科学网

 找回密码
  注册

tag 标签: 太古宙

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

地质年代-太古宙
GeoSHAO 2021-7-29 07:19
太古宙(太古宇)(英语:Archean 简写:AR),是地质时代中的一个宙。太古宙起始于内太阳系后期重轰炸期的结束(对月岩的同位素定年确定为40亿年前),地球岩石开始稳定存在并可以保留着。太古宙结束于25亿年前的大氧化事件,以甲烷为主的还原性的太古宙原始大气转变为氧气丰富的氧化性的元古宙大气,并导致了持续3亿年的地球第一个冰河时期——休伦冰河时期。 太古宙时期有细菌和低等蓝菌存在。太古宙是原始生命出现及生物演化的初级阶段。 太古宙的上一个宙是冥古宙,下一个宙是元古宙,三个时代曾经被称为“隐生宙”。包括了始太古代、古太古代、中太古代、新太古代 。 太古宙是古老的地史时期。从生物界看,这是原始生命出现及生物演化的初级阶段,当时只有数量不多的原核生物,如细菌和低等蓝藻,他们只留下了极少的化石记录。从非生物界看,太古宙是一个地壳薄、地热梯度陡、火山—岩浆活动强烈而频繁、岩层普遍遭受变形与变质、大气圈与水圈都缺少自由氧、形成一系列特殊沉积物的时期;也是一个硅铝质地壳形成并不断增长的时期,又是一个重要的成矿时期。 太古宙就是距今约4000百万年到2500百万年,大约十三亿年时间。这一段时间,又可以分为始太古代、古太古代、中太古代和新太古代,这四个时期。在太古宙时期,已经出现了数量比较多的原核生物。 原核生物(英文名:Prokaryotes),是由原核细胞组成的生物,包括蓝细菌、细菌、古细菌、放线菌、立克次氏体、螺旋体、支原体和衣原体等。 原核细胞,这类细胞主要特征是没有明显可见的细胞核, 同时也没有核膜和核仁, 只有拟核(核质体),进化地位较低。 蓝细菌(英文名:Cyanobacteria):也称蓝藻或者蓝绿藻,是一类进化历史悠久、革兰氏染色阴性、无鞭毛、含叶绿素和藻蓝素(但不形成叶绿体)、能进行产氧性光合作用的大型原核微生物。 古细菌(英文名:archaea、archaeobacteria):又可叫做古生菌、古菌、古核细胞或原细菌,是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及内膜系统;也有真核生物的特征,如以甲硫氨酸起始蛋白质的合成、核糖体对氯霉素不敏感、RNA聚合酶和真核细胞的相似、DNA具有内含子并结合组蛋白;此外还具有既不同于原核细胞也不同于真核细胞的特征,如:细胞膜中的脂类是不可皂化的;细胞壁不含肽聚糖,有的以蛋白质为主,有的含杂多糖,有的类似于肽聚糖,但都不含胞壁酸、D型氨基酸和二氨基庚二酸。 放线菌(英文名:Actinomycete):因菌落呈放线状而的得名;它是一个原核生物类群,在自然界中分布很广,主要以孢子繁殖。 立克次氏体(Rickettsia):因1909年,美国医生H.T.Ricketts(1871-1910年)首次发现落基山斑疹伤寒的独特病原体,并被它夺取生命,故名。立克次氏体是一类专性寄生于真核细胞内的G-原核生物。是介于细菌与病毒之间,而接近于细菌的一类原核生物。一般呈球状或杆状,是专性细胞内寄生物,主要寄生于节肢动物,有的会通过蚤、虱、蜱、螨传入人体、如斑疹伤寒、战壕热。 螺旋体(Spirochaeta):细长、柔软、弯曲呈螺旋状的运动活泼的单细胞原核生物。全长3~500微米,具有细菌细胞的所有内部结构。由核区和细胞质构成原生质圆柱体,柱体外缠绕着一根或多根轴丝。轴丝的一端附着在原生质圆柱体近末端的盘状物上,原生质圆柱体和轴丝都包以外包被,轴丝相互交叠并向非固着端伸展,超过原生质圆柱体,类似外部的鞭毛,但具外包被。用暗视野显微镜观察含活菌的新鲜标本,可看到运动活泼的螺旋体。运动有三种类型:绕螺旋体的长轴迅速转动、细胞屈曲运动以及沿着螺旋形或盘旋的线路移动。横断分裂繁殖;化能异养;好氧、兼性厌氧或厌氧;自由生活、共栖或寄生,有些种是致病菌。 支原体(mycoplasma):又称霉形体,为发现的最小的最简单的原核生物。支原体细胞中唯一可见的细胞器是核糖体(支原体是原核细胞,原核细胞的细胞器只有核糖体)。 衣原体(Chlamydia):为革兰氏阴性病原体,在自然界中传播很广泛。它没有合成高能化合物ATP、GTP的能力,必须由宿主细胞提供,因而成为能量寄生物,多呈球状、堆状,有细胞壁,以一般寄生在动物细胞内。从前它们被划归病毒,后来发现自成一类。它是一种比病毒大、比细菌小的原核微生物,呈球形,直径只有O.3-0.5微米,它无运动能力,衣原体广泛寄生于人类,哺乳动物及鸟类,仅少数有致病性。 蓝绿藻 开始于约3600百万年前,结束于3200百万年前,就是太古宙——古太古代时期了。在这一段时间中,就出现了最早的大型生物——蓝绿藻。 现代的人们对于蓝绿藻的定义:蓝绿藻(又称蓝藻),由于蓝色的有色体数量最多,所以宏观上现蓝绿色,是地球上出现的最早的原核生物,也是最基本的生物体,为自养形的生物,它的适应能力非常强,可忍受高温,冰冻,缺氧,干涸及高盐度,强辐射,所以从热带到极地,由海洋到山顶,85℃温泉,零下62℃雪泉,27%高盐度湖沼,干燥的岩石等环境下,它均能生存。 科属分类:蓝藻属蓝藻门,分为两纲:色球藻纲和藻殖段纲。色球藻纲藻体为单细胞体或群体;藻殖段纲藻体为丝状体,有藻殖段。 已知蓝藻约2000种,中国已有记录的约900种。分布十分广泛,遍及世界各地,但大多数(约75%)淡水产,少数海产;有些蓝藻可生活在60~85℃的温泉中;有些种类和菌、苔藓、蕨类和裸子植物共生;有些还可穿入钙质岩石或介壳中(如穿钙藻类)或土壤深层中(如土壤蓝藻)。 蓝藻是单细胞生物,没有细胞核,但细胞中央含有核物质,通常呈颗粒状或网状,染色体和色素均匀的分布在细胞质中。该核物质没有核膜和核仁,但具有核的功能,故称其为原核。和细菌一样,蓝藻属于“原核生物”。它和具原核的细菌等一起,单立为原核生物界。 在距今2800百万年,到2500百万年,就是太古宙——新太古代。在新太古代中出现了,地球上的“第一次冰河期”。 这次的冰河期,没有为国际上公认,就是因为距今太过遥远,不好判断,关于这段时间的辨认也相差了几亿年。 一部分人认为,隐生宙分太古代(距今4500百万到2400百万年)和元古代(距今约2400百万年到570百万年),冰河期是在元古代(距今约2400百万年到570百万年)中的一段时间内发生的。这一段时间,就是隐生宙——元古代——震旦纪,时间也是在距今大约25亿年。 冰河世纪对生命的影响非常大。 冰河期的成因,有各种不同说法,但许多研究者认为可能与太阳系在银河系的运行周期有关。有的认为太阳运行到近银心点区段时的光度最小,使行星变冷而形成地球上的大冰期;有的认为银河系中物质分布不均,太阳通过星际物质密度较大的地段时,降低了太阳的辐射能量而形成地球上的大冰期。 属前寒武纪早期。这一时期形成的地(岩)层称太古宇。按广义的时间概念来说,它包括自地球形成至距今25亿年前为止,持续时间约20亿年。已测定公认的最古老岩石同位素地质年龄为38亿年或略大,在西澳杰克丘陵的变质砾岩中碎屑锆石年龄可达43亿年。太古一词是1872年美国地质学家J.D.丹纳首先提出的,并用其大致代表北美的前寒武时期。1977年国际地层委员会前寒武纪地层分会第四次会议将太古的上界放在25亿年,并称之为太古宙。 1979年,这个组织的第五次会议曾提出过太古宙三分的意见,其年代界限分别为35亿年和29亿年。但1983年、1985年和1988年第六、七、八3次会议均认为太古宙的进一步划分依据尚不够充分,并定于1991年第九次会议时重新讨论太古宙的再划分问题。第八次会议正式提出了前寒武纪划分的建议,其中包括太古宙的上界为25亿年和称为太古宙的意见,并在1989年和1990年先后为国际地层委员会和国际地科联执行局所通过。 1979年,中国第二届全国地层会议提出的中国地层指南仍称太古代;而1989年底全国地层委员会晚前寒武纪专业组开会的纪要中,已明确建议改称为太古宙,上界放在约25亿年。中国有少数年龄大于30亿年的古老岩石,其中已知最古老的岩石是产于迁安县曹庄-黄柏峪附近的斜长角闪岩,其年龄约为35亿年,并发现更老的碎屑锆石,附近以及其他地区还有年龄约29~30亿年或稍大的岩石。对中国太古宙虽然有三分的趋势,根据东北、华北等地区的年代资料,上部的年代界限可暂时放在29~30亿年,下部界限依据尚不够,故暂以采用两分方案为宜(下部称中、下太古界)。 地层分布区特点 在世界上一些太古宙岩石的分布范围内,一般可分为变质较深的麻粒岩-片麻岩区(又称高级变质区),和以绿岩带为代表的低级变质区。 麻粒岩-片麻岩区的变质程度多属麻粒岩相到高级角闪岩相。主要岩石为含少量黑云母、角闪石、紫苏辉石或透辉石等暗色矿物的长英质片麻岩,它们的化学成分相当于花岗闪长岩或云英闪长岩,对其原岩性质,有属侵入、火山和火山沉积等成因的争论。有一部分岩石含有铝硅酸盐矿物,大致由泥质-半泥质原岩变质而成;另有一些辉石麻粒岩和角闪岩,其成分大多相当于基性火山岩;浅色长英片麻岩主要相当于酸性火成岩成分;而斜长岩则一般认为属层状侵入体。这类地区构造一般复杂,往往有多期构造叠加,并受到一次以上程度不同的混合岩化作用叠加。其典型地区有北大西洋陆核、西伯利亚东部的阿尔丹地盾和非洲南部林波波带等地。 绿岩多属低级角闪岩相到绿片岩相。在不少地方主要由3部分岩层组成,大致下部由超镁铁-镁铁质熔岩组成,部分或主要为科马提岩;中部为钙碱系列的基性到酸性火山岩;上部由沉积的浊积岩以及化学沉积的条带状含铁层和燧石等组成。绿岩带多为向斜构造,可被花岗岩侵入。典型地区有南非巴伯顿山区和津巴布韦,此外还有加拿大地盾、西澳大利亚的一些地区和芬兰东部等地。而印度南部的达瓦系绿岩带由北向南变质程度递增,可达麻粒岩相。 中国太古宙地层主要分布在北方。东经105°以东,北纬31°~43°之间,基本上为华北地台基底出露区。太古宙变质岩石,主要由属于角闪岩相的黑云斜长片麻岩、角闪斜长片麻岩、黑云变粒岩和斜长角闪岩等组成。其北带自宁夏吉兰泰,经内蒙古乌拉山、河北燕山,东延到辽东和吉林南部,有麻粒岩相岩石(辉石麻粒岩、黑云辉石斜长片麻岩等)分布。上述岩石构成太古宙岩石的主体。另外还程度不同地出现一些镁质大理岩、夕线石片麻岩、云母片岩、长石石英岩、条带状石英磁铁矿层(条带状磁铁贫矿)、石墨片麻岩和石墨片岩等变质的沉积岩夹层。这些夹层可分别反映不同地区的原始沉积条件和沉积环境的某些差别。上述岩层大都经过一次以上的混合岩化作用和构造变形的叠加。在同一地区内,其区域变质作用,往往表现为变质程度高的地层比变质程度低的地层要老。以上情况表明,华北地台基底的太古宙岩石分布区,主要相当于高级变质区,局部如辽东、鲁西等地有小范围的低级变质岩出现。对于太古宙高级变质区岩层能否建立层序和划分问题,国内外都有不同意见,结合中国的、特别是上述具有层状岩层出露的地区,许多是可以根据详细的工作,特别是地质填图,进行地层层序的建立和划分。但有些地区(如泰山等),主要由古老的侵入岩所构成,则难以进行地层划分。 在中国东经105°以西的西北地区,出露的古老变质岩层,分布在北纬35°~45°之间。由于地质工作程度不高,所测得的同位素年龄数据少,许多地段的太古宙岩石和古元古代的岩石尚未划分,除黑云斜长片麻岩、角闪斜长片麻岩等外,尚有相当数量的云母片岩、角闪片岩、大理岩、石英岩等。许多地区还难于截然划分出上述两大区带。 华北地台基底北带太古宙岩层出露较好,其二分的可能地层界线,暂以阴山的集宁群和乌拉山群,燕山的迁西群和八道河群(或滦县群),辽吉地区的龙岗群和鞍山群(或下鞍山群和上鞍山群)之间的界线为代表,大体反映两个火山沉积巨旋回。由于太古宙之下尚未建代,现仍称下、中、上太古界。下、中太古界往往以含有麻粒岩相岩石为代表,上太古界以角闪岩相居多,其他如太行、淮阳、秦岭北坡等地区,有麻粒岩相岩石零星出露,因而上太古界和中太古界不是以用麻粒岩相和角闪岩相来分界的。对中国上太古界上限的另一种意见,认为应放在五台群及其相应地层的顶界或中间。最近的一些岩石年龄资料,证实山西和河北出露的一些古元古代早期的火山岩年龄,均约在25亿年(误差不超过5000万年),说明华北地台基底的某些部分上太古界顶界,可能略大于25亿年。 从中国太古宙岩层的原岩建造、火山活动、构造变动及其地球化学特点,结合它的地壳演化历史等初步分析,中国太古宙岩石的某些特征,不同于北半球的西部和南半球,而与毗邻的苏联大部分地区,有某些类似之处。 大气圈、水圈及生命形式 根据一般推测,太古宙原始大气圈的密度较大,主要由水蒸气、二氧化碳、硫化氢、氨、甲烷、氯化氢、氟化氢等成分组成。这些气体成分,可能来源于频繁的火山活动。总的趋势是随着时间的推移二氧化碳减少,这是由于碳酸盐沉淀时二氧化碳被固定在碳酸盐沉积物中。原始大气圈缺少自由氧,氧的出现是由于光化学作用的结果。 根据各地沉积岩层的相似性,推测当时地球大部分地区为海洋所覆盖。原始的海洋可能并不深,富含氯化物,但缺乏硫酸盐,这是由于在水圈中同样缺乏自由氧。 随着时间的推移,大气圈的透光性增强,为生物光合作用提供了有利条件。从化石记录,太古宙晚期出现大量的菌类和低等的蓝藻。如以35亿年为早、中太古代之间的界限,则在中太古代已有低等的蓝藻和叠层石存在。 构造运动 太古宙的构造运动研究得还不够清楚,世界范围内可能有3期主要的构造运动。早期的发现较少,如非洲南部,终止于34亿年(或35亿年)前,而北美则终止于33~35亿年前,在印度则可能为32亿年前。中期是相当于非洲中南部的达荷美运动,在美洲、美国、澳大利亚、印度和中国等地均有表现,大约终止于29亿年前。晚期相当于在加拿大地盾中表现明显的肯诺雷运动,大约是在距今27~25亿年之间。看来各地太古宙地壳运动的发育情况和时间有一些出入,而且只有晚期构造运动曾在许多地方找到它的证据。一些人主张板块构造最早发生于古元古代,特别是在北欧和北美取得一些有力的证据,也有一些人认为太古宙时就已有板块构造运动。 中国北方太古宙晚期的阜平运动(或称铁堡运动),是一次比较明显的构造运动,可能与肯诺雷运动相当。另外在太行山区,还可见到龙泉关群和阜平群之间的不整合,但只有局部性的意义。 矿产 太古宙是一个重要的成矿期,形成的矿产很丰富。主要有铁、金、镍、铬、铜、锌、稀有元素和一些非金属矿产等。同其他时代比较,许多矿产居于前列,而镍、金、铜、铁等矿产特别引人注目。如苏必利尔区、非洲南部和澳大利亚西部等地区太古宇中,均蕴藏有丰富的上述矿产。 中国鞍山、本溪、冀东、吕梁等地大铁矿,吉南、辽西、冀东、小秦岭等地的金矿,均产于太古宙岩石中,但至今尚未获得金矿成矿期为太古宙的证据。 麻粒岩-片麻岩区的矿产,主要有铁矿和非金属矿床,以及少量铬、镍矿床等。绿岩带中矿产尤为丰富, 其中铬、镍等主要产于下部的超镁铁岩流和侵入岩中,金、银、铜和锌产在中部的镁铁质和长英质火山岩之间,条带状铁建造等则产于上部沉积岩中,而稀有元素等是产于与花岗深成岩相伴的伟晶岩中。 太古宙的矿床,大部分属于层控或层状矿床,小部分与各种侵入岩或伟晶岩有关。
271 次阅读|0 个评论
最新的国际年代地层表
GeoSHAO 2021-7-11 11:41
国际地层委员会发布最新的国际年代地层表。 4600-4000Ma为冥古宙(6亿年) 4000-2500Ma为太古宙(15亿年) 2500-541Ma为元古宙(19.59亿年) 541-0Ma为显生宙(5.41亿年)
338 次阅读|0 个评论
地球科学原理之37 新元古宙以前冰川期的形成
rock6783 2009-5-18 20:33
广东海洋大学 廖永岩 (电子信箱: rock6783@126.com ) 新元古宙( 9-8 亿年前)前有几个冰川期?由于相关地质资料的缺乏,这仍是一个有待进一步研究的问题。目前知道的只有它们大约是 29-27 亿年前和 24-23 亿年前的冰川 ( 韩吟文和马振东, 2003 ) 。 通过前面的冰川的地质作用分析可知,冰川活动能引起地质构造运动(如造山运动和造海运动),就有火山喷发和地震 ( MeGuire, 1992; Zielinski, et. al., 1996 ) 。根据地质史上构造运动、火山喷发和地震资料看,整个太古宙地壳运动、岩浆活动具有明显的阶段性:距今 35 亿年前西北利亚地盾的萨姆运动( Saamian ), 30 亿年前非洲中南部的达荷美运动 (Dahomeyan ,中国称为迁西运动 ) , 24-26 亿年前北美地盾的基诺尔运动 (Kenoran ,为太古宙最强烈、影响范围最大,中国称为阜平运动 ) 。 元古宙的地壳运动有 20-19 亿年前的哈德逊( Hudsonian )运动(欧洲称卡累利运动,中国称吕梁运动)。中元古宙末的昆阳运动 ( 何锡麟, 1997 ) 。 虽然资料还很不完善,但可以初步估计,新元古宙前的太古宙和中、早元古宙,可能有 5 个冰川期:大约是 35 亿年前、 29-27 亿年前、 24-23 亿年前、 19-17 亿年前、 14-12 亿年前的冰川期。 最先出现在地球上的生物可能是异养细菌,这些原核生物主要以分解原始海洋里的有机物而生存。它们将高分子的碳水化合物、脂肪和蛋白质分解为低级脂肪酸等物质 ( 陈明耀, 1995 ) 。然后是光合细菌类生物,它们利用光能,以有机物、硫化氢和硫代硫代酸钠为还原 CO 2 的供氢体,合成有机物 ( 陈明耀, 1995 ) 。自从生物在地球上开始出现,至大约 35 亿年前,由于以上的生物非放氧光合成作用,使大气中的 CO 2 浓度降低。以上生物的光合成作用,和风化作用一道,引起 pH 值上升 ( Berner , et. al., 1983; Hoffman, et. al., 1998 ) 。当 pH pHCO 2 时 (pHCO 2 为水体中所有的 HCO 3 - 被 H + 中和 时的 pH 值 ) ,就会造成大量 CO 2 溶于海洋,这将导致大气 CO 2 浓度急剧下降,使温室效应降低, 引起冰川的形成。虽然这次形成的冰川规模可能很小,但由于地壳刚形成不久,地球的流体性相当强,较小的冰川形成和消融,也会导致强烈的地质活动,引发火山喷发和地震 ( MeGuire, 1992; Zielinski, et. al., 1996 ) 。 35 亿年前的生物,主要以有机物、硫化氢和硫代硫代酸钠为还原 CO 2 的供氢体,合成有机物而生存。一旦这类供氢体消耗殆尽,这类生物将急剧减少。同时,降温作用,也是造成这类生物减少的一个原因。 所以,当这类生物消耗 CO 2 的能力小于地球的去气作用产生 CO 2 的能力时,降温作用将停止,温度将上升,导致这次冰川期的结束。 由于光合成不放氧生物的死亡,为蓝藻类放氧光合作用生物提供了生态空间,使它们得以出现。 29-27 亿年前和 24-23 亿年前的冰川,主要是由蓝藻类光合放氧生物(绿色植物)繁盛引起的。由于降温和冰川作用,使它们的生存空间减少,它们消耗 CO 2 能力小于火山喷发和地震类地球去气作用而宣告这两次冰川的结束。 因为 24-23 亿年前的冰川形成时, O 2 的积累增加,生物生存的空间增大,单位体积水体的生物量增大,光合作用也增强。所以,这次冰川期的温度最低,是太古宙以来最大的一次冰川期。 有氧呼吸代谢的生命体,所需的最低限度的 O 2 浓度大约为现代大气 O 2 浓度的 1% 。 20 亿年前左右,经过蓝藻十几亿年的努力,将大气氧含量升到现在大气氧含量的 1% 。这个程度的氧含量,可以形成比较薄的臭氧层,可以屏蔽 250nm 的全部紫外线,只要水深至 4.2 m ,还能屏蔽 320 nm 的全部紫外线。换句话说,生物只要在 4.2 m 以下的水里,就能免受紫外线的伤害 ( Wayne , 2000 ) 。 由于含氧量的增加,真核细胞得以演化出来。同时,由于这次较大冰期的作用,导致原核生物的衰弱,也为真核细胞的出现创造了生存空间。 19-17 亿年前和 14-12 亿年前的冰川期,是由蓝藻和真核细胞共同作用造成的,也是由于冰川期温度下降而缩小它们的生存空间,减弱光合作用,使光合作用消耗 CO 2 能力小于火山喷发和地震等去气作用而结束。 那地球上曾经最大规模的新元古宙及奥陶纪冰期又是怎么形成的?且听下回分解。 未完,待续。 下回预告 : 地球科学原理之 38 新元古宙、奥陶纪冰期的形成 参考文献: 陈明耀 . 生物饵料培养 . 中国学业出版社 . 北京: 1995, 3-92 韩吟文,马振东 . 地球化学 . 北京:地质出版社 , 2003, 303-370 何锡麟 . 地史学简明教程 . 北京:煤炭工业出版社 , 1997, 53-266 Berner R A , et al. The carbonate - silicate geochemical cycle and its effect on atmospheric CO 2 over the past 100 million years. American Jour Science, 1983 , 283: 641-683 Hoffman P F. The break-up of Rocinia, birth of Gondwana, true polar wander and the snowball Earth . Journal of African Earth Science, 1998, 28: 17-33 MeGuire W J. Changing sea levels and erupting volcanoes: cause and effect ? Geology Today, 1992, 7: 141-144 Wayne R P. Chemistry of Atmospheres(third edition). Oxford University Press. 2000. Zielinski G A, Mayewski P A, Meeker L D, et al. A 110,000 yr record of explosive volcanism from the GISP2( Greenland ) ice core. Quaternary Research, 1996, 45: 109-118 (注: 本地球科学原理系列,是根据廖永岩著,海洋出版社( 2007 年 5 月)出版的《地球科学原理》一书改编而来,转载者请署明出处,请不要用于商业用途 )
个人分类: 地球科学|8983 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-12 11:41

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部