科学网

 找回密码
  注册

tag 标签: 干细胞

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

心脏干细胞研究的信息分析
xupeiyang 2009-10-23 09:57
http://www.gopubmed.org/web/gopubmed/1?WEB0t1j2zq3c616nI1mI1I00f01000j10040001rl 4,305 documents semantically analyzed 1 2 3 Top Years Publications 2008 563 2007 555 2006 443 2005 431 2009 384 2004 366 2003 280 2002 187 2000 109 2001 108 1999 78 1997 74 1995 71 1998 70 1996 59 1994 51 1993 34 1992 28 1989 24 1982 23 1 2 3 1 2 3 Top Countries Publications USA 1,096 Germany 286 Japan 254 China 250 Canada 131 Italy 113 United Kingdom 110 France 110 Netherlands 102 Israel 38 Australia 35 Switzerland 33 Belgium 29 India 27 Spain 26 Austria 25 Sweden 25 Taiwan 24 Poland 17 Brazil 17 1 2 3 1 2 3 ... 22 Top Cities Publications Boston 87 New York 63 Beijing 60 London 56 Toronto 55 Paris 54 Houston 51 San Diego 45 Tokyo 41 Stanford 40 San Francisco 39 Cologne 38 Utrecht 34 Baltimore 33 Philadelphia 33 Cincinnati 32 Kyoto 30 Los Angeles 27 Montreal 26 Seattle 25 1 2 3 ... 22 1 2 3 ... 40 Top Journals Publications Circ Res 124 J Mol Cell Cardiol 120 Circulation 104 Am J Physiol-heart C 97 Cardiovasc Res 87 Stem Cells 79 J Biol Chem 62 Biochem Bioph Res Co 55 Exp Cell Res 50 J Am Coll Cardiol 37 P Natl Acad Sci Usa 37 Stem Cells Dev 34 J Cell Biol 34 Dev Biol 33 Nat Clin Pract Cardiovasc Med 32 Faseb J 30 Int J Cardiol 29 Cell Transplant 28 Development 27 J Clin Invest 27 1 2 3 ... 40 1 2 3 ... 531 Top Terms Publications Myocardium 2,894 Animals 2,874 Myocytes, Cardiac 1,997 Fibroblasts 1,624 Humans 1,502 stem cell differentiation 1,481 stem cell development 1,472 Tissues 1,273 Mice 1,268 Proteins 1,228 Cells, Cultured 1,193 Cell Differentiation 1,089 Rats 1,056 Myocardial Infarction 1,022 Stem Cells 995 Muscle Cells 963 Adult 926 Genes 925 Muscles 864 Infarction 860 1 2 3 ... 531 1 2 3 ... 909 Top Authors Publications Hescheler J 47 Anversa P 41 Kajstura J 38 Leri A 34 Menasche P 29 Pucat M 27 Mummery C 26 Weber K 25 Fleischmann B 24 Nadal-Ginard B 23 Fukuda K 21 Gepstein L 21 Murry C 20 Lijnen P 20 Robbins R 19 Haider H 19 Wobus A 19 Chien K 18 Field L 18 Torella D 17 1 2 3 ... 909 http://www.sciencenet.cn/htmlpaper/20091022134402837577.shtm 用心脏干细胞育出心脏肌肉组织 美国研究人员说,他们成功地利用心脏干细胞在实验室中培育出心脏肌肉组织,这将为人类心脏病治疗带来突破。 这一研究成果发表在最近的《科学》杂志网络版上。 最新突破 尽管现代医学已经相当发达,但医生仍然找不到简单、快捷的方法治疗因心脏病发作导致的心脏组织破损。 研究领头人、哈佛大学干细胞研究所的肯尼思建介绍,美国科学家两个月前刚刚发现心脏干细胞,这为他和研究人员人工制造心脏肌肉组织提供可能。 建说,研究人员把细胞置于一层薄薄的高分子膜上,让它们成环形排列。这些细胞会自发重新组合,最后形成一片心脏组织,这块组织的形状则由供细胞繁衍的空间决定。 我们有纯净的干细胞,它们可以扩张,可以成为功能健全的肌肉组织,路透社引述建的话报道,这为治疗心脏病而制造心脏零件提供良好开端。 补丁原理 研究人员为心脏干细胞疗法修复心脏设想了两个途径。 其一是用一层心室肌肉细胞覆盖心脏破损区域,让它们逐渐生长成为能正常工作的心脏组织;其二是把细胞注射进破损区域,然后让它们自行生长。 建说,他计划一年内在不同动物身上进行这类试验,并预计这种技术可以在五年内应用于临床。 研究人员认为,这项成果让人类朝心脏干细胞疗法迈进一大步,建则把这种心脏修复疗法形象比喻为给心脏贴创可贴。 建说,在这项技术真正用于临床之前,研究人员还有几大难题需要解决,如何为新肌肉组织供血便是其中之一。 病患福音 干细胞是一种具有自我复制能力的多潜能细胞,在一定条件下可以分化成多种功能细胞。它们在实验室里繁衍迅速并且拥有很长寿命,是科研人员眼里的利器。 不过,洛杉矶心脏研究所主任爱德华多马尔万却认为,建所领导的研究临床意义有限,五年内应用于临床更是过分乐观。 他说,这类试验通常先在实验室进行,然后使用人体细胞在小动物身上试验,接着是猪等稍大型动物。因此,十年内能应用于临床就已经是巨大进步。(来源:新华网 林琳) 更多阅读 路透社相关报道(英文) 《科学》发表论文摘要(英文) http://www.reuters.com/article/scienceNews/idUSTRE59E5GP20091015 Study finds potential key to growing heart cells Thu Oct 15, 2009 3:08pm EDT WASHINGTON (Reuters) - Researchers looking for ways to turn stem cells into the types of heart cells they want said on Thursday they had found the key to making one important type in mice. They found the cells that give rise to the muscles of the ventricles -- the chambers that pump blood out of the heart -- in mice and said they will try to use this information to turn ordinary skin or blood cells into this important heart tissue. These so-called progenitor cells, described in a report in the journal Science, should also lead to better ways to study heart disease and to test drugs, the researchers said. This is the beginning of making heart parts for heart disease, said Kenneth Chien of the Harvard Stem Cell Institute in Massachusetts. We have the pure cells; they can be expanded, and they can make fully functional strip of muscle. Stem cells are the body's master cells, giving rise to the other, differentiated cells and tissues in the body. They multiply wildly in the lab and live almost forever, which makes them a powerful tool. When directed correctly, these cells can be made to form heart tissue, bone tissue, blood or other cells. But as they differentiate into these tissues, they lose their immortality and ability to proliferate. So scientists want to get from patients embryonic stem cells, or cells that resemble them called induced pluripotent stem cells, grow them in the lab and then use them for research and medical treatments. Being identical or close genetic matches, they would be easy to transplant back into patients. Chien's team genetically engineered mice that had fluorescent tags in their heart cells that made the right ventricle glow red. They could then find and isolate progenitor cells in mouse embryos that exclusively gave rise to ventricular muscle -- one of several types of muscle cell in the heart. That's the type of muscle in the heart we're trying to regenerate, Chien said in a statement. They used these cells to make batches of tissue that beat as a heart cell should. Because the hearts of mammals are all very similar, it should now be possible to find the human versions of these cells for study, they said. http://www.sciencemag.org/cgi/content/abstract/sci;326/5951/426?maxtoshow=HITS=10hits=10RESULTFORMAT=fulltext=Kenneth+Chien+searchid=1FIRSTINDEX=0sortspec=dateresourcetype=HWCIT Science 16 October 2009: Vol. 326. no. 5951, pp. 426 - 429 DOI: 10.1126/science.1177350 Reports Generation of Functional Ventricular Heart Muscle from Mouse Ventricular Progenitor Cells Ibrahim J. Domian, 1 ,2 ,* Murali Chiravuri, 1 ,* Peter van der Meer, 1 ,3 ,* Adam W. Feinberg, 4 Xi Shi, 1 Ying Shao, 1 Sean M. Wu, 1 ,2 Kevin Kit Parker, 2 ,4 ,5 Kenneth R. Chien 1 ,2 ,6 , The mammalian heart is formed from distinct sets of first and second heart field (FHF and SHF, respectively) progenitors. Although multipotent progenitors have previously been shown to give rise to cardiomyocytes, smooth muscle, and endothelial cells, the mechanism governing the generation of large numbers of differentiated progeny remains poorly understood. We have employed a two-colored fluorescent reporter system to isolate FHF and SHF progenitors from developing mouse embryos and embryonic stem cells. Genome-wide profiling of coding and noncoding transcripts revealed distinct molecular signatures of these progenitor populations. We further identify a committed ventricular progenitor cell in the Islet 1 lineage that is capable of limited in vitro expansion, differentiation, and assembly into functional ventricular muscle tissue, representing a combination of tissue engineering and stem cell biology. 1 Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza, CPZN 3200, 185 Cambridge Street, Boston, MA 021142790, USA. 2 Harvard Stem Cell Institute, Cambridge, MA 02138, USA. 3 Department of Cardiology, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands. 4 Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. 5 The Wyss Institue for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. 6 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. * These authors contributed equally to this work. To whom correspondence should be addressed. E-mail: krchien@partners.org