯片中;其五、基于 3D 打印的微流控芯片模块化组装;其六、纸芯片的 3D 打印封装,构成便携式 POC 系统。 更详细的探讨可参考我们发表的论文,欢迎感兴趣的同行交流。
个人分类: 论文|11926 次阅读|2 个评论
器官芯片制造/生物3D打印课题组研究方向简介
热度 2 heyongzju 2016-1-7 04:30
课题组聚焦于制造学科与生物学科交叉领域,尤其是器官芯片制造,期望通过在微流控芯片上构造器官原型(器官芯片),在实验室环境下重现各种疾病的微环境,可广泛应用于药物研发、致病机理研究、细胞发育机制探讨等领域,为生物医学相关学科的研究提供基础支撑。主要围绕 三维微流控芯片制造新方法、生物仿生结构3D打印制造新方法、生物3D打印装备的关键技术 展开研究。 一、三维微流控芯片制造新方法 1 、 基于牺牲层工艺的微流控芯片制造方法, 通过 PDMS 与牺牲层材料混合打印,能够快速而低成本的构造生物兼容性好的 3D 微流控芯片, 所打印的芯片在细胞立体培养方面具有较大的优势。 2 、 基于光敏印章印刷方法的微制造方法, 将日常生活中常用的光敏印章引入微制造领域, 通过多次复合曝光可实现不同尺度微结构的嵌套加工 ,通过调整曝光掩膜的灰度,可实现不同深度微结构的一次性成型。非常适合于功能微结构的快速制造,可作为软刻蚀及微浇注等工艺的复制模板。 3 、 基于动态掩膜的微流控纸芯片制造方法 ,将桌面式 3D 打印机引入纸芯片的制造中,通过正反面固化, 可实现 1min 内快速制造好一张复杂的纸基微流控芯片 。 4 、微热压成型技术作为一种低成本微流控芯片制造方法,应用极其广泛。课题组较早的开展了热压成型相关技术研究。 建立了压印过程模型、揭示了微压印过程中聚合物流变特性与压印质量及压印效率间的内在关系、提出了模具拓扑优化策略、优化了压印工艺、降低了微热压成型缺陷。 相关论文: 1. He Y , Xiao X, Wu Y, et al. A facile and low-cost microfabrication material: flash foam . ScientificReports , 2015, 5. 13522. (SCI, IF=5.578) 2. He Y , Wu Y,Xiao X, Fu J Z, GuangHuai Xue. A low-cost and rapid microfluidic paper-basedanalytical devices fabrication method: Flash Foam Stamp Lithography . RSC Advances , 2014, 4(109):63860-63865. (SCI,IF=3.84) 3. He Y , Wu Y,Xiao X, Fu J Z * et al . Fabrication of Paper-BasedMicrofluidic Analysis Devices: a Review . RSC Advances, 2015, 5(4),78109-78127 (SCI, IF=3.84) 4. He Y , Wu W B,Fu J Z. Rapid fabrication of paper-based microfluidic analytical devices withdesktop stereolithography 3D printer . RSCAdvances , 2015, 5(4), 2694-2701. (SCI, IF=3.84) 5. He Y , Qiu J J, Fu J Z, Zhang J et al . Printing 3D microfluidic chip with a sugar 3D printer . Microfluidics and Nanofluidics , 2015,19, 447-456. (SCI, IF=2.528) 6. He Y , Fu J Z, Chen Z C.Research on optimization of the hot embossing process . Journal ofMicromechanics and Microengineering, 2007, 17(12): 2420. (SCI, IF=1.7) 7. He Y , Fu J Z, Chen Z C.Optimization of control parameters in micro hot embossing . MicrosystemTechnologies, 2008, 14(3): 325-329. (SCI, IF=0.875 ) 8. He Y , Wu W B, Zhang T, et al.Micro structure fabrication with a simplified hot embossing method . RSCAdvances, 2015, 5(49): 39138-39144. (SCI, IF=3.84 ) 9. He Y , Fu J Z, Zhao P, et al.Enhanced polymer filling and uniform shrinkage of polymer and mold in a hotembossing process . Polymer Engineering Science, 2013, 53(6):1314-1320. (SCI, IF=1.52 ) 10. He Y , Fu J Z, Chen Z C. Analysis of pattern height development inhot embossing process . Microsystem technologies, 2009, 15(7): 963-968. (SCI) 11. He Y , Fu J Z, Chen Z C. Experimental study on the hot embossingpolymer microfluidic chip . Chinese Journal of Mechanical Engineering, 2008,21(3): 87-89. (SCI, IF=0.598) 12. He Y , Zhang T, Fu J Z, et al. Experimental Study on theFabrication of the Light Guide Plate with Hot Embossing Method //AppliedMechanics and Materials. 2010, 37: 448-452. 二、生物仿生结构 3D 打印制造新方法 1 、 基于营养通道同步构造的细胞打印新工艺 ,证实了本工艺所构造的微通道能够有效的用于组织内的营养输送,可起到类血管的作用;给出了打印过程中融合机理及融合时序,系统的探讨了可打印工艺区间;通过调控相邻凝胶微通道间的融合时序,可实现组织打印过程中的三维微流道网络的构建,为大尺寸器官打印中的营养输送难题提供一条可行的路径。 2 、假体已经广泛应用于人体颌面部损伤的修复中,传统个性化定制假体周期长,价格昂贵,严重制约了其在临床上的应用推广。课题组提 出了一种 3D 打印低成本假体制造方法 ,利用桌面级 3D 打印技术的低成本,通过抛光技术去除掉打印模具的台阶效应, 制造出表面粗糙度 Ra 低于 1μm 的光滑模具 ,浇铸出具有光洁表面的人工假体,使其成本从 4000 美元 / 件降至 30 美元 / 件。 发表的论文 1. Qing Gao, Yong He *,Jian-zhong Fu, An Liu, Liang Ma. Coaxial nozzle-assisted 3D bioprinting withbuilt-in microchannels for nutrients delivery . Biomaterials , 2015, 61, 203-215. ( SCI, IF=8.557 ) 2. He Y , Xue G H,Fu J Z, Fabrication of low cost soft tissue prostheses with the desktop 3Dprinter . Scientific Reports ,2014, 4, 6973. ( SCI , IF=5.578 ) 3. Shao H, Yang X, He Y* , et al. Bioactive glass-reinforced bioceramic ink writingscaffolds: sintering, microstructure and mechanical behavior . Biofabrication , 2015, 7(3): 035010. ( SCI, IF=4.289 ) 4. Xie J, Yang X, Shao H, HeY , et al. Simultaneous mechanical property and biodegradation improvementof wollastonite bioceramic through magnesium dilute doping . Journal of the mechanical behavior ofbiomedical materials , 2016, 54: 60-71. (SCI, IF=3.417) 三、生物 3D 打印装备的关键技术 课题组对芯片 3D 打印及细胞打印装备研发过程中所涉及的相关核心技术,包括表面粗糙度改进、速度平滑控制、快速支撑生成算法、打印误差控制与补偿等进行了系统的研究, 研发了具有自主知识产权的细胞打印及芯片打印装备 。 1. 为解决打印过程中的过填充与欠填充问题,通过 采用自适应间距路径避免恒定间距路径填充过程中出现的质量问题,提高了打印质量 。为提高打印过程中的支撑生成算法效率及稳定性,通过采用切片文件而非三维实体模型实现支撑区域的判断,可避免大量的三维布尔运算,提高了算法的运算效率。为提高制造加工的效率, 提出内支撑的概念 ,可直接利用切片文件实现内支撑生成算法。 2. 针对细胞打印中凝胶的可控沉积问题进行了深入研究 ,通过分析加工速度及加工路径对液滴沉积偏转的影响,建立了误差补偿模型。揭示了 5 种构造不同形态规律凝胶微球的成型机制,系统的阐述了其成型机理, 实现了含细胞凝胶液滴的可控沉积 。 3. 针对 3D 打印过程中零散线段过多,导致加工效率过低的问题。 提出并实现了基于改进精插补的参数曲线插补算法 ,使精插补过程中加工误差最小化,并且使进给速度曲线更加平滑。在粗插补过程中根据当前的进给速度确定前瞻路径长度,在搜索到危险区域之后通过反算确定减速点的位置,该算法可以提高参数曲线插补精度和加工过程的平稳性。 发表的论文 1. JinY, He Y * , Gao Q, et al. Droplet deviationmodeling and compensation scheme of inkjet printing . The InternationalJournal of Advanced Manufacturing Technology , 2014, 75(9): 1405-1415. (SCI, IF=1.458) 2. Jin Y A, He Y * , Xue G H, et al . Aparallel-based path generation method for fused deposition modeling . The International Journal of AdvancedManufacturing Technology , 2015, 77(5): 927-937. (SCI,IF=1.458) 3. Jin Y A, He Y* , Fu J Z. Support generation for additivemanufacturing based on sliced data . The International Journal of AdvancedManufacturing Technology , 2015, 80(9), 2041-2052 (SCI, IF=1.458) 4. Gao Q, He Y*, Fu J, et al. Fabrication ofshape controllable alginate microparticles based on drop-on-demand jetting . Journal of Sol-Gel Science and Technology ,2015: DOI: 10.1007/s10971-015-3890-2. (SCI, IF=1.532) 5. Jin Y A, He Y * , Fu J Z, et al . A fine-interpolation-basedparametric interpolation method with a novel real-time look-ahead algorithm . Computer-Aided Design , 2014,55: 37-48. (SCI,IF=1.801) 6. JinY, He Y *, Fu J. A look-ahead and adaptive speed control algorithm forparametric interpolation . The International Journal of AdvancedManufacturing Technology , 2013, 69(9-12): 2613-2620. (SCI, IF=1.458) 7. JinY A, He Y *, Fu J Z, et al. An interpolation method for the open CNCsystem based on EPM . The International Journal of Advanced ManufacturingTechnology , 2013, 69(1-4): 405-416. (SCI,IF=1.458) 8. Jin Y, Li H, He Y *, et al . Quantitative analysis of surface profile in fused depositionmodeling . Additive Manufacturing ,2015, 8: 142-148. 9. JinY, He Y * , Fu J, et al. Optimization oftool-path generation for material extrusion-based additive manufacturingtechnology . Additive Manufacturing , 2014, 1(1), 32-47.
个人分类: 论文|12249 次阅读|4 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-20 10:34

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部