科学网

 找回密码
  注册

tag 标签: 水滑石

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

镁合金腐蚀研究进展(57)—低温原位生长微弧氧化/Mg-Al水滑石复合涂层的体外降解和细胞相容性
rczeng 2020-9-8 18:45
【摘要】迄今为止,在微弧氧化涂层表面上制备Mg-Al水滑石涂层,一般是在高温或低pH值的条件下进行的,这导致水滑石涂层的生长速率远低于微弧氧化涂层的溶解速度,继而限制了复合涂层的耐腐蚀性。在这项研究中,在较低温度(60 ℃)和较高pH值(13.76)的条件下,通过水浴法在微弧氧化涂层上原位生长了一层Mg-Al水滑石涂层,以调控镁合金的降解速率。 微弧氧化涂层与镁合金基体之间具有很高的冶金结合强度,对镁合金具有一定的保护。但是,微弧氧化涂层的多孔结构和微裂纹则是降低耐腐蚀的主要原因。 水滑石是一种纳米结构材料,具有类似三明治的结构,其中二价和三价阳离子包封阴离子。一方面,它可以充当抑制腐蚀的物理屏障。另一方面,它还具有离子交换能力,可以有效地减少腐蚀介质中氯离子对基体的破坏。因此,可以选择水滑石涂层作为顶层来密封多孔微弧氧化涂层。 目前,水滑石的制备大多是在高温或低pH值的制备条件下进行的。但是,这可能会导致微弧氧化涂层溶解速率过快而造成微弧氧化涂层出现严重破坏,导致耐蚀性明显下降。这主要是涉及在水滑石制备过程中,微弧氧化涂层溶解速率和水滑石涂层生长速率之间的平衡性问题。可以分为以下三种方式: 1)如果微弧氧化涂层的溶解速率大于水滑石涂层的生长速率,则微弧氧化/水滑石复合涂层的耐腐蚀性可能会明显降低,即复合涂层耐蚀性反而低于单一微弧氧化涂层。例如,Chen等人( Appl. Surf. Sci. 463 (2019) 535-544 )在含有 0.1 M Al(NO 3 ) 3 和 0.6 M NH 4 NO 3 的溶液中,在温度为 95 °C 和pH值为7的条件下,水热处理1 h,在微弧氧化涂覆的镁合金AZ31上制备了Mg-Al水滑石。结果表明,在水滑石制备过程中,低的pH值导致微弧氧化涂层开裂,并且微弧氧化/水滑石复合涂层的自腐蚀电流密度比微弧氧化涂层增加了一个数量级,这表明复合涂层的耐腐蚀性明显降低。 2)如果微弧氧化涂层的溶解速率约等于水滑石涂层的生长速率,则微弧氧化/水滑石复合涂层的耐蚀性可能变化不大。例如,Peng等人( Sci. Rep. 7 (2017) 8167-8178 )在含有0.02 M硝酸铝的水溶液中,在温度为 120 °C 和pH值为12.8的条件下,水热处理12 h,在微弧氧化涂覆的镁合金AZ31表面制备了Mg-Al水滑石涂层。结果表明,与微弧氧化涂层相比,复合涂层的自腐蚀电流密度从 9.45×10 -6 A·cm -2 略微降低到 3.92×10-6 A·cm -2 ,这表明耐腐蚀性几乎没有变化。 3)如果微弧氧化涂层的溶解速率小于水滑石涂层的生长速率,则微弧氧化/水滑石复合涂层的耐腐蚀性将得到提高。例如,Jiang等人( Chem. Eng. J. 373 (2019) 285-297 )在通过共沉淀和水热的方法在温度为 120 °C 和pH值为11.0的条件下在微弧氧化涂覆的镁合金AZ91表面上制备了Mg-Al水滑石涂层。结果表明,与微弧氧化涂层相比,微弧氧化/水滑石复合涂层的自腐蚀电流密度从 1.27×10 -6 A·cm -2 降低到 1.03×10 -7 A·cm -2 ,这表明耐蚀性明显增强。 如果要获得具有优异耐腐蚀性的微弧氧化/水滑石复合涂层,则微弧氧化涂层的溶解速率必须小于或远小于水滑石涂层的生长速率。因此,水滑石在微弧氧化表面制备的技术难点就是平衡微弧氧化涂层的溶解速率和水滑石涂层的生长速率,这也许可以通过选择合适的制备温度和调节合适的pH值来实现。 结果表明:在低温( 60 ℃ )和较高pH(13.76)下,通过原位生长的方法,在微弧氧化涂层表面成功制制备了一层具有纳米片状结构的Mg-Al水滑石涂层。我们发现氢氧化物的形成优先于水滑石,而且氢氧化镁的生长始于金属间化合物或第二相Al-Mn相。EDTA在整个水滑石的生长过程中起到促进Al3+离子沉积的作用,即促进水滑石的生长。电化学结果表明,微弧氧化/Mg-Al水滑石复合涂层的自腐蚀电流密度比基体下降了四个数量级,比微弧氧化涂层下降了两个数量级。此外,由于水滑石涂层的扩散和离子交换行为,微弧氧化/Mg-Al水滑石复合涂层具有较宽的钝化区( 0.6 V·SCE -1 )、较高的破钝电位以及阳极区的自愈合现象。这说明高pH值和低制备温度可有效地降低微弧氧化涂层的溶解速率,以匹配水滑石的生长速率,从而制备出具有优异耐腐蚀性的复合涂层。在长时间的浸泡过程中,微弧氧化/Mg-Al水滑石复合涂层保持完好无裂纹,并保持了水滑石的片状结构。而且,纳米片结构的水滑石更有利于钙磷产物的沉积。此外,MTT分析和活/死染色表明,微弧氧化/Mg-Al水滑石复合涂层对于MC3T3-E1成骨细胞具有可接受的生物相容性,且具有更高的细胞存活率。这表明,纳米结构有利于细胞的粘附、生长和扩散。因此,微弧氧化/Mg-Al水滑石复合涂层在整形外科骨植入材料中具有潜在的应用价值。 本研究通过低温和高pH平衡了微弧氧化溶解速率与水滑石的生长速率,得到了耐腐蚀性能优异的复合涂层,而且纳米片状结构有利于钙磷产物的沉积和细胞的生长、扩散、粘附。这为镁合金微弧氧化涂层表面原位生长顶层设计提供了一定的理论指导。 论文“ In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31 ” 发表在《 Bioactive Materials》(5, 2020:364-376) 。第一作者为山东科技大学材料学院硕士研究生李长阳,通讯作者为山东科技大学曾荣昌教授和青岛大学附属医院郅克谦教授。 Fig. 1 Simple flow chart for preparation of the MAO-LDH coating. Fig. 2 Surface morphology images of the (a, c) MAO, and (b, d) MAO-LDH coatings. Fig. 3 (a) Bode and (b) Bode phase angle plots of the ( Ⅰ ) Mg alloy AZ31 substrate, ( Ⅱ ) MAO coating and ( Ⅲ ) MAO-LDH coating. Nyquist plots (c-d) and the corresponding electrical equivalent circuit models (f-h) of all samples. Fig. 4 (a) Potentiodynamic polarization curves and (b) corresponding i corr and E corr of the (Ⅰ) Mg alloy AZ31 substrate, (Ⅱ) MAO coating, and (Ⅲ) MAO-LDH coating. Fig. 5 OD values (a) and Cell viability (b) of MC3T3-E1 cultured in different extracts prepared with the negative control, Mg alloy AZ31 substrate, MAO coating, and MAO-LDH coating for 1, 3 and 5 days. Statistically significant differences ( *P 0.05, **P 0.01.); Fluorescent images (c-f) of MC3T3-E1 after culturing for 24 h in extracts of the (c) negative control, (d) AZ31 substrate, (e) MAO coating and (f) MAO-LDH coating.
个人分类: 科研进展|3031 次阅读|0 个评论
镁合金腐蚀研究进展(52)-镁合金表面水滑石/聚谷氨酸复合涂层耐蚀和生物相容性
rczeng 2020-7-18 09:46
镁( Mg )具有良好的生物相容性与可降解性,其密度和弹性模量与人骨相近,用作植入材料可避免应力屏蔽效应和二次手术的弊端。然而,目前医用镁合金在应用过程中存在的主要问题是其过快的腐蚀/降解速率与成骨速率不匹配,导致材料界面成骨速率缓慢,使用寿命降低。 水滑石类化合物( LDH )是一类具有层状结构的无机功能材料。LDH的主体层板化学组成与其层板阳离子性质、层板中间阴离子、阴离子交换量和超分子结构等因素密切相关。镁铝碳酸根水滑石化学通式为: Mg 6 Al 2 (OH) 16 CO 3 ·4H 2 O ,具有层间阴离子的可交换性。水滑石独特的结构使得其具有良好的生物相容性和耐蚀性能。但是水滑石没有骨诱导生长的特性。 谷氨酸( glutamic acid , COOH-CH 2 -CH 2 -CH(NH 2 )-COOH )是构成蛋白质的氨基酸之一,是人体重要的营养物质。谷氨酸具有“分子识别”功能,其中的羧基( -COOH )可以优先吸附Ca 2+ ,促进涂层界面的磷灰石形核。 在本工作中,使用共沉淀与水热相结合的方法在镁合金表面制备出镁铝碳酸根水滑石,然后通过在聚谷氨酸( poly-γ-glutamic acid ,PGA)溶液中浸渍不同时间,冷冻干燥后得到水滑石/聚谷氨酸复合涂层。 研究发现,通过浸渍30分钟得到的 LDH/PGA-30 涂层具有最厚的聚谷氨酸层,样品表面的涂层最为均匀致密。 LDH/PGA-30 涂层涂覆的样品具有最低的自腐蚀电流密度,该复合涂层对基体提供了最好的保护。 在 Hank’s 溶液浸泡过程中,由于聚谷氨酸中羧基的“ 分子识别 ”作用,样品表面逐渐有缺钙型羟基磷灰石生成。此外,聚谷氨酸的也表现出对NIH 3T3细胞良好的生物相容性。因此,LDH/PGA-30复合涂层具有良好的耐蚀性,较好的诱导成骨能力和生物相容性,在修复外科中有良好的应用前景。 论文题目为 “Biocorrosion resistance and biocompatibility of Mg–Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31”, 发表在《 Progress in Organic Coatings》(IF 4.467, 147 (2020) 105746). https://doi.org/10.1016/j.porgcoat.2020.105746 。第一作者为山东科技大学研究生吴威,通讯作者为张芬副教授、曾荣昌教授。 Fig. 1 Schematic representation of the preparation of LDH/PGA coating Fig. 2 FE-SEM images of (a) LDH coating, (b) LDH/PGA-10 coating, (c) LDH/PGA-20 coating, (d)LDH/PGA-30 coating, (e) LDH/PGA-60 coating and (f) corresponding EDS spectra of all coatings Fig. 3 XPS survey spectra of (a) LDH/PGA-30 coating, (b) C 1s peaks, (c) N 1s peaks, (d) O 1s peaks, (e) Mg 2p peaks and (f) Al 2p peaks Fig. 4 Polarization curves of (a) AZ31 substrate, (b) LDH coating, (c) LDH/PGA-10 coating, (d) LDH/PGA-20 coating, (e) LDH/PGA-30 coating and (f) LDH/PGA-60 coating Fig. 5 (a) Nyquist plots and (b, c and d) enlarged Nyquist plots, impedance diagrams in Bode coordinates (e) impedance modulus and (f) phase angle of AZ31 substrate and coated samples. Equivalent circuits for (g) AZ31 substrate and (h) coated samples Fig. 6 OD values (a) and Cell viability (b) of NIH 3T3 cultured in different extracts prepared with negative control, AZ31 substrate, LDH coated sample and LDH/PGA-30 coated sample for 1 and 3 days Fig. 7 Fluorescent images of NIH 3T3 cells after cultured for 1 day (upper) and 3 days (lower) in extracts of (a) (e) negative control, (b) (f) AZ31 substrate, (c) (g) LDH coated sample and (d) (h) LDH/PGA-30 coated sample Fig. 8 Schematic illustrations of the corrosion mechanism of the LDH coating and the LDH/PGA-30 coating
个人分类: 科研进展|2662 次阅读|0 个评论
镁合金腐蚀研究进展(37)—硅烷水解度对水滑石硅烷复合涂层耐蚀性能的影响
rczeng 2019-4-14 18:45
镁合金腐蚀研究进展(37)—硅烷水解度对水滑石硅烷复合涂层耐蚀性能的影响 水滑石类化合物(LDH)是一类具有层状结构的无机功能材料。LDH的主体层板化学组成与其层板阳离子性质、层板中间阴离子、阴离子交换量和超分子结构等因素密切相关。镁铝碳酸根型水滑石化学通式为:Mg 6 Al 2 (OH) 16 CO 3 ·4H 2 O,具有层间阴离子的可交换性、热稳定性能、组成和结构的可调控性等特点。 有机硅烷的分子结构式一般为:R-Si(OR) 3 (Si-OR为硅烷氧基)。硅烷氧基对无机物具有反应性,也可以与一些有机官能团结合。有机硅烷水解产生的Si-OH一方面可以进行自缩聚形成Si-O-Si网状结构,另一方面能够与水滑石表面的羟基进行结合。因此,Si-OH的浓度势必会影响着有机硅烷与水滑石的结合。 在本工作中,使用共沉淀-水热法合成在镁合金AZ31上制备出镁铝碳酸根水滑石,再用浸渍法在不同配比的硅烷、乙醇和超纯水的混合溶液(3:20:10, 3:15:15和3:10:20)中制备出水滑石/硅烷改性的复合涂层。 图1 涂层结构示意图 Fig. 1 Schematic representation of the coating formation mechanism of the composite coatings. 研究发现,3:10:20比例的溶液具有最高的硅烷水解度,对应制备出的LDH/PMTMS-3涂层具有最好的耐蚀性和表面致密性涂层具有超疏水性能,接触角达150.5°,可以有效地隔绝水溶液的侵蚀。而对于另外两种复合涂层(3:20:10, LDH/PMTMS-1涂层和3:15:15, LDH/PMTMS-2涂层),两者表面均不致密,内层水滑石形貌清晰可见,耐腐蚀性相比于LDH/PMTMS-3涂层较差,但比水滑石涂层或者AZ31基体较好。这两种复合涂层也未达到超疏水效果,接触角分别为120.5°和131.5°。因此,LDH/PMTMS-3涂层作为耐蚀涂层实际应用前景。 该项工作 “Corrosion resistance of Mg(OH) 2 /Mg–Al-layered double hydroxide coatings on magnesium alloy AZ31: influence of hydrolysis degree of silane” 在线发表在 《Rare Metals》(2019). https://doi.org/10.1007/s12598-019-01234-1. 第一作者为研究生姚青松,通讯作者为张芬、曾荣昌。 Fig. 2 FE-SEM of (a) LDH coating, (b) LDH/PMTMS-1 coating, (c) LDH/PMTMS-2 coating and (d) LDH/PMTMS-3 coating Fig. 3 FT-IR spectra of (a) silane solutions: Solution 1 (3:20:10, V / V / V ), Solution 2 (3:15:15, V / V / V ), Solution 3 (3:10:20, V / V / V ); FT-IR spectra of (b) LDH coating, LDH/PMTMS-1 coating, DH/PMTMS-2 coating and LDH/PMTMS-3 coating. 图4 XPS 图谱 Fig. 4 XPS survey scan of (a) LDH/PMTMS-3 coating, (b) Mg peaks, (c) C peaks, (d) O peaks and (e) Si peaks. 图5 极化曲线 Fig. 5 Polarization curves of the (a) AZ31 alloy, (b) LDH coating, (c) LDH/PMTMS-1 coating, (d) LDH/PMTMS-2 coating and (e) LDH/PMTMS-3 coating. 图6 析氢曲线 Fig. 6 (a, b) Hydrogen evolution volume and (a, b) hydrogen evolution rate (HER) as a function of the immersion time for (I) AZ31 alloy, (II) LDH coating, (III) LDH/PMTMS-1 coating , (IV) LDH/PMTMS-2 coating and (V) LDH/PMTMS-3 coating in 3.5 wt. % NaCl solution for 480 h. Fig. 7 Schematic representation of corrosion mechanism of the composite coatings.
个人分类: 科研进展|3097 次阅读|0 个评论
镁合金腐蚀研究进展(25)—镁合金水滑石/硅烷/CeO2涂层耐蚀性研究
rczeng 2018-6-22 17:11
镁合金腐蚀研究进展 (25)— 镁合金水滑石 / 硅烷 /CeO 2 涂层耐蚀性研究 镁合金在航空、汽车、电子、航空航天等领域的有着广泛的应用前景,但是镁合金的易腐蚀性限制了其应用。表面改性处理是提高镁合金耐蚀性能的有效途径之一。 水滑石( layered double hydroxide, LDH )属于阴离子插层型层状化合物,层间阴离子具有可交换性,其组成和结构是可调的【 1,2 】。 镁合金表面LDH膜包括钼酸盐系、Mg-Al系、Zn-Al系、Zn-Al-V系等【1-12】 。 虽然LDH膜内层比较致密,但是外层疏松多孔。这些孔隙为外界腐蚀介质渗入基体,同时也为镁基体腐蚀所产生的镁和氢氧根离子的渗出提供了通道。其结构特点降低了其长期耐蚀性。而 LDH 表面封孔处理对进一步提高镁合金的耐蚀性能或许有帮助【 3 】。 我们【 4 】曾采用聚乳酸( poly(lactic acid) , PLA )涂层覆盖 AZ31 镁合金 Zn-Al-LDH 涂层,其耐蚀性能得到明显的提高。另外,我们也用低表面能硬脂酸( Steric acid, SA )修饰 AZ31 表面共沉积和水热处理制备的 Mg(OH) 2 /Mg-Al-LDH 涂层,获得超疏水的耐蚀性能优异的复合涂层【 5 】。Zhang 等【 6 】 用低表面能的全氟辛基三乙氧基硅烷( PFOTES, CF 3 (CF 2 ) 5 CH 2 CH 2 Si(OCH 2 CH 3 ) 3 )修饰 AZ80 镁合金表面 Mg-Al LDH 涂层。这种基于 Cassie 模型的超疏水表面为镁合金提供了长久的耐蚀性能。这是因为空气被捕获在表面微结构中。 我们【 7 】曾利用 聚甲基三乙氧基硅烷 ( polymethyltrimethoxysilane, PMTMS )和硝酸铈 ( Ce(NO 3 ) 3 ) 来封闭镁合金 AZ31 表面 Mg(OH) 2 膜,制备了 Mg(OH) 2 /PMTMS/CeO 2 复合涂层。 CeO 2 作为物理屏蔽层,既影响了表面形貌,也减少了涂层的微孔和微裂纹。此涂层显示优异的耐蚀性能。 如果将具有缓蚀性的无机盐(如硝酸铈)与硅烷 PMTMS 复合涂层覆盖在 LDH 表面,封闭 LDH 孔隙以降低孔隙率,或许会形成致密和良好结合力的复合涂层。其耐蚀性能会得到显著提高。 本文首先运用共沉淀 - 水热合成法在 AZ31 基体表面制备出 Mg-Al-CO 3 2- 水滑石,然后又使用 PMTMS 对水滑石涂层进一步改性,得到了一个耐蚀性好、超疏水和自修复等优良特性的水滑石 / 聚硅氧烷涂层。 另外,在这种复合涂层体系中又引入了稀土元素化合物。具体来说,就是在 PMTMS 硅烷溶液中溶解不同浓度 (0, 10 -4 , 10 -3 , 10 -2 M) 的 Ce(NO 3 ) 3 ,结果发现微量的 Ce(NO 3 ) 3 加入,使得复合涂层耐蚀性大大提高。有趣地是,当 Ce(NO 3 ) 3 含量增加到一定量 (10 -2 M) 之后,耐蚀性反而下降,表面的形貌不再致密,能够清晰地看到内部的水滑石形貌。因此,适度掺杂 Ce(NO 3 ) 3 才可以提高这种复合涂层耐蚀性能。 该项工作“ Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy ”近日发表在 Journal of Alloys and Compounds (764,2018:9 13–928) 。研究生姚青松作为第一作者,通讯作者为张芬副教授和曾荣昌教授。 Fig. 1 FE-SEM images and CA pictures (inset) of LDH coatings (a, f), PMTMS coatings (b, g), PMTMS/CeO 2 -1 coatings (c, h), PMTMS/CeO 2 -2 coatings (d, i) and PMTMS/CeO 2 -3 coatings (e, j) and (k) cross-sectional microstructure and corresponding elemental mapping images of PMTMS/CeO 2 -2 coating. Fig. 2 XPS survey scan of (a) PMTMS/CeO 2 -2 coating, (b) Mg 2p peaks, (c) C 1s peaks, (d) O 1s peaks, (e) Si peaks and (f) Ce 3d peaks. Fig. 6 EIS of (I) substrate, (II) LDH coating, (III) PMTMS coating, (IV) PMTMS/CeO 2 -1 coating, (V) PMTMS/CeO 2 -2 coating and (VI) PMTMS/CeO 2 -3 coating: (a) Bode plots of ׀Z׀ vs. frequency, (b) Nyquist plots and (c, d and e) enlarged Nyquist plots, (f) Bode plots of phase angle vs. frequency in 3.5 wt.% NaCl solution; equivalent circuits of (g) AZ31 substrate, (h) LDH coating, (i) PMTMS coating and PMTMS/CeO 2 coatings. 相关链接: 科学网博客: 1. 镁合金腐蚀研究进展(6 ) — 镁合金表面钼酸根水滑石涂层 2. 镁合金腐蚀研究进展( 7 ) — 镁合金碳酸根镁铝水滑石涂层 3. 镁合金腐蚀研究进展( 10 ) — 镁合金表面镁铝水滑石转化膜进展 相关镁合金LDH论文: Corrosion of molybdate intercalated hydrotalcite coating on AZ31Mg alloy . Rong-Chang Zeng*, Zhen-Guo Liu, Fen Zhang, Shuo-Qi Li, Hong-Zhi Cui, En-Hou Han. Journal of Materials Chemistry A, 2014, 2,13049–13057. Corrosion resistance of Mg-Al-LDH coating on magnesium alloyAZ31 . Fen Zhang, Zhen-Guo Liu, Rong-Chang Zeng*, Shuo-Qi Li, Hong-Zhi Cui, Liang Song, En-Hou Han. Surface Coatings Technology, 258, 2014, 1152–1158 Layered double hydroxide coatings on magnesium alloys: a review . Lian Guo, Wei Wu, Yong-Feng Zhou, Fen Zhang*, Rong-Chang Zeng**, Jianmin Zeng. Journal of Mateials Science and Technology. https://doi.org/10.1016/j.jmst.2018.03.003 . Corrosion resistance of Zn-Al layered doublehydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31 . Rongchang Zeng*, Xiao-Ting Li , Zhen-Guo Liu , Fen Zhang , Shuo-Qi Li , Hong-Zhi Cui . Frontiers of Materials Science, 2015, 9(4): 355–365. Corrosion Resistance of the Superhydrophobic Mg(OH) 2 /Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys . Fen Zhang, Changlei Zhang, Rongchang Zeng*, Liang Song, Lian Guo, Xiaowen Huang. Metals,2016, 6,85. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion . X. Zhang, G. Wu, X. Peng, L. Li, H. Feng, B. Gao, K. Huo, P.K. Chu, Sci. Rep. 5(2015) 17399. Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy . Lian Guo,Fen Zhang, Liang Song, Rong-Chang Zeng, Shuoqi Li, Enhou Han. Surface and Coatings Technology, 2017, 328:121-133. A comparison of corrosion resistance of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys , Lian Guo, Fen Zhang, Jun-Cai Lu, Rong-Chang Zeng, Shuo-Qi Li, Liang Song*, Jian-Min Zeng, Frontiers of Materials Science (IF1.471). 2018, 12(2): 198–206. RC Zeng, ZG Liu, FZ, SQ Li, QK He, HZ Cui, EH Han. Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation, Trans. Nonferrous Met. Soc.,25(6), 2015: 1917-1925. Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation, Rongchang Zeng*, Zhen-guo LIU, Fen ZHANG, Shuo-qi LI, Qing-kun HE, Hong-zhi CUI, En-hou HAN.Trans. Nonferrous Met. Soc., 25(6), 2015: 1917-192. Corrosion of the in-situ grown MgAl-LDH coating on aluminum alloy. Fen Zhang, Chang-lei Zhang, Liang Song, Rong-chang Zeng , Zhen-guo Liu, Hong-zhi Cui. Trans. Nonferrous Met. Soc. ,25(2015) 3498−3504. Corrosion Resistance of Superhydrophobic Mg-Al Layered Double Hydroxide Coatings on Aluminum Alloys . Fen Zhang*, Chang-Lei Zhang, Liang Song, Rong-Chang Zeng *, Lan-Yue Cui, Hong-Zhi Cui1. Acta Metallurgica Sinica (Engl.lett.) , 2015, 28(11), 1373–1381
个人分类: 科研进展|4163 次阅读|0 个评论
镁合金腐蚀研究进展(10)—镁合金表面镁铝水滑石转化膜进展
热度 1 rczeng 2016-3-20 21:11
AZ31镁合金表面一步法合成原位镁铝水滑石转化膜 曾荣昌 山东科技大学 【摘要】 通过尿素水解法在AZ31镁合金表面原位合成纳米尺度的层状双金属氢氧化物(水滑石)转化膜,并提出成膜机理。首先,溶解的Mg 2+ 离子沉积形成含有MgCO 3 和Mg 5 (CO 3 ) 4 (OH) 2 ·4H 2 O的前驱体膜;然后,前驱体膜在碱性条件下转化为高结晶的Mg(OH) 2 ;最后,Mg(OH) 2 中的Mg 2+ 离子被Al 3+ 离子取代,Mg(OH) 2 转化为更稳定的水滑石层状结构,同时层间OH-与溶液中的CO 3 2- 发生离子交换。因此,形成水滑石(Mg 6 Al 2 (OH) 16 CO 3 ·4H 2 O)膜。结果表明,以互锁的片状纳米结构和离子交换性能为特征的水滑石膜可以有效提高AZ31镁合金的耐蚀性。 【关键词】镁合金 水滑石 转化膜 耐蚀性 离子交换 Rongchang Zeng, Zhen-guo LIU, Fen ZHANG, Shuo-qi LI, Qing-kun HE, Hong-zhi CUI, En-hou HAN. Corrosion resistance of in-situ Mg–Alhydrotalcite conversion film on AZ31 magnesium alloy by one-step formation, Trans.Nonferrous Met. Soc., 25(6), 2015: 1917-1925
个人分类: 科研进展|3107 次阅读|2 个评论
镁合金腐蚀研究进展(7)—镁合金碳酸根镁铝水滑石涂层
rczeng 2014-8-4 22:54
镁合金表面碳酸根镁铝水滑石涂层 曾荣昌 山东科技大学 课题组通过共沉积和水热法在镁合金 AZ31 表面制备了碳酸根镁铝水滑石 (Mg-Al-LDH) (Mg 6 Al 2 (OH) 16 CO 3 · 4H 2 O) 涂层。该涂层具有纳米板条状结构,板条长 300-700 nm 、宽 20-40 nm 。该涂层使基体的耐蚀性能提高了三个数量级,其优良的保护性能归因于离子交换性、氯离子吸附性和 MgCO 3 的形成。研究论文 “ Corrosion resistance of Mg–Al-LDH coating on magnesium alloy AZ31 ” 发表在《 Surface Coatings Technology》( 2014, DOI:10.1016/j.surfcoat.2014.07.017)。 相关链接: 2014 镁合金腐蚀研究进展(3)——镁合金表面钼酸根水滑石涂层 2014 镁合金腐蚀研究进展(2)——碳酸根对腐蚀行为的影响 2014 镁合金腐蚀研究进展(1)——Mg-Li-Ca合金腐蚀机理及表征
个人分类: 科研进展|5410 次阅读|0 个评论
镁合金腐蚀研究进展(6)——镁合金表面自愈合钼酸根水滑石涂层
热度 1 rczeng 2014-7-22 22:59
镁合金表面自愈合钼酸根水滑石涂层 Self-healing molybdate intercalated hydrotalcite coating on Mg alloy 曾荣昌 山东科技大学 Rong-Chang Zeng Shandong Uniersity of Science and Technology 我们采用共沉积和水热法在镁合金AZ31表面制备了钼酸根水滑石涂层,这种涂层具有纳米层状结构、离子交换和自愈合( self-healing )功能,有望成为一类对环境刺激发生响应的智能涂层( smart coating )。研究结果发表在《 Journal of Materials Chemistry A》(2014, 2, 13049–13057 ) 。 Abstract A molybdate intercalated hydrotalcite (HT-MoO 4 2- ) coating with a nanosized lamellar structure was synthesized on AZ31 Mg alloy by a combination of the co-precipitation and hydrothermal processes. The characteristics of the coatings were investigated by SEM, EPMA, XRD, EDS and FT-IR. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, electrochemical impedance spectrum, and hydrogen evolution. The results indicated that the HT- MoO 4 2- coating, characterized by interlocking plate-like nanostructures, ion-exchange and self-healing ability, has a potential to be a “smart” coating capable of responding to stimuli from the environment. Self-healing mechanism The self-healing process of the HT-MoO 4 2-  coating in the corrosive medium is demonstrated on the cross-sectional views of the coatings (Fig. 1). Fig. 1a and b show the cross-sectional views of the coatings before and after 144 h of immersion, respectively. Fig. 1c and d designate the magnitude morphologies and their corresponding EDS spectra of the original and the immersed coating, respectively. It was revealed in Fig. 10b that the coating contained two layers: the newly formed outer layer and the thinned inner HT-MoO 4 2-  coating after 144 h of immersion in NaCl solutions. It is also found that the coating morphology has been changed. The non-uniform hexagonal flakes of the HT-MoO 4 2-  coating (Fig. 1c) were changed into round and bar-like particles (Fig. 1d). The EDS spectrum in the inset of Fig. 1d indicates that the main component of the outer coating is Mg(OH) 2 . Fig. 1 The self-healing process of the HT-MoO 4 2- coating demonstrated on the cross-sectional views. The XRD patterns of the original HT- MoO 4 2- coated sample and the samples after different immersion times are shown in Fig. 2a. Obvious Mg(OH) 2 peaks appeared on the immersed samples, in addition to those of the HT- MoO 4 2- layer. and the Mg substrate. With the extended immersion time, it can be seen from Fig. 2 that the intensity of Mg(OH) 2 peaks increased, while the intensity of HT- MoO 4 2-  peaks decreased, the peak at 22.5 nearly disappeared after the immersion of 12 days. But, it can be seen that the peaks of the HT- MoO 4 2-  coating on AZ31 Mg substrate still existed after a 12 days immersion test, which indicated that the HT- MoO 4 2-  coating had a good corrosion resistance. The peaks position of (003) were shied to a large angle of approximately 0.2 (Fig. 2b), indicating that the chloride ions were intercalated by ion exchange. Fig. 2(a) XRD patterns of the original HT-MoO 4 2- coated sample and immersed sample with different time. (b) Detail XRD patterns of (003). The dissolution reaction of the Mg(OH) 2 film on the Mg alloy surface in chloride solution can be given as follows: Mg(OH) 2 + Cl - → Mg(OH)Cl + OH - (1) Mg(OH)Cl + Cl - → MgCl 2 + OH - (2) The ion-exchange reaction of the HT-MoO 4 2- coating on the Mg alloy in chloride containing solution can be expressed as follows (Fig. 3): HT-MoO 4 2- +2 Cl - → HT-2Cl - + MoO 4 2- (3) Anodic reaction: Mg → Mg 2+ + 2e (4) Cathodic reaction: 2 H 2 O + 2e - → 2OH - + H 2 ↑ (5) The total reaction: Mg + 2 H 2 O → Mg(OH) 2 + H 2 ↑ (6) The released MoO 4 2- ions can produce the following reactions : MoO 4 2- + 8 H + + 3e - → Mo 3+ + 4 H 2 O (7) At the same time, Mo 3+ ions also consume the OH - ions and create the formation of Mo(OH) 3 . The Mo(OH) 3 compound is quite unstable and has a tendency which can transform into more stable compounds: Mo(OH) 3 + OH - → Mo(OH) 4 (8) MoO 4 2- may react with the dissolved Mg 2+ to form a protective deposition film. The deposition of MoO 4 2- can inhibit the expansion and spreading of pitting corrosion. The probable reaction can be given as follows Mg 2+ + MoO 4 2- → (9) Fig. 3 Corrosion protection mechanism of the HT-MoO 4 2-  coating. Conclusions (1) Based on the ion exchange, the released MoO 4 2-  ions lead to the formation of a diffusion boundary layer. (2) In the diffusion boundary layer, the released MoO 4 2-   ions greatly impair the adsorption of Cl -  on the surface of the coating. Also, the released MoO 4 2-  with the ability for oxidation and deposition can effectively reduce the damage of pitting corrosion to the substrate. (3) In the HT- MoO 4 2-  coating, the coexistence of HT- MoO 4 2-  and HT-2Cl can effectively block the penetration of aggressive ions, the corrosion pits can thus be healed by the Mg(OH) 2 layer and inhibit MoO 4 2-  . This article has been published on Journal of Materials Chemistry A (2014, 2, 13049–13057).
个人分类: 科研进展|3811 次阅读|2 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-6 06:19

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部