科学网

 找回密码
  注册

tag 标签: X射线

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

X射线倒易空间扫描RSM揭示二氧化钒VO2/TiO2薄膜应变与MIT关系
snowmount 2014-7-2 17:52
Nano Letters. DOI:dx.doi.org/10.1021/nl501480f 最近,我们的合作伙伴用OxideMBE制备了一系列VO2/TiO2(001)外延膜,发现MIT转变温度随膜厚减小连续向低温移动; 然后,我们用同步辐射X射线倒易空间扫描RSM测量了这些薄膜的应变状态,发现很薄的VO2膜是完全应变的(面内张应变),随膜厚增大,面内应变逐渐释放;面内应变的这些变化与MIT转变温度的变化是一致的,说明应变可以用来连续调控MIT温度; 这里面还有一些有意思的结构信息,比如,尽管面内应变释放了,我们还是没有看到单斜相VO2的衍射特征(峰的劈裂),暗示薄膜样品与粉体样品结构差异很大。 .
个人分类: 科研|3667 次阅读|0 个评论
X射线晶体截断面倒易杆技术CTR揭示生长气压对薄膜界面扩散的作用
热度 1 snowmount 2014-5-30 16:30
我认为这是一篇薄膜生长技术方面的重要工作:我们用X射线晶体截断面倒易杆技术(crystal truncation rod,CTR)研究了LaAlO3/SrTiO3 (LAO/STO)界面原子结构随生长气压的变化关系,发现高气压下生长的一个单胞厚的薄膜就能有效阻挡后续沉积原子的注入扩散行为,促进外延薄膜的制备。 原文见下面链接及其supplemental materials Atomic Layer Engineering of Perovskite Oxides for Chemically Sharp Heterointerfaces ADVANCED MATERIALS, 24, 6423-6428(2012) DOI: 10.1002/adma.201202691
个人分类: 科研|4607 次阅读|1 个评论
X射线晶体截断面倒易杆技术CTR揭示LAO/STO薄膜的氧八面体旋转
snowmount 2014-5-29 17:03
我们用X射线晶体截断面倒易杆技术crystal truncation rod(CTR)揭示LAO/STO薄膜中AlO6八面体的 旋转角度沿薄膜法向的变化规律,这种原子级空间分辨的八面体旋转早前只能用TEM技术实现。 详见: Octahedral rotations in strained LaAlO3/SrTiO3 (001) heterostructures APL Mater. 2, 021102 (2014); http://dx.doi.org/10.1063/1.4865160 FIg4b是CTR信号解析得到的原子结构信息——三维的电子密度分布,从中可以看出每个格位的 原子占位情况,及由于八面体旋转造成的电子密度峰的展宽
个人分类: 科研|4166 次阅读|0 个评论
《硅火燎原》-7-能级和能带(2)
热度 15 tianrong1945 2013-6-18 09:52
7. 能级和能带(二) 从上次的叙述,我们知道,在固体中,单原子电子的一个能级,分裂而成了多原子的多个共有电子所可能占据的一条能带。能带中包含了 N个靠得很近的分离能级。这个N所代表的是固体中的原子数,是个非常大的数字。例如,在每一立方厘米的硅材料中,含有5*10 22 个硅原子。因此,可以将一条能带看成是包含了无穷多个连续的能级。所以,在图2和图3中,能带便被表示成涂了颜色的一片连续区域。 但是,通常我们看到的能带图,并不是一片连续区域,而是一条一条的曲线。比如说,图 4(a)所显示的,便是硅的部分能带图。图中数条曲线龙飞凤舞,并没有如图3中的那种连续区,这又是怎么回事呢? 图 4 这其中最主要的奥秘,是因为我们在图 3中,只画出了能级的高低,忽略了电子运动时的另一个特征:动量。而电子的能量和动量是相关的。这点概念在经典力学中就很清楚,如果考虑相对论力学,也有相应的能量动量关系,只不过公式略有不同而已。在量子力学中,电子的运动用波函数描述,能量动量关系便被能量与波矢之关系所代替。 比如,我们研究脱离了原子束缚的自由电子(图 4b)。自由电子的能量E,与其波矢k的平方成正比,如果将自由电子的每个能级所对应的波矢大小也考虑进去,将波矢作为横轴的话,图4b1中的淡蓝色连续区域,就演变成了图4b2中的淡蓝色连续曲线。 用个通俗的比喻来说明这个问题。图 4b1中的连续区域中,用一条水平线表示某个电子占据了这层楼,而实际上的电子只住在这层楼的一个房间,电子所占楼层的高度还与房间离中心的距离有关,图4b2便描述了楼层高度与此距离之关系。 现在再回过头来看图 4(a),就比较明白了,那些一条一条的曲线,原来是表示在波矢空间中,硅原子电子的不同能带!不过,仍然有读者会心存疑惑:你这儿所谓的‘波矢空间’是什么意思啊? 能带论应用的最重要领域是固体,大多数固体是原子整齐排列的晶体。 为理解波矢空间,让我们再多介绍一点固体物理的基本知识。 在固体中所谓的自由电子,并不是绝对‘自由’的。每个自由电子都是在所有的晶格离子的势场以及其它所有电子的平均势场中运动。晶体中的离子形成各种规则的、周期性的排列。这种规则性和对称性,因各种材料的不同而不同。比如说,硅晶体的结构是一种面心立方结构。简单地说,面心立方晶格就是由一个一个的立方体组成,除了在立方体的顶点上各有一个硅原子(离子)之外,在 6个面的中心处还各有一个硅原子,见图5(a)。硅晶体中的自由电子就在这种原子排列构成的周期势场中运动。 图 5 很有趣。看看与晶体研究有关的几位物理学家,名字翻译成中文之后都是姓‘布’的。比如说,大家可能听过: 布拉菲晶格、布拉格反射、布洛赫波、布里渊区。罗列一遍这几个‘布’先生对 固体物理的贡献,对晶体能带的知识也就略知一二了。 第一位布先生是 200多年前出生的法国物理学家奥古斯特·布拉菲(AugusteBravais,1811年-1863年)。尽管早在16世纪后期,人们就对晶体外在表现的规则形状有了初浅的认识,但直到有了原子模型之后,科学家们才开始根据晶体的外部形状,揣摩它们的内部结构,试图给出原子在物体中规则排列的各种可能性。正是这位布拉菲先生,首次将群的概念应用到物理学,于1845年得出了三维晶体原子排列的7大晶系和所有14种可能存在的点阵结构,为固体物理学做出了奠基性的贡献 【 1】 。 布拉菲建立了三维晶体的 14种点阵模型,但是,到底哪种物质晶体具有哪种点阵呢?这还得用实验一个一个地进行确定。也就是说,最好是有某种方法,打进晶体内部去‘看一看’。‘看’东西的最好手段不就是使用各种颜色的光吗,但是,普通的光对探索晶体好像无能为力。那时候,科学家们刚刚结识了一位陌生的女士,人们把它叫做‘X-ray’,或称之为‘伦琴射线’。德国科学家威廉·伦琴(Wilhelm Röntgen,1845年-1923年),就因为苦苦追求这位‘才女’而捧走了瑞典国王第一次颁发的诺贝尔物理奖。尽管伦琴很谦虚、很低调,尽管他全部捐出了诺贝尔奖金,放弃了发现X射线的专利权,也坚决反对用他的名字命名此位‘女士’,但人们经常还是固执地称X-ray为伦琴射线,以纪念这位伟大的学者。 伦琴射线确实是才高艺广,能干很多可见光干不了的事情。诸如穿透人体显示骨骼之类的事情,她干起来得心应手,令人称羡。当时的物理学家们猜测,伦琴射线其实就是与可见光本质相同的电磁波,只不过波长更短得多而已。但如何证明这点呢?要证明波动性的最好方法就是让它产生干涉或衍射图案,像可见光经过光栅时产生衍射那样。但人们做不出这种光栅,因为尺寸太小了!光栅只对与其尺寸大小相仿的波动表现出衍射现象。这也和显微镜分辨率的概念一样:要想看清物体,必须使用波长小于或等于物体尺寸大小的光。而要观察波长范围在 0.01纳米到10纳米之间的伦琴射线的波动性,需要用原子尺度的光栅! 科学家又想,晶体结构不就是一种 原子尺度的光栅吗?最早做这件事情的是德国物理学家马克思·冯·劳厄( Max von Laue,1879年—1960年),他因此而得了1914年的诺贝尔物理奖。后来,这个领域又加入了两位‘布’先生,还是父子兵共同上阵,他们是亨利•布拉格(Sir WilliamHenry Bragg, 1862-1942)和他的儿子劳伦斯•布拉格(Sir William Lawrence Bragg,1890--1971)。最后,这布拉格父子分享了1915年的、原来传说要颁给特斯拉的诺贝尔物理奖,这是唯一一次父子同上诺贝尔讲台领奖,被传为佳话,并且,小布拉格当时只有25岁,是迄今为止最年轻的诺贝尔奖得主。 布拉格父子所做的诺奖级贡献,其实看起来很简单。如果说劳厄的工作证实了 x射线是一种电磁波,布拉格父子则是用这种电磁波,开创了x射线晶体结构分析学,为后人用x射线,以及电子波、中子波等,研究晶体结构,建立了理论基础。图6(a)是布拉格反射定律的示意图,由图可见,对某个入射角 θ , 如果从两个距离为 d 的 平行晶面反射的两束波之间的光程差,正好等于波长 λ 的整数倍时,便符合两束波互相干涉而加强的条件: 2 d sin θ = n λ ,另外一些角度,则可能 符合两束波互相干涉而相消的条件,这样,我们就能在接受屏上观察到衍射图像。 图 6 图7-2.pdf 上一篇:能级和能带(1) 系列科普目录 下一篇: 倒格子空间
个人分类: 系列科普|27385 次阅读|30 个评论
X射线晶体分析方法的新突破
热度 5 zhpd55 2013-4-7 17:05
化学结晶学中X射线晶体分析方法的新突破 诸平 X 射线晶体学是一门利用 X 射线 来研究 晶体 中 原子 排列的学科。更准确地说,利用 电子 对 X 射线的 散射 作用, X 射线晶体学可以获得晶体中 电子 密度的分布情况,再从中分析获得原子的位置信息,即 晶体结构 。由于所有的原子都含有电子,并且 X 射线 的 波长 范围为 0.001 - 10nm ,其波长与成键原子之间的距离( 0.1~0.2nm 附近)可比,因此 X 射线可用于研究各类分子的结构。但是,到目前为止还不能用 X 射线对单个的分子成像,因为没有 X 射线 透镜 可以聚焦 X 射线,而且 X 射线对单个分子的 衍射 能力非常弱,无法被探测。而晶体(一般为 单晶 )中含有数量巨大的方位相同的分子, X 射线对这些分子的衍射叠加在一起就能够产生足以被探测的信号。从这个意义上说,晶体就是一个 X 射线的信号放大器。 X 射线晶体学将 X 射线与 晶体学 联系在一起,从而可以对各类 晶体结构 进行研究,特别是 蛋白质 晶体结构。但是这种方法的局限性就是必须首先得到待测定物质的单晶,然后才有可能进行晶体结构研究,对于那些无法得到或者所得晶体微乎其微的物质而言, X 射线衍射法分析就显得无能为力。 但是东京大学( UniversityofTokyo ) MakotoFujita 教授领导的研究小组与芬兰 捷瓦斯基拉大学( UniversityofJyvskyl ) KariRissanen 教授合作完成了一项研究成果,在单晶 X 射线分析研究方面已经取得了根本性的突破—— YasuhideInokuma,ShotaYoshioka,JunkoAriyoshi,TatsuhikoArai,YukiHitora, KentaroTakada,ShigekiMatsunaga,KariRissanenMakotoFujita. X-rayanalysisonthenanogramtomicrogramscaleusingporouscomplexes . Nature , Volume:495,Pages:461–466.Datepublished:28March2013.doi: 10.1038/nature11990 . 他们克服了 X 射线分析确定晶体分子结构必须使用单晶的局限性,完全颠覆传统的 X 射线单晶衍射 (SCD) 分析方法,创建了一种 SCD 分析的新方法,而且并不需要靶分子结晶。在这种方法中 , 一种非常小的多孔复合晶体从溶液中吸收目标分子 , 使被吸附的客体(目标分子)与主体框架结构一并进行晶体分析。仅用边长 0.1mm 的晶体( 0.1×0.1×0.1mm )即可进行 SCD 分析,需要目标分子的质量可低至 80ng 。 MakotoFujita 教授和 KariRissanen 教授的研究报告,测定了稀缺海洋天然产物的结构,仅仅使用了 5g 的样品。对于化学家而言,许多自然的或者人工合成的化合物因为数量太少,此前根本无法进行分析测试,不得不选择放弃研究,但是,现在不同了,通过采用这种新方法可以轻松而精确地进行晶体结构研究。更多信息敬请浏览物理学家组织网( Phys.org ) 2013 年 4 月 5 日 的报道,或者日本和芬兰相关大学的网站、芬兰科学院网站( AcademyofFinland )等报道,也可以直接浏览原文(见上述)。
个人分类: 新科技|8193 次阅读|11 个评论
用x射线的积分流量计算单色流量(IDL程序)
deliangwang 2013-2-2 20:20
FUNCTION flux_mono_x,flux,en1=en1,en2=en2,en0=en0,powerindex=powerindex ;+ ;NAME: ; flux_x ;PURPOSE: ; compute single-color flux from flux ;CALLING SEQURE: ; result=flux_mono_x(flux,en1=en1,en2=en2,en0=en0,powerindex=powerindex) ; ;INPUT: ; flux - flux in erg/s/cm^2 ;OPTIONAL KEYWORD INPUT: ; e2 - energy for the end of band in keV ; e1 - energy for the start of band in keV ; e0 - energy for the needed data of band in keV ; powerindex - power law index ; ;OUTPUT: ; flux_v - single-color flux in erg/s/cm^2/Hz ; ;REVISON HISTORY ; Original by D L.Wang,15-Nov-2006 ; rewrite by D L.Wang,3-Nov-2011 ;- ;-----------------; ;Trans keV to erg ; ;-----------------; keV=2.417988D+17 ;Hz ;--------------------; ;compute single flux ; ;--------------------; Ae0=flux index=where(powerindex eq 1.0,nu,complement=indey) if nu gt 0 then begin Ae0 =flux /alog(en2/en1) endif else begin ss=1.0D0-powerindex C0=(en2^ss-en1^ss)/ss Ae0 =flux /C0 endelse flux_v=Ae0/(en0^powerindex)/keV return,flux_v end
个人分类: 编程笔记|3090 次阅读|0 个评论
劳埃发现X射线衍射——一只青椒的凤凰涅磐
热度 3 adzhao 2012-6-10 22:14
劳埃发现X射线衍射——一只青椒的凤凰涅磐
补充一些: 前面一篇博文中说到物理全才劳埃在索墨菲组里当苦逼青椒,被拉着写百科全书。还好遇到优质科学青年Ewald,俩人惺惺相惜情不自禁,一散步深谈,超级诺贝尔奖级的火花就在劳埃脑海里闪现了。 可是根据十分可靠的历史文档,劳埃当时和索墨菲关系可是相当糟糕,这个可以有索墨菲留下的通信为证。当劳埃想让索墨菲支持他做X射线衍射的想法时,索墨菲一口拒绝了。人们禁不住想:索墨菲拒绝劳埃是否是因为个人因素?这就不得而知了。从当时索墨菲的物理思想来看,他反对劳埃的实验应该还是从科学论证上考虑的。 不管什么原因,在劳埃自己拉人马做出X射线衍射后,索墨菲却表现得十分“热心”(根据文献的报道),5月4日确认劳埃等的成果后,索墨菲在巴伐利亚科学院赶紧把劳埃等三人的研究成果封存,用于保护研究其成果的优先权。这份note完整保存下来,请看下图: 很清楚,这张note上就写了三个名字,做实验的俩小伙,以及劳埃。索墨菲并没有具名。 索墨菲在后来陈述X射线发现时,明确指出:idea是劳埃想的,实验是俩小伙做的。 苦逼青椒在大老板手下凤凰涅磐,劳埃1912年发现X射线衍射,1914年就因此获得诺贝尔物理学奖,这种坐火箭的速度在诺贝尔历史上都是十分少见的。诺贝尔奖单独颁给了劳埃,并没有出现索墨菲和两位实验科学家的名字。 一个理论研究所,做出了举世瞩目的实验结果,真乃奇人异事,令人感叹不已。 所以说,索墨菲这人,其实真是一个不错的大老板。虽然他在那张note里将他的学生名字写在最前头,但那应该是按照姓氏首字母所排列。 (翻译改编自“The discovery of the diffraction of X-ray by crystals; A critique of the myths”Paul, Forman Communicated by S.G. Brush)
个人分类: 科海拾贝|8576 次阅读|4 个评论
说说劳埃发现X射线衍射时代的事儿
热度 5 liwei999 2012-6-9 17:17
说说一百年前劳埃发现X射线衍射时代前后的事儿。 作者: mirror (*) 日期: 06/09/2012 03:45:32 一百年前的事儿了,都成了往事儿,误传的故事就多了。尤其是这些故事经外行人的传播,越来越离谱。作为科学网,能有 人记起这些事儿来, X-射线衍射发现100周年 , 纪念X射线衍射发现100周年 ,很是令人欣慰。 这个一百周年不如 伦琴 发现X射线一百周年动静大。毕竟伦琴是第一个炸药奖的得主。遵照伦琴的遗嘱,有关X射线发现的所有笔记都付之一炬了。这让后人留下了很多想象的空间。因为当时主张发现X射线的有不少人,争议不会小于发现青蒿素的屠呦呦等人。 劳厄本人是贵族出身,von是个身份的标帜。所以,娶个漂亮的夫人很是“正常”。劳厄在 索末菲 手下当私讲师,厄瓦尔德是索末菲的博士生,名字留在了X衍射的厄瓦尔德球面的术语里。厄瓦尔德在纪念X射线衍射发现50周年的文章里,有过这样的描述 Quote 他却发现劳厄听讲心不在焉,劳厄又一次问振子之间的距离,当得到相同的回答时,劳厄问道:假如用短得多的电磁波穿越晶体,会怎样呢?” 这样的思考,导致的劳厄的发现。这类故事网上可以查到很多。对于国人,也许思考一下需要什么样的条件才能做这个实验会有益得多。比如多少时间曝光?X光的胶片是什么样子的?X光机的功率如何等等,这些真正才是需要信息。 晶体是个什么样子?原子又是什么样子?这也是那个时代的前沿问题。1909年里卢瑟福根据阿尔法散射的实验结果发表了 卢瑟福原子模型 ,但是古典电磁学理论不支持这个模型。化学人理解的原子是中性的球,里面有电子这类的模型。人们有晶体是由原子排列组成的模型,但是并没有实验的验证。而劳厄衍射的意义第一,证明了X射线是电磁波,第二,证明了晶体是由原子点阵形成的。 这是1912年的CuZn晶体的劳厄衍射照片。凭借这个开创性的工作两年后劳厄得了炸药奖。 Download 如今使用X光的人多与物理学无关。他们也很忙,也没有机会了解当初发生的事情。 小布拉格的教科书 里对那段时间里的工作有个很好的描述。老布拉格原本认为X射线是粒子的一派人物。因为他在 威尔逊云雾室 里可以看到X射线引起的电离轨迹。这与阿尔法线、贝塔线是一样的。直到知道了劳厄的报告。一般人都认为布拉格父子的得奖是因为那个有名的布拉格公式2dsinθ=nλ,其实不然。因为这个公式与劳厄的公式是等价的,并没有什么新意。这个事情以前在教育“小屁孩儿”们的时候说过。小布拉格得奖的理由在于他从晶格模型(劳厄的结果和化学界的“常识”模型)、晶体密度和阿伏伽德罗常数 推算出了晶格的尺寸 。老布拉格则是利用这个尺寸,通过测衍射角决定了X射线的波长,也就开辟了X射线领域里的谱学。这种工作都是所谓的 原始创新 ,是前人没有做(到)过的事情。 用X射线衍射的方法看晶体的结构,这在今天养活了成千上万的研究人员,尤其是当下流行的“结构生物学”,就是用现代的X射线做衍射,决定蛋白质巨大分子的结构。今天英国在晶体结构分析领域依然领先的地位,是小布拉格时代里打下的。人们幻想着能象今天的有机化学那样,在生物大分子层里设计、制造各类对人有用的东西,比如说药品。这事情,可以说是科学时代的“炼丹术”和“炼金术”。 从价值的角度看,人类遗留下来的文化遗产都不是为了 赚钱 的。而 今天做研究的很大一部分,与一百年前的劳厄时代不同,是为了赚钱的、或者是鼓吹可以赚到钱的。这个模式就必然带来一个“不幸”:赚到钱了会因为赚到了钱而消失,没赚到钱又会因为没赚到钱而消失。百年过后,什么也不会留下。 卓别林有个作品叫 摩登时代 。镜某小的时候看过,不能理解。大了以后才多少有些理解了。1936年,是个汽车生产的“摩登时代”。几十年过后,如今到了科研的“摩登时代”了。研究人员的 “异化” 恐怕也只是个时间的问题了吧。 ---------- 就“是”论事儿,就“事儿”论是,就“事儿”论“事儿”。
个人分类: 镜子大全|7973 次阅读|5 个评论
与一个24岁的小伙儿说说X射线晶体学的“学问”
热度 6 liwei999 2011-9-13 09:02
与一个24岁的小伙儿说说X射线晶体学的“学问”。 作者: mirror (*) 日期: 09/12/2011 10:55:42 因为这位小伙儿与施老师是同行,因此比镜某来,他对其专业的 “蛋白质晶体学” 要理解得更深,镜某就是个“没文化真可怕”的人。 与24岁的小伙儿论“蛋白质晶体学”,镜某很担心被人认为是“欺负人”。因为刚读硕士的学生,对他所要学的学问通常不可能有什么深刻的理解。也正因为如此,才敢说“最高级的生命活动形式只有在结构生物学的水平上才能阐释它们的本质”这类不着四六的话。 把一些“高等”的名词堆砌在一起,并不是学术的常规做法,倒很像是自欺欺人的常套手段。这句话应该是这样来表达: 最高级的生命活动形式只有通过在结构生物学(分子、原子)的水平上理解,才能从根本上把握生命活动机制、规律 。 虽然不能要求一个学生对自己所学学问的定位有什么 深刻的理解 ,但是要求 正确地理解 自己所学学问并非什么特殊的要求。“(8).由结构确定蛋白功能”的提法简直就是太牛B了。若能做到这一步,根本就不需要瑞典的什么委员会的评议,依镜某“浅浮”的见识就可以判定给个炸药奖了。这句话显然应该这样说:(8).找出结构中与蛋白功能相关的部位,以及伴随着功能作用时发生的相关原子(官能团)的位置变化。 道理也很简单:在人们决定“(1).蛋白质克隆、表达、纯 化”的时候,这个蛋白质的功能就是 已知 的了(通过别的手段)。只是尚不知道蛋白质的功能与其分子结构、或者说分子中的某个官能基的相关而已。结构生物学的研究人员们还不至于“闲”到有闲功夫去探索什么 功能未知的蛋白质结构 。 很佩服小伙子敢于对着镜子说“没文化真可怕”。与老一辈蛋白质结构分析的人不同,新生代的人们对蛋白质的结构分析并没有深刻的理解。因为他们没有经历过 结构分析技术手段的建设阶段 。小布拉格对食盐的 X射线晶体学 与做蛋白质结构分析的 X射线晶体学 虽说使用了相同的“术语”,但是,两群人所做关心的事情有着根本的不同。只有做材料(研究)的人才是“名符其实”的X射线 晶体学 ,而做蛋白质结构分析的人们,不过是借用一个 X射线晶体学 的“名”,达到理解 蛋白质分子结构 的“实”。他们的最终目的与实体的“晶体学”根本就没有关系。对做蛋白质结构分析的人来说,大型的蛋白质晶体不过是为了提高信号强度的技术手段,晶体学的知识也不过是用来解析实验数据的一个方法。 同步辐射技术的进步,用几微米量级的蛋白质晶体也可以得到良好的衍射数据;计算机性能的发达,使得数据处理的速度大为提高,可以比较容易地得到蛋白质分子的电子密度图了。遗憾的是,这样的技术进步却带来了从业人员“智力”的低下。这个现象与马克思对机器文明进化过程中劳动阶级“异化”的分析也有着惊人的相似。 ---------- 就“是”论事儿,就“事儿”论是,就“事儿”论“事儿”。
个人分类: 镜子大全|3418 次阅读|8 个评论
[转载]日本已经弄出来1埃波长的硬X射线,英国建造速度更快X射线摄影机
Bleuleaf 2011-8-13 21:54
我的专业, ,激动,然后努力! 日本目前世界最短波长X射线激光装置新闻: http://xfel.riken.jp/information/index_en.html http://www.riken.go.jp/engn/r-world/research/results/2011/110607/index.html 用于揭示物质内部分子和原子 英建造拍摄速度更快X射线摄影机 http://www.cas.cn/xw/kjsm/gjdt/201108/t20110812_3321660.shtml 文章来源:科技日报 常丽君 发布时间:2011-08-12 据美国物理学家组织网近日报道,英国科技设施委员会(STFC)将和格拉斯哥大学合作,建造迄今为止拍摄速度最快的X射线摄影机:每秒450万帧, 可记录瞬间爆发的图像。将它安装于大型研究设备上,有助于从分子和原子水平揭示物质内部结构,开发新型药物及用于其他重要研究领域。 该摄影机也是英国科技设施委员会与欧洲X射线自由电子激光仪(X射线自由电子a激光仪)合作的首批实验终端设备之一,将于明年交付欧洲X射线自由电 子激光仪委员会,并于2015年开始运行。欧洲X射线自由电子激光仪委员会代表团在参观了英国科技设施委员会之后,已经签订了300万英镑的样机建造合 约。 欧洲X射线自由电子激光仪位于德国北部汉堡附近,由德国牵头,欧洲11个国家共同合作建造,总耗资达10亿欧元,设施长约3.4公里。利用超导加速 技术给电子加速,其产生的X射线闪光比传统X光源要亮10亿倍,每次闪光持续不到10亿亿分之一秒。利用这一激光高强度、短脉冲的属性,使拍摄单个分子三 维结构的X射线图像成为可能。而目前最先进的X光摄影机只有通过X光束持续不断地轰击物体才能拍摄,X射线自由电子激光仪产生的极短暂而高强度闪光并不适 合。 新的摄影机专为X射线自由电子激光仪超短超强的X光而设计,为欧洲X射线自由电子激光仪进一步发挥其强大的探测功能提供了用武之地,有助于理解物质属性,从原子水平绘制病毒结构,精确定位单个细胞的分子组成等。 英国科技设施委员会蒂姆·尼古拉斯博士指出,为X射线自由电子激光仪建造尖端摄影机设备,表明了英国在先进微电子学和高技术成像设备设计方面的能力,也将给人们的生活带来巨大变化。 欧洲X射线自由电子激光仪开发公司领导马库斯·库斯特博士表示,X射线自由电子激光仪代表了欧洲研究设备的主要进步,加上英国科技设施委员会在成像设备制造方面的先进技术,将帮助X射线自由电子激光仪发挥它最大的潜力。
个人分类: 大科学与小学科|2632 次阅读|0 个评论
求中国大陆范围内带有高温控件的X射线晶体衍射仪
wangshu 2011-5-13 13:43
温度范围在20~300度,比如说 Powder X-ray diffraction study was carried out on a Rigaku R-AXIS RAPID II imaging plate diffractometer using Cu-Kα radiation. The measurement temperatures were varied using the temperature controller Rigaku CGD-4 under N2 gas. Samples were grinded down and packed into glass capillaries.
2250 次阅读|0 个评论
[凝]你看,你看,那些X射线下的结晶
songshuhui 2011-5-7 12:02
Fujia 发表于 2011-04-25 22:11 如果可以随意拨动时间指针,那大概会是世间最有趣的游戏。 因为威廉王子的大婚,今天的英国一派欢腾鼓舞的景象。 如果向前拨动58年会怎样?——1953年4月25日《自然》杂志发表了沃森和克里克合写的《脱氧核糖核酸结构》,首次发布了DNA双螺旋结构,剑桥潺潺的河水孕育的智慧被广而告之,人类从此知晓了自然界代代繁衍生存的秘密。 如果继续拨动2年呢?——1951年的英国,废墟中的伦敦,你会见到匆匆而过的行人,脸上仍抹不去战争留下的忧伤。  (这是什么?答案稍候揭晓) 战后的西方世界,科学如火如荼地发展。此时,“大不列颠节日”(Festival of Britain)——一个全国性的科技艺术展览活动正在举行,为纪念百年前在伦敦举行的世界上第一场世博会,也为鼓舞人们投入战后英国的重建工作。科学 家,工程师,艺术家,制造商,都带着新兴的希望,纷纷涌向泰晤士河边,这其中也包括一群优秀的前沿科学家——X射线晶体学家。 若要列出“十大战后最激动人心之科技发展”,X射线晶体技术无疑将榜上有名。我们在自然光下为景物拍照,X射线晶体科学家则用X射线为晶体摄影,以窥探晶体中原子的位置排列,进而理解微观世界里的秘密。这也直接促进了DNA双螺旋结构的发现。 1912年,德国物理学家劳厄率先发现了晶体中X射线的衍射现象,并因此获得1914年诺贝尔物理学奖。此后,这个领域发展迅猛,其中最为杰出的当 为英国物理学家布拉格父子(William Bragg)。他们利用X射线衍射技术分析晶体结构,并据此提出“布拉格衍射理论”,并分享了1915年的诺贝尔物理学奖。 (老布拉格与他的研究仪器分光仪) (小布拉格早期的实验笔记) 自然的微观世界里叹为观止的奇妙结构,激活了科学家们的文艺细胞。在“大不列颠节日”展览中,科学家们将他们用X射线衍射技术所得到的结构图案交给 了艺术家与制造商,从而诞生了“节日图案项目组”(FestivalPattern Group)。包括蛋白质晶体在内的图案,从科学家们的实验室和X光的照射下走出,跃然于花布、墙纸、玻璃、餐具之上。更有伦敦泰晤士河南岸的 Regatta餐馆,以间苯二酚图案为羊毛地毯,三水铝石结晶图案为菜单花边,侍者们身着衍射图案的制服,端着胰岛素结构的盘子穿梭于客人间,科学、艺术 与生活紧密不可分。 此时已是诺奖得主的小布拉格,便是此项目爱好者。他参与绘图设计的绿宝石晶体结构图,被绣花机绣出了蕾丝花边,裁成秀丽的小礼服。1951年在斯德哥尔摩举行的国际结晶学联合会年会中,布拉格太太身着此锦衣出席会议,艳惊四座。 (由小布拉格测得的绿宝石晶体结构而制作的绣花蕾丝) (布拉格太太参加1951年国际结晶学联合会年会所着的绿宝石晶体结构裙子) 在物理与艺术边界起舞的,少不了女性柔媚的身影,剑桥大学卡文迪什实验室的海伦,梅高(Dr.Helen Dick Megaw)便带着科学家严谨的审视目光,与女性浪漫诗意的想象,成为了“节日图案项目组”的组织者,她献出的水合硅酸钙晶体结构图被制为羊毛、棉与人造 丝混纺的花布,并被裁为窗帘,悬挂于Regatta餐馆。而“大不列颠节日”的科学展馆里,则大量布置了以水合硅酸钙晶体图案为元素而设计的墙纸。梅高的 氢氧化铝晶体结构图案则被著名丝绸织造商Vanners看中,制作成贾卡机织丝绸领带,成为该展览中最为畅销的商品之一。 (海伦.梅高与她的光电测角仪,该仪器用以拍取晶体的x 射线照片。她身旁的模型为水合硅酸钙晶体结构) (梅高的水合硅酸钙晶体结构图) (以水合硅酸钙晶体结构图案所设计的花布裙子) (水合硅酸钙是一种自然结晶矿物,也可由人工制成。这个贾卡机织花布由羊毛、棉与人造丝混纺,取水合硅酸钙晶体结构为设计元素。所制成的窗帘被用于伦敦Regatta餐馆。) (“大不列颠节日”的科学展馆入口,布置了水合硅酸钙晶体图案组成的墙纸) (Vanners制作的氢氧护铝晶体结构的贾卡机织丝绸领带,为展览中最为畅销的产品之一。晶体图案由梅高提供) X射线晶体技术的魅力远不只在物理化学领域四射光芒。它还能帮助生物学家从微观结构中,探究生命的起源。剑桥大学卡文迪什实验室的马克思.佩鲁茨 (MaxPerutz) 便倾心以x射线晶体技术研究血红蛋白的结构,并由此获得1962年诺贝尔化学奖。血红蛋白本是用以运载氧的蛋白质分子,但在设计师眼中,它是可被简化的几 何构型,也是可被填色的抽象图案。除了棉制的绣花蕾丝,ICI公司还特别设计了一种血红蛋白晶体图案的墙纸,将其结构简化并扩大,使得图案更加空灵。而佩 鲁茨太太也在1951年的国际结晶学联合会议上,身着高铁血红蛋白图案的印花绉布裙子款款出席。 与佩鲁茨同享诺奖的亲密同事约翰.肯德鲁(JohnKendrew),则贡献出了肌红蛋白晶体结构图案。这种在肌肉中储存氧的蛋白分子,予ICI 公司灵感,设计出用以装饰”大不列颠英国“展览的墙纸。 (分子生物学家佩鲁茨) (血红蛋白形成的晶体) (血红蛋白晶体衍射图案) (血红蛋白:血液中携带氧的蛋白质分子) (以血红蛋白晶体结构为蓝本的棉制绣花蕾丝) (ICI公司设计的墙纸,以血红蛋白晶体结构为元素) (马的高铁血红蛋白晶体结构。在这种血红蛋白里,铁原子无法携带氧,血液呈棕色。) (佩鲁茨太太穿着的高铁血红蛋白图案的印花绉布) (马的肌红蛋白晶体结构图案,由肯德鲁提供) (ICI设计的肌红蛋白晶体结构墙纸) 梅高的好友、于1964年获得诺贝尔化学奖的牛津大学化学家多萝西.霍奇金(DorothyHodgkin),在梅高的推荐下,也将其得意之作—— 胰岛素的晶体结构图案送到“节日图案项目组”。在她笔下,这种用以降低血糖的蛋白质激素雅致而灿烂,仿似万红丛中捧出了怒放的牡丹。Regatta餐馆选 择将图案简化,配以暗色调制成墙纸,远看确似朵朵争艳的蔷薇。而展览设计师则选用另种胰岛素晶体结构,并简单排列成色彩明快的墙纸,用于“大不列颠英国” 展览的电影院墙壁。ICI公司选择了对比色,给胰岛素图案添了几分鲜艳与童稚。而Dunlop公司则很好地把握住原图的精致秀气,以桃红色淡淡勾勒出几朵 小花,更显娇嫩。 (多萝西.霍奇金绘制的胰岛素晶体结构) (由胰岛素晶体结构所制得的墙纸) ICI公司采取胰岛素结构元素制的墙纸 (“大不列颠英国”展览电影院的墙纸,以胰岛素晶体结构为元素。) (Dunlop公司设计的胰岛素晶体结构墙纸) 王尔德曾说:“艺术并非模仿生活,生活总在模仿艺术。”如果他可以穿越到1951年的伦敦,来看到艺术如何模仿微观中的自然结构,不知会做如何感 想。今天,x射线晶体学的发展推动了科学界的无数重要进展,其技术本身也早已有许多突破。然而,多年风尘也未能覆盖这些图案的熠熠闪光。科学曾经、也将一 直可以,如此美好浪漫地与艺术肩并肩,抚慰人们的创伤,赐予未来勇气与希望。 本文已发表于《艺术世界》杂志。
个人分类: 专题|1517 次阅读|0 个评论
【水煮物理】(24):X先生自传
热度 3 Penrose 2011-1-3 21:29
爱未知,不爱无知。爱穿透,也爱相干衍射。爱缤纷斑点,更爱多姿底片。不是微波,不是可见光,也不是粒子流,我是X先生。我没什么强大,我很强大。我和X战警不一样,我和你一样,请叫我X-Ray。哦,对的!X,代表未知数的X,因为X=?意味着一个有无限未知解的方程;X,代表神秘莫测的X,一群有着金刚刀、风暴眼、移形换影术等强大特异功能的变种人X战警,潜伏在正常人的身边。我,就是潜伏在自然界中的X。我在哪里,清晰的视界就在哪里。你看不见我,但我可以透视你。甚至,在你毫无知觉情况下轻松穿过你的身体。我,就是神秘的 X射线 。 我的家族叫做电磁波,我们靠电磁场交互感应传播能量,即使在什么也没有的真空,也可以光速畅行无阻。你看不见我,是因为相比我的可见光兄弟而言,我的波长要短的多。他们(可见光)波长一般在0.4~0.7微米(1微米=千分之一米)之间,而我(X射线)在0.01~1纳米(1纳米=十亿分之一米)之内。如果波长在0.1~1纳米,请叫我软X射线;如果波长在0.01~0.1纳米,请叫我硬X射线;如果波长小于0.01纳米,那我就是超硬X射线;波长再短一点的话,那是我的弟弟伽马射线(来自于原子核衰变),另一头波长长一点点的楼下是哥哥紫外线。我们都属于辐射,但我很特别。我的特别在于我的波长很短,短到了原子量级,为此我可以看到原子们是如何排列组合在一起的;我的特别还在于我的能量也很高,因此我穿透本领很强,黑纸、木料和布料都不能阻挡我的前行。好在我的能量不是特别之高,我可以透视有机生命体而不损害他们,虽然被我照射太久容易患上癌症,但我同样也可以杀死恶性肿瘤治疗癌症,我是把双刃剑。我诞生于原子内层,内层电子跃迁释放出的能量就是射线形式的我,高能量、短波长的我。我不带电,我是波,我可以衍射也可以干涉,我是纯辐射。 我存在宇宙中已经很多年,但被人类认识却仅有百余年。克鲁克斯、赫兹、特斯拉、爱迪生、劳厄、伦琴等等物理学家都研究过我。起初,在加上电压的真空管里阴极端希托夫看到过我把玻璃管壁弄出了荧光,于是人们叫我阴极射线(其实我走的是中性路线,喜欢阴柔的家伙是电子,不是我)。克鲁克斯发明了有高压电极的玻璃真空管,也看到了被我感光的照片底片。遗憾的是,他对我没有兴趣,没有继续研究下去。特斯拉摆弄克鲁克斯管的 时候,看到了我的连续体高速电子受靶极阻挡而产生连续辐射,又叫做轫致辐射。可恨的是,他忘了给我取个名字,还提醒人们我对人体有伤害。赫兹在验证电磁波存在的实验中,也曾发现我有能力穿过金属箔,不过他更喜欢笼统叫我们电磁波。终于到了1895年,属于我的时代来临了。威廉康拉德伦琴,我的发现者和命名者,忘我地在一个寂静的周五夜晚工作。他惊讶地发现,所谓的阴极射线可以让有氰亚铂酸钡涂层的屏幕发光,而包裹严实的照相底片也被该射线穿透致曝光了。这种强大的穿透能力那怕是面对15毫米厚的铝板也不在话下,只有铅板和铂板才能阻挡。伦琴的妻子安娜伦琴见丈夫深夜还在工作,于是过来看他。伦琴给妻子变了个魔术,他让安娜按住照相底片用这种未知的射线拍了第一张人体照片。底片上显影出来的是手掌里的骨头,还有象征他们爱情的结婚戒指。这意味着,不需要通过解剖就可以清楚地看到人体内部的结构,从此医生多了一副强大的眼镜,可以透过皮肉看到骨骼看到体内是否有病变。伦琴兴奋地把这种未知射线命名为X射线,因为X代表未知数。从此,我有了名字,我的名字含义是未知。1895年12月,伦琴在Physical-Medical Society 杂志上发表了第一篇关于X射线的论文。之后,引发了科学界对射线研究的一轮热潮,在短短一年里发表的关于X射线研究的论文就有一千多篇。其中有一位叫贝克勒尔的家伙,发现了更多的射线,我的兄弟阿尔法射线、伽马射线和贝塔射线们相继被人们所认识。而居里夫人和他的丈夫从自然界提取了镭和钋,发现了天然放射性。以此为基础,卢瑟福用加速粒子轰击原子,发现了原子内部的结构,用新的理念打开了人们对微观世界研究的大门。这些人,都是诺贝尔奖获得者,不愧为顶尖的物理学家。而伦琴,我的发现者,是第一届(1901年)诺贝尔物理学奖。他有些很低调,有人非要改称我为伦琴射线,也有人要出高价购买X射线技术应用于医学(仅在X射线发现后四天,美国医生就用它找到了病人腿上的子弹),然而伦琴却淡淡一笑道:我的发现属于全人类。伦琴拒绝了巴伐利亚贵族院给他的贵族称号,也全额捐出了诺贝尔奖金,没有去申请X射线的专利权。爱迪生为此深受感动,他的发明工厂配合X射线接受发明了一种极好的荧光屏,使得X射线技术更为廉价和方便,这项发明爱迪生也没有申请专利权。此外,在发现我的光芒之下,伦琴还有许多重要的物理研究工作,如对电介质在充电的电容器中运动时的磁效应、气体的比热容、晶体的导热性、热释电和压电现象、光的偏振面在气体中的旋转、光与电的 关系、物质的弹性、毛细现象等。1923年 2月10日,伦琴在慕尼黑去世,他为全人类留下了一笔无尽的财富。 要制造我并不难。你需要一个真空密封的玻璃管,一端是灯丝状的阳极,一端是平板金属做的阴极。两端加上高电压,就会发生高速电子撞击到金属平板靶上。电子能量足够高就可以把金属内部的电子打出来而在原子内层轨道留下空穴,外层电子跃迁回到内层填补空穴的同时就会放出辐射也就是X射线我。由于高速电子撞击金属靶会发热,所以金属靶一端需要用水来冷却。早期的X射线管体积较大也容易碎,现代的X射线管已经精简到一根圆珠笔的长度了。入射电子能量较低时,可以产生与靶材无光的连续光谱X射线辐射轫致辐射,而不同内层电子跃迁产生的离散辐射谱则重叠在连续谱背景上形成特征辐射X射线标识谱。每个元素都有独特电子排布方式,因此也具有独特的一套X射线标识谱,通过测量靶材的标识谱就可以得到靶材含有元素的信息。现代的X射线仪器中的光源已经大大改进,功率也大为提高。根据麦克斯韦方程组可以推出,自由电子在高速运动过程中若改变运动方向则会同时辐射电磁波,这类在同步加速器上发现的辐射被称为同步辐射。同步辐射光源具有强度高、连续性好、光束准直好、光束截面积极小并具有时间脉波性与偏振性等诸多优势,是目前光谱学研究的最佳光源之一,X射线也属于这类光源其中一小段波长区间。中国在上海也建设了居于世界先进水平的同步辐射光源上海光源,目前一些束线站已经投入使用。 自从我被人类发现以来就备受关注,然而我的用武之地不仅仅限于拍摄透视的X光片。真正将我的功用发扬光大的科学家,是劳厄和布拉格父子。德国科学家劳厄先后就读于斯特拉斯堡、格丁根、慕尼黑和柏林等几所大学,聆听过诸如希尔伯特和普朗克等大师的课程。在慕尼黑大学,劳厄和索莫菲的学生开展了关于X射线的研究。因为X射线能够用于拍摄木头里的钉子或是手掌里的骨头,许多科学家认为我应该属于一种特殊的光线,也就波的一种。但要证明我的波动性,就必须有衍射和干涉等性质,由于我的波长只是可见光的千分之一,要靠人工制作相当于如此尺寸的光栅是不可能的。聪明过人的劳厄意识到,自然界中晶体内部原子就是规则排列的,如果晶体中原子间隙合适,就可以作为X射线的光栅。只是因为晶体里存在许多层原子,等同于许多层光栅的叠加,这将使得衍射的图样非常复杂。尽管这个想法受到老板索莫菲的嘲笑,但劳厄他们还是在1912年成功做了这个实验。他们将垂直于晶轴切割的硫化锌平行晶片放在 X射线源和照相底片之间,果然发现照相底片上出现规则排列的衍射斑点。这项伟大的发现证实了我的波动性,同时提供了一种更为强大的实验工具利用固定波长的X射线可以探测晶体内部原子排布情况,人们从此可以看到晶体中原子的排列。不过要从复杂的晶体衍射斑点推演出晶体内部结构却不是件容易的事情。亨利布拉格(父)和劳伦斯布拉格(子)为此做出数学上的精巧推导,他们发现如果把有序排布的原子层当做光栅,那么不同原子层之间的入射和反射的光程差就会和原子层的间距直接相关,当光程差为入射波的整数倍时,出射光就不会因干涉而被消光从而形成衍射斑点。据此他们推导出了布拉格方程2dsin=n。利用这么简洁的一个数学模型工具,布拉格父子从已有的氯化钠的晶体结构模型面心立方型栅格离子晶体完美解释了X射线衍射斑点的分布。在氯化钠晶体中,每个钠离子被六个等距离的氯离子包围,每个氯离子被六个等距离的钠离子包围,而不存在单独的氯化钠分子。这一发现震惊了理论化学界,并立即引起了人们对岩盐在溶液中行为的思考。他们随后又解出了金刚石的结构是碳原子组成的正四面体构成。进一步的实验证实,晶体的X射线衍射花样与晶体中原子的空间排布互为傅里叶变换关系。劳厄和布拉格父子对X射线的研究诞生了一门新的技术X射线衍射技术,它使得材料内部的原子排布不再神秘所有的材料在我的强大照射下,都是可以看穿的。1915年,劳厄、老布拉格和小布拉格一起站到了诺贝尔物理学奖的领奖台上,分享这一伟大的殊荣。 说完了我的历史故事,该说说我的强大能力是什么了。 能力一:晶体结构分析。我的波长在0.01~1纳米之间,这正好相当于原子的大小以及固体中原子的间距。我的波长和电子的波长相当,不同的是,电子具有静止质量而我没有。那么当我入射到固体材料中是,里面的大量电子将把我散射出来,每个原子里的电子对我的散射形成叠加就相当于原子对我的散射,而每层规则排列的原子对我的散射叠加就相当于原子平面对我的反射。根据布拉格方程,对于特定波长的入射光,只会在某些角度有特定的出射光,这些角度对应着不同特征原子层间距,通过标示出这些原子层就可以推导出晶体中可能的原子排列方式。对于单晶材料(固体的内部原子在三维空间具有同一周期性规则的长程有序排列,即整个三维空间点阵为一套空间格子),我可以在底片上留下规则的衍射斑点,采用傅里叶变换就可以得到原子的排列方式。改换不同的入射和出射方向,就可以得知晶体内部原子的三维空间排布方式;对于多晶材料(由诸多取向不同的小颗粒单晶组成),则可以测量不同衍射角下出射峰并推断其属于哪个原子层,不同的材料将有自己独特的一套衍射峰分布。如果建立一套多晶衍射数据库,里面有各种晶体结构的标准衍射数据,那么通过核对就可以轻松推断出晶体中的原子排布结构。这套衍射数据库现在被称为粉末X射线衍射卡片库(PCPDF软件),是材料学研究中最重要的数据库之一。如DNA复杂的双螺旋结构,正是通过X射线衍射研究清楚的。 能力二:元素成分分析。X射线管内靶材可以发射和靶材料有关的一系列特征谱X射线标识谱,不同的元素具有各自独特的核外电子排布,因此就会有一系列独特的X射线标识谱。如果把需要研究的材料当做靶材,用高能电子去轰击它就可以得到许多套标识谱,通过标示这些谱线就可以分析出材料中含有的元素成分。而通过谱权重(即特征谱线的面积)的分析就可以大致得出材料中元素的原子配比。类似的原理,我们还可以对离子晶体中离子的化学价态进行分析。通过一系列的分析,我们就可以得出新材料的元素组成和原子排布方式,从微观上探测清楚材料的性质。 能力三:有机物的动力学过程观测。对于长程有序的晶体材料,X射线可以给出离散的衍射点分布,而对于短程有序的有机生物大分子,X射线给出的是一些规律分布的衍射斑。一些生物大分子在外加条件如温度、电场、磁场等环境改变时会形成不同的排列方式,而通过观测它们的X射线衍射斑就可以知道这些过程是如何发生的。能力四:固体材料中微观动力学研究。如果出射X射线和入射X射线能量存在变化,那就意味着X射线在材料中吸收或者失去了一定的能量。损失X射线的能量尺度正好相当于固体材料中原子-原子相互作用、原子-电子相互作用、电子-电子相互作用这些作用力的能量,那么通过测量不同能量损失的X射线分布,就可以认识材料中微观动力学过程。这些研究将促进对材料的力、热、光、电磁等性质的物理机制的理解。 能力五:生物透视与人体透视。由于我的强大能量,可以轻松穿透一些材料,那就可以无损伤探测生命体内部结构。如研究动物的骨骼分布,探测植物的生长情况等等。在医学上的应用就是医学影像学,通过X射线照射拍出的底片,可以看出体内病变的地方,可以看到胎儿在母亲体内的位置。借助计算机,还可以把不同角度的X射线影像合成成三维图像,这就是所谓电脑断层扫描(CT扫描)。在机场等地方的安检台其实就是一个X射线仪。由于X射线毕竟是高能辐射的一种,长期大剂量的辐射会影响人体的健康,故如今英美国家推广的全身安检扫描仪实际上是太赫兹射线扫描仪,它可以清晰地看到你身上密度较大的地方,一些金属材料如枪支弹药刀具等等就无处藏身了。X射线的透视功能还可以用于工业探伤,即在不破坏加工出来的零件前提下,探测内部是否存在加工缺陷。不过对于金属材料零件,则需要能量更高的伽马射线。 能力六:考古和宇宙学研究。X射线还可以用于考古,它可以不破坏棺木的前提下扫面木乃伊的形态,也可以研究油画的创作过程。如图中卡拉瓦乔在17世纪代表作牧羊人的朝拜X射线照片,就可以看出作者在绘画过程中做的任何改动。我们宇宙起源于135亿年前的一次大爆炸,而宇宙中许多强烈的天文现象都会发出X射线,图中给出了美国宇航局爱因斯坦望远镜拍摄的一张X射线照片。X射线天文望远镜可以看到恒星如何被黑洞绞碎,星系间的碰撞,超新星和中子星的诞生等等过程。除此之外,我X射线还具有许多应用,在此就不一一介绍了。 在结束我的自传之前,我非常乐意跟你一起分享人们拍的一些X射线艺术照。需要声明的是,这些并不是实物拍摄的X光照片,只是艺术加工出来的虚构照片,所以请你不要太较真。在这些给力的艺术照里:Linux企鹅有着一副类人的骨架,米老鼠带着她的大耳朵,卡通外星人的脑壳里其实是个小脑子,键盘里是复杂的电子元件,高跟鞋里是严重畸形的脚后跟,写字楼里到处都是忙碌的人们,洗澡的女人和抽烟的男人都被暴露无遗,性感的女模也不过是一副副白骨精,彩色X射线人体艺术更是丰富地展示了女模的内在。这些艺术照告诉我们,透过浮华的表面看共通的内在,展现出来的是另一个全新的世界。
个人分类: 水煮物理|16979 次阅读|14 个评论
[转载]11月8日---x射线发现115周年纪念日
毛宁波 2010-11-8 09:35
1895年11月8日,是德国科学家伦琴开始进行阴极射线研究的日子。1901年伦琴因为发现x射线及其应用获得诺贝尔物理学奖。今天是X射线发现115周年纪念日,Google的logo也闪烁着X射线呢。 2010-11-08日google的主页 有关x射线的详细资料见维基百科网站: http://en.wikipedia.org/wiki/X-ray X-ray From Wikipedia, the free encyclopedia Jump to: navigation , search This article is about the form of radiation. For the method of imaging, see Radiography . For imaging in a medical context, see Radiology . For other uses, see X-ray (disambiguation) . Not to be confused with X-wave . X-rays are part of the electromagnetic spectrum . X-radiation (composed of X-rays ) is a form of electromagnetic radiation . X-rays have a wavelength in the range of 0.01 to 10 nanometers , corresponding to frequencies in the range 30 petahertz to 30 exahertz (3 10 16 Hz to 3 10 19 Hz) and energies in the range 120 eV to 120 keV . They are shorter in wavelength than UV rays and longer than gamma rays . In many languages, X-radiation is called Rntgen radiation , after Wilhelm Conrad Rntgen , who is generally credited as their discoverer, and who had named them X-rays to signify an unknown type of radiation. :12 Correct spelling of X-ray(s) in the English language includes the variants x-ray(s) and X ray(s). XRAY is used as a communications code word for the letter x. X-rays from about 0.12 to 12 keV (10 to 0.10nm wavelength) are classified as soft X-rays, and from about 12 to 120 keV (0.10 to 0.01nm wavelength) as hard X-rays, due to their penetrating abilities. Hard X-rays can penetrate solid objects, and their most common use is to take images of the inside of objects in diagnostic radiography and crystallography . As a result, the term X-ray is metonymically used to refer to a radiographic image produced using this method, in addition to the method itself. By contrast, soft X-rays can hardly be said to penetrate matter at all; for instance, the attenuation length of 600 eV (~ 2nm) x-rays in water is less than 1 micrometer. X-rays are a form of ionizing radiation , and exposure to them can be a health hazard. The distinction between X-rays and gamma rays has changed in recent decades. Originally, the electromagnetic radiation emitted by X-ray tubes had a longer wavelength than the radiation emitted by radioactive nuclei (gamma rays). Older literature distinguished between X- and gamma radiation on the basis of wavelength, with radiation shorter than some arbitrary wavelength, such as 10 11 m, defined as gamma rays. However, as shorter wavelength continuous spectrum X-ray sources such as linear accelerators and longer wavelength gamma ray emitters were discovered, the wavelength bands largely overlapped. The two types of radiation are now usually distinguished by their origin: X-rays are emitted by electrons outside the nucleus, while gamma rays are emitted by the nucleus . Contents 1 Units of measure and exposure 2 Sources 3 Detectors 3.1 Photographic plate 3.2 Photostimulable phosphors (PSPs) 3.3 Geiger counter 3.4 Scintillators 3.5 Image intensification 3.6 Direct semiconductor detectors 3.7 Scintillator plus semiconductor detectors (indirect detection) 3.8 Visibility to the human eye 4 Medical uses 4.1 Risks of medical diagnostic X-rays 5 Shielding against X-Rays 6 Other uses 7 History 7.1 Discovery 7.1.1 Johann Hittorf 7.1.2 Ivan Pulyui 7.1.3 Nikola Tesla 7.1.4 Fernando Sanford 7.1.5 Philipp Lenard 7.1.6 Wilhelm Rntgen 7.1.7 Thomas Edison 7.1.8 Frank Austin and the Frost brothers 7.2 The 20th century and beyond 8 See also 9 Notes 10 References 11 External links // Units of measure and exposure The measure of X-rays ionizing ability is called the exposure: The coulomb per kilogram (C/kg) is the SI unit of ionizing radiation exposure, and it is the amount of radiation required to create one coulomb of charge of each polarity in one kilogram of matter. The roentgen (R) is an obsolete traditional unit of exposure, which represented the amount of radiation required to create one electrostatic unit of charge of each polarity in one cubic centimeter of dry air. 1.00 roentgen = 2.5810 4 C/kg However, the effect of ionizing radiation on matter (especially living tissue) is more closely related to the amount of energy deposited into them rather than the charge generated . This measure of energy absorbed is called the absorbed dose : The gray (Gy), which has units of (Joules/kilogram), is the SI unit of absorbed dose , and it is the amount of radiation required to deposit one joule of energy in one kilogram of any kind of matter. The rad is the (obsolete) corresponding traditional unit, equal to 10 millijoules of energy deposited per kilogram. 100 rad = 1.00 gray. The equivalent dose is the measure of the biological effect of radiation on human tissue. For X-rays it is equal to the absorbed dose . The sievert (Sv) is the SI unit of equivalent dose, which for X-rays is numerically equal to the gray (Gy). The Roentgen equivalent man (rem) is the traditional unit of equivalent dose. For X-rays it is equal to the rad or 10 millijoules of energy deposited per kilogram. 1.00 Sv = 100 rem. Medical X-rays are a significant source of manmade radiation exposure, accounting for 58% in the United States in 1987, but since most radiation exposure is natural (82%), medical X-rays only account for 10% of total American radiation exposure. Reported dosage due to dental X-rays seems to vary significantly. Depending on the source, a typical dental X-ray of a human results in an exposure of perhaps, 3, 40, 300, or as many as 900 mrems (30 to 9,000 Sv ). Sources X-ray K-series spectral line wavelengths (nm) for some common target materials. Target K? K? K? K? Fe 0.17566 0.17442 0.193604 0.193998 Co 0.162079 0.160891 0.178897 0.179285 Ni 0.15001 0.14886 0.165791 0.166175 Cu 0.139222 0.138109 0.154056 0.154439 Zr 0.070173 0.068993 0.078593 0.079015 Mo 0.063229 0.062099 0.070930 0.071359 Hand mit Ringen (Hand with Rings): print of Wilhelm Rntgen's first medical X-ray, of his wife's hand, taken on 22 December 1895 and presented to Professor Ludwig Zehnder of the Physik Institut, University of Freiburg , on 1 January 1896 X-rays are generated by an X-ray tube , a vacuum tube that uses a high voltage to accelerate the electrons released by a hot cathode to a high velocity. The high velocity electrons collide with a metal target, the anode , creating the X-rays. In medical X-ray tubes the target is usually tungsten or a more crack-resistant alloy of rhenium (5%) and tungsten (95%), but sometimes molybdenum for more specialized applications, such as when soft X-rays are needed as in mammography. In crystallography, a copper target is most common, with cobalt often being used when fluorescence from iron content in the sample might otherwise present a problem. The maximum energy of the produced X-ray photon is limited by the energy of the incident electron, which is equal to the voltage on the tube, so an 80kV tube cannot create X-rays with an energy greater than 80keV. When the electrons hit the target, X-rays are created by two different atomic processes: X-ray fluorescence : If the electron has enough energy it can knock an orbital electron out of the inner electron shell of a metal atom, and as a result electrons from higher energy levels then fill up the vacancy and X-ray photons are emitted. This process produces an emission spectrum of X-rays at a few discrete frequencies, sometimes referred to as the spectral lines. The spectral lines generated depend on the target (anode) element used and thus are called characteristic lines. Usually these are transitions from upper shells into K shell (called K lines ), into L shell (called L lines) and so on. Bremsstrahlung : This is radiation given off by the electrons as they are scattered by the strong electric field near the high- Z ( proton number) nuclei. These X-rays have a continuous spectrum . The intensity of the X-rays increases linearly with decreasing frequency, from zero at the energy of the incident electrons, the voltage on the X-ray tube . So the resulting output of a tube consists of a continuous bremsstrahlung spectrum falling off to zero at the tube voltage, plus several spikes at the characteristic lines. The voltages used in diagnostic X-ray tubes, and thus the highest energies of the X-rays, range from roughly 20 to 150 kV. Both of these X-ray production processes are very inefficient, with a production efficiency of only about one percent, and hence, to produce a usable flux of X-rays, most of the electric power consumed by the tube is released as waste heat. The X-ray tube must be designed to dissipate this excess heat. In medical diagnostic applications, the low energy (soft) X-rays are unwanted, since they are totally absorbed by the body, increasing the dose. Hence, a thin metal sheet, often of aluminum, called an X-ray filter , is usually placed over the window of the X-ray tube, filtering out the low energy components in the spectrum. This is called hardening the beam. Radiographs obtained using X-rays can be used to identify a wide spectrum of pathologies. Because the body structures being imaged in medical applications are large compared to the wavelength of the X-rays, the X-rays can be analyzed as particles rather than waves. (This is in contrast to X-ray crystallography , where their wave-like nature is more important because the wavelength is comparable to the sizes of the structures being imaged.) To make an X-ray image of human or animal bones, short X-ray pulses illuminate the body or limb, with radiographic film placed behind it. Any bones that are present absorb most of the X-ray photons by photoelectric processes. This is because bones have a higher electron density than soft tissues. Note that bones contain a high percentage of calcium (20 electrons per atom), potassium (19 electrons per atom) magnesium (12 electrons per atom), and phosphorus (15 electrons per atom). The X-rays that pass through the flesh leave a latent image in the photographic film . When the film is developed, the parts of the image corresponding to higher X-ray exposure are dark, leaving a white shadow of bones on the film. To generate an image of the cardiovascular system, including the arteries and veins ( angiography ) an initial image is taken of the anatomical region of interest. A second image is then taken of the same region after iodinated contrast material has been injected into the blood vessels within this area. These two images are then digitally subtracted, leaving an image of only the iodinated contrast outlining the blood vessels. The radiologist or surgeon then compares the image obtained to normal anatomical images to determine if there is any damage or blockage of the vessel. A specialized source of X-rays which is becoming widely used in research is synchrotron radiation , which is generated by particle accelerators . Its unique features are X-ray outputs many orders of magnitude greater than those of X-ray tubes, wide X-ray spectra, excellent collimation , and linear polarization . Detectors Photographic plate The detection of X-rays is based on various methods. The most commonly known methods are photographic plates , photographic film in cassettes, and rare earth screens. Regardless of what is catching the image, they are all categorized as Image Receptors (IR). Before the advent of the digital computer and before the invention of digital imaging, photographic plates were used to produce most radiographic images. The images were produced right on the glass plates. Photographic film largely replaced these plates, and it was used in X-ray laboratories to produce medical images. In more recent years, computerized and digital radiography has been replacing photographic film in medical and dental applications, though film technology remains in widespread use in industrial radiography processes (e.g. to inspect welded seams). Photographic plates are mostly things of history, and their replacement, the intensifying screen, is also fading into history. The metal silver (formerly necessary to the radiographic photographic industries) is a non-renewable resource. Thus it is beneficial that this is now being replaced by digital (DR) and computed (CR) technology. Where photographic films required wet processing facilities, these new technologies do not. The digital archiving of images utilizing these new technologies also saves storage space. Since photographic plates are sensitive to X-rays, they provide a means of recording the image, but they also required much X-ray exposure (to the patient), hence intensifying screens were devised. They allow a lower dose to the patient, because the screens take the X-ray information and intensify it so that it can be recorded on film positioned next to the intensifying screen. The part of the patient to be X-rayed is placed between the X-ray source and the image receptor to produce a shadow of the internal structure of that particular part of the body. X-rays are partially blocked (attenuated) by dense tissues such as bone, and pass more easily through soft tissues. Areas where the X-rays strike darken when developed, causing bones to appear lighter than the surrounding soft tissue. Contrast compounds containing barium or iodine , which are radiopaque , can be ingested in the gastrointestinal tract (barium) or injected in the artery or veins to highlight these vessels. The contrast compounds have high atomic numbered elements in them that (like bone) essentially block the X-rays and hence the once hollow organ or vessel can be more readily seen. In the pursuit of a non-toxic contrast material, many types of high atomic number elements were evaluated. For example, the first time the forefathers used contrast it was chalk, and was used on a cadaver's vessels. Unfortunately, some elements chosen proved to be harmful for example, thorium was once used as a contrast medium ( Thorotrast ) which turned out to be toxic in some cases (causing injury and occasionally death from the effects of thorium poisoning). Modern contrast material has improved, and while there is no way to determine who may have a sensitivity to the contrast, the incidence of allergic-type reactions are low. (The risk is comparable to that associated with penicillin. ) Photostimulable phosphors (PSPs) An increasingly common method is the use of photostimulated luminescence (PSL), pioneered by Fuji in the 1980s. In modern hospitals a photostimulable phosphor plate (PSP plate) is used in place of the photographic plate. After the plate is X-rayed, excited electrons in the phosphor material remain trapped in colour centres in the crystal lattice until stimulated by a laser beam passed over the plate surface. The light given off during laser stimulation is collected by a photomultiplier tube and the resulting signal is converted into a digital image by computer technology, which gives this process its common name, computed radiography (also referred to as digital radiography ). The PSP plate can be reused, and existing X-ray equipment requires no modification to use them. Geiger counter Initially, most common detection methods were based on the ionization of gases , as in the Geiger-Mller counter : a sealed volume, usually a cylinder, with a mica, polymer or thin metal window contains a gas, a cylindrical cathode and a wire anode ; a high voltage is applied between the cathode and the anode. When an X-ray photon enters the cylinder, it ionizes the gas and forms ions and electrons. Electrons accelerate toward the anode, in the process causing further ionization along their trajectory. This process, known as a Townsend avalanche , is detected as a sudden current, called a count or event. In order to gain energy spectrum information, a diffracting crystal may be used to first separate the different photons. The method is called wavelength dispersive X-ray spectroscopy ( WDX or WDS). Position-sensitive detectors are often used in conjunction with dispersive elements. Other detection equipment that is inherently energy-resolving may be used, such as the aforementioned proportional counters . In either case, use of suitable pulse-processing (MCA) equipment allows digital spectra to be created for later analysis. For many applications, counters are not sealed but are constantly fed with purified gas, thus reducing problems of contamination or gas aging. These are called flow counters. Scintillators Some materials such as sodium iodide (NaI) can convert an X-ray photon to a visible photon; an electronic detector can be built by adding a photomultiplier . These detectors are called scintillators , filmscreens or scintillation counters . The main advantage of using these is that an adequate image can be obtained while subjecting the patient to a much lower dose of X-rays. Image intensification X-ray during cholecystectomy X-rays are also used in real-time procedures such as angiography or contrast studies of the hollow organs (e.g. barium enema of the small or large intestine) using fluoroscopy acquired using an X-ray image intensifier . Angioplasty , medical interventions of the arterial system, rely heavily on X-ray-sensitive contrast to identify potentially treatable lesions. Direct semiconductor detectors Since the 1970s, new semiconductor detectors have been developed ( silicon or germanium doped with lithium , Si(Li) or Ge(Li)). X-ray photons are converted to electron-hole pairs in the semiconductor and are collected to detect the X-rays. When the temperature is low enough (the detector is cooled by Peltier effect or even cooler liquid nitrogen ), it is possible to directly determine the X-ray energy spectrum; this method is called energy dispersive X-ray spectroscopy (EDX or EDS); it is often used in small X-ray fluorescence spectrometers . These detectors are sometimes called solid state detectors. Detectors based on cadmium telluride ( Cd Te) and its alloy with zinc , cadmium zinc telluride , have an increased sensitivity, which allows lower doses of X-rays to be used. Practical application in medical imaging started in the 1990s. Currently amorphous selenium is used in commercial large area flat panel X-ray detectors for mammography and chest radiography . Current research and development is focused around pixel detectors, such as CERN 's energy resolving Medipix detector. Note: A standard semiconductor diode , such as a 1N4007, will produce a small amount of current when placed in an X-ray beam. A test device once used by Medical Imaging Service personnel was a small project box that contained several diodes of this type in series , which could be connected to an oscilloscope as a quick diagnostic. Silicon drift detectors (SDDs), produced by conventional semiconductor fabrication , now provide a cost-effective and high resolving power radiation measurement. Unlike conventional X-ray detectors, such as Si(Li)s, they do not need to be cooled with liquid nitrogen. Scintillator plus semiconductor detectors (indirect detection) With the advent of large semiconductor array detectors it has become possible to design detector systems using a scintillator screen to convert from X-rays to visible light which is then converted to electrical signals in an array detector. Indirect Flat Panel Detectors (FPDs) are in widespread use today in medical, dental, veterinary and industrial applications. The array technology is a variant on the amorphous silicon TFT arrays used in many flat panel displays , like the ones in computer laptops. The array consists of a sheet of glass covered with a thin layer of silicon that is in an amorphous or disordered state. At a microscopic scale, the silicon has been imprinted with millions of transistors arranged in a highly ordered array, like the grid on a sheet of graph paper. Each of these thin film transistors (TFTs) is attached to a light-absorbing photodiode making up an individual pixel (picture element). Photons striking the photodiode are converted into two carriers of electrical charge , called electron-hole pairs. Since the number of charge carriers produced will vary with the intensity of incoming light photons, an electrical pattern is created that can be swiftly converted to a voltage and then a digital signal, which is interpreted by a computer to produce a digital image. Although silicon has outstanding electronic properties, it is not a particularly good absorber of X-ray photons. For this reason, X-rays first impinge upon scintillators made from e.g. gadolinium oxysulfide or caesium iodide . The scintillator absorbs the X-rays and converts them into visible light photons that then pass onto the photodiode array. Visibility to the human eye While generally considered invisible to the human eye, in special circumstances X-rays can be visible. Brandes, in an experiment a short time after Rntgen's landmark 1895 paper, reported after dark adaptation and placing his eye close to an X-ray tube, seeing a faint blue-gray glow which seemed to originate within the eye itself. Upon hearing this, Rntgen reviewed his record books and found he too had seen the effect. When placing an X-ray tube on the opposite side of a wooden door Rntgen had noted the same blue glow, seeming to emanate from the eye itself, but thought his observations to be spurious because he only saw the effect when he used one type of tube. Later he realized that the tube which had created the effect was the only one powerful enough to make the glow plainly visible and the experiment was thereafter readily repeatable. The knowledge that X-rays are actually faintly visible to the dark-adapted naked eye has largely been forgotten today; this is probably due to the desire not to repeat what would now be seen as a recklessly dangerous and potentially harmful experiment with ionizing radiation . It is not known what exact mechanism in the eye produces the visibility: it could be due to conventional detection (excitation of rhodopsin molecules in the retina), direct excitation of retinal nerve cells, or secondary detection via, for instance, X-ray induction of phosphorescence in the eyeball with conventional retinal detection of the secondarily produced visible light. Though X-rays are otherwise invisible it is possible to see the ionization of the air molecules if the intensity of the X-ray beam is high enough. The beamline from the wiggler at the ID11 at ESRF is one example of such high intensity. Medical uses X-ray image of the paranasal sinuses , lateral projection Head CT scan (transverse plane) slice a modern application of X-rays Since Rntgen's discovery that X-rays can identify bone structures, X-rays have been developed for their use in medical imaging , the first use was less than a month after his seminal paper on the subject. Radiology is a specialized field of medicine . Radiologists employ radiography and other techniques for diagnostic imaging . This is probably the most common use of X-ray technology. X-rays are especially useful in the detection of pathology of the skeletal system , but are also useful for detecting some disease processes in soft tissue . Some notable examples are the very common chest X-ray , which can be used to identify lung diseases such as pneumonia , lung cancer or pulmonary edema , and the abdominal X-ray , which can detect intestinal obstruction, free air (from visceral perforations) and free fluid (in ascites ). X-rays may also be used to detect pathology such as gallstones (which are rarely radiopaque ) or kidney stones which are often (but not always) visible. Traditional plain X-rays are less useful in the imaging of soft tissues such as the brain or muscle . Imaging alternatives for soft tissues are computed axial tomography (CAT or CT scanning), magnetic resonance imaging (MRI) or ultrasound . The latter two do not subject the individual to ionizing radiation. In addition to plain X-rays and CT scans, physicians use fluoroscopy as an X-ray test methodology. This method often uses administration of a medical contrast material ( intravenously , orally or via enema ). Examples include cardiac catheterization (to examine for coronary artery blockages) and Barium swallow (to examine for esophageal disorders. Since 2005, X-rays are listed as a carcinogen by the U.S. government. The use of X-rays as a treatment is known as radiotherapy and is largely used for the management (including palliation ) of cancer ; it requires higher radiation energies than for imaging alone. Risks of medical diagnostic X-rays X-Ray of a pregnant woman X-rays are a relatively safe method of investigation and the radiation exposure is relatively low, depending upon the study. Experimental and epidemiological data, however, do not support the proposition that there is a threshold dose of radiation below which there is no increased risk of cancer. Diagnostic X-rays account for 14% of the total annual radiation exposure from man-made and natural sources worldwide. It is estimated that the additional radiation will increase a person's cumulative risk of getting cancer by age 75 by 0.61.8%. The amount of absorbed radiation depends upon the type of X-ray test and the body part involved. CT and fluoroscopy entail higher doses of radiation than do plain X-rays. To place the increased risk in perspective, a plain chest X-ray or dental X-ray will expose a person to the same amount from background radiation that we are exposed to (depending upon location) everyday over 10 days. Each such X-ray would add less than 1 per 1,000,000 to the lifetime cancer risk. An abdominal or chest CT would be the equivalent to 23 years of background radiation, increasing the lifetime cancer risk between 1 per 10,000 and 1 per 1,000. These numbers are very small compared to the roughly 40% chance of developing any cancer during our lifetime. Fathers exposed to diagnostic x-rays are more likely to have infants who contract leukemia, especially if exposure is closer to conception or includes two or more X-rays of the lower gastrointestinal (GI) tract or lower abdomen. The risk of radiation is greater to unborn babies, so in pregnant patients, the benefits of the investigation (X-ray) should be balanced with the potential hazards to the unborn fetus. In the US, there are an estimated 62,000,000 CT scans performed annually, including more than 4,000,000 on children. Avoiding unnecessary X-rays (especially CT scans) will reduce radiation dose and any associated cancer risk. Shielding against X-Rays Lead is the most common shield against X-rays because of its high density (11340kg/m 3 ), stopping power, ease of installation and low cost. The maximum range of a high-energy photon such as an X-ray in matter is infinite; at every point in the matter traversed by the photon, there is a probability of interaction. Thus there is a very small probability of no interaction over very large distances. The shielding of photon beam is therefore exponential (with an attenuation length being close to the radiation length of the material); doubling the thickness of shielding will square the shielding effect. The following table shows the recommended thickness of lead shielding in function of X-ray energy, from the Recommendations by the Second International Congress of Radiology. X-Rays generated by peak voltages not exceeding Minimum thickness of Lead 75 kV 1.0mm 100 kV 1.5mm 125 kV 2.0mm 150 kV 2.5mm 175 kV 3.0mm 200 kV 4.0mm 225 kV 5.0mm 300 kV 9.0mm 400 kV 15.0mm 500 kV 22.0mm 600 kV 34.0mm 900 kV 51.0mm Other uses Each dot, called a reflection, in this diffraction pattern forms from the constructive interference of scattered X-rays passing through a crystal. The data can be used to determine the crystalline structure. Other notable uses of X-rays include X-ray crystallography in which the pattern produced by the diffraction of X-rays through the closely spaced lattice of atoms in a crystal is recorded and then analysed to reveal the nature of that lattice. A related technique, fiber diffraction , was used by Rosalind Franklin to discover the double helical structure of DNA . X-ray astronomy , which is an observational branch of astronomy , which deals with the study of X-ray emission from celestial objects. X-ray microscopic analysis , which uses electromagnetic radiation in the soft X-ray band to produce images of very small objects. X-ray fluorescence , a technique in which X-rays are generated within a specimen and detected. The outgoing energy of the X-ray can be used to identify the composition of the sample. Industrial radiography uses X-rays for inspection of industrial parts, particularly welds . Paintings are often X-rayed to reveal the underdrawing and pentimenti or alterations in the course of painting, or by later restorers. Many pigments such as lead white show well in X-ray photographs. Airport security luggage scanners use X-rays for inspecting the interior of luggage for security threats before loading on aircraft. Border security truck scanners use X-rays for inspecting the interior of trucks for at country borders. X-ray fine art photography Roentgen Stereophotogrammetry is used to track movement of bones based on the implantation of markers X-ray photoelectron spectroscopy is a chemical analysis technique relying on the photoelectric effect , usually employed in surface science . X-ray fine art photography of needlefish by Peter Dazeley History Discovery German physicist Wilhelm Rntgen is usually credited as the discoverer of X-rays because he was the first to systematically study them, though he is not the first to have observed their effects. He is also the one who gave them the name X-rays, though many referred to these as Rntgen rays for several decades after their discovery and to this day in some languages, including Rntgen's native German , and Swedish . X-rays were found emanating from Crookes tubes , experimental discharge tubes invented around 1875, by scientists investigating the cathode rays , that is energetic electron beams, that were first created in the tubes. Crookes tubes created free electrons by ionization of the residual air in the tube by a high DC voltage of anywhere between a few kilovolts and 100 kV. This voltage accelerated the electrons coming from the cathode to a high enough velocity that they created X-rays when they struck the anode or the glass wall of the tube. Many of the early Crookes tubes undoubtedly radiated X-rays, because early researchers noticed effects that were attributable to them, as detailed below. Wilhelm Rntgen was the first to systematically study them, in 1895. The important early researchers in X-rays were Ivan Pulyui , William Crookes , Johann Wilhelm Hittorf , Eugen Goldstein , Heinrich Hertz , Philipp Lenard , Hermann von Helmholtz , Nikola Tesla , Thomas Edison , Charles Glover Barkla , Max von Laue , and Wilhelm Conrad Rntgen . Johann Hittorf German physicist Johann Hittorf (18241914), a co-inventor and early researcher of the Crookes tube, found when he placed unexposed photographic plates near the tube, that some of them were flawed by shadows, though he did not investigate this effect. Ivan Pulyui In 1877 Ukrainian -born Pulyui , a lecturer in experimental physics at the University of Vienna , constructed various designs of vacuum discharge tube to investigate their properties. He continued his investigations when appointed professor at the Prague Polytechnic and in 1886 he found that sealed photographic plates became dark when exposed to the emanations from the tubes. Early in 1896, just a few weeks after Rntgen published his first X-ray photograph, Pulyui published high-quality X-ray images in journals in Paris and London. Although Pulyui had studied with Rntgen at the University of Strasbourg in the years 187375, his biographer Gaida (1997) asserts that his subsequent research was conducted independently. Nikola Tesla In April 1887, Nikola Tesla began to investigate X-rays using high voltages and tubes of his own design, as well as Crookes tubes . From his technical publications, it is indicated that he invented and developed a special single-electrode X-ray tube, which differed from other X-ray tubes in having no target electrode. The principle behind Tesla's device is called the Bremsstrahlung process, in which a high-energy secondary X-ray emission is produced when charged particles (such as electrons) pass through matter. By 1892, Tesla performed several such experiments, but he did not categorize the emissions as what were later called X-rays. Tesla generalized the phenomenon as radiant energy of invisible kinds. Tesla stated the facts of his methods concerning various experiments in his 1897 X-ray lecture before the New York Academy of Sciences . Also in this lecture, Tesla stated the method of construction and safe operation of X-ray equipment. His X-ray experimentation by vacuum high field emissions also led him to alert the scientific community to the biological hazards associated with X-ray exposure. Fernando Sanford X-rays were generated and detected by Fernando Sanford (18541948), the foundation Professor of Physics at Stanford University , in 1891. From 1886 to 1888 he had studied in the Hermann Helmholtz laboratory in Berlin, where he became familiar with the cathode rays generated in vacuum tubes when a voltage was applied across separate electrodes, as previously studied by Heinrich Hertz and Philipp Lenard . His letter of January 6, 1893 (describing his discovery as electric photography) to The Physical Review was duly published and an article entitled Without Lens or Light, Photographs Taken With Plate and Object in Darkness appeared in the San Francisco Examiner . Philipp Lenard Philipp Lenard , a student of Heinrich Hertz, wanted to see whether cathode rays could pass out of the Crookes tube into the air. He built a Crookes tube (later called a Lenard tube) with a window in the end made of thin aluminum, facing the cathode so the cathode rays would strike it. He found that something came through, that would expose photographic plates and cause fluorescence. He measured the penetrating power of these rays through various materials. It has been suggested that at least some of these Lenard rays were actually X-rays. Hermann von Helmholtz formulated mathematical equations for X-rays. He postulated a dispersion theory before Rntgen made his discovery and announcement. It was formed on the basis of the electromagnetic theory of light. However, he did not work with actual X-rays. Wilhelm Rntgen On November 8, 1895, German physics professor Wilhelm Rntgen stumbled on X-rays while experimenting with Lenard and Crookes tubes and began studying them. He wrote an initial report On a new kind of ray: A preliminary communication and on December 28, 1895 submitted it to the Wrzburg 's Physical-Medical Society journal. This was the first paper written on X-rays. Rntgen referred to the radiation as X, to indicate that it was an unknown type of radiation. The name stuck, although (over Rntgen's great objections) many of his colleagues suggested calling them Rntgen rays . They are still referred to as such in many languages, including German and Russian. Rntgen received the first Nobel Prize in Physics for his discovery. There are conflicting accounts of his discovery because Rntgen had his lab notes burned after his death, but this is a likely reconstruction by his biographers: Rntgen was investigating cathode rays with a fluorescent screen painted with barium platinocyanide and a Crookes tube which he had wrapped in black cardboard so the visible light from the tube wouldn't interfere. He noticed a faint green glow from the screen, about 1 meter away. He realized some invisible rays coming from the tube were passing through the cardboard to make the screen glow. He found they could also pass through books and papers on his desk. Rntgen threw himself into investigating these unknown rays systematically. Two months after his initial discovery, he published his paper. Rntgen discovered its medical use when he saw a picture of his wife's hand on a photographic plate formed due to X-rays. His wife's hand's photograph was the first ever photograph of a human body part using X-rays. Thomas Edison Diagram of a water cooled X-ray tube (simplified/outdated) In 1895, Thomas Edison investigated materials' ability to fluoresce when exposed to X-rays, and found that calcium tungstate was the most effective substance. Around March 1896, the fluoroscope he developed became the standard for medical X-ray examinations. Nevertheless, Edison dropped X-ray research around 1903 after the death of Clarence Madison Dally , one of his glassblowers. Dally had a habit of testing X-ray tubes on his hands, and acquired a cancer in them so tenacious that both arms were amputated in a futile attempt to save his life. At the 1901 Pan-American Exposition in Buffalo, New York, an assassin shot President William McKinley twice at close range with a .32 caliber revolver. The first bullet was removed but the second remained lodged somewhere in his stomach. McKinley survived for some time and requested that Thomas Edison rush an X-ray machine to Buffalo to find the stray bullet. It arrived but wasn't used ... McKinley died of septic shock due to bacterial infection. Frank Austin and the Frost brothers The first medical X-ray made in the United States was obtained using a discharge tube of Pulyui's design. In January 1896, on reading of Rntgen's discovery, Frank Austin of Dartmouth College tested all of the discharge tubes in the physics laboratory and found that only the Pulyui tube produced X-rays. This was a result of Pulyui's inclusion of an oblique target of mica , used for holding samples of fluorescent material, within the tube. On 3 February 1896 Gilman Frost, professor of medicine at the college, and his brother Edwin Frost, professor of physics, exposed the wrist of Eddie McCarthy, whom Edwin had treated some weeks earlier for a fracture, to the X-rays and collected the resulting image of the broken bone on gelatin photographic plates obtained from Howard Langill, a local photographer also interested in Rntgen's work. The 20th century and beyond A male technician taking an x-ray of a female patient in 1940. This image was used to argue that exposure to radiation during the x-ray procedure would be a myth . The many applications of X-rays immediately generated enormous interest. Workshops began making specialized versions of Crookes tubes for generating X-rays, and these first generation cold cathode or Crookes X-ray tubes were used until about 1920. Crookes tubes were unreliable. They had to contain a small quantity of gas (invariably air) as a current will not flow in such a tube if they are fully evacuated. However as time passed the X-rays caused the glass to absorb the gas, causing the tube to generate harder X-rays until it soon stopped operating. Larger and more frequently used tubes were provided with devices for restoring the air, known as softeners. These often took the form of a small side tube which contained a small piece of mica: a substance that traps comparatively large quantities of air within its structure. A small electrical heater heated the mica and caused it to release a small amount of air, thus restoring the tube's efficiency. However the mica had a limited life and the restore process was consequently difficult to control. In 1904, John Ambrose Fleming invented the thermionic diode valve (vacuum tube). This used a hot cathode which permitted current to flow in a vacuum. This idea was quickly applied to X-ray tubes, and heated cathode X-ray tubes, called Coolidge tubes, replaced the troublesome cold cathode tubes by about 1920. Two years later, physicist Charles Barkla discovered that X-rays could be scattered by gases, and that each element had a characteristic X-ray. He won the 1917 Nobel Prize in Physics for this discovery. Max von Laue , Paul Knipping and Walter Friedrich observed for the first time the diffraction of X-rays by crystals in 1912. This discovery, along with the early works of Paul Peter Ewald , William Henry Bragg and William Lawrence Bragg gave birth to the field of X-ray crystallography . The Coolidge tube was invented the following year by William D. Coolidge which permitted continuous production of X-rays; this type of tube is still in use today. ROSAT image of X-ray fluorescence of, and occultation of the X-ray background by, the Moon The use of X-rays for medical purposes (to develop into the field of radiation therapy ) was pioneered by Major John Hall-Edwards in Birmingham , England . In 1908, he had to have his left arm amputated owing to the spread of X-ray dermatitis . The X-ray microscope was invented in the 1950s. The Chandra X-ray Observatory , launched on July 23, 1999, has been allowing the exploration of the very violent processes in the universe which produce X-rays. Unlike visible light, which is a relatively stable view of the universe, the X-ray universe is unstable, it features stars being torn apart by black holes , galactic collisions, and novas, neutron stars that build up layers of plasma that then explode into space. An X-ray laser device was proposed as part of the Reagan Administration 's Strategic Defense Initiative in the 1980s, but the first and only test of the device (a sort of laser blaster, or death ray , powered by a thermonuclear explosion) gave inconclusive results. For technical and political reasons, the overall project (including the X-ray laser) was de-funded (though was later revived by the second Bush Administration as National Missile Defense using different technologies). See also Backscatter X-ray detective quantum efficiency Fluoroscopy Geiger counter High energy X-rays N-ray Neutron radiation Radiography Radiologic technologist Radiology Resonant inelastic X-ray scattering (RIXS) Small angle X-ray scattering (SAXS) X-ray absorption spectroscopy X-ray astronomy X-ray crystallography X-Ray filters X-ray generation X-ray machine X-ray marker X-ray microscope X-ray nanoprobe X-ray optics X-ray vision X-ray welding Notes ^ Novelline, Robert. Squire's Fundamentals of Radiology . Harvard University Press. 5th edition. 1997. ISBN 0674833392 . ^ Oxford English Dictionary http://www.oed.com ^ Merriam-Webster Dictionary http://www.merriam-webster.com/ ^ http://physics.nist.gov/cgi-bin/ffast/ffast.pl?Formula=H2Ogtype=5range=Slower=0.300upper=2.00density=1.00 ^ a b Dendy, P. P.; B. Heaton (1999). Physics for Diagnostic Radiology . USA: CRC Press. p.12. ISBN 0750305916 . http://books.google.com/?id=1BTQvsQIs4wCpg=PA12 . ^ Charles Hodgman, Ed. (1961). CRC Handbook of Chemistry and Physics, 44th Ed. . USA: Chemical Rubber Co.. p.2850. ^ Feynman, Richard; Robert Leighton, Matthew Sands (1963). The Feynman Lectures on Physics, Vol.1 . USA: Addison-Wesley. pp.25. ISBN 0201021161 . ^ L'Annunziata, Michael; Mohammad Baradei (2003). Handbook of Radioactivity Analysis . Academic Press. p.58. ISBN 0124366031 . http://books.google.com/?id=b519e10OPT0Cpg=PA58dq=gamma+x-ray . ^ Grupen, Claus; G. Cowan, S. D. Eidelman, T. Stroh (2005). Astroparticle Physics . Springer. p.109. ISBN 3540253122 . ^ US National Research Council (2006). Health Risks from Low Levels of Ionizing Radiation, BEIR 7 phase 2 . National Academies Press. pp.5, fig.PS2. ISBN 030909156X . http://books.google.com/?id=Uqj4OzBKlHwCpg=PA5 . , data credited to NCRP (US National Committee on Radiation Protection) 1987 ^ http://www.doctorspiller.com/Dental%20_X-Rays.htm and http://www.dentalgentlecare.com/x-ray_safety.htm ^ ^ ^ http://www.solarstorms.org/SWChapter8.html and http://www.powerattunements.com/x-ray.html ^ David R. Lide, ed (1994). CRC Handbook of Chemistry and Physics 75th edition . CRC Press. pp.10227. ISBN 0-8493-0475-X . ^ Kevles, Bettyann Holtzmann (1996). Naked to the Bone Medical Imaging in the Twentieth Century . Camden, NJ: Rutgers University Press . pp.1922. ISBN 0813523583 . ^ Sample, Sharron (2007-03-27). X-Rays . The Electromagnetic Spectrum . NASA . http://science.hq.nasa.gov/kids/imagers/ems/xrays.html . Retrieved 2007-12-03 . ^ Whaites, Eric; Roderick Cawson (2002). Essentials of Dental Radiography and Radiology . Elsevier Health Sciences. pp.1520. ISBN 044307027X . http://books.google.com/?id=x6ThiifBPcsCdq=radiography+kilovolt+x-ray+machine . ^ Bushburg, Jerrold; Anthony Seibert, Edwin Leidholdt, John Boone (2002). The Essential Physics of Medical Imaging . USA: Lippincott Williams Wilkins. p.116. ISBN 0683301187 . http://books.google.com/?id=VZvqqaQ5DvoCpg=PT33dq=radiography+kerma+rem+Sievert . ^ Emilio, Burattini; Antonella Ballerna (1994). Preface . Biomedical Applications of Synchrotron Radiation: Proceedings of the 128th Course at the International School of Physics -Enrico Fermi- 1222 July 1994, Varenna, Italy . IOS Press. pp.xv. ISBN 9051992483 . http://books.google.com/books?id=VEld4080nekCpg=PA129dq=%22synchrotron+radiation%22+x-ray+advantagesas_brr=3 . Retrieved 2008-11-11 . ^ Martin, Dylan (2005). X-Ray Detection . University of Arizona Optical Sciences Center . http://www.u.arizona.edu/~dwmartin/ . Retrieved 2008-05-19 . ^ Frame, Paul. Wilhelm Rntgen and the Invisible Light . Tales from the Atomic Age . Oak Ridge Associated Universities . http://www.orau.org/ptp/articlesstories/invisiblelight.htm . Retrieved 2008-05-19 . ^ Eements of Modern X-Ray Physics . John Wiley Sons Ltd,. 2001. pp.4041. ISBN 0-471-49858-0 . ^ a b Spiegel, Peter K (1995). The first clinical X-ray made in America100 years . American Journal of Roentgenology (Leesburg, VA: American Roentgen Ray Society) 164 (1): 241243. ISSN: 1546-3141. PMID 7998549 . http://www.ajronline.org/cgi/reprint/164/1/241.pdf . ^ Herman, Gabor T. (2009). Fundamentals of Computerized Tomography: Image Reconstruction from Projections (2nd ed.). Springer. ISBN 978-1-85233-617-2 ^ 11th Report on Carcinogens . Ntp.niehs.nih.gov . http://ntp.niehs.nih.gov/ntp/roc/toc11.html . Retrieved 2010-11-08 . ^ Upton, AC (2003). The state of the art in the 1990s: NCRP report No. 136 on the scientific bases for linearity in the dose-response relationship for ionizing radiation. Health Physics 85 : 1522. ^ United Nations Scientific Committee on the Effects of Atomic Radiation. New York. United Nations, 2000 ^ Berrington; de Gonzalez, A; Darby, S (2004). Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363 : 345351. ^ a b Brenner DJ and Hall EJ (2007). Computed tomography- an increasing source of radiation exposure. . New England Journal of Medicine 357 : 22772284 . http://www.nejm.org/doi/full/10.1056/NEJMra072149 . ^ a b |Radiological Society of North America and American College of Radiology ^ |National Cancer Institute: Surveillance Epidemiology and End Results (SEER) data ^ Xiao-Ou, Shu; et al (December 1994). Association of paternal diagnostic X-ray exposure with risk of infant leukemia . Cancer Epidemiology, Biomarkers Prevention (American Association for Cancer Research) 3 (8): 645. ISSN 1538-7755 . PMID 7881337 . http://www.ncbi.nlm.nih.gov/pubmed/7881337 . ^ Stewart, Alice M; Webb, J.W.; Giles, B.D.; Hewitt, D. (1956). Preliminary Communication: Malignant Disease in Childhood and Diagnostic Irradiation In-Utero. Lancet 271 (6940): 447. PMID 13358242 . ^ Pregnant Women and Radiation Exposure . eMedicine Live online medical consultation . Medscape . 28 December 2008 . http://emedicinelive.com/index.php/Women-s-Health/pregnant-women-and-radiation-exposure.html . Retrieved 2009-01-16 . ^ Donnelly, CF (2005). Reducing radiation dose associated with pediatric CT by decreasing unnecessary examinations. American Journal Roentgenology 32 : 242244. ^ Alchemy Art Lead Products Lead Shielding Sheet Lead For Shielding Applications . Retrieved 2008-12-07. ^ Kasai, Nobutami; Masao Kakudo (2005). X-ray diffraction by macromolecules . Tokyo: Kodansha. pp.2912. ISBN 3540253173 . ^ The history, development, and impact of computed imaging in neurological diagnosis and neurosurgery: CT, MRI, DTI: Nature Precedings DOI: 10.1038/npre.2009.3267.5 . ^ a b c Gaida, Roman; et al. (1997). Ukrainian Physicist Contributes to the Discovery of X-Rays . Mayo Foundation for Medical Education and Research . Archived from the original on 2008-05-28 . http://web.archive.org/web/20080528172938/http://www.meduniv.lviv.ua/oldsite/puluj.html . Retrieved 2008-04-06 . ^ Morton, William James, and Edwin W. Hammer, American Technical Book Co., 1896. Page 68. ^ U.S. Patent 514,170 , Incandescent Electric Light , and U.S. Patent 454,622 , System of Electric Lighting . ^ Cheney, Margaret, Tesla: Man Out of Time . Simon and Schuster, 2001. Page 77. ^ Thomas Commerford Martin (ed.), The Inventions, Researches and Writings of Nikola Tesla . Page 252 When it forms a drop, it will emit visible and invisible waves. . (ed., this material originally appeared in an article by Nikola Tesla in The Electrical Engineer of 1894.) ^ Nikola Tesla, The stream of Lenard and Roentgen and novel apparatus for their production, Apr. 6, 1897. ^ Cheney, Margaret, Robert Uth, and Jim Glenn, Tesla, master of lightning . Barnes Noble Publishing, 1999. Page 76. ISBN 0760710058 ^ Wyman, Thomas (Spring 2005). Fernando Sanford and the Discovery of X-rays. Imprint, from the Associates of the Stanford University Libraries : 515. ^ Thomson, Joseph J. (1903). The Discharge of Electricity through Gasses . USA: Charles Scribner's Sons. pp.182186 . http://books.google.com/?id=Ryw4AAAAMAAJpg=PA138 . ^ Thomson, 1903, p.185 ^ Wiedmann's Annalen , Vol. XLVIII ^ Stanton, Arthur (1896-01-23). Wilhelm Conrad Rntgen On a New Kind of Rays: translation of a paper read before the Wrzburg Physical and Medical Society, 1895 (Subscription-only access Scholar search ). Nature 53 (1369): 2746. doi : 10.1038/053274b0 . http://www.nature.com/nature/journal/v53/n1369/pdf/053274b0.pdf see also pp. 268 and 276 of the same issue. ^ Peters, Peter (1995). W. C. Roentgen and the discovery of x-rays . Ch.1 Textbook of Radiology . Medcyclopedia.com, GE Healthcare . http://www.medcyclopaedia.com/library/radiology/chapter01.aspx . Retrieved 2008-05-05 . ^ National Library of Medicine. Could X-rays Have Saved President William McKinley? Visible Proofs: Forensic Views of the Body . http://www.nlm.nih.gov/visibleproofs/galleries/cases/mckinley.html ^ References NASA Goddard Space Flight centre introduction to X-rays. External links Wikimedia Commons has media related to: X-ray Look up x-ray in Wiktionary , the free dictionary. Example Radiograph: Fractured Humerus A Photograph of an X-ray Machine X-ray Safety An X-ray tube demonstration (Animation) 1896 Article: On a New Kind of Rays Digital X-Ray Technologies Project A video of a medical X-ray procedure example What is Radiology? a simple tutorial 50,000 X-ray, MRI, and CT pictures MedPix medical image database Index of Early Bremsstrahlung Articles Extraordinary X-Rays slideshow by Life magazine
个人分类: 其他|6450 次阅读|1 个评论
姚远:《点石斋画报》与中国第一台X光机
kexuechuanbo 2010-10-30 08:51
作者:姚远 来源: 科学时报 发布时间:2008-7-9 23:7:36 《点石斋画报》与中国第一台X光机 清光绪二十三年(1897年)的《点石斋画报》六集利三,以宝镜新奇为题,介绍了刚传入我国的X 光机: 苏垣天赐庄博习医院西医生柏乐文, 闻美国新出一种宝镜, 可以照人脏腑, 因不惜千金购运至苏。其镜长尺许, 形式长圆, 一经鉴照, 无论何人, 心腹肾肠昭然若揭。苏人少见多怪, 趋而往观者甚众。该医生自得此镜, 视人疾病即知患之所在, 以药投之, 无不沉疴立起。 其中,苏垣为苏州;柏乐文(Park William Hector,1857~1927)为美国监理公会传教医师,1882年来华,协助姐夫蓝华德医生在苏州创办博习医院(Soochow Hospital),任外科主任30余年,在博习医院引进和使用了中国第一台X 光机,其正式的全套X光仪器安装则在1917年。其实,《点石斋画报》的画师并未亲见X 光机, 所绘露天场景、X 光成为可见光、机器与患者距离等均与实际不符。然而,这是有关中国第一台X光机引进和使用最早的的图文报道,故具有重要的新闻价值和文献价值。同年11月的《时务报》第43,44册,也有曷格司射光和用于照鸡鸭辨生蛋与否,以及法国海关照验行李的纯文字报道。 自伦琴(1845~1923)于1895 年发现X 射线后, 这一技术很快被运用到各个领域。我国第一个使用X光机诊病的是李鸿章。这个故事发生在甲午战争之后,北洋水师覆灭,李鸿章被迫赴日本马关议和。谈判期间,李鸿章遭浪人枪击,子弹从左脸颊穿进,时为1895年3月24日。当年李鸿章已73岁,又是以战败国总理的身份前去谈判议和的,因此国际舆论普遍谴责日方。在德国医生的强烈建议下,李鸿章拒绝在日本医院接受外科手术,因此子弹头一直留在颅内。第二年,李鸿章以清廷头等钦差大臣的身份出访欧美,经人介绍接受了一次X光诊视,这时候离伦琴发表关于X射线的论文只有半年。 《点石斋画报》旬刊,创刊于光绪十年四月(1884 年5 月), 是中国近代第一份采用石印术的新闻画报, 由《申报》馆馆主英国人美查(Major Ernest) 创办。它每期有8 张双页黑白图画, 每图配以数百字的文字说明, 随《申报》附送, 亦单独发售。至1898 年底画报终刊时, 共发行了528 号,共有4600余幅新闻图画,而其中有关科学技术新闻者就有280余幅。它以时事新闻画为主要题材, 画师吴有如等人采用中国传统白描技巧绘画, 承袭明清以来的版画风格, 也有少数模仿西画风格。其中有关火车、轮船、潜艇、气球、电报、电灯、空中跳伞等 新奇可喜之事的报道具有重要的科学技术文献史料价值。
个人分类: 期刊传播史论2|8087 次阅读|0 个评论
做X射线检查时为什么要服用“钡餐”
yaoronggui 2010-7-24 06:13
在医院用 X 射线做肠消化系统检查时,常要吞服钡餐。钡餐是高密度的硫酸钡,它不溶于水也不溶于酸, X 射线对它的穿透能力较差。为了检查器官内部组织的病变情况,先吞服钡餐,使其分布于胃肠内壁,然后用 X 射线进行内腔比较检查,可以明显地显示出硫酸钡的分布情况,根据分布情况就可作出病情判断。
个人分类: 化学与生活|5014 次阅读|1 个评论
1912-1914:布拉格父子与X射线晶体结构分析
cwhm 2010-6-6 00:36
( Bragg 父子) Bragg父子从1912年到1914年一起研究了X射线的衍射,1915年诺贝尔物理学奖授予亨利布拉格(Sir William Henry Bragg, 1862--1942)和他的儿子劳伦斯布拉格(Sir William Lawrence Bragg,1890--1971),以表彰他们用X射线对晶体结构的分析所作的贡献。在科学史上是仅有的一例;小Bragg获奖时年仅25岁,成为最年轻的获奖者;从得到成果到获奖所经时间之短,在历史上也是不多见的。 Bragg父子最早接触X射线要从1896年说起,当时小Bragg由于骑自行车跌倒而肘部受伤,老Bragg就带着儿子在当时澳大利亚新装配的第一台X射线发生器那里给儿子肘部拍了一张X射线照片,这可能是澳大利亚的第一张医学X射线照片。 1912年,劳厄发表了X射线衍射的论文,老Bragg在收到劳厄的论文后,他们并没有全盘接受这篇轰动了物理界的论文。他们决定用波动衍射之外的其它假定去解释劳厄花样,这种新的想法就是把X射线衍射看成是反射。1912年暑期,Bragg一家在约克郡的海滨度假时,父子俩便围绕着劳厄的论文讨论起来。老Bragg是X射线的微粒论者,他试图用X射线的微粒理论来 解释劳厄的照片,因而他的尝试未能取得成功。小Bragg并无成见,当他返回剑桥后反复研究,终于领悟到这是一种波的衍射效应。他还进一步注意到劳厄对闪锌矿晶体衍射照片所作的定量分析中存在的问题,即按照劳厄确定的五种波长本来应该形成的某些衍射斑实际上并未在照片上出现。经过反复思考,他摆脱了劳厄 的特定波长的假设,利用原子面反射的概念,立刻成功地解释了劳厄的实验事实。他以更为简洁的方式清楚地解释了X射线晶体衍射的形成,并且提出了著名的布拉 格方程:    n=2dsin 其中n是一整数,是X射线的波长,d是原子面的间距,是射线的掠射角。 这里遇到的困难是如何说明某些斑点的消失。小Bragg提出,衍射斑的强度同时与反射X射线的能量和反射面的有效原子密度这两个因素有关。因此,照 片上衍射斑的强度就应该按照对应的反射X射线能量和反射面的有效原子密度的变化形成规则的变化序列;换句话说,衍射斑强度的变化标志着对应的反射线能量和 反射面原子密度的变化。对于闪锌矿衍射的情况,他先假设是简单的立方晶体,计算下来发现结果不对,乃改为面心立方晶体进行计算,所得结果正好说明了为什么 劳厄照片中有些斑点消失了,这样一来,不仅证明了反射面的假设是正确的,而且由此证明了能够用X射线来获得晶体结构特性的信息。 小Bragg在首次见到劳厄的论文之后不到四个月,就在1912年11月11日以《晶体对短波长电磁波的衍射》为题向剑桥哲学学会报告了这一研究成 果.在剑桥大学化学系拍普(Pope)教授的指点下,小Bragg用结构较为简单的碱金属卤化物作进一步的研究。他拍摄到了这些碱金属卤化物的X射线衍 射照片,结果表明其衍射图确实比闪锌矿简单。小Bragg就在这一基础上成功地对碱金属卤化物进行了完整的晶体结构分析。 这时老Bragg也开始把注意力从研究X射线本性转移到X射线衍射对晶体结构分析的应用。他很奇怪小Bragg在论文中为什么使用的是短波长电磁波一 词,而劳伦斯Bragg则是因为还很难肯定衍射效应究竟是X射线造成的还是伴随X射线的某种波动造成的, 所以有意避免使用X射线一词。老Bragg认为,只要从实验中检查反射线是否还是X射线就可解决,于是就立即在自己的实验台上 安置了电离室,看反射线是否和X射线一样具有电离作用。这一简便的检查方法,正是亨利Bragg长期工作的手段。1913年1月,老Bragg用他的电离室 得出了肯定的结果,并在这一实验的基础上,该年3月又进一步设计制成一台X射线分光计。他开始利用这台仪器,研究x射线的光谱分布,波长与普朗克常数、辐 射体及吸收体原子量之间的关系,随即又对X射线衍射作了进一步研究,他用一波长已知的X射线求原子面的间距d,从而确定了晶体的结构。到1913年底,布拉格父子两人已把晶体结构分析问题总结成了标准的步骤。X射线晶体结构分析形成了一门崭新的分析技术。这时离X射线衍射的发现还不到两年,小Bragg只有 23岁。 Bragg父子在1913年一1914年的工作中创立了一个极重要和极有意义的科学分支X射线晶体结构分析。如果说劳厄和他的同事 们发现了X射线在晶体中的衍射,从而证明了X射线的波动特性,那么,利用X射线系统地探测晶体结构,则应归功于Bragg父子。 (布拉格父子) 参考文献: (1)刘战存,苑红霞,布拉格父子对X射线晶体衍射的研究及其启示 (2)光学简史http://www.jxfyzx.com/caiwuli/history/1915.htm (3)The Coming of Materials Science, R.W. Cahn,Year: 2001,P7
个人分类: 人物专刊|4317 次阅读|3 个评论
世界上第一台X射线激光器
热度 1 yusufma 2010-1-28 14:17
《科学》 杂志评选出的 2009年十大科技进展 中,有一项为第一台X射线激光器发光。 这台激光器位于斯坦福线性加速器中心(SLAC),全名为Linac Coherent Light Source(线性加速器相干光源),简称为LCLS。 一般激光器都有三个主要部分:第一是增益介质,光辐射在增益介质里面被放大;第二是泵浦机制,提供能量来源;第三是反馈机制,也就是谐振腔,光辐射在腔里面被高反射率的镜子来回反射,不断放大形成高亮度的相干光源。 还有一类被称作激光放大器的装置,没有谐振腔,光辐射只在介质里面走一次,得到放大。这个X射线激光器就类似于激光放大器。这是因为,X射线具有众人皆知的穿透能力。对于X射线来讲,不存在高反射率的镜子,所以也没办法形成谐振腔。 LCLS激光器本质上是一台自由电子激光。自由电子激光(Free Electron Laser,简称FEL)是所有激光器种类中最复杂的一种,它是John Madey于1976年在斯坦福大学(对了,又是斯坦福)发明的。目前世界上能正常运行的自由电子激光屈指可数(可以算上脚趾头哦)。它和其他种类激光器有很大不同。一般的激光器,无论是固体、液体还是气体介质,它们的电子都被束缚在介质原子内部,都是靠泵浦机制实现介质的粒子数反转(也就是高能级电子数超过低能级电子数),从而使电子从高向低辐射的能量超过从低向高跃迁所吸收的能量,来实现光的放大。而自由电子激光使用了接近光速运行的高能电子束来作为能量来源,电子束运行在真空中,它们本身同时承载了增益介质的作用。这也是自由电子这个名字的来由。 但是这个名字同时又容易让人误解,因为电子并非真的不受约束。实际上,自由电子激光的电子束运行在一个交变的磁场中,这个磁场一般由一系列(几十到上百)南北极交替排列的磁铁构成。电子在磁场里运动是要受洛仑兹力约束的,交变的磁场导致了电子的摇摆震荡,从而产生了电磁辐射。值得注意的是,这时候的辐射只是自发辐射,类似于加速器产生的同步辐射。那么自发辐射是如何转变为受激辐射从而最终成为激光呢?这是一个非常复杂的过程,这里不太可能详细介绍。感兴趣的朋友可以看看 LCLS网站的一个动画介绍 或者 这篇文章 。 值得注意的是,中文维基说自由电子激光不依赖于受激发射,这是不对的,甚至可以说离谱。激光的英文LASER就是Light Amplification by Stimulated Emission of Radiation(光的受激辐射放大)的缩写,而中文激光本身也包含了受激辐射的意思。Madey在宣告自由电子激光发明的论文中,题目就是周期性磁场里轫致辐射的受激发射。如果不是受激发射,根本就不能称之为激光。 由于自由电子激光里电子辐射的波长依赖于磁场周期、强度、电子束能量等参数,所以自由电子激光的波长可以连续调节,并且具有非常广的调节范围。正是依托于SLAC获得的能量极高的电子,使得LCLS可以获得很短的波长。对于红外和可见光波长,自由电子激光也像一般激光一样可以有谐振腔结构。对于X射线这样的特殊情况,有一种被称作 Self - Amplified Spontaneous Emission(自放大自发辐射,简称SASE) 的自由电子激光。 这里有意思了,刚说完自由电子激光是受激辐射的,现在又冒出自发辐射了。这里所说的自发辐射只是说最初的辐射来源于电子的自发辐射,后来的放大还是要靠受激辐射。SASE FEL不存在谐振腔,光辐射只是随着电子从一头跑到了另一头,没有来回反馈的过程。虽然没有谐振腔的反馈,但是只要周期性磁场足够长,仍然可以得到可观的能量。斯坦福的LCLS总长足有3公里(当然,大部分是加速器的长度,激光长度只占一小部分),峰值功率可以达到10GW。LCLS不仅波长短(1.5到15),而且具有很短的脉冲(100飞秒量级),所以可以抓住分子的瞬间状态,为分子拍电影,让人们更深入的了解微观世界。
个人分类: 光学科普|7068 次阅读|2 个评论
追寻隐形的光线——X射线源发展小史(下)
热度 1 eloa 2009-3-20 12:08
Lewind 发表于 2009-03-19 21:55 (上回书说到,应用X射线的科学家与高能物理学家为了抢夺第一代同步辐射的使用时间,那掐得是pia pia的于是,终于催生出专门用于产生X射线的第二代同步辐射。可没想到,人心不足蛇吞象,贪心的科学家们对于X射线的强度又不满足了) 波动的共鸣   一种新技术的出现让物理学家们看到了进一步提高X射线光强的希望,这就是 波荡器 。   我们都在电视上见过高山滑雪者在雪坡上留下的波状轨迹,又称为S形转弯。滑雪者通过转弯动作推雪获得阻力,减缓下滑的速度。被推开的雪沿着雪坡向下滚落,与滑雪者的前进方向一致。   而在波荡器中,正发生着类似的事情。波荡器由一组正反交替的磁极组成,它们能使电子团通过时交替左转右转,往复数十次,形成波状前进轨迹。在每一个转弯处,都会有前向的同步辐射X射线产生。这些前向X射线叠加在一起,大大加强了X射线的强度。同时,这些X射线之间发生了干涉等光学现象。通过适当调整,可以进一步提高X射线的光强。   应用了波荡器的同步辐射即为 第三代同步辐射 光源。目前世界上主要的同步辐射光源都属于这一类。从亮度上讲,最强的同步辐射光源是位于日本兵库县的SPring8,紧随其后的是位于美国阿贡国家实验室的高级光子源(Advanced Photon Source,APS),再其次是位于法国小城Grenoble的欧洲同步辐射设施(European Synchrotron Radiation Facility,ESRF)。我国于去年(2008)建成的上海光源是世界上第13台第三代同步辐射X射线光源。   为了获得更强的X射线,储能环中电子的能量级别不断攀升,环形轨道也越来越大。北京正负电子对撞机的轨道直径约76米,略大于一个足球场的宽度;而日本SPring8的直径则是457米,比四个足球场的长度还要长一些。此外,外围沿切线展开的工作线站、配套实验室、机房等辅助设施都要占用很大的空间。这使得第三代同步辐射成为十分巨大的环形建筑。为了方便工作人员,第三代同步辐射的建筑内往往设有公用自行车作为代步工具,其巨大程度由此可见一斑。在1:200000的卫星照片上我们可能很难发现中国国家大剧院那硕大无朋的银亮蛋壳,却可以轻易地找到一个第三代同步辐射的完美圆环。 位于张江的上海光源是我国目前最强大的X射线源   今年(2009),在美国的斯坦福大学,世界上的第一台 第四代X射线光源 直线加速相干光源(LCLS),即将投入试运行,它所产生的X射线被称为自由电子激光。与前三代明显的不同的是,它不再采用源自电子同步加速器的环形轨道,而是采用了长达三公里的直线结构,整体上是一个直线加速器连接一个密集的超长波荡器。通过调整电子的速度以及交替磁场的间距等参数,电子团每一次转向所发出的X射线将具有相同的相位,从而产生共振,也就形成了一束X射线的激光。 从电子团到电子片层   在同步辐射中注入的电子是成团的,并在运行过程中始终保持这一形态。而在第四代X射线光源中,虽然在起始端注入的电子是成团的,但随着自由电子激光的产生,电子团也受到共振的影响,从而被逐步分隔压缩,形成若干个极薄的片层。这些电子片层之间的距离恰好是所产生的X射线的波长。反过来,等间隔的电子片层所发射出来的X射线也就成为了等间隔的X射线脉冲。这一优异性质在科研上拥有广阔的应用前景。   自由电子激光将成为人类有史以来创造的最神奇的X射线,不但强度超乎想像,而且具有优良的光学特性。如果斯坦福的这台第四代X射线光源能够顺利投入使用,那么它将为结构生物学等应用X射线的研究领域带来颠覆性的革命。   然而,自由电子激光终究仍只是纸上谈兵。能否最终实现,全世界的相关领域研究人员都在盯着斯坦福大学的直线加速相干光源。即使真的能实现,如何对自由电子激光所产生的实验数据进行处理分析?如何避免强X射线带来的新困扰?解决这些问题都还有很长的路要走。那么在这些技术成熟之前,如何满足科学研究对X射线日益扩大的需求缺口呢?   就在我经常拜访的布鲁克海文国家实验室园区里,在离NSLS不太远的地方有几间不怎么起眼的白色平房,门口写着NSLS-II办公室。这里正在筹建新的美国国家同步辐射光源。从技术本质上讲,它仍是第三代同步辐射,只不过其波荡器采用了全新的设计和加工工艺,从而可以达到更强的X射线叠加效果。于是,在电子团的能量级别方面可以有所减小,轨道也可以相应减小。因此称之为 中能第三代同步辐射 光源,为与之区别,ESRF,APS,SPring8等也称为 高能第三代同步辐射 。我国的上海光源也属中能第三代同步辐射光源,目前英国和法国等其它国家也在筹建中的同步辐射亦属此类。全世界在建中的第三代同步辐射总计约有12台。 中能同步辐射的技术进步   不难理解,同步辐射中的电子团运行在一个真空的密闭环形轨道中。在第三代同步辐射中,波荡器所采用的磁铁组位于真空轨道以外,两极之间的距离无法靠得很近,磁场也就不够强。而在中能同步辐射中,随着加工工艺水平的提高,实现了真空波荡器,也就是波荡器的磁极被移入了真空轨道的腔室内,两极距离大大缩短至几毫米,可以提供更高的磁场强度,从而能够让电子团产生更强的波动,发射出更强的X射线。   我国著名高能物理学家,也是我国同步辐射光源项目的推动者,中科院院士冼鼎昌研究员曾经在一次学术报告中开玩笑地说:新世纪到世界各地旅游去看什么?不是看名胜古迹,而是看同步辐射!有人甚至做过预计,明年(2010),每天同一时刻在全球的同步辐射中应用X射线进行研究工作的科学家与工程师将超过一万人。他们在同步辐射的具体工作情况是怎样的呢? 永远的追寻   在本文开始所介绍的同步辐射之旅虽然称不上惬意,但也还算有趣。可是,这只是准备阶段,真正的工作还没有开始。   由于同步辐射不同于其它实验设施,具有长期不间断运行的特点(注入的时间很短,相对可以忽略),所以一般研究者会申请连续24小时,或者48小时,甚至72小时的工作时间,这样也可以减少交通、住宿等方面的开支。   所有去过同步辐射工作的人,大概没有谁会很享受这个过程。即使有两到三人共同工作,也很难保证有足够的休息时间。为了尽可能充分利用时间,大家往往都在线站上解决吃饭问题。这也就是为什么我要提前买好三份外卖的原因。   此外,由于同步辐射产生的X射线很强,足以危害人体健康,所以线站的终端设备放在一间隔离舱内,并对进出该舱有着严格而繁冗的安全操作规定。不恰当的操作不但会影响自己的实验,甚至会导致整个同步辐射跳闸停止运行,以保护实验操作者的生命安全。此外,雷雨等自然因素也有可能导致同步辐射自动跳闸。这些都给每次同步辐射之旅带来了很多的不确定因素。我在国内时,曾两次远赴法国的欧洲同步辐射设施工作,却都因为设备故障无功而返,白白在食宿行等方面浪费了研究经费。   即便如此,国内的结构生物学研究者以前也没有别的选择。如果想要使用同步辐射的可调波长强X射线,就必须到国外去。美国、英国、法国、韩国、日本的同步辐射都留下了中国结构生物学研究者的足迹。虽然前两次去法国都以失败告终,但为了课题研究,我还是第三次前往法国的欧洲同步辐射设施,才终于拿到了可以使用的实验数据。 青山碧水之间的欧洲同步辐射设施属于第三代同步辐射   虽说法国是个浪漫的国度,但这样的同步辐射之旅却没有普通人想像中的惬意。为了减少不必要的开销,在当地停留的时间不会比在同步辐射申请的工作时间长太多。从北京出发,经过十多个小时的飞行之后,在巴黎转一次机,再在里昂换乘长途巴士,一般会在午夜之后到达欧洲同步辐射设施;保存好样品,睡不了几个小时就到了早晨,便要开始连续一两天的奋战了,中间只能断断续续地睡上几个小时;实验结束后,拷贝数据,稍事休息又要飞回国了。通常来说,在当地旅游的时间肯定是没有了,甚至连调时差的必要都没有了。我常对那些羡慕我能出国做实验的同学说:这样去一次法国和去一次上海没什么区别,甚至还要更累。   而现在,上海光源的建成投入使用,真的把去法国变成了去上海。同步辐射之旅至少不必再受时差和长途飞行的折磨,这必将大大方便国内应用X射线的各领域研究人员。这个位于浦东张江高科技园区的同步辐射对于上海市区的研究者来说,比从纽约市区到布鲁克海文国家实验室的距离还要近,必将极大地带动上海地区的结构生物学等X射线应用相关专业的发展。   我想,有机会回国去上海的话,我一定会实践冼鼎昌先生的预言:去看看那里的同步辐射。因为,作为一个结构生物学研究者,我注定会永远追寻那隐形的光线。同样的,人类对于更强大的人造X射线源的追寻也永远不会停止。 (完)
个人分类: 物理|4117 次阅读|3 个评论
追寻隐形的光线&ldash;&ldash;X射线源发展小史(上)
eloa 2009-3-19 12:11
Lewind 发表于 2009-03-18 23:01 早上7点,闹钟响了。痛苦挣扎一番之后,我才终于强迫自己离开了温暖的被窝。洗漱,换衣服,收拾东西,离开了位于曼哈顿上西区的公寓,坐地铁去95街的Hertz租赁点取我预订好的SUV,把车开到168街的哥大医学中心取实验样品和工具,出来转上I-95高速路,汇入了去往长岛方向的车流之中。 美国国家同步辐射光源   一个多小时之后,已经远离了纽约市区,转下高速路不久就到了布鲁克海文国家实验室。实验室园区的安检在911之后明显加强了很多,不但需要专门的证件,还要提前预约进出的日期。园区里的建筑形状各异,最高的楼不过三四层,而更多的则是平房,散布在树林、灌木和草坪之中。树荫下有安静歇憩的小鹿,草地上有四处觅食的火鸡和野鸭。它们间或还会大摇大摆地横穿马路,把过往的车辆视若无物。   我此行的目的地是园区内一幢占地面积很大,却很低矮的白色建筑美国国家同步辐射光源(National Synchrotron Light Source,NSLS)。刷卡进门,来到早已预约好的X4线站。时间离12点还早,排在我前面时间段的人还在线站上工作。于是我先去办公服务楼拿了客房钥匙,到住宿楼把个人用品安置好,再开车去附近小镇上的中餐馆吃了顿午饭,临走还买了三份外卖带着那将是我今天的晚餐和宵夜,以及明天的午餐。   回到X4线站已经是中午12点半了。排在我前面的人正在计算机上把测得的实验数据拷贝到自己的移动硬盘里,同时上传到自己实验室的服务器上。传输几十上百GB的数据需要不少时间,一时半会儿完不了,好在他已经收拾好了自己的实验用品,给我腾出了工作空间。线站管理员则已经把线站的参数调整到了我预订的数值,并做好了优化。   万事具备,开工!   上面这些文字不是小说,更不是科幻,而是我一年当中某些日子的真实工作写照。如此大费周张,只是为了能够连续24小时应用同步辐射光源进行结构生物学的相关研究。之所以要来同步辐射光源,是因为它能提供高亮度的X射线,俗称X光。当然,所谓高亮度指的是X射线的强度很高,而非通常意义上的亮。毕竟,X射线的波长只有0.01纳米至10纳米,远远低于人眼的极限380纳米。可以说,它是一种隐形的光线。 偶然的诞生   如果时光倒退回一个多世纪以前的1895年,人类的词典中还没有X射线这个词汇。在这一年,腐朽的满清政府输掉了甲午战争。而在地球的另一边,德国维尔茨堡大学物理系的系主任威廉康拉德伦琴教授在对一种称为克鲁克斯管的阴极射线(也就是电子流)管进行研究时,偶然发现了一种穿透力极强的未知射线,并将之命名为X射线。 世界上第一张X射线照片   在接下来的实验中,为了避免任何可能影响到自己学术声誉的错误结果,伦琴始终使用X射线这一代号,秘密地研究其各种性质。在研究X射线的穿透力时,伦琴请自己的夫人将手放在感光底片和能够产生X射线的阴极射线管之间,照出了世界上第一张X射线透射照片。伦琴夫人的指骨以及婚戒在照片上清晰可辨。   次年1月,当这一研究成果发表在学术期刊上之后,新闻界习惯性地以发现者的名字将之命名为伦琴射线,以突显这一发现的伟大。然而,伦琴本人在其后的论文中始终坚持使用最初的称谓X射线。于是,X,一个象征着未知的字母,就永远成为了这种隐形光线的正式名称。而伦琴发现X射线的克鲁克斯管则成为了后来X射线管的雏形,沿用至今。   由于波长短,能量高,X射线与物质原子发生作用的几率小,因为有很强的穿透性。很多人对于X射线的第一印象可能都是超人那双可以看穿一切除了铅板的眼睛。在现实生活中,体检拍的胸透、看病照的CT、机场和重要场所用的安检仪、工业用的探伤仪,这些都依赖于X射线的穿透力。此外在科研领域,X射线也是一种非常重要的实验手段,广泛应用于物理、化学、生物、材料等不同的科研领域,包括我在美国国家同步辐射光源所从事的结构生物学研究。 X射线管中的电子碰碰车   在X射线管的阴极一端,灯丝在高温下发光的同时,还放射出大量的电子。这些电子受电场的作用加速,受磁力透镜或静电透镜的作用聚焦,最终轰击到X射线管另一端的金属阳极上,并将金属原子的电子撞出其原来的轨道。这些脱离了束缚的电子跑不了太远,很快又被金属的原子核捕捉到其空旷的外层电子轨道中。当这些电子从高能级的外层轨道落入低能级的内层轨道时,多出来的这部分能量会以电磁波的形式释放,也就是X射线。这一过程的逆过程就令爱因斯坦莫名其妙获得诺贝尔奖的光电效应。   然而,X射线管产生的X射线光强只能满足于一般的医疗和工业应用,却不能满足科学家对于强X射线的需求。1913年出现了真空X射线管,因为避免了阳极氧化、空气吸收等问题,从而得以提高X射线的强度。上世纪六十年代发明了旋转阳极技术,辅之以强大的冷却系统,可以获得相当强的X射线。这也是目前科研中在实验室内可以获得的最强X射线。 超人眼中的行李箱就是这样的?   除了强度受限,X射线管还有一个特点:产生的X射线波长固定。我们知道,光具有波粒二象性,其电磁波的波长与其光子的能量是相对应的。X射线管的工作原理决定了其产生的X射线光子能量是确定的某几个值,因而波长也是确定的。目前比较常见的阳极金属是铜,其产生的X射线波长有两个,通常采用的是其中能量较强的一个,波长为0.15418纳米。   确定的波长对于某些实验而言是大大的好事,对于另一些实验而言则是大大的不妙。如何能获得波长可调且强度更强的X射线?这个问题摆在了物理学家们的面前。 同步的合唱   俗话说:有意栽花花不开,无心插柳柳成荫。科学上的事情往往也是如此,最关键的发明或发现往往并非有意为之。   在上世纪四十年代,随着对物质结构探索的需求,人们开始建造一些大型的粒子加速实验设施, 电子同步加速器 是其中之一。在电子同步加速器中,一团团电子被电场加速到接近光速的速度,再通过强大的磁场来控制其方向,使之沿着环形真空轨道跑圈。如果让一团电子与一团正电子沿相反的方向跑圈,它们将以极高的相对速度迎头对撞,这就是 正负电子对撞机 中所发生的事情。   1946年,通用电气公司下属实验室在其电子同步加速器的运行中,发现了沿圆周切线方向射出的X射线辐射,并因此将之命名为 同步辐射 。这一辐射的产生是由于电子以接近光速的速度运行时,体现了明显的相对论效应所造成的。由于X射线是沿切线方向射出的,所以一系列的X射线相关设备也是沿着环形轨道的切线方向展开的,被称为线站。从顶上看,同步辐射设施与小朋友所画的太阳到颇有几分相像。 同步辐射光源的平面图与小朋友画的太阳颇有几分相似   同步辐射产生的X射线光谱连续、准直性好、功率大、亮度高,是理想的用于科学研究的X射线源,满足了其它研究领域对强大X射线源的要求。特别是光谱连续这一点,令科学家们如获至宝。如果说他们以前所拥有的只是某几种颜色的X射线,那么现在他们拥有的就是白光由所有颜色共同组成的X射线。于是,高能物理学家和其它领域的科学家们开始共用电子同步加速器,各取所需。这就是 第一代同步辐射 光源,世界上目前仍有约17台在运行中。   我国的北京正负电子对撞机最初设计时并未考虑同步辐射方面的应用。但随着高能物理学的迅猛发展,北京正负电子对撞机现有的能量水平已经无法再满足高能物理前沿研究的需要。2004年,它圆满完成了其作为高能物理研究设施的历史使命,经过一系列改造,转而成为同步辐射X射线光源,为国内众多需要使用强X射线的研究人员提供服务。 北京正负电子对撞机改造为同步辐射的X射线线站   同步辐射产生的X射线能量来自于环形轨道中高速运动的电子团。所以,随着X射线的不断放出,电子团的能量也越来越低。这种损失是高能物理学家不愿意看到的,于是就产生了矛盾:用X射线时不能做高能物理实验,做高能物理实验时不能用X射线。   最终,这两种应用还是分道扬镳了。专门用于产生X射线,却不进行任何高能物理实验的同步辐射光源出现了,即为 第二代同步辐射 光源。包括前面提到的美国国家同步辐射光源在内,世界上共有约23台第二代同步辐射光源仍在运行中。 甩出来的X射线   虽然同步辐射的原理涉及相对论,看似深奥,但我们不妨来看看一个生活中常见的例子。假如用一根绳子栓住一块吸饱了水的海绵,再把它抡起来甩成圆圈,那么不难想像,海绵中的水一定会沿圆周的切线方向被甩出去。同步辐射产生的X射线就好像是从绕圈的电子中被甩出来的能量。实际上,同步辐射的环形轨道并不是一个完美的圆形轨道,而是由若干直线段与弧线段交替拼接而成。X射线只在弧线轨道中产生,曲率最大的点就是产生X射线最强的点。   由于不进行任何高能物理实验,环形轨道中电子团的唯一使命就是为产生X射线储备能量。于是,第二代同步辐射的环形轨道不再称为电子同步加速器,而是改称储能环。由于电子团的能量会随着X射线的释放而不断降低,相应产生的X射线也越来越弱,所以同步辐射需要每隔一段时间重新注入高能量的电子流。   一般的同步辐射每天要在固定时间注入两至三次。注入期间没有X射线,所有线站上的工作都不得不暂停下来。这正是我们每次在同步辐射工作时得以喘口气的时间,或者开车出去买杯咖啡,或者趴在桌上打个盹,难得的清闲。除去每次注入的半个小时,同步辐射始终处于运行状态,每年只有集中的几周时间停止运行,用于维护和升级。   虽然有了一心一意提供X射线的第二代同步辐射,可是贪心不足的科学家们仍旧不满足于已经得到的X射线强度。如何能获得更强大的人造X射线源呢?新的问题又摆在了物理学家们面前。 (未完待续)
个人分类: 物理|2873 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-2 11:24

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部