科学网

 找回密码
  注册

tag 标签: EIN2

相关帖子

版块 作者 回复/查看 最后发表

没有相关内容

相关日志

乙烯信号简史 | 入核路漫漫
yjjh143 2018-10-14 22:24
通过前面的介绍,我们了解到,在空气中,CTR1被受体激活,磷酸化EIN2的C端,磷酸化的EIN2被F-box蛋白ETP1/2降解,抑制信号向下游传递;而有乙烯存在时,受体和CTR1失活,ETP1/2蛋白减少,EIN2 C端去磷酸化,稳定性增强,并从内质网切割下来,进入细胞核,激活下游信号。 在乙烯的帮助下,EIN2总算脱离了内质网的“束缚”,由此开始了向细胞核的“朝圣之路”。正如唐僧西天取经要经历九九八十一难一样,EIN2通往细胞核的路途也注定不会一帆风顺,这其中又会发生怎样精彩的故事呢?下面,就让我们一探究竟吧! 在正式开始今天的故事之前,我们先简单介绍一下背景知识。通过前面《乙烯信号简史》系列的介绍,我们已经了解了已知的乙烯信号通路中的大部分组分。不过,仍有一个重量级的嘉宾还没有涉及到,那就是在乙烯信号转导中起非常重要作用的转录因子EIN3和EIL1。它们可以直接调控乙烯响应基因的表达,使植物对乙烯作出特定的反应。 2003年,Joseph R. Ecker实验室在 Cell 上发表论文 Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor ,揭示了泛素化/蛋白酶体介导的蛋白质降解途径参与乙烯信号转导的新机制。他们发现,当没有乙烯时,细胞核中的EIN3/EIL1会被F-box蛋白EBF1/2介导的泛素化/蛋白酶体途径快速降解,抑制下游基因的表达。而有乙烯时,EIN2的C端进入细胞核,稳定EIN3/EIL1并使其积累,激活下游乙烯信号。另外,研究人员还发现,EBF1/2介导的EIN3/EIL的蛋白降解依赖EIN2,但是机制却不清楚。那么,乙烯和EIN2到底是通过什么机制抑制EBF1/2的功能呢?这个问题一直困扰着人们。 2015年,两个独立的研究小组同时在Cell上发表文章,共同揭示了乙烯信号转导的新机制:乙烯促进EIN2和EBF1/2 mRNA 3’UTR的polyU motif结合,并进入P-body,进而抑制EBF1/2蛋白的翻译。 其中的一篇文章是 郭红卫课题组 的研究成果,题为 EIN2-directed translational regulation of ethylene signaling in Arabidopsis 。他们的灵感来自于前期的研究发现。ein5是一个乙烯钝感突变体,它的XRN4(EXORIBONUCLEASE 4)基因发生了突变。在前期的研究工作中,科研人员发现在ein5突变体中,EBF1和EBF2的3’UTR片段会累积。那么,这些累积的3’UTR和ein5的乙烯钝感表型有什么关系呢?为了回答这一疑问,研究人员将EBF1的3’UTR片段在WT材料中过表达。他们惊奇地发现,过表达EBF1的3’UTR可降低拟南芥的乙烯敏感性,抑制EIN3蛋白的累积,并促进内源EBF1/EBF2 mRNA的翻译。研究人员推测,植物体内可能存在某种翻译抑制机制,会结合到内源EBF1/2的3’UTR,抑制EBF1/2的翻译,而外源过表达EBF1的3’UTR会导致竞争性结合,最终解除或降低了这种翻译抑制机制。 过表达EBF1的3’UTR降低拟南芥的乙烯敏感性【2】 为了验证这一假设,研究人员将EBF1/2的3’UTR与GFP蛋白融合,转化到拟南芥中。当用乙烯处理转基因拟南芥时,GFP的荧光减弱蛋白减少,说明EBF1/2的3’UTR确实可以抑制蛋白的翻译。进一步的遗传分析表明,这种抑制蛋白翻译的作用依赖于上游的乙烯受体和EIN2,但是并不依赖EIN3/EIL1。进一步研究发现,EBF1/2 3’UTR的poly U motif以及EIN2蛋白的654-1272位氨基酸及其NLS都是这种翻译抑制作用所必须的。 EBF1的3’UTR参与乙烯诱导的翻译抑制【2】 那么这种翻译抑制作用的分子机制到底是什么呢?研究人员发现,EIN2可以和EBF1/2的 3’UTR直接互作,并且这种互作随着乙烯的处理而加强。进一步研究发现,EIN2蛋白和EBF1/2的3’UTR共定位于细胞质中的P-body,并和P-body中的多种组分互作。 至此,EBF1/2翻译抑制的机制就比较清楚了:当有乙烯时,EIN2的C端从内质网上切割下来。细胞质中的EIN2 CEND可以和EBF1/2 mRNA的3’UTR互作,并且通过和P-body中的组分互作,将EBF1/2 mRNA带入P-body,从而抑制EBF1/2 mRNA的翻译。 EIN2抑制EBF1/2 mRNA翻译的原理图【2】 有意思的是,北卡罗莱纳州立大学的 Jose M. Alonso 和 Anna N. Stepanova 实验室也发现了与上述相同的机制,并以 Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2 为题,与郭红卫实验室的文章以背靠背的形式共同发表在同一期的Cell上。不禁让人发出“英雄所见略同”的感慨! 背靠背发表的两篇Cell文章 值得一提的是,在以往的研究中,乙烯信号通路的研究成果大多属于国外实验室。而此次EIN2对EBF1/2蛋白翻译抑制的研究成果,是我国科学家在乙烯信号转导领域作出的重大发现,具有非常重要的意义。而近年来,我国植物科学研究快速发展,高水平的科研成果层出不穷。我们正处在一个做植物研究最好的时代! ——— 【1】Guo, H., Ecker, J. R. (2003). Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell, 115(6), 667-677. 【2】Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., … Guo, H. (2015). EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell, 163(3), 670-683. 【3】Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K. R., Enríquez, P., … Alonso, J. M. (2015). Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2. Cell, 163(3), 684-697. 【4】Li, J., Li, C., Smith, S. M. (2017). Hormone Metabolism and Signaling in Plants. Academic Press. 欢迎关注 BioArt植物 微信公众号 ​
个人分类: 乙烯信号转导简史|8951 次阅读|0 个评论
乙烯信号简史 |“伟光正”EIN2
yjjh143 2018-8-12 21:56
在前面的讲解中,我们介绍了乙烯信号转导通路中的两大组分:乙烯受体家族和CTR1。和大多数植物激素信号通路不同,乙烯信号中起始的这两大组分“狼狈为奸”,共同把持着乙烯信号通路的命脉,抑制信号向下游的传递。 不过,“天理昭昭,报应不爽,邪恶终归抵不过正义”。大自然这位伟大的编剧,巧妙地安排了一位“少年英雄”替天行道、除恶扬善,把邪恶消亡,让正义永存。这位英雄就是我们今天的主角,“伟光正”的EIN2 。 在《乙烯反应突变体的筛选》一文中,我们曾提到过,1990年Ecker课题组在 The Plant Cell 上发表的系统阐述以拟南芥三重反应为模式,进行乙烯反应突变体筛选的文章中,筛选到了一个乙烯不敏感突变体,在高浓度乙烯存在的情况下仍然不出现三重反应,这就是第一个EIN2(Ethylene Insensitive 2)等位突变体ein2-1。 1999年,Ecker实验室在 Science 上发表题为 EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis 的文章。文章中总结,在后续的遗传筛选中,陆续筛选出了25个ein2等位突变体。在这些突变体中,除了ein2-9,其他24个突变体在形态学、生理学以及分子水平都对乙烯处理不敏感。此外,它们除了对外源乙烯处理不敏感外,对内源乙烯也完全不敏感,并且在拟南芥的各个生长时期都有表型,这就说明了 EIN2在乙烯信号通路中起到非常关键的作用 。 有意思的是,除了在筛选乙烯不敏感突变体的过程中筛选到ein2等位突变外,在筛选生长素转运抑制剂、细胞分裂素和ABA不敏感突变体,以及衰老延缓突变体的过程中,也都筛选到了ein2等位突变,但是并没有筛选到其他乙烯信号通路的组分,这说明 EIN2可能特异地介导了乙烯和其他激素的互作 。 ein2突变体对乙烯不敏感【2】 通过图位克隆将EIN2定位在5号染色体的头部,并进一步克隆到EIN2基因。通过杂交实验发现EIN2在拟南芥基因组中为单拷贝,这可在一定程度上解释为什么唯独EIN2突变会导致拟南芥对乙烯完全不敏感。Northern blot发现EIN2在拟南芥的根、茎、叶以及花中都有表达,但是mRNA水平不受乙烯的影响。对25个ein2等位突变体中的EIN2进行测序后发现,它们中的EIN2基因都存在不同的突变。将野生型的EIN2转化至ein2-5中,可以互补突变体的表型,说明突变体的乙烯不敏感表型确实是由于EIN2基因的突变导致,并且 EIN2在乙烯的信号转导中发挥正调控作用 ,这是我们迄今为止讲到的第一个在乙烯信号通路中起正向作用的组分。 EIN2的图位克隆及等位突变【2】 将EIN2基因组和cDNA序列比对后发现,EIN2含有7个内含子。EIN2基因编码1294个氨基酸,蛋白大小约为141kD。N端的461个氨基酸具有非常强的疏水性,而C端的833个氨基酸却具有非常高的亲水性。蛋白结构预测发现EIN2蛋白具有12个跨膜结构域,全部位于N端。进一步通过体外实验证明,EIN2蛋白确实具有完整的膜定位。蛋白序列比对后发现EIN2的N端和Nramp家族蛋白具有较高的序列相似性(21% identity)。Nramp家族蛋白在细菌到人类的所有生物中都有发现,主要起到转运二价金属离子的作用。但是,将EIN2蛋白在爪蟾卵母细胞、酵母等系统中表达,并没检测到离子转运的活性,说明 EIN2并不具有离子转运的功能,可能通过其他的机制行使功能 。 EIN2 N端与Nramp蛋白序列比对(箭头所示为12个跨膜结构域)【2】 按照一般的理解,既然EIN2在乙烯的信号转导中起正调控的作用,如果将EIN2过表达,拟南芥应该会表现出组成型乙烯反应或者乙烯过敏感的表型。可是,将EIN2的N端和全长过表达,并没有出现上述表型。但是将EIN2的C端(CEND)在ein2-5中过表达,却可导致光下生长的幼苗出现组成型乙烯反应,并可持续激活乙烯响应基因的表达。以上结果说明, EIN2的Nramp-like domain可能通过某种机制调控CEND的功能 。 将EIN2 CEND在ein2-5中过表达,导致光下生长幼苗出现组成型乙烯反应【2】 2009年, Georg GROTH实验室在 Biochemical Journal 上发表题为 EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR 1的文章。他们将EIN2-GFP融合蛋白在烟草叶片中瞬时表达,并通过激光共聚焦显微镜观察,发现EIN2-GFP和ER的marker蛋白共定位,并在细胞核周围表现出典型的ER网状结构,证明 EIN2定位在ER上 。 EIN2定位在内质网上【3】 我们在乙烯受体系列文章中介绍过,乙烯受体家族的5个成员,都在内质网有定位。那么,EIN2和受体之间有什么关系呢? Groth组的科研人员通过FRET分析,证明乙烯受体ETR1和EIN2可以互作。随后又通过荧光滴定法(Fluorescence titration studies)进一步从体外证明了ETR1和EIN2的互作。 FRET分析证明ETR1和EIN2互作【3】 既然EIN2在乙烯的信号通路中起到关键性的作用,而它在mRNA水平上对乙烯又没有响应,那么它受什么调控,又是如何发挥作用的呢? 欲知后事如何,请听下回分解:《乙烯信号简史 | 成也EIN2,败也EIN2》。 【参考文献】 【1】Guzman, P., Ecker, J. R. (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. The Plant Cell, 2(6), 513-523. 【2】Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., Ecker, J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284(5423), 2148-2152. 【3】Bisson, M. M., Bleckmann, A., Allekotte, S., Groth, G. (2009). EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochemical Journal, 424(1), 1-6. 欢迎关注 BioArt植物 微信公众号 ​
个人分类: 乙烯信号转导简史|9085 次阅读|0 个评论

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-3 04:09

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部